-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgan_train.py
53 lines (48 loc) · 1.36 KB
/
gan_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from typing import List
from AutoGAN.train_derived import train_derived
import AutoGAN.cfg
from multiprocessing import Process, Queue
args = dict([
("-gen_bs", 128),
("-dis_bs", 128),
("--dataset", "cifar10"),
("--bottom_width", 4),
("--img_size", 32),
("--max_iter", 50000),
("--gen_model", "shared_gan"),
("--dis_model", "shared_gan"),
("--latent_dim", 128),
("--gf_dim", 256),
("--df_dim", 128),
("--g_spectral_norm", False),
("--d_spectral_norm", True),
("--g_lr", 0.0002),
("--d_lr", 0.0002),
("--beta1", 0.0),
("--beta2", 0.9),
("--init_type", "xavier_uniform"),
("--n_critic", 5),
("--val_freq", 20),
("--exp_name", "derive"),
("--calc_fid", False),
("--warnings_enabled", False),
("--num_eval_imgs", 10000),
])
def _train_gan(arch: List[int], max_epoch: int, q):
args["--max_epoch"] = max_epoch
args_list = []
for k, v in args.items():
args_list.extend([k, str(v)])
args_list.append("--arch")
for item in arch:
args_list.append(str(item))
result = train_derived(AutoGAN.cfg.parse_args(args=args_list))
q.put(result)
return
def train_gan(arch: List[int], max_epoch: int) -> float:
queue = Queue()
p = Process(target=_train_gan, args=(arch, max_epoch, queue))
p.start()
p.join()
result = queue.get()
return result