-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
60 lines (46 loc) · 2.14 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from flask import Flask, render_template, request
from werkzeug.utils import secure_filename
import model.show_tools as st
from medias.demo.image_demo import load_img_demo
import plotly
import json
from model.predict import predict, load_nii
from datetime import datetime
app = Flask(__name__)
app.config["UPLOAD_FOLDER"] = 'medias/users_files/'
@app.route("/")
@app.route('/accueil/')
def view_home():
np_no_lbl, np_lbl = load_img_demo()
image_no_lbl = json.dumps(st.slice_img3D(np_no_lbl, "IRM en entrée"), cls=plotly.utils.PlotlyJSONEncoder)
image_lbl = json.dumps(st.slice_img3D(np_lbl, "Segmentation attendue"), cls=plotly.utils.PlotlyJSONEncoder)
context = {'image_no_lbl': image_no_lbl,
'image_lbl': image_lbl}
return render_template("index.html", context=context)
@app.route("/presentation-du-projet/")
def view_pres_proj():
return render_template("presentation-du-projet.html")
@app.route("/a-propos/")
def view_a_propos():
return render_template("a-propos.html")
@app.route('/prediction/', methods = ['POST', 'GET'])
def prediction():
context = {'image_upload_no_lbl': 'empty',
'image_predict_lbl': 'empty',
}
if request.method == "POST": #upload of the user
file_upload = request.files['file']
filename = secure_filename(file_upload.filename)
current_datetime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
file_upload_path = app.config['UPLOAD_FOLDER'] + current_datetime + '_' + filename
file_upload.save(file_upload_path)
np_upload_no_lbl = load_nii(file_upload_path)[0]
image_upload_no_lbl = json.dumps(st.slice_img3D(np_upload_no_lbl, "IRM envoyé"), cls=plotly.utils.PlotlyJSONEncoder)
context['image_upload_no_lbl'] = image_upload_no_lbl
np_predict_lbl = predict(file_upload_path )
image_predict_lbl = json.dumps(st.slice_img3D(np_predict_lbl, "IRM segmenté"),
cls=plotly.utils.PlotlyJSONEncoder)
context['image_predict_lbl'] = image_predict_lbl
return render_template("prediction.html", context=context)
if __name__ == '__main__':
app.run()