|
| 1 | +/* |
| 2 | +
|
| 3 | + -* Push Dominoes *- |
| 4 | +
|
| 5 | +
|
| 6 | + There are n dominoes in a line, and we place each domino vertically upright. In the beginning, |
| 7 | + we simultaneously push some of the dominoes either to the left or to the right. |
| 8 | +
|
| 9 | +After each second, each domino that is falling to the left pushes the adjacent domino on the left. |
| 10 | +Similarly, the dominoes falling to the right push their adjacent dominoes standing on the right. |
| 11 | +
|
| 12 | +When a vertical domino has dominoes falling on it from both sides, it stays still due to the balance of the forces. |
| 13 | +
|
| 14 | +For the purposes of this question, we will consider that a falling domino expends no additional |
| 15 | +force to a falling or already fallen domino. |
| 16 | +
|
| 17 | +You are given a string dominoes representing the initial state where: |
| 18 | +
|
| 19 | +dominoes[i] = 'L', if the ith domino has been pushed to the left, |
| 20 | +dominoes[i] = 'R', if the ith domino has been pushed to the right, and |
| 21 | +dominoes[i] = '.', if the ith domino has not been pushed. |
| 22 | +Return a string representing the final state. |
| 23 | +
|
| 24 | +
|
| 25 | +
|
| 26 | +Example 1: |
| 27 | +
|
| 28 | +Input: dominoes = "RR.L" |
| 29 | +Output: "RR.L" |
| 30 | +Explanation: The first domino expends no additional force on the second domino. |
| 31 | +Example 2: |
| 32 | +
|
| 33 | +
|
| 34 | +Input: dominoes = ".L.R...LR..L.." |
| 35 | +Output: "LL.RR.LLRRLL.." |
| 36 | +
|
| 37 | +
|
| 38 | +Constraints: |
| 39 | +
|
| 40 | +n == dominoes.length |
| 41 | +1 <= n <= 105 |
| 42 | +dominoes[i] is either 'L', 'R', or '.'. |
| 43 | +
|
| 44 | +*/ |
| 45 | +import 'dart:math'; |
| 46 | + |
| 47 | +class A { |
| 48 | + // Two Pointers |
| 49 | +// Time: O(n)O(n) |
| 50 | +// Space: O(n)O(n) |
| 51 | +// Runtime: 386 ms, faster than 100.00% of Dart online submissions for Push Dominoes. |
| 52 | +// Memory Usage: 156.8 MB, less than 100.00% of Dart online submissions for Push Dominoes. |
| 53 | + |
| 54 | + String pushDominoes(String dominoes) { |
| 55 | + // splitting the the whole string into a list like each individual character |
| 56 | + List<String> finalString = dominoes.split(""); |
| 57 | + // left falling domino |
| 58 | + int L = -1; |
| 59 | + // right falling domino |
| 60 | + int R = -1; |
| 61 | + // looping through the length off the dominoes |
| 62 | + for (int i = 0; i <= dominoes.length; ++i) |
| 63 | + // if the i same as the dominos length OR smae as the individual character or the splitting list |
| 64 | + // of spited list as above assuming from right size |
| 65 | + if (i == dominoes.length || finalString[i] == 'R') { |
| 66 | + // if the left is greater than the right while right side is less than the individual character |
| 67 | + if (L < R) while (R < i) finalString[R++] = 'R'; |
| 68 | + // than we will give the order to push from the right side |
| 69 | + // and our right side is will be equal to the character because we pushed so it's value will be changing |
| 70 | + R = i; |
| 71 | + // else if the individual character is same aas from the left |
| 72 | + } else if (finalString[i] == 'L') { |
| 73 | + // assuming the right side is less than left or left and right is a negative value |
| 74 | + if (R < L || L == -1 && R == -1) { |
| 75 | + // we will push the trigger from the left side |
| 76 | + if (L == -1 && R == -1) ++L; |
| 77 | + // assuming the left is less than the each character |
| 78 | + // so we will increment it at the point of splitting string |
| 79 | + while (L < i) finalString[L++] = 'L'; |
| 80 | + } else { |
| 81 | + // if it's not the case |
| 82 | + // than defining the left and right sides |
| 83 | + int l = R + 1; |
| 84 | + int r = i - 1; |
| 85 | + // assuming that the left is less than right |
| 86 | + while (l < r) { |
| 87 | + // increment from the left side by triggering from the right side |
| 88 | + // because the left value will increase as the right value decrease |
| 89 | + finalString[l++] = 'R'; |
| 90 | + finalString[r--] = 'L'; |
| 91 | + } |
| 92 | + } |
| 93 | + // assigning the left value to the character |
| 94 | + L = i; |
| 95 | + } |
| 96 | + // as a result we will return the resulting string and and join it to make it one single string |
| 97 | + return finalString.join(); |
| 98 | + } |
| 99 | +} |
| 100 | + |
| 101 | +class B { |
| 102 | +// Traversal solution in TC: O(n) |
| 103 | +// Runtime: 407 ms, faster than 100.00% of Dart online submissions for Push Dominoes. |
| 104 | +// Memory Usage: 157.4 MB, less than 100.00% of Dart online submissions for Push Dominoes. |
| 105 | + String pushDominoes(String dominoes) { |
| 106 | + // splitting the string into individual character |
| 107 | + List<String> s = dominoes.split(""); |
| 108 | + // length of our whole string |
| 109 | + int n = dominoes.length; |
| 110 | + // lift side of the dominoes - holing the how many dominoes available on the left |
| 111 | + List<int> left = List.filled(n, 0); |
| 112 | + // right side of the dominoes - holing the how many dominoes available on the right |
| 113 | + List<int> right = List.filled(n, 0); |
| 114 | + // total sum value of both right and left - holing the how many dominoes available on both side |
| 115 | + List<int> sum = List.filled(n, 0); |
| 116 | + //R command from left to right |
| 117 | + int command = 0; |
| 118 | + // looping through the whole length - if the length is less than each character |
| 119 | + for (int i = 0; i < n; i++) { |
| 120 | + if (dominoes[i] == 'R') |
| 121 | + // our command will be from right side and assign the vle to i |
| 122 | + command = n; |
| 123 | + else if (dominoes[i] == 'L') |
| 124 | + command = 0; |
| 125 | + else if (dominoes[i] == '.') command = max(command - 1, 0); |
| 126 | + |
| 127 | + right[i] = command; |
| 128 | + } |
| 129 | + int p = 0; |
| 130 | + for (int i = n - 1; i >= 0; i--, p++) { |
| 131 | + if (dominoes[i] == 'L') |
| 132 | + command = n; |
| 133 | + else if (dominoes[i] == 'R') |
| 134 | + command = 0; |
| 135 | + else if (dominoes[i] == '.') command = max(command - 1, 0); |
| 136 | + |
| 137 | + left[i] = command * (-1); |
| 138 | + } |
| 139 | + for (int i = 0; i < n; i++) { |
| 140 | + sum[i] = right[i] + left[i]; |
| 141 | + if (sum[i] == 0) |
| 142 | + s[i] = '.'; |
| 143 | + else if (sum[i] > 0) |
| 144 | + s[i] = 'R'; |
| 145 | + else |
| 146 | + s[i] = 'L'; |
| 147 | + } |
| 148 | + return s.join(); |
| 149 | + } |
| 150 | +} |
| 151 | + |
| 152 | +// extension on String { |
| 153 | +// operator >(String other) { |
| 154 | +// return double.parse(this) > double.parse(other); |
| 155 | +// } |
| 156 | + |
| 157 | +// operator >=(String other) { |
| 158 | +// return double.parse(this) >= double.parse(other); |
| 159 | +// } |
| 160 | + |
| 161 | +// operator <(String other) { |
| 162 | +// return double.parse(this) < double.parse(other); |
| 163 | +// } |
| 164 | + |
| 165 | +// operator <=(String other) { |
| 166 | +// return double.parse(this) <= double.parse(other); |
| 167 | +// } |
| 168 | +// } |
| 169 | + |
| 170 | +class C { |
| 171 | +// Runtime: 538 ms, faster than 100.00% of Dart online submissions for Push Dominoes. |
| 172 | +// Memory Usage: 154.9 MB, less than 100.00% of Dart online submissions for Push Dominoes. |
| 173 | + String pushDominoes(String dominoes) { |
| 174 | + List<String> d = dominoes.split(""); |
| 175 | + // l is the left pointer |
| 176 | + int l = 0, n = dominoes.length; |
| 177 | + // r is the right pointer |
| 178 | + for (int r = 0; r < n; r++) { |
| 179 | + if (d[r] == '.') { |
| 180 | + // case 1. meeting `.`, then skip it |
| 181 | + continue; |
| 182 | + } else if ((d[r] == d[l]) || (d[l] == '.' && d[r] == 'L')) { |
| 183 | + // case 2. both end is equal, i.e. d[r] == d[l] |
| 184 | + // then fill all the dots between both end |
| 185 | + // e.g. L....L -> LLLLLL |
| 186 | + // e.g. R....R -> RRRRRR |
| 187 | + // case 2.1 if the left end is . and the right end is L, |
| 188 | + // i.e. d[l] == '.' && d[r] == 'L' |
| 189 | + // then we need to fill them from `l` to `r` in this case |
| 190 | + for (int k = l; k < r; k++) d[k] = d[r]; |
| 191 | + } else if (d[l] == 'L' && d[r] == 'R') { |
| 192 | + // case 3. left end is L and right end is R |
| 193 | + // e.g. L.....R |
| 194 | + // then do nothing |
| 195 | + } else if (d[l] == 'R' && d[r] == 'L') { |
| 196 | + // case 4. left end is R and right end is L |
| 197 | + // if we have odd number of dots between them (let's say m dots), |
| 198 | + // then we can only add (m / 2) Ls and (m / 2) Rs. |
| 199 | + // p.s `/` here is integer division. e.g. 3 / 2 = 1 |
| 200 | + // e.g. R...L -> RR.LL |
| 201 | + // if we have even number of dots between them (let's say m dots), |
| 202 | + // then we can only add (m / 2) Ls and (m / 2) Rs. |
| 203 | + // e.g. R....L -> RRRLLL |
| 204 | + int m = (r - l - 1) ~/ 2; |
| 205 | + for (int k = 1; k <= m; k++) { |
| 206 | + d[r - k] = 'L'; |
| 207 | + d[l + k] = 'R'; |
| 208 | + } |
| 209 | + } |
| 210 | + // update left pointer |
| 211 | + l = r; |
| 212 | + } |
| 213 | + // case 5. if the left dominoe is `R`, then fill all 'R' till the end |
| 214 | + // e.g. LL.R. -> LL.RR |
| 215 | + if (d[l] == 'R') for (int k = l; k < n; k++) d[k] = 'R'; |
| 216 | + return d.join(); |
| 217 | + } |
| 218 | +} |
0 commit comments