-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPaySim_Fraud_Detection_XGBoost.py
435 lines (361 loc) · 16.1 KB
/
PaySim_Fraud_Detection_XGBoost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
"""PaySim Fraud Detection Case using XGBoost
This script demonstrates the process of detecting fraudulent transactions using the XGBoost classifier.
It includes data preprocessing, exploratory data analysis, feature engineering, model training, evaluation, and preparation for deployment.
"""
import subprocess
import sys
# Install required packages if not already installed
def install_required_packages():
required_packages = {
'scikit-learn': '1.3.1',
'xgboost': None, # Latest version
'graphviz': None # Latest version
}
for package, version in required_packages.items():
if version:
subprocess.check_call([sys.executable, "-m", "pip", "install", f"{package}=={version}"])
else:
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
# Only run installation if this is the main script
if __name__ == "__main__":
install_required_packages()
# Importing necessary libraries and suppressing warnings for cleaner output
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import classification_report, roc_auc_score, confusion_matrix, precision_score, recall_score
from sklearn.model_selection import cross_val_predict, StratifiedKFold
import xgboost as xgb
from xgboost import XGBClassifier, plot_importance, plot_tree
import gc
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import os
warnings.filterwarnings("ignore")
pd.set_option('display.max_columns', 50)
pd.set_option('chained_assignment', None)
xgb.set_config(use_rmm=True)
# Create directories for saving plots and data
def create_directories():
os.makedirs('images', exist_ok=True)
os.makedirs('data', exist_ok=True)
# Data loading function
def load_data(data_path='data/train.csv'):
"""Load the dataset from the specified path."""
raw_data = pd.read_csv(data_path)
return raw_data
def save_plot(plt, filename):
"""Save plot to the images directory"""
plt.savefig(os.path.join('images', filename))
def prepare_data_for_prediction(data):
"""
Preprocesses new incoming data to match the training data format.
Includes feature engineering and encoding.
"""
# Creating time-based features
data['hour_of_day'] = data['step'] % 24
data['day_of_week'] = (data['step'] // 24) % 7
data['day'] = (data['step'] // 24)
# Deriving new categories from nameDest
data['nameDest_type'] = data['nameDest'].str[0].map({'C': 'customer', 'B': 'merchant'}).fillna('other')
# One-hot encoding categorical features
data = pd.get_dummies(data, columns=['nameDest_type'], dtype="int64")
data = pd.get_dummies(data, columns=['action'], dtype="int64")
# Sorting the data for cumulative calculations
data = data.sort_values(['step', 'nameOrig', 'Id'])
# Creating ratio and cumulative features
data['amountRatioOrig'] = data['amount'] / data['oldBalanceOrig']
data['amountRatioDest'] = data['amount'] / data['newBalanceOrig']
data['user_cum_count'] = data.groupby('nameOrig').cumcount()
data['user_cumulative_amount'] = data.groupby('nameOrig')['amount'].cumsum().shift(1)
data['user_avg_amount'] = data['user_cumulative_amount'] / data['user_cum_count']
data['user_max_amount'] = data.groupby('nameOrig')['amount'].cummax().shift(1)
data['user_avg_amount_ratio'] = data['amount'] / data['user_avg_amount']
data['user_max_amount_ratio'] = data['amount'] / data['user_max_amount']
data['prev_step'] = data.groupby('nameOrig')['step'].shift(1)
data['time_since_last'] = data['step'] - data['prev_step']
data['is_first_transaction'] = (data['prev_step'].isnull()).astype(int)
# Same-step and same-day transaction features
data['user_count_same_step'] = data.groupby(['nameOrig', 'step']).cumcount() + 1
data['user_amount_same_step'] = data.groupby(['nameOrig', 'step'])['amount'].cumsum().shift(1)
data['user_count_same_day'] = data.groupby(['nameOrig', 'day']).cumcount() + 1
data['user_amount_same_day'] = data.groupby(['nameOrig', 'day'])['amount'].cumsum().shift(1)
# Destination-based features
data['dest_count_same_day'] = data.groupby(['nameDest', 'day']).cumcount() + 1
data['dest_count_same_step'] = data.groupby(['nameDest', 'step']).cumcount() + 1
data['dest_amount_same_step'] = data.groupby(['nameDest', 'step'])['amount'].cumsum().shift(1)
data['dest_amount_same_day'] = data.groupby(['nameDest', 'day'])['amount'].cumsum().shift(1)
# Handle missing and infinite values
data.fillna(-1, inplace=True)
data.replace([np.inf, -np.inf], -1, inplace=True)
# Drop unnecessary columns
cols_to_drop = ['Id', 'nameOrig', 'nameDest', 'amount_bin', 'prev_step']
for col in cols_to_drop:
if col in data.columns:
data.drop(columns=[col], inplace=True, errors='ignore')
# Prepare output
X = data.drop(['isFraud'], axis=1, errors='ignore')
y = data['isFraud'].values if 'isFraud' in data.columns else None
return X, y
def get_predictions(X, model, process_data=False):
"""
Generates predictions for new incoming data using the trained model.
"""
if process_data:
X, _ = prepare_data_for_prediction(X)
# Ensure columns match training data
training_cols = model.get_booster().feature_names
X = X[training_cols]
return model.predict(X)
def evaluate_model(new_data, target_data, model, process_data=False):
"""
Evaluates the model's performance on new data.
Prints classification metrics and displays a confusion matrix.
"""
# Get predictions
y_pred = get_predictions(new_data, model, process_data=process_data)
# Print metrics
print("\nClassification Report:")
print(classification_report(target_data, y_pred))
# Plot confusion matrix
cm = confusion_matrix(target_data, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['Not Fraud', 'Fraud'],
yticklabels=['Not Fraud', 'Fraud'])
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
save_plot(plt, 'evaluation_confusion_matrix.png')
plt.close()
def main():
"""Main execution function"""
# Create necessary directories
create_directories()
# Load the data
try:
raw_data = load_data()
data = raw_data.copy()
except FileNotFoundError:
print("Error: Please ensure the training data file 'train.csv' is in the 'data' directory")
sys.exit(1)
print("Starting PaySim Fraud Detection analysis...")
# Check the first few rows and null values
print("First few rows of the dataset:")
print(data.head())
print("\nNull values in the dataset:")
print(data.isnull().sum())
# Display descriptive statistics
print("\nDescriptive statistics of the dataset:")
print(data.describe())
# Data Cleaning and Feature Engineering
# Dropping the 'isFlaggedFraud' column as it contains only 0s
data.drop(columns=['isFlaggedFraud'], inplace=True, errors='ignore')
# Checking the distribution of fraudulent transactions
print("\nFraud distribution:")
print(data['isFraud'].value_counts())
fraud_rate = data['isFraud'].mean()
print("\nFraud rate:")
print(data['isFraud'].value_counts(normalize=True))
# Exploratory Data Analysis (EDA)
# 1. Distribution of transaction amounts
plt.figure(figsize=(10, 6))
plt.hist(data.amount, bins=25, log=True, edgecolor='k')
plt.title('Distribution of Transaction Amounts')
plt.xlabel('Amount')
plt.ylabel('Frequency (log scale)')
save_plot(plt, 'distribution_transaction_amounts.png')
plt.close()
# 2. Frequency of transaction types
plt.figure(figsize=(10, 6))
data['action'].value_counts().plot(kind='bar', color='skyblue', edgecolor='k')
plt.title('Frequency of Transaction Types')
plt.xlabel('Transaction Type')
plt.ylabel('Frequency')
save_plot(plt, 'frequency_transaction_types.png')
plt.close()
# 3. Fraudulent Transactions by Action Type
plt.figure(figsize=(10, 6))
data.groupby('action')['isFraud'].sum().plot(kind='bar', color='red', edgecolor='k')
plt.title('Fraudulent Transactions by Action')
plt.xlabel('Transaction Type')
plt.ylabel('Frequency')
save_plot(plt, 'fraudulent_transactions_by_action.png')
plt.close()
# 4. Transaction Count by Day
plt.figure(figsize=(10, 6))
data.groupby('day').size().plot(kind='line', color='brown')
plt.title('Transaction Count by Day')
plt.xlabel('Day')
plt.ylabel('Count')
save_plot(plt, 'transaction_count_by_day.png')
plt.close()
# 5. Fraudulent Transaction Count by Day
plt.figure(figsize=(10, 6))
data[data.isFraud==1].groupby('day').size().plot(kind='line', color='red')
plt.title('Fraudulent Transaction Count by Day')
plt.xlabel('Day')
plt.ylabel('Count')
save_plot(plt, 'fraudulent_transaction_count_by_day.png')
plt.close()
# 6. Transaction Count by Hour of Day
plt.figure(figsize=(10, 6))
data.groupby('hour_of_day').size().plot(kind='bar', color='purple', edgecolor='k')
plt.title('Transaction Count by Hour of Day')
plt.xlabel('Hour of Day')
plt.ylabel('Count')
save_plot(plt, 'transaction_count_by_hour_of_day.png')
plt.close()
# 7. Transaction Frequency by Day of Week
plt.figure(figsize=(10, 6))
data.groupby('day_of_week').size().plot(kind='bar', color='orange', edgecolor='k')
plt.title('Transaction Frequency by Day of Week')
plt.xlabel('Day of Week')
plt.ylabel('Count')
save_plot(plt, 'transaction_frequency_by_day_of_week.png')
plt.close()
# Filtering Transaction Types for Fraud Analysis
# Since fraudulent transactions consist of only 'CASH_OUT' and 'TRANSFER' actions,
# we filter these transaction types for meaningful comparison
data_action_filtered = data[data.action.isin(["CASH_OUT", "TRANSFER"])]
# 8. Fraudulent Transaction Ratio Over Time
plt.figure(figsize=(10, 6))
plt.plot(data_action_filtered.groupby('day')['isFraud'].mean())
plt.xlabel('Day')
plt.ylabel('Fraudulent Ratio')
plt.title('Fraudulent Transaction Ratio Over Time')
save_plot(plt, 'fraudulent_transaction_ratio_over_time.png')
plt.close()
# 9. Fraudulent Transaction Ratio by Hour
plt.figure(figsize=(10, 6))
data_action_filtered.groupby('hour_of_day')['isFraud'].mean().plot(kind="bar", edgecolor='k', color='green')
plt.xlabel('Hour')
plt.ylabel('Fraudulent Ratio')
plt.title('Fraudulent Transaction Ratio by Hour of Day')
save_plot(plt, 'fraudulent_transaction_ratio_by_hour_of_day.png')
plt.close()
# 10. Fraudulent Transaction Ratio by Day of Week
plt.figure(figsize=(10, 6))
data_action_filtered.groupby('day_of_week')['isFraud'].mean().plot(kind="bar", edgecolor='k', color='teal')
plt.xlabel('Day of Week')
plt.ylabel('Fraudulent Ratio')
plt.title('Fraudulent Transaction Ratio by Day of Week')
save_plot(plt, 'fraudulent_transaction_ratio_by_day_of_week.png')
plt.close()
# 11. Binning Transaction Amounts and Analyzing Fraud
bin_edges = [0, 1e5, 5e5, 1e6, 5e6, 1e7, 2e7]
data_action_filtered['amount_bin'] = pd.cut(data_action_filtered['amount'], bins=bin_edges, include_lowest=True)
# Calculate fraud counts and proportions per bin
fraud_counts = data_action_filtered.groupby('amount_bin')['isFraud'].sum().reset_index()
fraud_proportions = data_action_filtered.groupby('amount_bin')['isFraud'].mean().reset_index()
# Visualizing fraud count by transaction amount bins
plt.figure(figsize=(8, 6))
sns.barplot(x='amount_bin', y='isFraud', data=fraud_counts, color='red')
plt.title('Number of Fraudulent Transactions by Amount Intervals')
plt.xlabel('Transaction Amount Range')
plt.ylabel('Fraud Count')
plt.xticks(rotation=30)
plt.tight_layout()
save_plot(plt, 'number_of_fraudulent_transactions_by_amount_intervals.png')
plt.close()
# Visualizing fraud proportion by transaction amount bins
plt.figure(figsize=(8, 6))
sns.barplot(x='amount_bin', y='isFraud', data=fraud_proportions, color='purple')
plt.title('Proportion of Fraudulent Transactions by Amount Range')
plt.xlabel('Transaction Amount Range')
plt.ylabel('Fraud Proportion')
plt.xticks(rotation=30)
plt.tight_layout()
save_plot(plt, 'proportion_of_fraudulent_transactions_by_amount_range.png')
plt.close()
# 12. Correlation Analysis
numeric_cols = data_action_filtered.drop(['Id'], axis=1).select_dtypes(include=['number', 'bool']).columns
correlation_matrix = data_action_filtered[numeric_cols].corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', cbar=True)
plt.title('Correlation Matrix')
save_plot(plt, 'correlation_matrix.png')
plt.close()
# 13. Model Training Pipeline
def train_and_evaluate_model(data):
"""Train and evaluate the XGBoost model"""
# Feature Engineering
data['nameDest_type'] = data['nameDest'].str[0].map({'C': 'customer', 'B': 'merchant'}).fillna('other')
data = pd.get_dummies(data, columns=['nameDest_type', 'action'], dtype="int64")
# Prepare features and target
X = data.drop(['isFraud', 'Id', 'nameOrig', 'nameDest', 'amount_bin'], axis=1, errors='ignore')
y = data['isFraud'].values
# Split the data
X_train, X_val, y_train, y_val = train_test_split(X, y, stratify=y, test_size=0.25, random_state=0)
# Calculate class weight
fraud_ratio_train = y_train.mean()
scale_pos_weight = (1 - fraud_ratio_train) / fraud_ratio_train
# Define cross-validation
cv = StratifiedKFold(n_splits=4, shuffle=True, random_state=0)
# Define parameter grid
param_grid = {
'n_estimators': [100, 200],
'max_depth': [4, 5, 6],
'learning_rate': [0.1, 0.3],
'subsample': [0.8, 1.0],
'method': ['hist']
}
# Initialize model
xgb_clf = XGBClassifier(
objective='binary:logistic',
scale_pos_weight=scale_pos_weight,
use_label_encoder=False,
eval_metric='aucpr'
)
# Grid search
grid_search = GridSearchCV(
estimator=xgb_clf,
param_grid=param_grid,
scoring='roc_auc',
cv=cv,
verbose=2,
n_jobs=-1
)
# Fit the model
grid_search.fit(X_train, y_train)
print("Best parameters found:", grid_search.best_params_)
print("Best AUC score during CV:", grid_search.best_score_)
# Get best model
best_model = grid_search.best_estimator_
# Make predictions
y_pred = best_model.predict(X_val)
y_pred_proba = best_model.predict_proba(X_val)[:, 1]
# Print metrics
print("\nClassification Report:")
print(classification_report(y_val, y_pred))
print("ROC AUC:", roc_auc_score(y_val, y_pred_proba))
# Plot confusion matrix
cm = confusion_matrix(y_val, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['Not Fraud', 'Fraud'],
yticklabels=['Not Fraud', 'Fraud'])
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
save_plot(plt, 'confusion_matrix.png')
plt.close()
# Feature importance
plot_importance(best_model, max_num_features=10)
plt.title('Feature Importance')
save_plot(plt, 'feature_importance.png')
plt.close()
return best_model
# Train the model
print("\nTraining the model...")
best_model = train_and_evaluate_model(data)
# Save the processed data
print("\nSaving processed data...")
data_processed, y = prepare_data_for_prediction(raw_data)
data_processed.to_csv('data/processed_data.csv', index=False)
print("\nEvaluation on the full dataset:")
evaluate_model(data_processed, y, best_model)
print("\nScript completed successfully!")
if __name__ == "__main__":
main()