-
Notifications
You must be signed in to change notification settings - Fork 12
/
service.py
61 lines (49 loc) · 2.08 KB
/
service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import uuid
from typing import AsyncGenerator
import bentoml
from annotated_types import Ge, Le
from typing_extensions import Annotated
from bentovllm_openai.utils import openai_endpoints
MAX_TOKENS = 1024
PROMPT_TEMPLATE = """### User:
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
{user_prompt}
### Assistant: """
MODEL_ID = "upstage/SOLAR-10.7B-Instruct-v1.0"
@openai_endpoints(model_id=MODEL_ID)
@bentoml.service(
name="bentovllm-solar-instruct-service",
traffic={
"timeout": 300,
"concurrency": 256, # Matches the default max_num_seqs in the VLLM engine
},
resources={
"gpu": 1,
"gpu_type": "nvidia-l4",
},
)
class VLLM:
def __init__(self) -> None:
from vllm import AsyncEngineArgs, AsyncLLMEngine
ENGINE_ARGS = AsyncEngineArgs(
model=MODEL_ID,
max_model_len=MAX_TOKENS,
enable_prefix_caching=True
)
self.engine = AsyncLLMEngine.from_engine_args(ENGINE_ARGS)
@bentoml.api
async def generate(
self,
prompt: str = "Explain superconductors like I'm five years old",
max_tokens: Annotated[int, Ge(128), Le(MAX_TOKENS)] = MAX_TOKENS,
) -> AsyncGenerator[str, None]:
from vllm import SamplingParams
SAMPLING_PARAM = SamplingParams(max_tokens=max_tokens)
prompt = PROMPT_TEMPLATE.format(user_prompt=prompt)
stream = await self.engine.add_request(uuid.uuid4().hex, prompt, SAMPLING_PARAM)
cursor = 0
async for request_output in stream:
text = request_output.outputs[0].text
yield text[cursor:]
cursor = len(text)