Skip to content

Commit ac8c137

Browse files
authored
Update README.md
1 parent bad18d0 commit ac8c137

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -136,7 +136,7 @@ make html
136136

137137
| Author(s) | Title | Link(s) |
138138
| --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------- |
139-
| `Wu, Yidi and Ma, Kaihao and Cai, Zhenkun and Jin, Tatiana and Li, Boyang and Zheng, Chenguang and Cheng, James and Yu, Fan` | `STGraph: vertex-centric programming for graph neural networks, 2021` | [paper](https://doi.org/10.1145/3447786.3456247), [code](https://zenodo.org/record/4988602) |
139+
| `Wu, Yidi and Ma, Kaihao and Cai, Zhenkun and Jin, Tatiana and Li, Boyang and Zheng, Chenguang and Cheng, James and Yu, Fan` | `Seastar: vertex-centric programming for graph neural networks, 2021` | [paper](https://doi.org/10.1145/3447786.3456247), [code](https://zenodo.org/record/4988602) |
140140
| `Wheatman, Brian and Xu, Helen` | `Packed Compressed Sparse Row: A Dynamic Graph Representation, 2018` | [paper](https://ieeexplore.ieee.org/abstract/document/8547566), [code](https://github.com/wheatman/Packed-Compressed-Sparse-Row) |
141141
| `Sha, Mo and Li, Yuchen and He, Bingsheng and Tan, Kian-Lee` | `Accelerating Dynamic Graph Analytics on GPUs, 2017` | [paper](http://www.vldb.org/pvldb/vol11/p107-sha.pdf), [code](https://github.com/desert0616/gpma_demo) |
142142
| `Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzmán López, Nicolas Collignon, Rik Sarkar` | `PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models, 2021` | [paper](https://arxiv.org/pdf/2104.07788.pdf), [code](https://github.com/benedekrozemberczki/pytorch_geometric_temporal) |

0 commit comments

Comments
 (0)