-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
90 lines (74 loc) · 3.01 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import torch
import numpy as np
import random
import os
def makedir(path):
is_exist = os.path.exists(path)
if is_exist:
return '%s already exists!'%path
else:
os.makedirs(path)
def setup_seed(seed):
torch.backends.cudnn.deterministic = True
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
class OrderNamespace(argparse.Namespace):
def __init__(self, **kwargs):
self.__dict__['order'] = []
super(OrderNamespace, self).__init__(**kwargs)
def __setattr__(self,attr,value):
# 如果没有这个if,args中的str类型会在log中打印两次。
# 猜测可能是由于父类会对str重复调用__setattr__方法的缘故
if attr not in self.__dict__['order']:
self.__dict__['order'].append(attr)
super(OrderNamespace, self).__setattr__(attr, value)
def fix_seed(i):
random.seed(i)
np.random.seed(i)
torch.manual_seed(i)
if torch.cuda.device_count() > 0:
torch.cuda.manual_seed_all(i)
## for cnn:
from collections import Counter
import gensim
def build_vocab(content_word_list, vocab_size):
print('begin building vocabulary')
all_word_list = []
for word_list in content_word_list:
all_word_list.extend(word_list)
counter = Counter(all_word_list)
count_pairs = counter.most_common(vocab_size - 1)
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(1, len(words) + 1)))
word_to_id['<unk>'] = 0
# id_to_word = {id_: word for word, id_ in word_to_id.items()}
return word_to_id
def text2encoding(words, word_to_id, maxlen, padding=False):
encoding = [word_to_id[word] for word in words if word in word_to_id]
if padding:
l = len(encoding)
encoding = encoding[:maxlen] if l >= maxlen else encoding + [0] * (maxlen - l)
return encoding
def get_word2vec_weight(lang, word_to_id):
vocab_size = len(word_to_id)
print('begin loading word2vec model')
if lang == 'en':
word2vec_name = 'GoogleNews-vectors-negative300.bin' # 词向量模型文件
# word2vec_path = os.path.join(os.path.dirname(__file__),'weights', word2vec_name)
w2v_model = gensim.models.KeyedVectors.load_word2vec_format('weights/%s'%word2vec_name, binary=True)
elif lang == 'zh':
w2v_model = gensim.models.KeyedVectors.load_word2vec_format("weights/synonyms_words.vector",
binary=True, unicode_errors='ignore')
else:
return "only support en or zh"
word_embedding_dim = w2v_model[0].shape[0]
# weight = torch.zeros(vocab_size, word_embedding_dim)
weight = np.zeros((vocab_size, word_embedding_dim), dtype='float64')
for word in w2v_model.index_to_key: # 新版的gensim,通过这个index_to_key得到vocab的list
if word in word_to_id:
weight[word_to_id[word], :] = w2v_model[word]
weight = torch.from_numpy(weight)
return weight, word_embedding_dim