diff --git a/dlc_developer_config.toml b/dlc_developer_config.toml index bce20ebd1eb7..e751d9dfd414 100644 --- a/dlc_developer_config.toml +++ b/dlc_developer_config.toml @@ -37,16 +37,16 @@ deep_canary_mode = false [build] # Add in frameworks you would like to build. By default, builds are disabled unless you specify building an image. # available frameworks - ["base", "vllm", "autogluon", "huggingface_tensorflow", "huggingface_pytorch", "huggingface_tensorflow_trcomp", "huggingface_pytorch_trcomp", "pytorch_trcomp", "tensorflow", "pytorch", "stabilityai_pytorch"] -build_frameworks = [] +build_frameworks = ["pytorch"] # By default we build both training and inference containers. Set true/false values to determine which to build. -build_training = true -build_inference = true +build_training = true +build_inference = false # Set do_build to "false" to skip builds and test the latest image built by this PR # Note: at least one build is required to set do_build to "false" -do_build = true +do_build = false [notify] ### Notify on test failures @@ -57,13 +57,13 @@ notify_test_failures = false [test] ### On by default -sanity_tests = true -security_tests = true +sanity_tests = false +security_tests = false safety_check_test = false ecr_scan_allowlist_feature = false ecs_tests = true -eks_tests = true -ec2_tests = true +eks_tests = false +ec2_tests = false # Set it to true if you are preparing a Benchmark related PR ec2_benchmark_tests = false @@ -74,7 +74,7 @@ ec2_benchmark_tests = false ec2_tests_on_heavy_instances = false ### SM specific tests ### On by default -sagemaker_local_tests = true +sagemaker_local_tests = false ### Set enable_ipv6 = true to run tests with IPv6-enabled resources ### Off by default (set to false) enable_ipv6 = false @@ -92,7 +92,7 @@ enable_ipv6 = false ipv6_vpc_name = "" # run standard sagemaker remote tests from test/sagemaker_tests -sagemaker_remote_tests = true +sagemaker_remote_tests = false # run efa sagemaker tests sagemaker_efa_tests = false # run release_candidate_integration tests @@ -122,7 +122,7 @@ use_scheduler = false dlc-pr-base = "" # Standard Framework Training -dlc-pr-pytorch-training = "" +dlc-pr-pytorch-training = "pytorch/training/buildspec-2-7-ec2.yml" dlc-pr-tensorflow-2-training = "" dlc-pr-autogluon-training = "" @@ -179,7 +179,4 @@ dlc-pr-stabilityai-pytorch-inference = "" # EIA Inference dlc-pr-pytorch-eia-inference = "" -dlc-pr-tensorflow-2-eia-inference = "" - -# vllm -dlc-pr-vllm = "" \ No newline at end of file +dlc-pr-tensorflow-2-eia-inference = "" \ No newline at end of file diff --git a/test/dlc_tests/ecs/pytorch/training/test_ecs_pytorch_training.py b/test/dlc_tests/ecs/pytorch/training/test_ecs_pytorch_training.py index 9725c3466760..b6da413a8bb2 100644 --- a/test/dlc_tests/ecs/pytorch/training/test_ecs_pytorch_training.py +++ b/test/dlc_tests/ecs/pytorch/training/test_ecs_pytorch_training.py @@ -30,7 +30,7 @@ @pytest.mark.parametrize("ecs_ami", [ECS_AML2_CPU_USWEST2], indirect=True) @pytest.mark.team("conda") def test_ecs_pytorch_training_mnist_cpu( - cpu_only, ecs_container_instance, pytorch_training, training_cmd, ecs_cluster_name + pytorch_training, cpu_only, ecs_container_instance, training_cmd, ecs_cluster_name ): """ CPU mnist test for PyTorch Training @@ -118,10 +118,10 @@ def test_ecs_pytorch_training_mnist_neuronx_inf2( @pytest.mark.parametrize("use_large_storage", [True], indirect=True) @pytest.mark.team("conda") def test_ecs_pytorch_training_mnist_gpu( + pytorch_training, gpu_only, use_large_storage, ecs_container_instance, - pytorch_training, training_cmd, ecs_cluster_name, ): @@ -155,7 +155,7 @@ def test_ecs_pytorch_training_mnist_gpu( @pytest.mark.parametrize("ecs_ami", [ECS_AML2_CPU_USWEST2], indirect=True) @pytest.mark.team("dgl") def test_ecs_pytorch_training_dgl_cpu( - cpu_only, py3_only, ecs_container_instance, pytorch_training, training_cmd, ecs_cluster_name + pytorch_training, cpu_only, py3_only, ecs_container_instance, training_cmd, ecs_cluster_name ): """ CPU DGL test for PyTorch Training @@ -188,11 +188,11 @@ def test_ecs_pytorch_training_dgl_cpu( @pytest.mark.parametrize("use_large_storage", [True], indirect=True) @pytest.mark.team("dgl") def test_ecs_pytorch_training_dgl_gpu( + pytorch_training, gpu_only, py3_only, use_large_storage, ecs_container_instance, - pytorch_training, training_cmd, ecs_cluster_name, ):