-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
243 lines (202 loc) · 8.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import itertools
import argparse
import util
import model
import torch
from torch.autograd import Variable
from torch.optim import Adam
from torchvision.utils import save_image
import torch.backends.cudnn as cudnn
parser = argparse.ArgumentParser(description='CycleGAN')
# Directory
parser.add_argument('--dataset_A', type=str, default='A')
parser.add_argument('--dataset_B', type=str, default='B')
# Data
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--resume', '-r', action='store_true')
# Network
parser.add_argument('--G_channel', type=int, default=32)
parser.add_argument('--D_channel', type=int, default=32)
parser.add_argument('--G_downsample', type=int, default=2)
parser.add_argument('--D_downsample', type=int, default=5)
parser.add_argument('--G_input', type=int, default=3)
parser.add_argument('--G_output', type=int, default=3)
parser.add_argument('--D_input', type=int, default=3)
parser.add_argument('--D_output', type=int, default=1)
parser.add_argument('--D_layer', type=int, default=5)
parser.add_argument('--G_block', type=int, default=6)
parser.add_argument('--G_block_type', type=str, default='conv')
parser.add_argument('--G_enable_se', type=bool, default=True)
# Training
parser.add_argument('--learning_rate', type=int, default=2e-4)
parser.add_argument('--lr_decay_epoch', type=int, default=100)
parser.add_argument('--max_epoch', type=int, default=200)
parser.add_argument('--log_frequency', type=int, default=25)
parser.add_argument('--save_frequency', type=int, default=20)
config = parser.parse_args()
use_cuda = torch.cuda.is_available()
if config.resume:
print('-- Resuming From Checkpoint')
assert os.path.isdir('checkpoint'), '-- Error: No checkpoint directory found!'
checkpoint = torch.load('./checkpoint/cyclegan.nn')
G_A = checkpoint['G_A']
G_B = checkpoint['G_B']
D_A = checkpoint['D_A']
D_B = checkpoint['D_B']
start = checkpoint['epoch'] + 1
else:
G_A = model.Generator(config)
G_B = model.Generator(config)
D_A = model.Discriminator(config)
D_B = model.Discriminator(config)
start = 1
if use_cuda:
G_A = G_A.cuda()
G_B = G_B.cuda()
D_A = D_A.cuda()
D_B = D_B.cuda()
cudnn.benchmark = True
util.print_network(G_A)
util.print_network(D_A)
G_A.train()
G_B.train()
D_A.train()
D_B.train()
MSE_Loss = torch.nn.MSELoss()
L1_Loss = torch.nn.L1Loss()
G_A_Optimizer = Adam(G_A.parameters(), lr=config.learning_rate, betas=(0.5, 0.999))
G_B_Optimizer = Adam(G_B.parameters(), lr=config.learning_rate, betas=(0.5, 0.999))
D_A_Optimizer = Adam(D_A.parameters(), lr=config.learning_rate, betas=(0.5, 0.999))
D_B_Optimizer = Adam(D_B.parameters(), lr=config.learning_rate, betas=(0.5, 0.999))
a_loader = util.get_loader(config, config.dataset_A + '/train')
b_loader = util.get_loader(config, config.dataset_B + '/train')
a_test_loader = util.get_loader(config, config.dataset_A + '/test')
b_test_loader = util.get_loader(config, config.dataset_B + '/test')
a_real_fixed = Variable(iter(a_test_loader).next()[0], volatile=True)
b_real_fixed = Variable(iter(b_test_loader).next()[0], volatile=True)
if use_cuda:
a_real_fixed = a_real_fixed.cuda()
b_real_fixed = b_real_fixed.cuda()
a_fake_pool = util.ItemPool()
b_fake_pool = util.ItemPool()
def adjust_learning_rate(optimizer, epoch):
lr_now = config.learning_rate
if epoch > config.lr_decay_epoch:
lr_now = lr_now - lr_now*(epoch - config.lr_decay_epoch)/config.lr_decay_epoch
for param_group in optimizer.param_groups:
param_group['lr'] = lr_now
def train(start, epoch):
last_time = time.time()
epoch_time = time.time()
print('-- Current Epoch: %d'%epoch)
adjust_learning_rate(G_A_Optimizer, epoch)
adjust_learning_rate(G_B_Optimizer, epoch)
adjust_learning_rate(D_A_Optimizer, epoch)
adjust_learning_rate(D_B_Optimizer, epoch)
for i, (a_real, b_real) in enumerate(itertools.izip(a_loader, b_loader)):
# Train Generators
a_real = Variable(a_real[0])
b_real = Variable(b_real[0])
if use_cuda:
a_real = a_real.cuda()
b_real = b_real.cuda()
a_fake = G_A(b_real)
b_fake = G_B(a_real)
a_rec = G_A(b_fake)
b_rec = G_B(a_fake)
a_fake_result = D_A(a_fake)
b_fake_result = D_B(b_fake)
real_labels = Variable(torch.ones(a_fake_result.size()))
if use_cuda:
real_labels = real_labels.cuda()
G_A_loss = MSE_Loss(a_fake_result, real_labels)
G_B_loss = MSE_Loss(b_fake_result, real_labels)
a_rec_loss = L1_Loss(a_rec, a_real)
b_rec_loss = L1_Loss(b_rec, b_real)
G_loss = G_A_loss + G_B_loss + a_rec_loss*10 + b_rec_loss*10
G_A.zero_grad()
G_B.zero_grad()
G_loss.backward()
G_A_Optimizer.step()
G_B_Optimizer.step()
# Train Discriminators
a_fake = Variable(torch.Tensor(a_fake_pool([a_fake.cpu().data.numpy()])[0]))
b_fake = Variable(torch.Tensor(b_fake_pool([b_fake.cpu().data.numpy()])[0]))
if use_cuda:
a_fake = a_fake.cuda()
b_fake = b_fake.cuda()
a_real_result = D_A(a_real)
a_fake_result = D_A(a_fake)
b_real_result = D_B(b_real)
b_fake_result = D_B(b_fake)
real_labels = Variable(torch.ones(a_real_result.size()))
fake_labels = Variable(torch.zeros(a_fake_result.size()))
if use_cuda:
real_labels = real_labels.cuda()
fake_labels = fake_labels.cuda()
D_A_real_loss = MSE_Loss(a_real_result, real_labels)
D_A_fake_loss = MSE_Loss(a_fake_result, fake_labels)
D_B_real_loss = MSE_Loss(b_real_result, real_labels)
D_B_fake_loss = MSE_Loss(b_fake_result, fake_labels)
D_A_loss = D_A_fake_loss + D_A_real_loss
D_B_loss = D_B_fake_loss + D_B_real_loss
D_A.zero_grad()
D_B.zero_grad()
D_A_loss.backward()
D_B_loss.backward()
D_A_Optimizer.step()
D_B_Optimizer.step()
# Log
if i % config.log_frequency == 0:
speed = time.time() - last_time
last_time = time.time()
format_str = ('Step: %d; Loss: G-A: %.3f, D-A: %.3f, G-B: %.3f, D-B: %.3f; Speed: %.2f sec/step')
print(format_str % (i, G_A_loss, D_A_loss, G_B_loss, D_B_loss, speed/config.log_frequency))
# Save Data
print('-- Saving parameters and sample images.')
state = {'G_A': G_A, 'G_B': G_B, 'D_A': D_A, 'D_B': D_B, 'epoch': epoch}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/cyclegan.nn')
if epoch >= 10 and epoch % config.save_frequency == 0:
# Test Images
for i, (a_real_test, b_real_test) in enumerate(itertools.izip(a_test_loader, b_test_loader)):
a_real_test = Variable(a_real_test[0])
b_real_test = Variable(b_real_test[0])
if use_cuda:
a_real_test = a_real_test.cuda()
b_real_test = b_real_test.cuda()
a_fake_test = G_A(b_real_test)
b_fake_test = G_B(a_real_test)
a_rec_test = G_A(b_fake_test)
b_rec_test = G_B(a_fake_test)
test = torch.cat([a_real_test, b_fake_test, a_rec_test, b_real_test, a_fake_test, b_rec_test], dim=0)
test = util.denorm(test).data
if not os.path.isdir('result'):
os.mkdir('result')
save_image(test, 'result/test%d-epoch-%d.jpg' % (i, epoch))
else:
# Sample Image
a_fake_fixed = G_A(b_real_fixed)
b_fake_fixed = G_B(a_real_fixed)
a_rec_fixed = G_A(b_fake_fixed)
b_rec_fixed = G_B(a_fake_fixed)
sample = torch.cat([a_real_fixed, b_fake_fixed, a_rec_fixed, b_real_fixed, a_fake_fixed, b_rec_fixed], dim=0)
sample = util.denorm(sample).data
if not os.path.isdir('result'):
os.mkdir('result')
save_image(sample, 'result/sample-epoch-%d.jpg' % (epoch))
epoch_time = (time.time() - epoch_time)/60
time_remain = (epoch_time * (config.max_epoch - epoch))/60
print('-- Epoch %d completed. Epoch Time: %.2f min, Time Est: %.2f hour.' %(epoch, epoch_time, time_remain))
# Training Loop
print('-- Start Training')
for epoch in range(start, config.max_epoch):
train(start, epoch)