@@ -130,7 +130,7 @@ function plot1D(
130
130
end
131
131
132
132
nun = convert (Int64,floor (sum (hunnorm. weights)/ 10 ))
133
- unweighted_samples = bat_sample (samples, nun). result
133
+ unweighted_samples = bat_sample (samples, OrderedResampling (nsamples = nun) ). result
134
134
hunnorm = fit (Histogram, [BAT. flatview (unweighted_samples. v)... ],binning)
135
135
136
136
edges = hunnorm. edges[1 ]
@@ -183,7 +183,7 @@ function plot1D(
183
183
end
184
184
length (sample_stats) != 4 ? push! (sample_stats,chi2) : sample_stats[4 ] = chi2
185
185
186
- iid_sample = bat_sample (testfunctions[name]. posterior,length ([BAT. flatview (samples. v)... ])). result
186
+ iid_sample = bat_sample (testfunctions[name]. posterior, IIDSampling (nsamples = length ([BAT. flatview (samples. v)... ]) )). result
187
187
if (testfunctions[name]. ks[1 ] > 999 )
188
188
testfunctions[name]. ks[1 ]= bat_compare (samples,iid_sample). result. ks_p_values[1 ]
189
189
end
@@ -201,24 +201,24 @@ function run1D(
201
201
sample_stats:: Vector{Float64} ,
202
202
run_stats:: Vector{Float64} ,
203
203
algorithm:: BAT.AbstractSamplingAlgorithm ,
204
- n_samples :: Integer ,
204
+ n_steps :: Integer ,
205
205
n_chains:: Integer ,
206
206
n_runs= 1
207
207
)
208
208
209
209
sample_stats_all = []
210
- samples, chains = bat_sample (testfunctions[key]. posterior, n_samples * n_chains, MCMCSampling (sampler = algorithm, nchains = n_chains))
210
+ samples, chains = bat_sample (testfunctions[key]. posterior, MCMCSampling (sampler = algorithm, nchains = n_chains, nsteps = n_steps ))
211
211
for i in 1 : n_runs
212
212
time_before = time ()
213
- samples, chains = bat_sample (testfunctions[key]. posterior, n_samples * n_chains, MCMCSampling (sampler = algorithm, nchains = n_chains))
213
+ samples, chains = bat_sample (testfunctions[key]. posterior, MCMCSampling (sampler = algorithm, nchains = n_chains, nsteps = n_steps ))
214
214
time_after = time ()
215
215
216
216
h = plot1D (samples,testfunctions,key,sample_stats)# posterior, key, analytical_stats,sample_stats)
217
217
218
218
sample_stats[1 ] = mode (samples)[1 ]
219
219
sample_stats[2 ] = mean (samples)[1 ]
220
220
sample_stats[3 ] = var (samples)[1 ]
221
- run_stats[1 ] = n_samples
221
+ run_stats[1 ] = n_steps
222
222
run_stats[2 ] = n_chains
223
223
run_stats[3 ] = time_after- time_before
224
224
push! (sample_stats_all,sample_stats)
@@ -432,16 +432,16 @@ function run2D(
432
432
sample_stats:: Vector{Any} ,
433
433
run_stats:: Vector{Any} ,
434
434
algorithm:: MCMCAlgorithm ,
435
- n_samples :: Integer ,
435
+ n_steps :: Integer ,
436
436
n_chains:: Integer ,
437
437
n_runs= 1 )
438
438
439
439
sample_stats_all = []
440
440
441
- samples, stats = bat_sample (testfunctions[key]. posterior, n_samples * n_chains, MCMCSampling (sampler = algorithm, nchains = n_chains))
441
+ samples, stats = bat_sample (testfunctions[key]. posterior, MCMCSampling (sampler = algorithm, nchains = n_chains, nsteps = n_steps ))
442
442
for i in 1 : n_runs
443
443
time_before = time ()
444
- samples, stats = bat_sample (testfunctions[key]. posterior, n_samples * n_chains, MCMCSampling (sampler = algorithm, nchains = n_chains))
444
+ samples, stats = bat_sample (testfunctions[key]. posterior, MCMCSampling (sampler = algorithm, nchains = n_chains, nsteps = n_steps ))
445
445
time_after = time ()
446
446
447
447
h = plot2D (samples, testfunctions, key, sample_stats)
@@ -450,7 +450,7 @@ function run2D(
450
450
sample_stats[2 ] = mean (samples). data
451
451
sample_stats[3 ] = var (samples). data
452
452
453
- run_stats[1 ] = n_samples
453
+ run_stats[1 ] = n_steps
454
454
run_stats[2 ] = n_chains
455
455
run_stats[3 ] = time_after- time_before
456
456
push! (sample_stats_all,sample_stats)
@@ -473,7 +473,7 @@ function make_2D_results(testfunctions::Dict,sample_stats2D::Vector{Vector{Any}}
473
473
push! (ahmi_val,round .(v. ahmi,digits= 3 ))
474
474
end
475
475
476
- run_stats_names2D = [" nsamples " ," nchains" ," Times" ]
476
+ run_stats_names2D = [" nsteps " ," nchains" ," Times" ]
477
477
stats_names2D = [" mode" ," mean" ," var" ]
478
478
comparison = [" target" ," test" ," diff (abs)" ," diff (rel)" ]
479
479
header = Vector {Any} (undef,length (stats_names2D)* length (comparison)+ 3 )
0 commit comments