-
Notifications
You must be signed in to change notification settings - Fork 845
/
Copy pathapi.py
179 lines (142 loc) · 5.5 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import re
import shutil
import urllib.request
from pathlib import Path
from tempfile import NamedTemporaryFile
from litellm import completion
import fitz
import numpy as np
import openai
import tensorflow_hub as hub
from fastapi import UploadFile
from lcserve import serving
from sklearn.neighbors import NearestNeighbors
recommender = None
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page - 1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i : i + word_length]
if (
(i + word_length) > len(words)
and (len(chunk) < word_length)
and (len(text_toks) != (idx + 1))
):
text_toks[idx + 1] = chunk + text_toks[idx + 1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i : (i + batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def load_recommender(path, start_page=1):
global recommender
if recommender is None:
recommender = SemanticSearch()
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
def generate_text(openAI_key, prompt, engine="text-davinci-003"):
# openai.api_key = openAI_key
try:
messages=[{ "content": prompt,"role": "user"}]
completions = completion(
model=engine,
messages=messages,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
api_key=openAI_key
)
message = completions['choices'][0]['message']['content']
except Exception as e:
message = f'API Error: {str(e)}'
return message
def generate_answer(question, openAI_key):
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += (
"Instructions: Compose a comprehensive reply to the query using the search results given. "
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "
"with the same name, create separate answers for each. Only include information found in the results and "
"don't add any additional information. Make sure the answer is correct and don't output false content. "
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "
"search results which has nothing to do with the question. Only answer what is asked. The "
"answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
)
prompt += f"Query: {question}\nAnswer:"
answer = generate_text(openAI_key, prompt, "text-davinci-003")
return answer
def load_openai_key() -> str:
key = os.environ.get("OPENAI_API_KEY")
if key is None:
raise ValueError(
"[ERROR]: Please pass your OPENAI_API_KEY. Get your key here : https://platform.openai.com/account/api-keys"
)
return key
@serving
def ask_url(url: str, question: str):
download_pdf(url, 'corpus.pdf')
load_recommender('corpus.pdf')
openAI_key = load_openai_key()
return generate_answer(question, openAI_key)
@serving
async def ask_file(file: UploadFile, question: str) -> str:
suffix = Path(file.filename).suffix
with NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
shutil.copyfileobj(file.file, tmp)
tmp_path = Path(tmp.name)
load_recommender(str(tmp_path))
openAI_key = load_openai_key()
return generate_answer(question, openAI_key)