forked from NishithP2004/AI_Podcasts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretriever.js
78 lines (69 loc) · 2.1 KB
/
retriever.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
const {
formatDocumentsAsString
} = require("langchain/util/document");
const {
AzureCosmosDBVectorStore
} = require("@langchain/community/vectorstores/azure_cosmosdb");
const {
MongoClient
} = require("mongodb");
require("dotenv").config();
const client = new MongoClient(process.env.MONGO_CONNECTION_URL);
const namespace = process.env.MONGO_NAMESPACE;
const [dbName, collectionName] = namespace.split(".");
(async function () {
await client.connect();
console.log("Connected successfully to Cosmos DB");
})();
// -- Models --
const {
AzureOpenAIEmbeddings
} = require("@langchain/openai");
const embeddings = new AzureOpenAIEmbeddings({
azureOpenAIApiKey: process.env.AZURE_OPENAI_STUDIO_API_KEY,
azureOpenAIApiVersion: process.env.AZURE_OPENAI_STUDIO_API_VERSION,
azureOpenAIApiEmbeddingsDeploymentName: "text-embedding-ada-002",
endpoint: process.env.AZURE_OPENAI_STUDIO_API_ENDPOINT,
model: "text-embedding-ada-002",
azureOpenAIApiInstanceName: process.env.AZURE_OPENAI_STUDIO_API_INSTANCE_NAME
})
// -- Models --
const db = client.db(dbName);
const collection = db.collection(collectionName);
const vectorstore = new AzureCosmosDBVectorStore(embeddings, {
collection,
indexName: "vectorSearchIndex",
client,
connectionString: process.env.MONGO_CONNECTION_URL,
databaseName: dbName,
embeddingKey: "embedding",
textKey: "text",
collectionName,
indexOptions: {
skipCreate: true
}
});
async function retrieveSimilarDocs(query, user, course) {
let docs = await vectorstore.similaritySearchWithScore(query, 5)
return docs.map(doc => {
return {
content: doc[0].pageContent,
user: doc[0].metadata.user,
course: doc[0].metadata.course,
score: doc[1]
}
}).filter((d) =>
!course ?
d.user === user :
d.user == user && d.course === course
);
}
function serializeDocs(docs) {
return (docs && docs.length > 0) ? docs.map(doc => {
return doc.content
}).join("\n") : "";
}
module.exports = {
retrieveSimilarDocs,
serializeDocs
};