Skip to content

Files

Latest commit

author
Shuo
Jul 10, 2021
62f1dec · Jul 10, 2021

History

History

binary-gap

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jul 10, 2021
Nov 12, 2019
Nov 12, 2019

< Previous                  Next >

Given a positive integer n, find and return the longest distance between any two adjacent 1's in the binary representation of n. If there are no two adjacent 1's, return 0.

Two 1's are adjacent if there are only 0's separating them (possibly no 0's). The distance between two 1's is the absolute difference between their bit positions. For example, the two 1's in "1001" have a distance of 3.

 

Example 1:

Input: n = 22
Output: 2
Explanation: 22 in binary is "10110".
The first adjacent pair of 1's is "10110" with a distance of 2.
The second adjacent pair of 1's is "10110" with a distance of 1.
The answer is the largest of these two distances, which is 2.
Note that "10110" is not a valid pair since there is a 1 separating the two 1's underlined.

Example 2:

Input: n = 5
Output: 2
Explanation: 5 in binary is "101".

Example 3:

Input: n = 6
Output: 1
Explanation: 6 in binary is "110".

Example 4:

Input: n = 8
Output: 0
Explanation: 8 in binary is "1000".
There aren't any adjacent pairs of 1's in the binary representation of 8, so we return 0.

Example 5:

Input: n = 1
Output: 0

 

Constraints:

  • 1 <= n <= 109

Related Topics

[Bit Manipulation] [Math]