-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathday_09.py
86 lines (54 loc) · 1.44 KB
/
day_09.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import numpy as np
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
def parse_input(data):
inputs = []
output = 0
for line in data:
line = [int(char) for char in line.strip()]
inputs.append(line)
rows = len(inputs)
cols = len(inputs[0])
return (inputs, rows, cols)
with open('input_09.txt') as d:
(inputs, rows, cols) = parse_input(d)
seen = [[False] * cols for _ in range(cols)]
def part_01():
answer = 0
for row in range(rows):
for col in range(cols):
v = inputs[row][col]
adjacent = []
for dr, dc in directions:
next_row_value = row + dr
next_col_value = col + dc
if 0 <= next_row_value < rows and 0 <= next_col_value < cols:
adjacent.append(inputs[next_row_value][next_col_value])
if all(i > v for i in adjacent):
answer += 1 + v
return answer
def find_basin(row, col):
if not (0 <= row < rows and 0 <= col < cols):
return 0
if seen[row][col]:
return 0
seen[row][col] = True
if inputs[row][col] == 9:
return 0
output = 1
for dr, dc in directions:
nr = row + dr
nc = col + dc
if 0 <= nr < rows and 0 <= nc < cols:
output += find_basin(nr, nc)
return output
def part_02():
with open('input_09.txt') as d:
basin_sizes = []
for row in range(rows):
for col in range(cols):
basin_sizes.append(find_basin(row, col))
basin_sizes.sort()
# Only the three largest basins
return np.prod(basin_sizes[-3:])
print('Part 1:', part_01())
print('Part 2:', part_02())