-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathglasses_stream.py
74 lines (63 loc) · 2.83 KB
/
glasses_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""Apply glasses filter to video stream."""
# USAGE
# python glasses_stream.py --shape-predictor shape_predictor_68_face_landmarks.dat --glass images/glasses.png
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np
import argparse
import imutils
import time
import dlib
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("-g", "--glass", required=True, help="path to the glasses image")
args = vars(ap.parse_args())
# init dlib's HOG face detector and the facial landmarks predictor
print("[INFO] loading facial landmark predictor...")
face_hog_detector = dlib.get_frontal_face_detector()
landmark_predictor = dlib.shape_predictor(args["shape_predictor"])
# the image is made up of 4 layers: Blue, Green, Red, and an Alpha transparency layer (BGR-A)
img_glasses = cv2.imread(args["glass"], -1)
# take just the alpha layer used for masking the area for the glasses
original_mask_glasses = img_glasses[:, :, 3]
# take the inverse mask for region around the glasses
original_mask_glasses_inv = cv2.bitwise_not(original_mask_glasses)
img_glasses = img_glasses[:, :, 0:3]
original_glasses_height, original_glasses_width = img_glasses.shape[:2]
# start the video stream thread
print("[INFO] starting video stream thread...")
vs = VideoStream(src=0).start()
time.sleep(1.0)
while True:
frame = vs.read()
frame = imutils.resize(frame, width=600)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale frame
rects = face_hog_detector(gray, 0)
for rect in rects:
shape = landmark_predictor(gray, rect)
glasses_width = abs(shape.part(16).x - shape.part(1).x)
glasses_height = int(glasses_width * original_glasses_height / original_glasses_width)
glasses = cv2.resize(img_glasses, (glasses_width, glasses_height), interpolation=cv2.INTER_AREA)
mask_glasses = cv2.resize(original_mask_glasses, (glasses_width, glasses_height), interpolation=cv2.INTER_AREA)
mask_glasses_inv = cv2.resize(original_mask_glasses_inv, (glasses_width, glasses_height), interpolation=cv2.INTER_AREA)
y1 = int(shape.part(24).y)
y2 = int(y1 + glasses_height)
x1 = int(shape.part(27).x - (glasses_width/2))
x2 = int(x1 + glasses_width)
roi = frame[y1:y2, x1:x2]
roi_bg = cv2.bitwise_and(roi, roi, mask=mask_glasses_inv)
roi_fg = cv2.bitwise_and(glasses, glasses, mask=mask_glasses)
frame[y1:y2, x1:x2] = cv2.add(roi_bg, roi_fg)
# show the frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()