Skip to content

Commit cd0cdae

Browse files
authored
Merge pull request #49 from bashtage/sync-upstream
DOC: UPdate docs to reflect upstream changes
2 parents b952810 + 8018200 commit cd0cdae

File tree

3 files changed

+90
-35
lines changed

3 files changed

+90
-35
lines changed

doc/source/change-log.rst

+5
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,10 @@
11
Change Log
22
----------
3+
v1.16.1
4+
=======
5+
- Synchronized with upstream changes.
6+
- Fixed a bug in gamma generation if the shape parameters is 0.0.
7+
38
v1.16.0
49
=======
510
- Fixed a bug that affected :class:`~randomgen.dsfmt.DSFMT` when calling

randomgen/generator.pyx

+81-35
Original file line numberDiff line numberDiff line change
@@ -429,7 +429,8 @@ cdef class RandomGenerator:
429429
Parameters
430430
----------
431431
scale : float or array_like of floats
432-
The scale parameter, :math:`\\beta = 1/\\lambda`.
432+
The scale parameter, :math:`\\beta = 1/\\lambda`. Must be
433+
non-negative.
433434
size : int or tuple of ints, optional
434435
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
435436
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -855,6 +856,8 @@ cdef class RandomGenerator:
855856
if size > pop_size:
856857
raise ValueError("Cannot take a larger sample than "
857858
"population when 'replace=False'")
859+
elif size < 0:
860+
raise ValueError("negative dimensions are not allowed")
858861

859862
if p is not None:
860863
if np.count_nonzero(p > 0) < size:
@@ -1017,6 +1020,12 @@ cdef class RandomGenerator:
10171020
10181021
Random values in a given shape.
10191022
1023+
.. note::
1024+
This is a convenience function for users porting code from Matlab,
1025+
and wraps `numpy.random.random_sample`. That function takes a
1026+
tuple to specify the size of the output, which is consistent with
1027+
other NumPy functions like `numpy.zeros` and `numpy.ones`.
1028+
10201029
Create an array of the given shape and populate it with
10211030
random samples from a uniform distribution
10221031
over ``[0, 1)``.
@@ -1065,16 +1074,20 @@ cdef class RandomGenerator:
10651074
10661075
Return a sample (or samples) from the "standard normal" distribution.
10671076
1068-
If positive, int_like or int-convertible arguments are provided,
1069-
`randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
1077+
.. note::
1078+
This is a convenience function for users porting code from Matlab,
1079+
and wraps `numpy.random.standard_normal`. That function takes a
1080+
tuple to specify the size of the output, which is consistent with
1081+
other NumPy functions like `numpy.zeros` and `numpy.ones`.
1082+
1083+
If positive int_like arguments are provided, `randn` generates an array
1084+
of shape ``(d0, d1, ..., dn)``, filled
10701085
with random floats sampled from a univariate "normal" (Gaussian)
1071-
distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
1072-
floats, they are first converted to integers by truncation). A single
1073-
float randomly sampled from the distribution is returned if no
1074-
argument is provided.
1086+
distribution of mean 0 and variance 1. A single float randomly sampled
1087+
from the distribution is returned if no argument is provided.
10751088
10761089
This is a convenience function. If you want an interface that takes a
1077-
tuple as the first argument, use `standard_normal` instead.
1090+
tuple as the first argument, use `numpy.random.standard_normal` instead.
10781091
10791092
Parameters
10801093
----------
@@ -1096,6 +1109,7 @@ cdef class RandomGenerator:
10961109
See Also
10971110
--------
10981111
standard_normal : Similar, but takes a tuple as its argument.
1112+
normal : Also accepts mu and sigma arguments
10991113
11001114
Notes
11011115
-----
@@ -1106,13 +1120,13 @@ cdef class RandomGenerator:
11061120
Examples
11071121
--------
11081122
>>> randomgen.generator.randn()
1109-
2.1923875335537315 #random
1123+
2.1923875335537315 # random
11101124
11111125
Two-by-four array of samples from N(3, 6.25):
11121126
1113-
>>> 2.5 * randomgen.generator.randn(2, 4) + 3
1114-
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random
1115-
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random
1127+
>>> 3 + 2.5 * np.random.randn(2, 4)
1128+
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
1129+
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
11161130
11171131
"""
11181132
if len(args) == 0:
@@ -1237,20 +1251,43 @@ cdef class RandomGenerator:
12371251
Returns
12381252
-------
12391253
out : float or ndarray
1240-
Drawn samples.
1254+
A floating-point array of shape ``size`` of drawn samples, or a
1255+
single sample if ``size`` was not specified.
1256+
1257+
Notes
1258+
-----
1259+
For random samples from :math:`N(\\mu, \\sigma^2)`, use one of::
1260+
1261+
mu + sigma * np.random.standard_normal(size=...)
1262+
np.random.normal(mu, sigma, size=...)
1263+
1264+
See Also
1265+
--------
1266+
normal :
1267+
Equivalent function with additional ``loc`` and ``scale`` arguments
1268+
for setting the mean and standard deviation.
12411269
12421270
Examples
12431271
--------
1244-
>>> s = randomgen.generator.standard_normal(8000)
1272+
>>> np.random.standard_normal()
1273+
2.1923875335537315 #random
1274+
1275+
>>> s = np.random.standard_normal(8000)
12451276
>>> s
1246-
array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random
1247-
-0.38672696, -0.4685006 ]) #random
1277+
array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
1278+
-0.38672696, -0.4685006 ]) # random
12481279
>>> s.shape
12491280
(8000,)
1250-
>>> s = randomgen.generator.standard_normal(size=(3, 4, 2))
1281+
>>> s = np.random.standard_normal(size=(3, 4, 2))
12511282
>>> s.shape
12521283
(3, 4, 2)
12531284
1285+
Two-by-four array of samples from :math:`N(3, 6.25)`:
1286+
1287+
>>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
1288+
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
1289+
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
1290+
12541291
"""
12551292
key = np.dtype(dtype).name
12561293
if key == 'float64':
@@ -1283,7 +1320,8 @@ cdef class RandomGenerator:
12831320
loc : float or array_like of floats
12841321
Mean ("centre") of the distribution.
12851322
scale : float or array_like of floats
1286-
Standard deviation (spread or "width") of the distribution.
1323+
Standard deviation (spread or "width") of the distribution. Must be
1324+
non-negative.
12871325
size : int or tuple of ints, optional
12881326
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
12891327
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -1334,11 +1372,11 @@ cdef class RandomGenerator:
13341372
13351373
Verify the mean and the variance:
13361374
1337-
>>> abs(mu - np.mean(s)) < 0.01
1338-
True
1375+
>>> abs(mu - np.mean(s))
1376+
0.0 # may vary
13391377
1340-
>>> abs(sigma - np.std(s, ddof=1)) < 0.01
1341-
True
1378+
>>> abs(sigma - np.std(s, ddof=1))
1379+
0.1 # may vary
13421380
13431381
Display the histogram of the samples, along with
13441382
the probability density function:
@@ -1350,6 +1388,12 @@ cdef class RandomGenerator:
13501388
... linewidth=2, color='r')
13511389
>>> plt.show()
13521390
1391+
Two-by-four array of samples from N(3, 6.25):
1392+
1393+
>>> np.random.normal(3, 2.5, size=(2, 4))
1394+
array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
1395+
[ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
1396+
13531397
"""
13541398
return cont(&random_normal_zig, self._brng, size, self.lock, 2,
13551399
loc, '', CONS_NONE,
@@ -1530,7 +1574,7 @@ cdef class RandomGenerator:
15301574
Parameters
15311575
----------
15321576
shape : float or array_like of floats
1533-
Parameter, should be > 0.
1577+
Parameter, must be non-negative.
15341578
size : int or tuple of ints, optional
15351579
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
15361580
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -1622,9 +1666,9 @@ cdef class RandomGenerator:
16221666
Parameters
16231667
----------
16241668
shape : float or array_like of floats
1625-
The shape of the gamma distribution. Should be greater than zero.
1669+
The shape of the gamma distribution. Must be non-negative.
16261670
scale : float or array_like of floats, optional
1627-
The scale of the gamma distribution. Should be greater than zero.
1671+
The scale of the gamma distribution. Must be non-negative.
16281672
Default is equal to 1.
16291673
size : int or tuple of ints, optional
16301674
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
@@ -1706,9 +1750,9 @@ cdef class RandomGenerator:
17061750
Parameters
17071751
----------
17081752
dfnum : int or array_like of ints
1709-
Degrees of freedom in numerator. Should be greater than zero.
1753+
Degrees of freedom in numerator. Must be non-negative.
17101754
dfden : int or array_like of ints
1711-
Degrees of freedom in denominator. Should be greater than zero.
1755+
Degrees of freedom in denominator. Must be non-negative.
17121756
size : int or tuple of ints, optional
17131757
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
17141758
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2262,7 +2306,7 @@ cdef class RandomGenerator:
22622306
Parameters
22632307
----------
22642308
a : float or array_like of floats
2265-
Shape of the distribution. Should be greater than zero.
2309+
Shape of the distribution. All values must be positive.
22662310
size : int or tuple of ints, optional
22672311
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
22682312
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2443,7 +2487,7 @@ cdef class RandomGenerator:
24432487
Parameters
24442488
----------
24452489
a : float or array_like of floats
2446-
Parameter of the distribution. Should be greater than zero.
2490+
Parameter of the distribution. Must be positive.
24472491
size : int or tuple of ints, optional
24482492
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
24492493
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2548,7 +2592,8 @@ cdef class RandomGenerator:
25482592
loc : float or array_like of floats, optional
25492593
The position, :math:`\\mu`, of the distribution peak. Default is 0.
25502594
scale : float or array_like of floats, optional
2551-
:math:`\\lambda`, the exponential decay. Default is 1.
2595+
:math:`\\lambda`, the exponential decay. Default is 1. Must be
2596+
non-negative.
25522597
size : int or tuple of ints, optional
25532598
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
25542599
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2630,7 +2675,8 @@ cdef class RandomGenerator:
26302675
loc : float or array_like of floats, optional
26312676
The location of the mode of the distribution. Default is 0.
26322677
scale : float or array_like of floats, optional
2633-
The scale parameter of the distribution. Default is 1.
2678+
The scale parameter of the distribution. Default is 1. Must be
2679+
non-negative.
26342680
size : int or tuple of ints, optional
26352681
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
26362682
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2828,8 +2874,8 @@ cdef class RandomGenerator:
28282874
mean : float or array_like of floats, optional
28292875
Mean value of the underlying normal distribution. Default is 0.
28302876
sigma : float or array_like of floats, optional
2831-
Standard deviation of the underlying normal distribution. Should
2832-
be greater than zero. Default is 1.
2877+
Standard deviation of the underlying normal distribution. Must be
2878+
non-negative. Default is 1.
28332879
size : int or tuple of ints, optional
28342880
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
28352881
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2934,7 +2980,7 @@ cdef class RandomGenerator:
29342980
Parameters
29352981
----------
29362982
scale : float or array_like of floats, optional
2937-
Scale, also equals the mode. Should be >= 0. Default is 1.
2983+
Scale, also equals the mode. Must be non-negative. Default is 1.
29382984
size : int or tuple of ints, optional
29392985
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
29402986
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -3463,7 +3509,7 @@ cdef class RandomGenerator:
34633509
Parameters
34643510
----------
34653511
a : float or array_like of floats
3466-
Distribution parameter. Should be greater than 1.
3512+
Distribution parameter. Must be greater than 1.
34673513
size : int or tuple of ints, optional
34683514
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
34693515
``m * n * k`` samples are drawn. If size is ``None`` (default),

randomgen/tests/test_numpy_mt19937.py

+4
Original file line numberDiff line numberDiff line change
@@ -558,6 +558,10 @@ def test_choice_exceptions(self):
558558
assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
559559
assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
560560
assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
561+
# gh-13087
562+
assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
563+
assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
564+
assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
561565
assert_raises(ValueError, sample, [1, 2, 3], 2,
562566
replace=False, p=[1, 0, 0])
563567

0 commit comments

Comments
 (0)