-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
433 lines (344 loc) · 12.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from __future__ import print_function
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from scipy.misc import imsave
import numpy as np
import time
from keras.applications import vgg16
from keras import backend as K
import tkinter as tk
from tkinter import *
from tkinter import messagebox as mbox
from tkinter import filedialog
from PIL import Image, ImageTk
import keras
from keras import *
from keras.models import Model
import keras.backend as K
#K.set_learning_phase(0)
import numpy as np
from pylab import cm
import matplotlib.pyplot as plt
from VCNN.Webcam import cam_shot
from VCNN.Core import get_network_input, summary, load_model, get_activations, max_activation, get_activations_images, get_input_shape, get_filter
from VCNN.ImageTools import array_to_image
class VCNN(Frame):
w = 600
h = 600
h5 = ''
json = ''
image = ''
npy = ''
model = None
layersMenu = None
cmap = 'default'
last_loaded_layer = ''
images = []
frame = None
menubar = None
network_input = None
debug = False
streamcam = None
def __init__(self):
super().__init__()
self.initUI()
def initUI(self):
self.master.title('VCNN')
self.pack(fill=BOTH, expand=1)
self.centerWindow()
def bind_key(event):
self.reload_layer
#content frame
self.frame = Frame(self)
self.frame.focus_set()
self.frame.bind("<Control_L>", bind_key) #Binds the "left" key to the frame and exexutes yourFunction if "left" key was pressed
self.frame.pack(side=TOP, fill=BOTH, expand=YES)
#menu bar
menubar = Menu(self.master)
self.master.config(menu=menubar)
#menu file
fileMenu = Menu(menubar)
#import submenu
submenu = Menu(fileMenu)
submenu.add_command(label="Json", command=self.loadJson)
submenu.add_command(label="H5", command=self.loadH5)
submenu.add_command(label="Image", command=self.loadImage)
submenu.add_command(label="npy", command=self.loadnpy)
#menu file
fileMenu.add_cascade(label='Import', menu=submenu)
fileMenu.add_separator()
fileMenu.add_command(label="Exit", command=self.onExit)
menubar.add_cascade(label="File", menu=fileMenu)
#menu net
netMenu = Menu(menubar)
netMenu.add_cascade(label='Load Model', command=self.loadModel)
netMenu.add_cascade(label='Run', command=self.run)
netMenu.add_cascade(label='Summary', command=self.summary)
menubar.add_cascade(label='Net', menu=netMenu)
#menu layers (it's a global variable 'cause it have to be dynamic)
self.layersMenu = Menu()
menubar.add_cascade(label='Layers', menu=self.layersMenu)
#sources menu
sourcesMenu = Menu()
sourcesMenu.add_cascade(label='Webcam Photo', command=self.camShot)
menubar.add_cascade(label='Sources', menu=sourcesMenu)
#color map menu
cmapMenu = Menu(menubar)
cmapMenu.add_command(label='Grey', command=lambda: self.setCmap('grey'))
cmapMenu.add_command(label='Jet', command=lambda: self.setCmap('jet'))
cmapMenu.add_command(label='Reds', command=lambda: self.setCmap('Reds'))
cmapMenu.add_command(label='Greens', command=lambda: self.setCmap('Greens'))
cmapMenu.add_command(label='Blues', command=lambda: self.setCmap('Blues'))
cmapMenu.add_command(label='Viridis', command=lambda: self.setCmap('viridis'))
cmapMenu.add_command(label='Default', command=lambda: self.setCmap('default'))
menubar.add_cascade(label='Cmap', menu=cmapMenu)
aboutMenu = Menu(menubar)
aboutMenu.add_command(label='Info', command=lambda: self.aboutAlert())
menubar.add_cascade(label='About', menu=aboutMenu)
#globalize the main menubar
self.menubar = menubar
if(self.debug):
self.loadModel(silent=True)
self.run(silent=True)
def aboutAlert(self):
mbox.showinfo("Info", "Developer: Mario Baldi\nLicense: GPL\nInfo: Developed for the purpose of the thesis session of 11//10/2017")
#webacm callback, it uses opencv to take a photo, square crop at center and resize as the input shape
def camShot(self, mirror = True):
#check loaded model
if(self.model == None):
mbox.showerror("Error", "Please load a model first")
return None
input_shape = get_input_shape(self.model)
#storing the webcam image name
self.image = 'cam_input.png'
#take an image from the webcam
img = cam_shot(input_shape, save=True, save_name=self.image)
#self.showImage(img) #show the image
self.cleanImages() #clean the content frame
#run the prediction to get the activations
self.run()
return img
#exit callback
def onExit(self):
self.quit()
#set the colormap global variable and reload the layer
def setCmap(self, cmap):
self.cmap = cmap
if(self.last_loaded_layer != ''):
self.loadLayer(self.last_loaded_layer)
def reload_layer(self):
if(self.last_loaded_layer != ''):
self.loadLayer(self.last_loaded_layer)
#show the model summary
def summary(self):
#check if the model is loaded
if(self.model == None):
mbox.showerror("Error", "Please load the model first")
return
txt = summary(self.model)
self.model.summary()
mbox.showinfo("Summary", txt)
#run the neural network on the chosen input to prepare the activations and get the input shape
def run(self, silent=False):
#check if the model is loaded
if(self.model == None):
mbox.showerror("Error", "Please load the model first")
return
#check if the input impage is loaded
if((self.image == '' and self.npy == '') or (self.image != '' and self.npy != '')):
mbox.showerror("Error", "Please import an adeguate input file")
return
if(self.image == '' and self.npy != ''):
self.network_input = np.load(self.npy)
elif(self.image != '' and self.npy == ''):
self.network_input = get_network_input(self.model, self.image)
print(self.network_input.shape)
self.reload_layer()
#prompt the user
if(not silent):
mbox.showinfo("Info", 'Input Computated')
#clear all the images in the main content frame
def cleanImages(self):
for img in self.images:
img.destroy()
def deprocess_image(self, x):
import numpy as np
# normalize tensor: center on 0., ensure std is 0.1
x -= x.mean()
x /= (x.std() + 1e-5)
x *= 0.1
#clip to [0, 1]
x += 0.5
x = np.clip(x, 0, 1)
#convert to RGB array
x *= 255
#x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x
#creates an immage and appends it to the main content frame
def showImage(self, img, row = 1, col = 1, button=False, lambda_l=None, lambda_r=None):
#img = self.deprocess_image(img)
#plt.imshow(img)
#plt.show()
photo = ImageTk.PhotoImage(img)#, 'F')
if(button):
widget = Button(self.frame, image=photo, width=img.size[0], height=img.size[1], borderwidth=2, state='normal', padx=0, pady=0, highlightthickness=0)#, command=lambda_f)
widget.bind('<Button-1>', lambda event, lambda_l=lambda_l: lambda_l())
widget.bind('<Button-3>', lambda event, lambda_r=lambda_r: lambda_r())
else:
widget = Label(self.frame, image=photo, width=img.size[0], height=img.size[1], borderwidth=2, state='normal', padx=0, pady=0, highlightthickness=0)
widget.image = photo
widget.grid(row=row, column=col)
#label.pack(anchor=NW, side=TOP|LEFT) #.pack(fill=BOTH, expand=1)
self.images.append(widget)
return widget
#display the activation of a layer
def displayActivtions(self, activation_maps, layer_name):
import numpy as np
import matplotlib.pyplot as plt
import os
self.cleanImages()
if(layer_name != None):
self.master.title('VCNN: '+layer_name)
imgs = get_activations_images(self.model, activation_maps, layer_name, window=[self.winfo_width(), self.winfo_height()], cmap=self.cmap)
batch_size = activation_maps[0].shape[0]
assert batch_size == 1, 'One image at a time to visualize.'
square_grid = int(np.ceil(np.sqrt(len(imgs))))
row = 0
for i, img in enumerate(imgs):
col = i%square_grid
if(i != 0 and col == 0):
row += 1
if len(imgs) > 1:
lambda_l = lambda name_layer=layer_name, index_filter=i: self.maxActivation(name_layer, index_filter)
lambda_r = lambda name_layer=layer_name, index_filter=i: self.getFilter(name_layer, index_filter)
self.showImage(img, row, col, button=True, lambda_l=lambda_l, lambda_r=lambda_r)
else:
self.showImage(img, row, col, button=False) #show single image
#loads a layer and displays the activation
def loadLayer(self, layer_name):
self.last_loaded_layer = layer_name
activations = get_activations(self.model, self.network_input, layer_name=layer_name)
self.displayActivtions(activations, layer_name)
#load the model
def loadModel(self, silent=False):
#check if the json it's loaded
if(self.json == ''):
mbox.showerror("Error", "Please import the Json file")
return
#check if the weights are loaded
if(self.h5 == ''):
mbox.showerror("Error", "Please import the H5 file")
return
if(self.model != None):
self.last_loaded_layer = ''
self.model = load_model(self.json, self.h5)
#delete the layers menu of the previous loaded neural network
self.layersMenu.delete(0, 'end')
#create the new layers menu
for layer in self.model.layers:
self.layersMenu.add_command(label=layer.name, command=lambda name=layer.name: self.loadLayer(name))
#prompt the user
if(not silent):
mbox.showinfo("Info", "Model Loaded")
#loads the neural network weights
def loadH5(self):
#show the file chooser dialog
ftypes = [('H5 files', '*.h5'), ('All files', '*')]
dlg = filedialog.Open(self, filetypes = ftypes)
fl = dlg.show()
if fl != '':
self.h5 = fl
mbox.showinfo("Info", "H5 Loaded")
else:
mbox.showerror("Error", "Could not open file")
#loads the neural network model
def loadJson(self):
#show the file chooser dialog
ftypes = [('Json files', '*.json'), ('All files', '*')]
dlg = filedialog.Open(self, filetypes = ftypes)
fl = dlg.show()
if fl != '':
self.json = fl
mbox.showinfo("Info", "Json Loaded")
else:
mbox.showerror("Error", "Could not open file")
#loads the input image
def loadImage(self):
#show the file chooser dialog
ftypes = [('Image files', '*.png'), ('Image files', '*.bmp'), ('Image files', '*.jpg'), ('Image files', '*.jpeg'), ('All files', '*')]
dlg = filedialog.Open(self, filetypes = ftypes)
fl = dlg.show()
if fl != '':
self.image = fl
self.npy = ''
mbox.showinfo("Info", "Image Loaded")
return 0
else:
mbox.showerror("Error", "Could not open file")
def loadnpy(self):
#show the file chooser dialog
ftypes = [('Numpy files', '*.npy'), ('All files', '*')]
dlg = filedialog.Open(self, filetypes = ftypes)
fl = dlg.show()
if fl != '':
self.npy = fl
self.image = ''
mbox.showinfo("Info", "Numpy Loaded")
return 0
else:
mbox.showerror("Error", "Could not open file")
#show the max activations for that filter
def maxActivation(self, layer_name, filter_index, show=True):
img = max_activation(self.model, layer_name, filter_index)
if(show):
plt.imshow(img.squeeze(), interpolation='None', cmap='gray')
plt.show()
return img
#show the filter
def getFilter(self, layer_name, filter_index, show=True):
if type(self.model.layers[0]) is keras.engine.topology.InputLayer:
first_layer = self.model.layers[1]
else:
first_layer = self.model.layers[0]
#if(first_layer.name == layer_name):
img = get_filter(self.model, layer_name, filter_index)
#else:
# img = None
if(show and img != None):
shape = list(img.shape)
if(len(shape) > 2 and shape[2] > 1):
square_x = int(np.floor(np.sqrt(shape[2])))
square_y = square_x
if(square_x*square_y < shape[2]):
square_x += 1
square_y += 1
from matplotlib import gridspec
gs = gridspec.GridSpec(square_y, square_x)
fig = plt.figure()
for i in range(0, shape[2]):
# display original
#ax = plt.subplot(i, 1)
ax = fig.add_subplot(gs[i])
data = img[:,:,i]
ax.imshow(data, 'gray')#, vmin=0, vmax=1)
plt.show()
else:
plt.imshow(img.squeeze(), interpolation='None', cmap='gray')
plt.show()
return img
#center the window and set the geometry
def centerWindow(self):
sw = self.master.winfo_screenwidth()
sh = self.master.winfo_screenheight()
x = (sw - self.w)/2
y = (sh - self.h)/2
self.master.geometry('%dx%d+%d+%d' % (self.w, self.h, x, y))
#init the application gui
def main():
root = Tk()
app = VCNN()
root.mainloop()
#load the application
if __name__ == '__main__':
main()