@@ -429,7 +429,8 @@ cdef class RandomGenerator:
429
429
Parameters
430
430
----------
431
431
scale : float or array_like of floats
432
- The scale parameter, :math:`\\ beta = 1/\\ lambda`.
432
+ The scale parameter, :math:`\\ beta = 1/\\ lambda`. Must be
433
+ non-negative.
433
434
size : int or tuple of ints, optional
434
435
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
435
436
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -855,6 +856,8 @@ cdef class RandomGenerator:
855
856
if size > pop_size :
856
857
raise ValueError ("Cannot take a larger sample than "
857
858
"population when 'replace=False'" )
859
+ elif size < 0 :
860
+ raise ValueError ("negative dimensions are not allowed" )
858
861
859
862
if p is not None :
860
863
if np .count_nonzero (p > 0 ) < size :
@@ -1017,6 +1020,12 @@ cdef class RandomGenerator:
1017
1020
1018
1021
Random values in a given shape.
1019
1022
1023
+ .. note::
1024
+ This is a convenience function for users porting code from Matlab,
1025
+ and wraps `numpy.random.random_sample`. That function takes a
1026
+ tuple to specify the size of the output, which is consistent with
1027
+ other NumPy functions like `numpy.zeros` and `numpy.ones`.
1028
+
1020
1029
Create an array of the given shape and populate it with
1021
1030
random samples from a uniform distribution
1022
1031
over ``[0, 1)``.
@@ -1065,16 +1074,20 @@ cdef class RandomGenerator:
1065
1074
1066
1075
Return a sample (or samples) from the "standard normal" distribution.
1067
1076
1068
- If positive, int_like or int-convertible arguments are provided,
1069
- `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled
1077
+ .. note::
1078
+ This is a convenience function for users porting code from Matlab,
1079
+ and wraps `numpy.random.standard_normal`. That function takes a
1080
+ tuple to specify the size of the output, which is consistent with
1081
+ other NumPy functions like `numpy.zeros` and `numpy.ones`.
1082
+
1083
+ If positive int_like arguments are provided, `randn` generates an array
1084
+ of shape ``(d0, d1, ..., dn)``, filled
1070
1085
with random floats sampled from a univariate "normal" (Gaussian)
1071
- distribution of mean 0 and variance 1 (if any of the :math:`d_i` are
1072
- floats, they are first converted to integers by truncation). A single
1073
- float randomly sampled from the distribution is returned if no
1074
- argument is provided.
1086
+ distribution of mean 0 and variance 1. A single float randomly sampled
1087
+ from the distribution is returned if no argument is provided.
1075
1088
1076
1089
This is a convenience function. If you want an interface that takes a
1077
- tuple as the first argument, use `standard_normal` instead.
1090
+ tuple as the first argument, use `numpy.random. standard_normal` instead.
1078
1091
1079
1092
Parameters
1080
1093
----------
@@ -1096,6 +1109,7 @@ cdef class RandomGenerator:
1096
1109
See Also
1097
1110
--------
1098
1111
standard_normal : Similar, but takes a tuple as its argument.
1112
+ normal : Also accepts mu and sigma arguments
1099
1113
1100
1114
Notes
1101
1115
-----
@@ -1106,13 +1120,13 @@ cdef class RandomGenerator:
1106
1120
Examples
1107
1121
--------
1108
1122
>>> randomgen.generator.randn()
1109
- 2.1923875335537315 # random
1123
+ 2.1923875335537315 # random
1110
1124
1111
1125
Two-by-four array of samples from N(3, 6.25):
1112
1126
1113
- >>> 2.5 * randomgen.generator .randn(2, 4) + 3
1114
- array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
1115
- [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
1127
+ >>> 3 + 2.5 * np.random .randn(2, 4)
1128
+ array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
1129
+ [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
1116
1130
1117
1131
"""
1118
1132
if len (args ) == 0 :
@@ -1237,20 +1251,43 @@ cdef class RandomGenerator:
1237
1251
Returns
1238
1252
-------
1239
1253
out : float or ndarray
1240
- Drawn samples.
1254
+ A floating-point array of shape ``size`` of drawn samples, or a
1255
+ single sample if ``size`` was not specified.
1256
+
1257
+ Notes
1258
+ -----
1259
+ For random samples from :math:`N(\\ mu, \\ sigma^2)`, use one of::
1260
+
1261
+ mu + sigma * np.random.standard_normal(size=...)
1262
+ np.random.normal(mu, sigma, size=...)
1263
+
1264
+ See Also
1265
+ --------
1266
+ normal :
1267
+ Equivalent function with additional ``loc`` and ``scale`` arguments
1268
+ for setting the mean and standard deviation.
1241
1269
1242
1270
Examples
1243
1271
--------
1244
- >>> s = randomgen.generator.standard_normal(8000)
1272
+ >>> np.random.standard_normal()
1273
+ 2.1923875335537315 #random
1274
+
1275
+ >>> s = np.random.standard_normal(8000)
1245
1276
>>> s
1246
- array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
1247
- -0.38672696, -0.4685006 ]) # random
1277
+ array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random
1278
+ -0.38672696, -0.4685006 ]) # random
1248
1279
>>> s.shape
1249
1280
(8000,)
1250
- >>> s = randomgen.generator .standard_normal(size=(3, 4, 2))
1281
+ >>> s = np.random .standard_normal(size=(3, 4, 2))
1251
1282
>>> s.shape
1252
1283
(3, 4, 2)
1253
1284
1285
+ Two-by-four array of samples from :math:`N(3, 6.25)`:
1286
+
1287
+ >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
1288
+ array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
1289
+ [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
1290
+
1254
1291
"""
1255
1292
key = np .dtype (dtype ).name
1256
1293
if key == 'float64' :
@@ -1283,7 +1320,8 @@ cdef class RandomGenerator:
1283
1320
loc : float or array_like of floats
1284
1321
Mean ("centre") of the distribution.
1285
1322
scale : float or array_like of floats
1286
- Standard deviation (spread or "width") of the distribution.
1323
+ Standard deviation (spread or "width") of the distribution. Must be
1324
+ non-negative.
1287
1325
size : int or tuple of ints, optional
1288
1326
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
1289
1327
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -1334,11 +1372,11 @@ cdef class RandomGenerator:
1334
1372
1335
1373
Verify the mean and the variance:
1336
1374
1337
- >>> abs(mu - np.mean(s)) < 0.01
1338
- True
1375
+ >>> abs(mu - np.mean(s))
1376
+ 0.0 # may vary
1339
1377
1340
- >>> abs(sigma - np.std(s, ddof=1)) < 0.01
1341
- True
1378
+ >>> abs(sigma - np.std(s, ddof=1))
1379
+ 0.1 # may vary
1342
1380
1343
1381
Display the histogram of the samples, along with
1344
1382
the probability density function:
@@ -1350,6 +1388,12 @@ cdef class RandomGenerator:
1350
1388
... linewidth=2, color='r')
1351
1389
>>> plt.show()
1352
1390
1391
+ Two-by-four array of samples from N(3, 6.25):
1392
+
1393
+ >>> np.random.normal(3, 2.5, size=(2, 4))
1394
+ array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random
1395
+ [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random
1396
+
1353
1397
"""
1354
1398
return cont (& random_normal_zig , self ._brng , size , self .lock , 2 ,
1355
1399
loc , '' , CONS_NONE ,
@@ -1530,7 +1574,7 @@ cdef class RandomGenerator:
1530
1574
Parameters
1531
1575
----------
1532
1576
shape : float or array_like of floats
1533
- Parameter, should be > 0 .
1577
+ Parameter, must be non-negative .
1534
1578
size : int or tuple of ints, optional
1535
1579
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
1536
1580
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -1622,9 +1666,9 @@ cdef class RandomGenerator:
1622
1666
Parameters
1623
1667
----------
1624
1668
shape : float or array_like of floats
1625
- The shape of the gamma distribution. Should be greater than zero .
1669
+ The shape of the gamma distribution. Must be non-negative .
1626
1670
scale : float or array_like of floats, optional
1627
- The scale of the gamma distribution. Should be greater than zero .
1671
+ The scale of the gamma distribution. Must be non-negative .
1628
1672
Default is equal to 1.
1629
1673
size : int or tuple of ints, optional
1630
1674
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
@@ -1706,9 +1750,9 @@ cdef class RandomGenerator:
1706
1750
Parameters
1707
1751
----------
1708
1752
dfnum : int or array_like of ints
1709
- Degrees of freedom in numerator. Should be greater than zero .
1753
+ Degrees of freedom in numerator. Must be non-negative .
1710
1754
dfden : int or array_like of ints
1711
- Degrees of freedom in denominator. Should be greater than zero .
1755
+ Degrees of freedom in denominator. Must be non-negative .
1712
1756
size : int or tuple of ints, optional
1713
1757
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
1714
1758
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2262,7 +2306,7 @@ cdef class RandomGenerator:
2262
2306
Parameters
2263
2307
----------
2264
2308
a : float or array_like of floats
2265
- Shape of the distribution. Should be greater than zero .
2309
+ Shape of the distribution. All values must be positive .
2266
2310
size : int or tuple of ints, optional
2267
2311
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
2268
2312
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2443,7 +2487,7 @@ cdef class RandomGenerator:
2443
2487
Parameters
2444
2488
----------
2445
2489
a : float or array_like of floats
2446
- Parameter of the distribution. Should be greater than zero .
2490
+ Parameter of the distribution. Must be positive .
2447
2491
size : int or tuple of ints, optional
2448
2492
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
2449
2493
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2548,7 +2592,8 @@ cdef class RandomGenerator:
2548
2592
loc : float or array_like of floats, optional
2549
2593
The position, :math:`\\ mu`, of the distribution peak. Default is 0.
2550
2594
scale : float or array_like of floats, optional
2551
- :math:`\\ lambda`, the exponential decay. Default is 1.
2595
+ :math:`\\ lambda`, the exponential decay. Default is 1. Must be
2596
+ non-negative.
2552
2597
size : int or tuple of ints, optional
2553
2598
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
2554
2599
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2630,7 +2675,8 @@ cdef class RandomGenerator:
2630
2675
loc : float or array_like of floats, optional
2631
2676
The location of the mode of the distribution. Default is 0.
2632
2677
scale : float or array_like of floats, optional
2633
- The scale parameter of the distribution. Default is 1.
2678
+ The scale parameter of the distribution. Default is 1. Must be
2679
+ non-negative.
2634
2680
size : int or tuple of ints, optional
2635
2681
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
2636
2682
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2828,8 +2874,8 @@ cdef class RandomGenerator:
2828
2874
mean : float or array_like of floats, optional
2829
2875
Mean value of the underlying normal distribution. Default is 0.
2830
2876
sigma : float or array_like of floats, optional
2831
- Standard deviation of the underlying normal distribution. Should
2832
- be greater than zero . Default is 1.
2877
+ Standard deviation of the underlying normal distribution. Must be
2878
+ non-negative . Default is 1.
2833
2879
size : int or tuple of ints, optional
2834
2880
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
2835
2881
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -2934,7 +2980,7 @@ cdef class RandomGenerator:
2934
2980
Parameters
2935
2981
----------
2936
2982
scale : float or array_like of floats, optional
2937
- Scale, also equals the mode. Should be >= 0 . Default is 1.
2983
+ Scale, also equals the mode. Must be non-negative . Default is 1.
2938
2984
size : int or tuple of ints, optional
2939
2985
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
2940
2986
``m * n * k`` samples are drawn. If size is ``None`` (default),
@@ -3463,7 +3509,7 @@ cdef class RandomGenerator:
3463
3509
Parameters
3464
3510
----------
3465
3511
a : float or array_like of floats
3466
- Distribution parameter. Should be greater than 1.
3512
+ Distribution parameter. Must be greater than 1.
3467
3513
size : int or tuple of ints, optional
3468
3514
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
3469
3515
``m * n * k`` samples are drawn. If size is ``None`` (default),
0 commit comments