forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimport.cpp
400 lines (358 loc) · 14.7 KB
/
import.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#include <torch/csrc/jit/serialization/import.h>
#include <ATen/core/functional.h>
#include <ATen/core/ivalue_inl.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#if !defined(C10_MOBILE) && !defined(C10_DISABLE_LEGACY_IMPORT)
#include <torch/csrc/jit/serialization/import_legacy.h>
#endif
#include <torch/csrc/jit/frontend/script_type_parser.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/serialization/import_read.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/csrc/jit/serialization/pickle.h>
#include <torch/csrc/jit/serialization/source_range_serialization.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <caffe2/serialize/file_adapter.h>
#include <caffe2/serialize/inline_container.h>
#include <caffe2/serialize/istream_adapter.h>
#include <ATen/ATen.h>
#include <fmt/format.h>
#include <fstream>
#include <string>
#include <unordered_map>
#include <vector>
namespace torch {
namespace jit {
using caffe2::serialize::FileAdapter;
using caffe2::serialize::IStreamAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
void postSetStateValidate(const IValue& v) {
auto obj = v.toObject();
const auto& objType = obj->type();
for (const auto i : c10::irange(objType->numAttributes())) {
const auto& attrType = objType->getAttribute(i);
const auto& attrName = objType->getAttributeName(i);
const auto& slot = obj->getSlot(i);
// const auto attrType = objType->getAttribute(i);
// Verify that all the non-optional attributes have been initialized
// TODO: Issue #20497
if (attrType->kind() != TypeKind::UnionType &&
attrType->kind() != TypeKind::OptionalType &&
attrType->kind() != TypeKind::NoneType) {
TORCH_CHECK(
!slot.isNone(),
fmt::format(
"The field '{}' was left uninitialized after '__setstate__', "
"but expected a value of type '{}'",
attrName,
attrType->repr_str()));
}
}
}
namespace {
// This is a deserializer class which loads script modules from pt files.
// Content of the file is written using PyTorchStreamWriter, for details please
// check caffe2/serialize/inline_container.h.
// The module is saved in pickle. readArchive() is called to parse and construct
// the constant table and the script module.
class ScriptModuleDeserializer final {
public:
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
code_prefix_("code/"),
pickle_dir_prefix_(""),
tensor_dir_prefix_(""),
source_importer_(
compilation_unit_,
&constants_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, code_prefix_, qualifier);
},
reader_->version()) {}
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
std::string pickle_dir_prefix,
std::string tensor_dir_prefix,
std::shared_ptr<DeserializationStorageContext> storage_context)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
storage_context_(std::move(storage_context)),
code_prefix_(".data/ts_code/code/"),
pickle_dir_prefix_(std::move(pickle_dir_prefix)),
tensor_dir_prefix_(std::move(tensor_dir_prefix)),
source_importer_(
compilation_unit_,
&constants_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, code_prefix_, qualifier);
},
reader_->version()) {}
Module deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files);
private:
IValue readArchive(const std::string& archive_name);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::shared_ptr<PyTorchStreamReader> reader_;
std::shared_ptr<DeserializationStorageContext> storage_context_;
c10::optional<at::Device> device_;
std::vector<at::IValue> constants_table_;
std::string code_prefix_;
std::string pickle_dir_prefix_;
std::string tensor_dir_prefix_;
SourceImporter source_importer_;
};
IValue ScriptModuleDeserializer::readArchive(const std::string& archive_name) {
auto type_resolver = [&](const c10::QualifiedName& qn) {
auto cls = source_importer_.loadType(qn);
return c10::StrongTypePtr(compilation_unit_, std::move(cls));
};
// Decouple how to get obj from type. In this file it's dependent on
// Method.run() and graph executor, etc.
// For bytecode import we need to decouple these dependencies.
auto obj_loader = [&](const at::StrongTypePtr& type, IValue input) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
size_t n = cls->numAttributes();
if (checkHasValidSetGetState(cls)) {
auto obj = c10::ivalue::Object::create(type, n);
// XXX: Do not optimize __setstate__, so that we don't try to
// specialize the class before it is initialized.
GraphOptimizerEnabledGuard guard(false);
Function& set_state = cls->getMethod("__setstate__");
// since we are in the middle of unpickling we might still have lists and
// dicts that do not have accurate tags (e.g. they report they are
// List[Any]). But we need to run __setstate__ which will check the input
// type and may access the tags. Since setstate has a known input type, we
// can correctly restore the tags now by apply the input type of set_state
// to the state object being passed.
// TODO: Remove once [serialization type tags] is landed
restoreAccurateTypeTags(
input, set_state.getSchema().arguments().at(1).type());
set_state({obj, input});
postSetStateValidate(obj);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
auto obj = c10::ivalue::Object::create(type, n);
for (const auto i : c10::irange(n)) {
obj->setSlot(i, dict.at(cls->getAttributeName(i)));
}
return obj;
}
};
return readArchiveAndTensors(
/*archive_name=*/archive_name,
/*pickle_prefix=*/pickle_dir_prefix_,
/*tensor_prefix=*/tensor_dir_prefix_,
type_resolver,
obj_loader,
device_,
*reader_.get(),
storage_context_);
}
void rewriteQuantizedConvForBC(const Module& module) {
const std::string& old_quantized_conv2d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv2d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d_relu(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv3d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv3d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d_relu(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv2d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv2d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d_relu(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv3d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv3d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d_relu(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
SubgraphRewriter rewriter;
static const std::vector<std::pair<std::string, std::string>>
patterns_and_replacements = {
{old_quantized_conv2d, new_quantized_conv2d},
{old_quantized_conv2d_relu, new_quantized_conv2d_relu},
{old_quantized_conv3d, new_quantized_conv3d},
{old_quantized_conv3d_relu, new_quantized_conv3d_relu},
};
for (const auto& item : patterns_and_replacements) {
rewriter.RegisterRewritePattern(item.first, item.second);
}
rewriter.runOnModule(module);
for (const Module& child : module.children()) {
rewriteQuantizedConvForBC(child);
}
}
Module ScriptModuleDeserializer::deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
C10_LOG_API_USAGE_ONCE("torch.script.load");
device_ = device;
// Load extra files.
for (const auto& kv : extra_files) {
const std::string& key = "extra/" + kv.first;
if (reader_->hasRecord(key)) {
at::DataPtr meta_ptr;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t meta_size;
std::tie(meta_ptr, meta_size) = reader_->getRecord(key);
extra_files[kv.first] =
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
}
}
if (reader_->hasRecord("model.json") && code_prefix_.compare("code/") == 0) {
#if !defined(C10_MOBILE) && !defined(C10_DISABLE_LEGACY_IMPORT)
return torch::jit::LEGACY_deserialize(compilation_unit_, reader_, device_);
#else
AT_ERROR("Legacy model format is not supported on mobile.");
#endif
}
auto tuple = readArchive("constants").toTuple();
for (auto constant : tuple->elements()) {
constants_table_.push_back(constant.toIValue());
}
auto m = Module(readArchive("data").toObject());
rewriteQuantizedConvForBC(m);
return m;
}
} // namespace
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::istream& in,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return import_ir_module(std::move(cu), in, device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::istream& in,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
auto reader = torch::make_unique<PyTorchStreamReader>(&in);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
// For reading unified serialization format from torch.Package.
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
std::shared_ptr<DeserializationStorageContext> storage_context,
c10::optional<at::Device> device,
std::string ts_id) {
ScriptModuleDeserializer deserializer(
std::move(cu),
std::move(reader),
/* pickle_dir_prefix = */ ".data/ts_code/" + ts_id + "/",
/* tensor_dir_prefix = */ ".data/",
storage_context);
ExtraFilesMap extra_files;
return deserializer.deserialize(device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return import_ir_module(std::move(cu), filename, device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
auto reader = torch::make_unique<PyTorchStreamReader>(filename);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return import_ir_module(std::move(cu), std::move(rai), device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
auto reader = torch::make_unique<PyTorchStreamReader>(std::move(rai));
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
Module load(std::istream& in, c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return load(in, device, extra_files);
}
Module load(
std::istream& in,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
auto module = load(std::move(rai), device, extra_files);
return module;
}
Module load(const std::string& filename, c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return load(filename, device, extra_files);
}
Module load(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
auto module = load(std::move(rai), device, extra_files);
return module;
}
Module load(
std::shared_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
ExtraFilesMap extra_files;
return load(std::move(rai), device, extra_files);
}
Module load(
std::shared_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files) {
// Verify that we're loading a zip archive and not a torch.save pickle archive
// (marked by the 0x80 0x02 bytes at the start)
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
TORCH_CHECK(
check_zip_file(rai),
"`torch::jit::load()` received a file from `torch.save()`, "
"but `torch::jit::load()` can only load files"
" produced by `torch.jit.save()`");
auto reader = std::make_shared<PyTorchStreamReader>(std::move(rai));
auto cu = std::make_shared<CompilationUnit>();
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
} // namespace jit
} // namespace torch