diff --git a/examples/images/conditional_mnist_noninteger.ipynb b/examples/images/conditional_mnist_noninteger.ipynb new file mode 100644 index 0000000..7c3daf5 --- /dev/null +++ b/examples/images/conditional_mnist_noninteger.ipynb @@ -0,0 +1,82751 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "a17de559", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T12:53:25.536466Z", + "iopub.status.busy": "2025-05-08T12:53:25.536145Z", + "iopub.status.idle": "2025-05-08T12:54:51.746383Z", + "shell.execute_reply": "2025-05-08T12:54:51.745382Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2025-05-08 14:54:31.015892: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", + "2025-05-08 14:54:31.015964: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", + "2025-05-08 14:54:31.031426: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", + "2025-05-08 14:54:31.055947: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'MessageFactory' object has no attribute 'GetPrototype'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mAttributeError\u001b[39m Traceback (most recent call last)", + "\u001b[31mAttributeError\u001b[39m: 'MessageFactory' object has no attribute 'GetPrototype'" + ] + }, + { + "ename": "AttributeError", + "evalue": "'MessageFactory' object has no attribute 'GetPrototype'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mAttributeError\u001b[39m Traceback (most recent call last)", + "\u001b[31mAttributeError\u001b[39m: 'MessageFactory' object has no attribute 'GetPrototype'" + ] + }, + { + "ename": "AttributeError", + "evalue": "'MessageFactory' object has no attribute 'GetPrototype'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mAttributeError\u001b[39m Traceback (most recent call last)", + "\u001b[31mAttributeError\u001b[39m: 'MessageFactory' object has no attribute 'GetPrototype'" + ] + }, + { + "ename": "AttributeError", + "evalue": "'MessageFactory' object has no attribute 'GetPrototype'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mAttributeError\u001b[39m Traceback (most recent call last)", + "\u001b[31mAttributeError\u001b[39m: 'MessageFactory' object has no attribute 'GetPrototype'" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2025-05-08 14:54:33.648744: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'MessageFactory' object has no attribute 'GetPrototype'", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mAttributeError\u001b[39m Traceback (most recent call last)", + "\u001b[31mAttributeError\u001b[39m: 'MessageFactory' object has no attribute 'GetPrototype'" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import os\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import torch\n", + "import torchdiffeq\n", + "import torchsde\n", + "from torchdyn.core import NeuralODE\n", + "from torchvision import datasets, transforms\n", + "from torchvision.transforms import ToPILImage\n", + "from torchvision.utils import make_grid\n", + "from tqdm import tqdm\n", + "\n", + "from torchcfm.conditional_flow_matching import (\n", + " ConditionalFlowMatcher,\n", + " ExactOptimalTransportConditionalFlowMatcher,\n", + " SchrodingerBridgeConditionalFlowMatcher,\n", + ")\n", + "from torchcfm.models.unet import UNetModel\n", + "\n", + "savedir = \"models/cond_mnist\"\n", + "os.makedirs(savedir, exist_ok=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "35dd12a7", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T12:54:51.750240Z", + "iopub.status.busy": "2025-05-08T12:54:51.749513Z", + "iopub.status.idle": "2025-05-08T12:54:52.277516Z", + "shell.execute_reply": "2025-05-08T12:54:52.276638Z" + }, + "lines_to_next_cell": 1 + }, + "outputs": [], + "source": [ + "use_cuda = torch.cuda.is_available()\n", + "device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n", + "batch_size = 128\n", + "n_epochs = 10\n", + "\n", + "trainset = datasets.MNIST(\n", + " \"../data\",\n", + " train=True,\n", + " download=True,\n", + " transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]),\n", + ")\n", + "\n", + "train_loader = torch.utils.data.DataLoader(\n", + " trainset, batch_size=batch_size, shuffle=True, drop_last=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "10c0748e", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T12:54:52.280198Z", + "iopub.status.busy": "2025-05-08T12:54:52.279791Z", + "iopub.status.idle": "2025-05-08T12:54:53.039823Z", + "shell.execute_reply": "2025-05-08T12:54:53.039291Z" + } + }, + "outputs": [], + "source": [ + "#################################\n", + "# Float Conditional CFM\n", + "#################################\n", + "\n", + "\n", + "class embed_condition(torch.nn.Module):\n", + " \"\"\"simple network to embed the condition, other architectures can be used too\"\"\"\n", + "\n", + " def __init__(self, input_dim=1, target_dim=128):\n", + " super().__init__()\n", + "\n", + " self.model = torch.nn.Sequential(\n", + " torch.nn.Linear(input_dim, target_dim),\n", + " torch.nn.GELU(),\n", + " torch.nn.Linear(target_dim, target_dim),\n", + " )\n", + "\n", + " def forward(self, label):\n", + "\n", + " return self.model(label)\n", + "\n", + "\n", + "sigma = 0.0\n", + "model = UNetModel(\n", + " dim=(1, 28, 28), num_channels=32, num_res_blocks=1, embedding_net=embed_condition\n", + ").to(device)\n", + "optimizer = torch.optim.Adam(model.parameters())\n", + "FM = ConditionalFlowMatcher(sigma=sigma)\n", + "# Users can try target FM by changing the above line by\n", + "# FM = TargetConditionalFlowMatcher(sigma=sigma)\n", + "node = NeuralODE(model, solver=\"dopri5\", sensitivity=\"adjoint\", atol=1e-4, rtol=1e-4)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "53539aec", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T12:54:53.042329Z", + "iopub.status.busy": "2025-05-08T12:54:53.042075Z", + "iopub.status.idle": "2025-05-08T13:00:07.154341Z", + "shell.execute_reply": "2025-05-08T13:00:07.153430Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 0, loss: 1.929\r", + "cfm epoch: 0, steps: 1, loss: 1.859\r", + "cfm epoch: 0, steps: 2, loss: 1.763\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 3, loss: 1.655\r", + "cfm epoch: 0, steps: 4, loss: 1.564\r", + "cfm epoch: 0, steps: 5, loss: 1.431\r", + "cfm epoch: 0, steps: 6, loss: 1.315\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 7, loss: 1.212\r", + "cfm epoch: 0, steps: 8, loss: 1.145\r", + "cfm epoch: 0, steps: 9, loss: 1.021\r", + "cfm epoch: 0, steps: 10, loss: 0.9676\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 11, loss: 0.8822\r", + "cfm epoch: 0, steps: 12, loss: 0.831\r", + "cfm epoch: 0, steps: 13, loss: 0.7386\r", + "cfm epoch: 0, steps: 14, loss: 0.7029\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 15, loss: 0.6567\r", + "cfm epoch: 0, steps: 16, loss: 0.6056\r", + "cfm epoch: 0, steps: 17, loss: 0.5806\r", + "cfm epoch: 0, steps: 18, loss: 0.5733\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 19, loss: 0.5381\r", + "cfm epoch: 0, steps: 20, loss: 0.512\r", + "cfm epoch: 0, steps: 21, loss: 0.4785\r", + "cfm epoch: 0, steps: 22, loss: 0.4549\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 23, loss: 0.449\r", + "cfm epoch: 0, steps: 24, loss: 0.4644\r", + "cfm epoch: 0, steps: 25, loss: 0.4412\r", + "cfm epoch: 0, steps: 26, loss: 0.4633\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 27, loss: 0.4334\r", + "cfm epoch: 0, steps: 28, loss: 0.388\r", + "cfm epoch: 0, steps: 29, loss: 0.4013\r", + "cfm epoch: 0, steps: 30, loss: 0.4212\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 31, loss: 0.3711\r", + "cfm epoch: 0, steps: 32, loss: 0.371\r", + "cfm epoch: 0, steps: 33, loss: 0.3577\r", + "cfm epoch: 0, steps: 34, loss: 0.3899\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 35, loss: 0.3569\r", + "cfm epoch: 0, steps: 36, loss: 0.3489\r", + "cfm epoch: 0, steps: 37, loss: 0.3378\r", + "cfm epoch: 0, steps: 38, loss: 0.3356\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 39, loss: 0.3282\r", + "cfm epoch: 0, steps: 40, loss: 0.3194\r", + "cfm epoch: 0, steps: 41, loss: 0.3469\r", + "cfm epoch: 0, steps: 42, loss: 0.34\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 43, loss: 0.3343\r", + "cfm epoch: 0, steps: 44, loss: 0.3178\r", + "cfm epoch: 0, steps: 45, loss: 0.3201\r", + "cfm epoch: 0, steps: 46, loss: 0.3376\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 47, loss: 0.3228\r", + "cfm epoch: 0, steps: 48, loss: 0.3104\r", + "cfm epoch: 0, steps: 49, loss: 0.3265\r", + "cfm epoch: 0, steps: 50, loss: 0.3171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 51, loss: 0.2873\r", + "cfm epoch: 0, steps: 52, loss: 0.3075\r", + "cfm epoch: 0, steps: 53, loss: 0.3094\r", + "cfm epoch: 0, steps: 54, loss: 0.2967\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 55, loss: 0.2768\r", + "cfm epoch: 0, steps: 56, loss: 0.2969\r", + "cfm epoch: 0, steps: 57, loss: 0.3054\r", + "cfm epoch: 0, steps: 58, loss: 0.2792\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 59, loss: 0.2916\r", + "cfm epoch: 0, steps: 60, loss: 0.2821\r", + "cfm epoch: 0, steps: 61, loss: 0.2829\r", + "cfm epoch: 0, steps: 62, loss: 0.3024\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 63, loss: 0.2757\r", + "cfm epoch: 0, steps: 64, loss: 0.2897\r", + "cfm epoch: 0, steps: 65, loss: 0.2797\r", + "cfm epoch: 0, steps: 66, loss: 0.2719\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 67, loss: 0.2759\r", + "cfm epoch: 0, steps: 68, loss: 0.2952\r", + "cfm epoch: 0, steps: 69, loss: 0.2769\r", + "cfm epoch: 0, steps: 70, loss: 0.2784\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 71, loss: 0.2694\r", + "cfm epoch: 0, steps: 72, loss: 0.2735\r", + "cfm epoch: 0, steps: 73, loss: 0.2624\r", + "cfm epoch: 0, steps: 74, loss: 0.2833\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 75, loss: 0.2583\r", + "cfm epoch: 0, steps: 76, loss: 0.2601\r", + "cfm epoch: 0, steps: 77, loss: 0.2669\r", + "cfm epoch: 0, steps: 78, loss: 0.242\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 79, loss: 0.2572\r", + "cfm epoch: 0, steps: 80, loss: 0.2533\r", + "cfm epoch: 0, steps: 81, loss: 0.2698\r", + "cfm epoch: 0, steps: 82, loss: 0.2461\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 83, loss: 0.2784\r", + "cfm epoch: 0, steps: 84, loss: 0.2652\r", + "cfm epoch: 0, steps: 85, loss: 0.2456\r", + "cfm epoch: 0, steps: 86, loss: 0.2598\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 87, loss: 0.2628\r", + "cfm epoch: 0, steps: 88, loss: 0.2532\r", + "cfm epoch: 0, steps: 89, loss: 0.2653\r", + "cfm epoch: 0, steps: 90, loss: 0.2412\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 91, loss: 0.252\r", + "cfm epoch: 0, steps: 92, loss: 0.2607\r", + "cfm epoch: 0, steps: 93, loss: 0.2455\r", + "cfm epoch: 0, steps: 94, loss: 0.2506\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 95, loss: 0.2564\r", + "cfm epoch: 0, steps: 96, loss: 0.2381\r", + "cfm epoch: 0, steps: 97, loss: 0.2528\r", + "cfm epoch: 0, steps: 98, loss: 0.2627\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 99, loss: 0.2357\r", + "cfm epoch: 0, steps: 100, loss: 0.2515\r", + "cfm epoch: 0, steps: 101, loss: 0.237\r", + "cfm epoch: 0, steps: 102, loss: 0.2375\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 103, loss: 0.2643\r", + "cfm epoch: 0, steps: 104, loss: 0.2393\r", + "cfm epoch: 0, steps: 105, loss: 0.2456\r", + "cfm epoch: 0, steps: 106, loss: 0.2294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 107, loss: 0.2425\r", + "cfm epoch: 0, steps: 108, loss: 0.2272\r", + "cfm epoch: 0, steps: 109, loss: 0.2268\r", + "cfm epoch: 0, steps: 110, loss: 0.2404\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 111, loss: 0.2456\r", + "cfm epoch: 0, steps: 112, loss: 0.2228\r", + "cfm epoch: 0, steps: 113, loss: 0.2562\r", + "cfm epoch: 0, steps: 114, loss: 0.2531\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 115, loss: 0.2572\r", + "cfm epoch: 0, steps: 116, loss: 0.2509\r", + "cfm epoch: 0, steps: 117, loss: 0.2172\r", + "cfm epoch: 0, steps: 118, loss: 0.2374\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 119, loss: 0.2351\r", + "cfm epoch: 0, steps: 120, loss: 0.2249\r", + "cfm epoch: 0, steps: 121, loss: 0.2331\r", + "cfm epoch: 0, steps: 122, loss: 0.2184\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 123, loss: 0.2224\r", + "cfm epoch: 0, steps: 124, loss: 0.2418\r", + "cfm epoch: 0, steps: 125, loss: 0.2352\r", + "cfm epoch: 0, steps: 126, loss: 0.2465\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 127, loss: 0.2281\r", + "cfm epoch: 0, steps: 128, loss: 0.2305\r", + "cfm epoch: 0, steps: 129, loss: 0.2312\r", + "cfm epoch: 0, steps: 130, loss: 0.2415\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 131, loss: 0.2414\r", + "cfm epoch: 0, steps: 132, loss: 0.2192\r", + "cfm epoch: 0, steps: 133, loss: 0.224\r", + "cfm epoch: 0, steps: 134, loss: 0.2154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 135, loss: 0.2259\r", + "cfm epoch: 0, steps: 136, loss: 0.209\r", + "cfm epoch: 0, steps: 137, loss: 0.229\r", + "cfm epoch: 0, steps: 138, loss: 0.2387\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 139, loss: 0.2271\r", + "cfm epoch: 0, steps: 140, loss: 0.223\r", + "cfm epoch: 0, steps: 141, loss: 0.2202\r", + "cfm epoch: 0, steps: 142, loss: 0.2277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 143, loss: 0.2284\r", + "cfm epoch: 0, steps: 144, loss: 0.2218\r", + "cfm epoch: 0, steps: 145, loss: 0.2254\r", + "cfm epoch: 0, steps: 146, loss: 0.2075\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 147, loss: 0.23\r", + "cfm epoch: 0, steps: 148, loss: 0.2265\r", + "cfm epoch: 0, steps: 149, loss: 0.2214\r", + "cfm epoch: 0, steps: 150, loss: 0.23\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 151, loss: 0.2198\r", + "cfm epoch: 0, steps: 152, loss: 0.2122\r", + "cfm epoch: 0, steps: 153, loss: 0.2431\r", + "cfm epoch: 0, steps: 154, loss: 0.2142\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 155, loss: 0.2338\r", + "cfm epoch: 0, steps: 156, loss: 0.212\r", + "cfm epoch: 0, steps: 157, loss: 0.221\r", + "cfm epoch: 0, steps: 158, loss: 0.2371\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 159, loss: 0.2239\r", + "cfm epoch: 0, steps: 160, loss: 0.2095\r", + "cfm epoch: 0, steps: 161, loss: 0.2139\r", + "cfm epoch: 0, steps: 162, loss: 0.2132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 163, loss: 0.2246\r", + "cfm epoch: 0, steps: 164, loss: 0.2263\r", + "cfm epoch: 0, steps: 165, loss: 0.2199\r", + "cfm epoch: 0, steps: 166, loss: 0.2288\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 167, loss: 0.2215\r", + "cfm epoch: 0, steps: 168, loss: 0.2239\r", + "cfm epoch: 0, steps: 169, loss: 0.2192\r", + "cfm epoch: 0, steps: 170, loss: 0.2207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 171, loss: 0.2153\r", + "cfm epoch: 0, steps: 172, loss: 0.211\r", + "cfm epoch: 0, steps: 173, loss: 0.2324\r", + "cfm epoch: 0, steps: 174, loss: 0.2133\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 175, loss: 0.2202\r", + "cfm epoch: 0, steps: 176, loss: 0.2202\r", + "cfm epoch: 0, steps: 177, loss: 0.2204\r", + "cfm epoch: 0, steps: 178, loss: 0.222\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 179, loss: 0.2089\r", + "cfm epoch: 0, steps: 180, loss: 0.2017\r", + "cfm epoch: 0, steps: 181, loss: 0.2178\r", + "cfm epoch: 0, steps: 182, loss: 0.2235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 183, loss: 0.2242\r", + "cfm epoch: 0, steps: 184, loss: 0.225\r", + "cfm epoch: 0, steps: 185, loss: 0.2454\r", + "cfm epoch: 0, steps: 186, loss: 0.2311\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 187, loss: 0.2065\r", + "cfm epoch: 0, steps: 188, loss: 0.2205\r", + "cfm epoch: 0, steps: 189, loss: 0.2331\r", + "cfm epoch: 0, steps: 190, loss: 0.207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 191, loss: 0.2121\r", + "cfm epoch: 0, steps: 192, loss: 0.2089\r", + "cfm epoch: 0, steps: 193, loss: 0.2195\r", + "cfm epoch: 0, steps: 194, loss: 0.2181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 195, loss: 0.2098\r", + "cfm epoch: 0, steps: 196, loss: 0.232\r", + "cfm epoch: 0, steps: 197, loss: 0.2179\r", + "cfm epoch: 0, steps: 198, loss: 0.2197\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 199, loss: 0.2251\r", + "cfm epoch: 0, steps: 200, loss: 0.2221\r", + "cfm epoch: 0, steps: 201, loss: 0.2014\r", + "cfm epoch: 0, steps: 202, loss: 0.2064\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 203, loss: 0.2295\r", + "cfm epoch: 0, steps: 204, loss: 0.2018\r", + "cfm epoch: 0, steps: 205, loss: 0.2055\r", + "cfm epoch: 0, steps: 206, loss: 0.2092\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 207, loss: 0.1949\r", + "cfm epoch: 0, steps: 208, loss: 0.2308\r", + "cfm epoch: 0, steps: 209, loss: 0.2268\r", + "cfm epoch: 0, steps: 210, loss: 0.2041\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 211, loss: 0.2208\r", + "cfm epoch: 0, steps: 212, loss: 0.2189\r", + "cfm epoch: 0, steps: 213, loss: 0.2235\r", + "cfm epoch: 0, steps: 214, loss: 0.2156\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 215, loss: 0.2227\r", + "cfm epoch: 0, steps: 216, loss: 0.2136\r", + "cfm epoch: 0, steps: 217, loss: 0.2123\r", + "cfm epoch: 0, steps: 218, loss: 0.216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 219, loss: 0.2137\r", + "cfm epoch: 0, steps: 220, loss: 0.2046\r", + "cfm epoch: 0, steps: 221, loss: 0.208\r", + "cfm epoch: 0, steps: 222, loss: 0.2072\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 223, loss: 0.2222\r", + "cfm epoch: 0, steps: 224, loss: 0.2184\r", + "cfm epoch: 0, steps: 225, loss: 0.2091\r", + "cfm epoch: 0, steps: 226, loss: 0.2084\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 227, loss: 0.2067\r", + "cfm epoch: 0, steps: 228, loss: 0.2227\r", + "cfm epoch: 0, steps: 229, loss: 0.2116\r", + "cfm epoch: 0, steps: 230, loss: 0.1985\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 231, loss: 0.2032\r", + "cfm epoch: 0, steps: 232, loss: 0.195\r", + "cfm epoch: 0, steps: 233, loss: 0.1924\r", + "cfm epoch: 0, steps: 234, loss: 0.2029\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 235, loss: 0.2048\r", + "cfm epoch: 0, steps: 236, loss: 0.1944\r", + "cfm epoch: 0, steps: 237, loss: 0.1853\r", + "cfm epoch: 0, steps: 238, loss: 0.194\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 239, loss: 0.2081\r", + "cfm epoch: 0, steps: 240, loss: 0.2128\r", + "cfm epoch: 0, steps: 241, loss: 0.2122\r", + "cfm epoch: 0, steps: 242, loss: 0.2225\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 243, loss: 0.2198\r", + "cfm epoch: 0, steps: 244, loss: 0.1954\r", + "cfm epoch: 0, steps: 245, loss: 0.226\r", + "cfm epoch: 0, steps: 246, loss: 0.2118\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 247, loss: 0.2058\r", + "cfm epoch: 0, steps: 248, loss: 0.215\r", + "cfm epoch: 0, steps: 249, loss: 0.2043\r", + "cfm epoch: 0, steps: 250, loss: 0.2067\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 251, loss: 0.2016\r", + "cfm epoch: 0, steps: 252, loss: 0.2131\r", + "cfm epoch: 0, steps: 253, loss: 0.2096\r", + "cfm epoch: 0, steps: 254, loss: 0.1991\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 255, loss: 0.2003\r", + "cfm epoch: 0, steps: 256, loss: 0.2112\r", + "cfm epoch: 0, steps: 257, loss: 0.2107\r", + "cfm epoch: 0, steps: 258, loss: 0.2046\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 259, loss: 0.2222\r", + "cfm epoch: 0, steps: 260, loss: 0.2019\r", + "cfm epoch: 0, steps: 261, loss: 0.1929\r", + "cfm epoch: 0, steps: 262, loss: 0.2067\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 263, loss: 0.1925\r", + "cfm epoch: 0, steps: 264, loss: 0.2146\r", + "cfm epoch: 0, steps: 265, loss: 0.211\r", + "cfm epoch: 0, steps: 266, loss: 0.2182\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 267, loss: 0.1995\r", + "cfm epoch: 0, steps: 268, loss: 0.1991\r", + "cfm epoch: 0, steps: 269, loss: 0.2046\r", + "cfm epoch: 0, steps: 270, loss: 0.2121\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 271, loss: 0.201\r", + "cfm epoch: 0, steps: 272, loss: 0.2087\r", + "cfm epoch: 0, steps: 273, loss: 0.2097\r", + "cfm epoch: 0, steps: 274, loss: 0.2049\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 275, loss: 0.2031\r", + "cfm epoch: 0, steps: 276, loss: 0.1858\r", + "cfm epoch: 0, steps: 277, loss: 0.2111\r", + "cfm epoch: 0, steps: 278, loss: 0.2014\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 279, loss: 0.1984\r", + "cfm epoch: 0, steps: 280, loss: 0.2056\r", + "cfm epoch: 0, steps: 281, loss: 0.2092\r", + "cfm epoch: 0, steps: 282, loss: 0.1917\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 283, loss: 0.2217\r", + "cfm epoch: 0, steps: 284, loss: 0.1958\r", + "cfm epoch: 0, steps: 285, loss: 0.1968\r", + "cfm epoch: 0, steps: 286, loss: 0.1925\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 287, loss: 0.1927\r", + "cfm epoch: 0, steps: 288, loss: 0.2025\r", + "cfm epoch: 0, steps: 289, loss: 0.1888\r", + "cfm epoch: 0, steps: 290, loss: 0.2068\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 291, loss: 0.199\r", + "cfm epoch: 0, steps: 292, loss: 0.2072\r", + "cfm epoch: 0, steps: 293, loss: 0.1971\r", + "cfm epoch: 0, steps: 294, loss: 0.21\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 295, loss: 0.2054\r", + "cfm epoch: 0, steps: 296, loss: 0.2063\r", + "cfm epoch: 0, steps: 297, loss: 0.2184\r", + "cfm epoch: 0, steps: 298, loss: 0.211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 299, loss: 0.2133\r", + "cfm epoch: 0, steps: 300, loss: 0.2106\r", + "cfm epoch: 0, steps: 301, loss: 0.2076\r", + "cfm epoch: 0, steps: 302, loss: 0.1954\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 303, loss: 0.1845\r", + "cfm epoch: 0, steps: 304, loss: 0.2093\r", + "cfm epoch: 0, steps: 305, loss: 0.1938\r", + "cfm epoch: 0, steps: 306, loss: 0.1935\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 307, loss: 0.1968\r", + "cfm epoch: 0, steps: 308, loss: 0.1939\r", + "cfm epoch: 0, steps: 309, loss: 0.2097\r", + "cfm epoch: 0, steps: 310, loss: 0.197\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 311, loss: 0.1802\r", + "cfm epoch: 0, steps: 312, loss: 0.1917\r", + "cfm epoch: 0, steps: 313, loss: 0.1891\r", + "cfm epoch: 0, steps: 314, loss: 0.1975\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 315, loss: 0.198\r", + "cfm epoch: 0, steps: 316, loss: 0.1996\r", + "cfm epoch: 0, steps: 317, loss: 0.208\r", + "cfm epoch: 0, steps: 318, loss: 0.2081\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 319, loss: 0.1945\r", + "cfm epoch: 0, steps: 320, loss: 0.2041\r", + "cfm epoch: 0, steps: 321, loss: 0.1793\r", + "cfm epoch: 0, steps: 322, loss: 0.2035\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 323, loss: 0.202\r", + "cfm epoch: 0, steps: 324, loss: 0.223\r", + "cfm epoch: 0, steps: 325, loss: 0.2183\r", + "cfm epoch: 0, steps: 326, loss: 0.21\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 327, loss: 0.1895\r", + "cfm epoch: 0, steps: 328, loss: 0.1909\r", + "cfm epoch: 0, steps: 329, loss: 0.1997\r", + "cfm epoch: 0, steps: 330, loss: 0.1911\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 331, loss: 0.1938\r", + "cfm epoch: 0, steps: 332, loss: 0.1997\r", + "cfm epoch: 0, steps: 333, loss: 0.1906\r", + "cfm epoch: 0, steps: 334, loss: 0.198\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 335, loss: 0.1993\r", + "cfm epoch: 0, steps: 336, loss: 0.1973\r", + "cfm epoch: 0, steps: 337, loss: 0.1817\r", + "cfm epoch: 0, steps: 338, loss: 0.1949\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 339, loss: 0.1819\r", + "cfm epoch: 0, steps: 340, loss: 0.1926\r", + "cfm epoch: 0, steps: 341, loss: 0.1932\r", + "cfm epoch: 0, steps: 342, loss: 0.2101\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 343, loss: 0.1945\r", + "cfm epoch: 0, steps: 344, loss: 0.2\r", + "cfm epoch: 0, steps: 345, loss: 0.2023\r", + "cfm epoch: 0, steps: 346, loss: 0.1972\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 347, loss: 0.1863\r", + "cfm epoch: 0, steps: 348, loss: 0.1943\r", + "cfm epoch: 0, steps: 349, loss: 0.1873\r", + "cfm epoch: 0, steps: 350, loss: 0.1994\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 351, loss: 0.1915\r", + "cfm epoch: 0, steps: 352, loss: 0.191\r", + "cfm epoch: 0, steps: 353, loss: 0.2013\r", + "cfm epoch: 0, steps: 354, loss: 0.1746\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 355, loss: 0.178\r", + "cfm epoch: 0, steps: 356, loss: 0.1879\r", + "cfm epoch: 0, steps: 357, loss: 0.1787\r", + "cfm epoch: 0, steps: 358, loss: 0.2025\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 359, loss: 0.1984\r", + "cfm epoch: 0, steps: 360, loss: 0.1845\r", + "cfm epoch: 0, steps: 361, loss: 0.2004\r", + "cfm epoch: 0, steps: 362, loss: 0.1914\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 363, loss: 0.1884\r", + "cfm epoch: 0, steps: 364, loss: 0.1935\r", + "cfm epoch: 0, steps: 365, loss: 0.1831\r", + "cfm epoch: 0, steps: 366, loss: 0.1712\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 367, loss: 0.1918\r", + "cfm epoch: 0, steps: 368, loss: 0.1854\r", + "cfm epoch: 0, steps: 369, loss: 0.2007\r", + "cfm epoch: 0, steps: 370, loss: 0.1987\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 371, loss: 0.1864\r", + "cfm epoch: 0, steps: 372, loss: 0.1934\r", + "cfm epoch: 0, steps: 373, loss: 0.1821\r", + "cfm epoch: 0, steps: 374, loss: 0.2046\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 375, loss: 0.1842\r", + "cfm epoch: 0, steps: 376, loss: 0.2011\r", + "cfm epoch: 0, steps: 377, loss: 0.1917\r", + "cfm epoch: 0, steps: 378, loss: 0.2041\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 379, loss: 0.1859\r", + "cfm epoch: 0, steps: 380, loss: 0.1938\r", + "cfm epoch: 0, steps: 381, loss: 0.1973\r", + "cfm epoch: 0, steps: 382, loss: 0.195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 383, loss: 0.1881\r", + "cfm epoch: 0, steps: 384, loss: 0.1863\r", + "cfm epoch: 0, steps: 385, loss: 0.1849\r", + "cfm epoch: 0, steps: 386, loss: 0.2\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 387, loss: 0.187\r", + "cfm epoch: 0, steps: 388, loss: 0.1806\r", + "cfm epoch: 0, steps: 389, loss: 0.1947\r", + "cfm epoch: 0, steps: 390, loss: 0.1925\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 391, loss: 0.1842\r", + "cfm epoch: 0, steps: 392, loss: 0.1849\r", + "cfm epoch: 0, steps: 393, loss: 0.1854\r", + "cfm epoch: 0, steps: 394, loss: 0.2018\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 395, loss: 0.1838\r", + "cfm epoch: 0, steps: 396, loss: 0.1798\r", + "cfm epoch: 0, steps: 397, loss: 0.1909\r", + "cfm epoch: 0, steps: 398, loss: 0.1895\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 399, loss: 0.1827\r", + "cfm epoch: 0, steps: 400, loss: 0.1825\r", + "cfm epoch: 0, steps: 401, loss: 0.1998\r", + "cfm epoch: 0, steps: 402, loss: 0.2014\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 403, loss: 0.2067\r", + "cfm epoch: 0, steps: 404, loss: 0.1976\r", + "cfm epoch: 0, steps: 405, loss: 0.2012\r", + "cfm epoch: 0, steps: 406, loss: 0.1881\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 407, loss: 0.1829\r", + "cfm epoch: 0, steps: 408, loss: 0.1886\r", + "cfm epoch: 0, steps: 409, loss: 0.1879\r", + "cfm epoch: 0, steps: 410, loss: 0.203\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 411, loss: 0.1922\r", + "cfm epoch: 0, steps: 412, loss: 0.1978\r", + "cfm epoch: 0, steps: 413, loss: 0.1809\r", + "cfm epoch: 0, steps: 414, loss: 0.1946\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 415, loss: 0.2008\r", + "cfm epoch: 0, steps: 416, loss: 0.1988\r", + "cfm epoch: 0, steps: 417, loss: 0.1896\r", + "cfm epoch: 0, steps: 418, loss: 0.201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 419, loss: 0.1951\r", + "cfm epoch: 0, steps: 420, loss: 0.2112\r", + "cfm epoch: 0, steps: 421, loss: 0.1932\r", + "cfm epoch: 0, steps: 422, loss: 0.211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 423, loss: 0.1984\r", + "cfm epoch: 0, steps: 424, loss: 0.1896\r", + "cfm epoch: 0, steps: 425, loss: 0.1975\r", + "cfm epoch: 0, steps: 426, loss: 0.1899\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 427, loss: 0.1865\r", + "cfm epoch: 0, steps: 428, loss: 0.2126\r", + "cfm epoch: 0, steps: 429, loss: 0.2005\r", + "cfm epoch: 0, steps: 430, loss: 0.1881\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 431, loss: 0.1736\r", + "cfm epoch: 0, steps: 432, loss: 0.201\r", + "cfm epoch: 0, steps: 433, loss: 0.1946\r", + "cfm epoch: 0, steps: 434, loss: 0.1776\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 435, loss: 0.1715\r", + "cfm epoch: 0, steps: 436, loss: 0.1846\r", + "cfm epoch: 0, steps: 437, loss: 0.182\r", + "cfm epoch: 0, steps: 438, loss: 0.1983\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 439, loss: 0.1912\r", + "cfm epoch: 0, steps: 440, loss: 0.1985\r", + "cfm epoch: 0, steps: 441, loss: 0.189\r", + "cfm epoch: 0, steps: 442, loss: 0.189\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 443, loss: 0.1893\r", + "cfm epoch: 0, steps: 444, loss: 0.1831\r", + "cfm epoch: 0, steps: 445, loss: 0.1937\r", + "cfm epoch: 0, steps: 446, loss: 0.1918\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 447, loss: 0.1763\r", + "cfm epoch: 0, steps: 448, loss: 0.1823\r", + "cfm epoch: 0, steps: 449, loss: 0.179\r", + "cfm epoch: 0, steps: 450, loss: 0.1758\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 451, loss: 0.2013\r", + "cfm epoch: 0, steps: 452, loss: 0.1859\r", + "cfm epoch: 0, steps: 453, loss: 0.1702\r", + "cfm epoch: 0, steps: 454, loss: 0.1849\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 455, loss: 0.1837\r", + "cfm epoch: 0, steps: 456, loss: 0.186\r", + "cfm epoch: 0, steps: 457, loss: 0.2054\r", + "cfm epoch: 0, steps: 458, loss: 0.1922\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 459, loss: 0.1861\r", + "cfm epoch: 0, steps: 460, loss: 0.2003\r", + "cfm epoch: 0, steps: 461, loss: 0.18\r", + "cfm epoch: 0, steps: 462, loss: 0.2039\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 463, loss: 0.1926\r", + "cfm epoch: 0, steps: 464, loss: 0.1925\r", + "cfm epoch: 0, steps: 465, loss: 0.1892\r", + "cfm epoch: 0, steps: 466, loss: 0.1736\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 0, steps: 467, loss: 0.1908\r", + "cfm epoch: 1, steps: 0, loss: 0.1918\r", + "cfm epoch: 1, steps: 1, loss: 0.2027\r", + "cfm epoch: 1, steps: 2, loss: 0.1917\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 3, loss: 0.1877\r", + "cfm epoch: 1, steps: 4, loss: 0.1978\r", + "cfm epoch: 1, steps: 5, loss: 0.177\r", + "cfm epoch: 1, steps: 6, loss: 0.1771\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 7, loss: 0.1864\r", + "cfm epoch: 1, steps: 8, loss: 0.1851\r", + "cfm epoch: 1, steps: 9, loss: 0.1829\r", + "cfm epoch: 1, steps: 10, loss: 0.1704\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 11, loss: 0.1709\r", + "cfm epoch: 1, steps: 12, loss: 0.1922\r", + "cfm epoch: 1, steps: 13, loss: 0.1839\r", + "cfm epoch: 1, steps: 14, loss: 0.206\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 15, loss: 0.1808\r", + "cfm epoch: 1, steps: 16, loss: 0.1798\r", + "cfm epoch: 1, steps: 17, loss: 0.1863\r", + "cfm epoch: 1, steps: 18, loss: 0.1974\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 19, loss: 0.1874\r", + "cfm epoch: 1, steps: 20, loss: 0.1935\r", + "cfm epoch: 1, steps: 21, loss: 0.195\r", + "cfm epoch: 1, steps: 22, loss: 0.182\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 23, loss: 0.1919\r", + "cfm epoch: 1, steps: 24, loss: 0.1655\r", + "cfm epoch: 1, steps: 25, loss: 0.1779\r", + "cfm epoch: 1, steps: 26, loss: 0.1843\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 27, loss: 0.1792\r", + "cfm epoch: 1, steps: 28, loss: 0.1822\r", + "cfm epoch: 1, steps: 29, loss: 0.1905\r", + "cfm epoch: 1, steps: 30, loss: 0.1923\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 31, loss: 0.1906\r", + "cfm epoch: 1, steps: 32, loss: 0.1801\r", + "cfm epoch: 1, steps: 33, loss: 0.1977\r", + "cfm epoch: 1, steps: 34, loss: 0.191\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 35, loss: 0.1923\r", + "cfm epoch: 1, steps: 36, loss: 0.1962\r", + "cfm epoch: 1, steps: 37, loss: 0.1838\r", + "cfm epoch: 1, steps: 38, loss: 0.1902\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 39, loss: 0.1754\r", + "cfm epoch: 1, steps: 40, loss: 0.1872\r", + "cfm epoch: 1, steps: 41, loss: 0.1873\r", + "cfm epoch: 1, steps: 42, loss: 0.1952\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 43, loss: 0.1804\r", + "cfm epoch: 1, steps: 44, loss: 0.18\r", + "cfm epoch: 1, steps: 45, loss: 0.1717\r", + "cfm epoch: 1, steps: 46, loss: 0.1773\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 47, loss: 0.1804\r", + "cfm epoch: 1, steps: 48, loss: 0.1953\r", + "cfm epoch: 1, steps: 49, loss: 0.1702\r", + "cfm epoch: 1, steps: 50, loss: 0.1887\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 51, loss: 0.193\r", + "cfm epoch: 1, steps: 52, loss: 0.1805\r", + "cfm epoch: 1, steps: 53, loss: 0.1799\r", + "cfm epoch: 1, steps: 54, loss: 0.1835\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 55, loss: 0.1775\r", + "cfm epoch: 1, steps: 56, loss: 0.1716\r", + "cfm epoch: 1, steps: 57, loss: 0.1871\r", + "cfm epoch: 1, steps: 58, loss: 0.1809\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 59, loss: 0.1745\r", + "cfm epoch: 1, steps: 60, loss: 0.1796\r", + "cfm epoch: 1, steps: 61, loss: 0.1762\r", + "cfm epoch: 1, steps: 62, loss: 0.192\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 63, loss: 0.1821\r", + "cfm epoch: 1, steps: 64, loss: 0.1837\r", + "cfm epoch: 1, steps: 65, loss: 0.1963\r", + "cfm epoch: 1, steps: 66, loss: 0.1769\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 67, loss: 0.176\r", + "cfm epoch: 1, steps: 68, loss: 0.1621\r", + "cfm epoch: 1, steps: 69, loss: 0.1802\r", + "cfm epoch: 1, steps: 70, loss: 0.175\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 71, loss: 0.1842\r", + "cfm epoch: 1, steps: 72, loss: 0.1685\r", + "cfm epoch: 1, steps: 73, loss: 0.177\r", + "cfm epoch: 1, steps: 74, loss: 0.1836\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 75, loss: 0.1926\r", + "cfm epoch: 1, steps: 76, loss: 0.1872\r", + "cfm epoch: 1, steps: 77, loss: 0.1897\r", + "cfm epoch: 1, steps: 78, loss: 0.1901\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 79, loss: 0.1799\r", + "cfm epoch: 1, steps: 80, loss: 0.183\r", + "cfm epoch: 1, steps: 81, loss: 0.1784\r", + "cfm epoch: 1, steps: 82, loss: 0.1793\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 83, loss: 0.1865\r", + "cfm epoch: 1, steps: 84, loss: 0.1782\r", + "cfm epoch: 1, steps: 85, loss: 0.1963\r", + "cfm epoch: 1, steps: 86, loss: 0.1761\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 87, loss: 0.1794\r", + "cfm epoch: 1, steps: 88, loss: 0.1827\r", + "cfm epoch: 1, steps: 89, loss: 0.1871\r", + "cfm epoch: 1, steps: 90, loss: 0.1665\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 91, loss: 0.1799\r", + "cfm epoch: 1, steps: 92, loss: 0.1718\r", + "cfm epoch: 1, steps: 93, loss: 0.1835\r", + "cfm epoch: 1, steps: 94, loss: 0.1799\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 95, loss: 0.1781\r", + "cfm epoch: 1, steps: 96, loss: 0.174\r", + "cfm epoch: 1, steps: 97, loss: 0.187\r", + "cfm epoch: 1, steps: 98, loss: 0.183\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 99, loss: 0.1718\r", + "cfm epoch: 1, steps: 100, loss: 0.1877\r", + "cfm epoch: 1, steps: 101, loss: 0.1855\r", + "cfm epoch: 1, steps: 102, loss: 0.181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 103, loss: 0.1812\r", + "cfm epoch: 1, steps: 104, loss: 0.1764\r", + "cfm epoch: 1, steps: 105, loss: 0.1948\r", + "cfm epoch: 1, steps: 106, loss: 0.1728\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 107, loss: 0.1896\r", + "cfm epoch: 1, steps: 108, loss: 0.1769\r", + "cfm epoch: 1, steps: 109, loss: 0.1683\r", + "cfm epoch: 1, steps: 110, loss: 0.1736\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 111, loss: 0.2064\r", + "cfm epoch: 1, steps: 112, loss: 0.1793\r", + "cfm epoch: 1, steps: 113, loss: 0.1788\r", + "cfm epoch: 1, steps: 114, loss: 0.1756\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 115, loss: 0.1827\r", + "cfm epoch: 1, steps: 116, loss: 0.1839\r", + "cfm epoch: 1, steps: 117, loss: 0.1773\r", + "cfm epoch: 1, steps: 118, loss: 0.1922\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 119, loss: 0.1812\r", + "cfm epoch: 1, steps: 120, loss: 0.1878\r", + "cfm epoch: 1, steps: 121, loss: 0.1871\r", + "cfm epoch: 1, steps: 122, loss: 0.1877\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 123, loss: 0.1946\r", + "cfm epoch: 1, steps: 124, loss: 0.1821\r", + "cfm epoch: 1, steps: 125, loss: 0.1776\r", + "cfm epoch: 1, steps: 126, loss: 0.1951\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 127, loss: 0.1698\r", + "cfm epoch: 1, steps: 128, loss: 0.1928\r", + "cfm epoch: 1, steps: 129, loss: 0.1922\r", + "cfm epoch: 1, steps: 130, loss: 0.1854\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 131, loss: 0.1885\r", + "cfm epoch: 1, steps: 132, loss: 0.1847\r", + "cfm epoch: 1, steps: 133, loss: 0.1903\r", + "cfm epoch: 1, steps: 134, loss: 0.1846\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 135, loss: 0.2008\r", + "cfm epoch: 1, steps: 136, loss: 0.1772\r", + "cfm epoch: 1, steps: 137, loss: 0.181\r", + "cfm epoch: 1, steps: 138, loss: 0.1976\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 139, loss: 0.1873\r", + "cfm epoch: 1, steps: 140, loss: 0.1679\r", + "cfm epoch: 1, steps: 141, loss: 0.1876\r", + "cfm epoch: 1, steps: 142, loss: 0.1853\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 143, loss: 0.1865\r", + "cfm epoch: 1, steps: 144, loss: 0.1764\r", + "cfm epoch: 1, steps: 145, loss: 0.1987\r", + "cfm epoch: 1, steps: 146, loss: 0.1835\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 147, loss: 0.1955\r", + "cfm epoch: 1, steps: 148, loss: 0.1856\r", + "cfm epoch: 1, steps: 149, loss: 0.1955\r", + "cfm epoch: 1, steps: 150, loss: 0.1765\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 151, loss: 0.187\r", + "cfm epoch: 1, steps: 152, loss: 0.1903\r", + "cfm epoch: 1, steps: 153, loss: 0.1857\r", + "cfm epoch: 1, steps: 154, loss: 0.174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 155, loss: 0.2037\r", + "cfm epoch: 1, steps: 156, loss: 0.1817\r", + "cfm epoch: 1, steps: 157, loss: 0.1826\r", + "cfm epoch: 1, steps: 158, loss: 0.1882\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 159, loss: 0.1843\r", + "cfm epoch: 1, steps: 160, loss: 0.1824\r", + "cfm epoch: 1, steps: 161, loss: 0.1857\r", + "cfm epoch: 1, steps: 162, loss: 0.176\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 163, loss: 0.1779\r", + "cfm epoch: 1, steps: 164, loss: 0.182\r", + "cfm epoch: 1, steps: 165, loss: 0.1879\r", + "cfm epoch: 1, steps: 166, loss: 0.1882\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 167, loss: 0.173\r", + "cfm epoch: 1, steps: 168, loss: 0.192\r", + "cfm epoch: 1, steps: 169, loss: 0.1698\r", + "cfm epoch: 1, steps: 170, loss: 0.1817\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 171, loss: 0.1694\r", + "cfm epoch: 1, steps: 172, loss: 0.178\r", + "cfm epoch: 1, steps: 173, loss: 0.1753\r", + "cfm epoch: 1, steps: 174, loss: 0.1826\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 175, loss: 0.1794\r", + "cfm epoch: 1, steps: 176, loss: 0.1773\r", + "cfm epoch: 1, steps: 177, loss: 0.1769\r", + "cfm epoch: 1, steps: 178, loss: 0.1739\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 179, loss: 0.1799\r", + "cfm epoch: 1, steps: 180, loss: 0.1683\r", + "cfm epoch: 1, steps: 181, loss: 0.1931\r", + "cfm epoch: 1, steps: 182, loss: 0.1806\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 183, loss: 0.1765\r", + "cfm epoch: 1, steps: 184, loss: 0.1745\r", + "cfm epoch: 1, steps: 185, loss: 0.1834\r", + "cfm epoch: 1, steps: 186, loss: 0.1752\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 187, loss: 0.1806\r", + "cfm epoch: 1, steps: 188, loss: 0.1733\r", + "cfm epoch: 1, steps: 189, loss: 0.1803\r", + "cfm epoch: 1, steps: 190, loss: 0.1723\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 191, loss: 0.1705\r", + "cfm epoch: 1, steps: 192, loss: 0.1861\r", + "cfm epoch: 1, steps: 193, loss: 0.1785\r", + "cfm epoch: 1, steps: 194, loss: 0.1673\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 195, loss: 0.1858\r", + "cfm epoch: 1, steps: 196, loss: 0.1657\r", + "cfm epoch: 1, steps: 197, loss: 0.2035\r", + "cfm epoch: 1, steps: 198, loss: 0.1758\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 199, loss: 0.1994\r", + "cfm epoch: 1, steps: 200, loss: 0.1905\r", + "cfm epoch: 1, steps: 201, loss: 0.1831\r", + "cfm epoch: 1, steps: 202, loss: 0.1716\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 203, loss: 0.1824\r", + "cfm epoch: 1, steps: 204, loss: 0.1747\r", + "cfm epoch: 1, steps: 205, loss: 0.1789\r", + "cfm epoch: 1, steps: 206, loss: 0.1977\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 207, loss: 0.1764\r", + "cfm epoch: 1, steps: 208, loss: 0.1758\r", + "cfm epoch: 1, steps: 209, loss: 0.1836\r", + "cfm epoch: 1, steps: 210, loss: 0.1925\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 211, loss: 0.1747\r", + "cfm epoch: 1, steps: 212, loss: 0.1694\r", + "cfm epoch: 1, steps: 213, loss: 0.1705\r", + "cfm epoch: 1, steps: 214, loss: 0.1731\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 215, loss: 0.1812\r", + "cfm epoch: 1, steps: 216, loss: 0.1718\r", + "cfm epoch: 1, steps: 217, loss: 0.1768\r", + "cfm epoch: 1, steps: 218, loss: 0.1803\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 219, loss: 0.1797\r", + "cfm epoch: 1, steps: 220, loss: 0.1842\r", + "cfm epoch: 1, steps: 221, loss: 0.1676\r", + "cfm epoch: 1, steps: 222, loss: 0.1842\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 223, loss: 0.174\r", + "cfm epoch: 1, steps: 224, loss: 0.1857\r", + "cfm epoch: 1, steps: 225, loss: 0.1969\r", + "cfm epoch: 1, steps: 226, loss: 0.1725\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 227, loss: 0.1778\r", + "cfm epoch: 1, steps: 228, loss: 0.1738\r", + "cfm epoch: 1, steps: 229, loss: 0.1758\r", + "cfm epoch: 1, steps: 230, loss: 0.1796\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 231, loss: 0.1797\r", + "cfm epoch: 1, steps: 232, loss: 0.1799\r", + "cfm epoch: 1, steps: 233, loss: 0.1913\r", + "cfm epoch: 1, steps: 234, loss: 0.1718\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 235, loss: 0.1792\r", + "cfm epoch: 1, steps: 236, loss: 0.1878\r", + "cfm epoch: 1, steps: 237, loss: 0.1812\r", + "cfm epoch: 1, steps: 238, loss: 0.1798\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 239, loss: 0.1742\r", + "cfm epoch: 1, steps: 240, loss: 0.1742\r", + "cfm epoch: 1, steps: 241, loss: 0.18\r", + "cfm epoch: 1, steps: 242, loss: 0.1743\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 243, loss: 0.1779\r", + "cfm epoch: 1, steps: 244, loss: 0.1797\r", + "cfm epoch: 1, steps: 245, loss: 0.1831\r", + "cfm epoch: 1, steps: 246, loss: 0.1888\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 247, loss: 0.1769\r", + "cfm epoch: 1, steps: 248, loss: 0.1849\r", + "cfm epoch: 1, steps: 249, loss: 0.1758\r", + "cfm epoch: 1, steps: 250, loss: 0.1867\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 251, loss: 0.2063\r", + "cfm epoch: 1, steps: 252, loss: 0.1793\r", + "cfm epoch: 1, steps: 253, loss: 0.1724\r", + "cfm epoch: 1, steps: 254, loss: 0.1757\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 255, loss: 0.194\r", + "cfm epoch: 1, steps: 256, loss: 0.1848\r", + "cfm epoch: 1, steps: 257, loss: 0.1842\r", + "cfm epoch: 1, steps: 258, loss: 0.184\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 259, loss: 0.1819\r", + "cfm epoch: 1, steps: 260, loss: 0.1783\r", + "cfm epoch: 1, steps: 261, loss: 0.1656\r", + "cfm epoch: 1, steps: 262, loss: 0.1926\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 263, loss: 0.1797\r", + "cfm epoch: 1, steps: 264, loss: 0.1651\r", + "cfm epoch: 1, steps: 265, loss: 0.169\r", + "cfm epoch: 1, steps: 266, loss: 0.1723\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 267, loss: 0.1747\r", + "cfm epoch: 1, steps: 268, loss: 0.1792\r", + "cfm epoch: 1, steps: 269, loss: 0.1614\r", + "cfm epoch: 1, steps: 270, loss: 0.1763\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 271, loss: 0.1786\r", + "cfm epoch: 1, steps: 272, loss: 0.18\r", + "cfm epoch: 1, steps: 273, loss: 0.1747\r", + "cfm epoch: 1, steps: 274, loss: 0.1703\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 275, loss: 0.1824\r", + "cfm epoch: 1, steps: 276, loss: 0.1838\r", + "cfm epoch: 1, steps: 277, loss: 0.1911\r", + "cfm epoch: 1, steps: 278, loss: 0.1726\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 279, loss: 0.1685\r", + "cfm epoch: 1, steps: 280, loss: 0.1849\r", + "cfm epoch: 1, steps: 281, loss: 0.1818\r", + "cfm epoch: 1, steps: 282, loss: 0.1819\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 283, loss: 0.1807\r", + "cfm epoch: 1, steps: 284, loss: 0.1925\r", + "cfm epoch: 1, steps: 285, loss: 0.1642\r", + "cfm epoch: 1, steps: 286, loss: 0.1814\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 287, loss: 0.171\r", + "cfm epoch: 1, steps: 288, loss: 0.1785\r", + "cfm epoch: 1, steps: 289, loss: 0.1758\r", + "cfm epoch: 1, steps: 290, loss: 0.1763\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 291, loss: 0.1632\r", + "cfm epoch: 1, steps: 292, loss: 0.1754\r", + "cfm epoch: 1, steps: 293, loss: 0.1811\r", + "cfm epoch: 1, steps: 294, loss: 0.1652\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 295, loss: 0.1822\r", + "cfm epoch: 1, steps: 296, loss: 0.1701\r", + "cfm epoch: 1, steps: 297, loss: 0.1851\r", + "cfm epoch: 1, steps: 298, loss: 0.1707\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 299, loss: 0.1839\r", + "cfm epoch: 1, steps: 300, loss: 0.1843\r", + "cfm epoch: 1, steps: 301, loss: 0.1777\r", + "cfm epoch: 1, steps: 302, loss: 0.177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 303, loss: 0.1743\r", + "cfm epoch: 1, steps: 304, loss: 0.181\r", + "cfm epoch: 1, steps: 305, loss: 0.1812\r", + "cfm epoch: 1, steps: 306, loss: 0.1886\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 307, loss: 0.1811\r", + "cfm epoch: 1, steps: 308, loss: 0.1782\r", + "cfm epoch: 1, steps: 309, loss: 0.1652\r", + "cfm epoch: 1, steps: 310, loss: 0.1676\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 311, loss: 0.1791\r", + "cfm epoch: 1, steps: 312, loss: 0.1706\r", + "cfm epoch: 1, steps: 313, loss: 0.1589\r", + "cfm epoch: 1, steps: 314, loss: 0.1778\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 315, loss: 0.1783\r", + "cfm epoch: 1, steps: 316, loss: 0.1718\r", + "cfm epoch: 1, steps: 317, loss: 0.1752\r", + "cfm epoch: 1, steps: 318, loss: 0.181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 319, loss: 0.1821\r", + "cfm epoch: 1, steps: 320, loss: 0.1769\r", + "cfm epoch: 1, steps: 321, loss: 0.1846\r", + "cfm epoch: 1, steps: 322, loss: 0.1733\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 323, loss: 0.187\r", + "cfm epoch: 1, steps: 324, loss: 0.1673\r", + "cfm epoch: 1, steps: 325, loss: 0.1829\r", + "cfm epoch: 1, steps: 326, loss: 0.1851\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 327, loss: 0.1714\r", + "cfm epoch: 1, steps: 328, loss: 0.1855\r", + "cfm epoch: 1, steps: 329, loss: 0.189\r", + "cfm epoch: 1, steps: 330, loss: 0.1667\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 331, loss: 0.1771\r", + "cfm epoch: 1, steps: 332, loss: 0.186\r", + "cfm epoch: 1, steps: 333, loss: 0.1803\r", + "cfm epoch: 1, steps: 334, loss: 0.1775\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 335, loss: 0.1802\r", + "cfm epoch: 1, steps: 336, loss: 0.1788\r", + "cfm epoch: 1, steps: 337, loss: 0.1664\r", + "cfm epoch: 1, steps: 338, loss: 0.1876\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 339, loss: 0.1815\r", + "cfm epoch: 1, steps: 340, loss: 0.1842\r", + "cfm epoch: 1, steps: 341, loss: 0.1943\r", + "cfm epoch: 1, steps: 342, loss: 0.1858\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 343, loss: 0.1704\r", + "cfm epoch: 1, steps: 344, loss: 0.1721\r", + "cfm epoch: 1, steps: 345, loss: 0.1647\r", + "cfm epoch: 1, steps: 346, loss: 0.1661\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 347, loss: 0.1774\r", + "cfm epoch: 1, steps: 348, loss: 0.1736\r", + "cfm epoch: 1, steps: 349, loss: 0.1758\r", + "cfm epoch: 1, steps: 350, loss: 0.1804\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 351, loss: 0.1798\r", + "cfm epoch: 1, steps: 352, loss: 0.1798\r", + "cfm epoch: 1, steps: 353, loss: 0.184\r", + "cfm epoch: 1, steps: 354, loss: 0.1694\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 355, loss: 0.1611\r", + "cfm epoch: 1, steps: 356, loss: 0.186\r", + "cfm epoch: 1, steps: 357, loss: 0.1772\r", + "cfm epoch: 1, steps: 358, loss: 0.1809\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 359, loss: 0.1826\r", + "cfm epoch: 1, steps: 360, loss: 0.1635\r", + "cfm epoch: 1, steps: 361, loss: 0.1707\r", + "cfm epoch: 1, steps: 362, loss: 0.1761\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 363, loss: 0.1895\r", + "cfm epoch: 1, steps: 364, loss: 0.1635\r", + "cfm epoch: 1, steps: 365, loss: 0.1901\r", + "cfm epoch: 1, steps: 366, loss: 0.1918\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 367, loss: 0.1648\r", + "cfm epoch: 1, steps: 368, loss: 0.1752\r", + "cfm epoch: 1, steps: 369, loss: 0.1787\r", + "cfm epoch: 1, steps: 370, loss: 0.1578\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 371, loss: 0.179\r", + "cfm epoch: 1, steps: 372, loss: 0.1811\r", + "cfm epoch: 1, steps: 373, loss: 0.1849\r", + "cfm epoch: 1, steps: 374, loss: 0.1794\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 375, loss: 0.1848\r", + "cfm epoch: 1, steps: 376, loss: 0.1753\r", + "cfm epoch: 1, steps: 377, loss: 0.1851\r", + "cfm epoch: 1, steps: 378, loss: 0.1677\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 379, loss: 0.1872\r", + "cfm epoch: 1, steps: 380, loss: 0.1747\r", + "cfm epoch: 1, steps: 381, loss: 0.1796\r", + "cfm epoch: 1, steps: 382, loss: 0.1754\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 383, loss: 0.1687\r", + "cfm epoch: 1, steps: 384, loss: 0.1722\r", + "cfm epoch: 1, steps: 385, loss: 0.1668\r", + "cfm epoch: 1, steps: 386, loss: 0.185\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 387, loss: 0.1631\r", + "cfm epoch: 1, steps: 388, loss: 0.1781\r", + "cfm epoch: 1, steps: 389, loss: 0.2096\r", + "cfm epoch: 1, steps: 390, loss: 0.1652\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 391, loss: 0.1794\r", + "cfm epoch: 1, steps: 392, loss: 0.1756\r", + "cfm epoch: 1, steps: 393, loss: 0.1726\r", + "cfm epoch: 1, steps: 394, loss: 0.1748\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 395, loss: 0.1737\r", + "cfm epoch: 1, steps: 396, loss: 0.1925\r", + "cfm epoch: 1, steps: 397, loss: 0.1842\r", + "cfm epoch: 1, steps: 398, loss: 0.1709\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 399, loss: 0.1782\r", + "cfm epoch: 1, steps: 400, loss: 0.1812\r", + "cfm epoch: 1, steps: 401, loss: 0.1799\r", + "cfm epoch: 1, steps: 402, loss: 0.1723\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 403, loss: 0.1684\r", + "cfm epoch: 1, steps: 404, loss: 0.1771\r", + "cfm epoch: 1, steps: 405, loss: 0.1855\r", + "cfm epoch: 1, steps: 406, loss: 0.1709\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 407, loss: 0.1564\r", + "cfm epoch: 1, steps: 408, loss: 0.1709\r", + "cfm epoch: 1, steps: 409, loss: 0.1744\r", + "cfm epoch: 1, steps: 410, loss: 0.1751\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 411, loss: 0.1773\r", + "cfm epoch: 1, steps: 412, loss: 0.1819\r", + "cfm epoch: 1, steps: 413, loss: 0.1836\r", + "cfm epoch: 1, steps: 414, loss: 0.1725\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 415, loss: 0.1825\r", + "cfm epoch: 1, steps: 416, loss: 0.1663\r", + "cfm epoch: 1, steps: 417, loss: 0.1647\r", + "cfm epoch: 1, steps: 418, loss: 0.1668\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 419, loss: 0.191\r", + "cfm epoch: 1, steps: 420, loss: 0.1749\r", + "cfm epoch: 1, steps: 421, loss: 0.1816\r", + "cfm epoch: 1, steps: 422, loss: 0.1808\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 423, loss: 0.1774\r", + "cfm epoch: 1, steps: 424, loss: 0.1978\r", + "cfm epoch: 1, steps: 425, loss: 0.1738\r", + "cfm epoch: 1, steps: 426, loss: 0.1685\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 427, loss: 0.1781\r", + "cfm epoch: 1, steps: 428, loss: 0.176\r", + "cfm epoch: 1, steps: 429, loss: 0.1709\r", + "cfm epoch: 1, steps: 430, loss: 0.187\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 431, loss: 0.1881\r", + "cfm epoch: 1, steps: 432, loss: 0.1883\r", + "cfm epoch: 1, steps: 433, loss: 0.1869\r", + "cfm epoch: 1, steps: 434, loss: 0.1776\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 435, loss: 0.175\r", + "cfm epoch: 1, steps: 436, loss: 0.1821\r", + "cfm epoch: 1, steps: 437, loss: 0.1806\r", + "cfm epoch: 1, steps: 438, loss: 0.182\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 439, loss: 0.1792\r", + "cfm epoch: 1, steps: 440, loss: 0.1731\r", + "cfm epoch: 1, steps: 441, loss: 0.1708\r", + "cfm epoch: 1, steps: 442, loss: 0.1654\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 443, loss: 0.1581\r", + "cfm epoch: 1, steps: 444, loss: 0.1719\r", + "cfm epoch: 1, steps: 445, loss: 0.1871\r", + "cfm epoch: 1, steps: 446, loss: 0.178\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 447, loss: 0.1735\r", + "cfm epoch: 1, steps: 448, loss: 0.1709\r", + "cfm epoch: 1, steps: 449, loss: 0.1679\r", + "cfm epoch: 1, steps: 450, loss: 0.1777\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 451, loss: 0.1778\r", + "cfm epoch: 1, steps: 452, loss: 0.1769\r", + "cfm epoch: 1, steps: 453, loss: 0.1748\r", + "cfm epoch: 1, steps: 454, loss: 0.1752\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 455, loss: 0.1851\r", + "cfm epoch: 1, steps: 456, loss: 0.1768\r", + "cfm epoch: 1, steps: 457, loss: 0.1603\r", + "cfm epoch: 1, steps: 458, loss: 0.1802\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 459, loss: 0.1728\r", + "cfm epoch: 1, steps: 460, loss: 0.1687\r", + "cfm epoch: 1, steps: 461, loss: 0.1728\r", + "cfm epoch: 1, steps: 462, loss: 0.1796\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 463, loss: 0.176\r", + "cfm epoch: 1, steps: 464, loss: 0.1959\r", + "cfm epoch: 1, steps: 465, loss: 0.1793\r", + "cfm epoch: 1, steps: 466, loss: 0.1751\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 1, steps: 467, loss: 0.1713\r", + "cfm epoch: 2, steps: 0, loss: 0.1736\r", + "cfm epoch: 2, steps: 1, loss: 0.1857\r", + "cfm epoch: 2, steps: 2, loss: 0.1826\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 3, loss: 0.1687\r", + "cfm epoch: 2, steps: 4, loss: 0.1609\r", + "cfm epoch: 2, steps: 5, loss: 0.1709\r", + "cfm epoch: 2, steps: 6, loss: 0.1603\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 7, loss: 0.1715\r", + "cfm epoch: 2, steps: 8, loss: 0.1681\r", + "cfm epoch: 2, steps: 9, loss: 0.1863\r", + "cfm epoch: 2, steps: 10, loss: 0.187\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 11, loss: 0.1705\r", + "cfm epoch: 2, steps: 12, loss: 0.1675\r", + "cfm epoch: 2, steps: 13, loss: 0.1703\r", + "cfm epoch: 2, steps: 14, loss: 0.1769\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 15, loss: 0.1682\r", + "cfm epoch: 2, steps: 16, loss: 0.1763\r", + "cfm epoch: 2, steps: 17, loss: 0.1798\r", + "cfm epoch: 2, steps: 18, loss: 0.1661\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 19, loss: 0.1705\r", + "cfm epoch: 2, steps: 20, loss: 0.1749\r", + "cfm epoch: 2, steps: 21, loss: 0.1785\r", + "cfm epoch: 2, steps: 22, loss: 0.1733\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 23, loss: 0.1674\r", + "cfm epoch: 2, steps: 24, loss: 0.171\r", + "cfm epoch: 2, steps: 25, loss: 0.1822\r", + "cfm epoch: 2, steps: 26, loss: 0.1663\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 27, loss: 0.1703\r", + "cfm epoch: 2, steps: 28, loss: 0.171\r", + "cfm epoch: 2, steps: 29, loss: 0.1642\r", + "cfm epoch: 2, steps: 30, loss: 0.1698\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 31, loss: 0.1646\r", + "cfm epoch: 2, steps: 32, loss: 0.1849\r", + "cfm epoch: 2, steps: 33, loss: 0.159\r", + "cfm epoch: 2, steps: 34, loss: 0.1884\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 35, loss: 0.1841\r", + "cfm epoch: 2, steps: 36, loss: 0.1782\r", + "cfm epoch: 2, steps: 37, loss: 0.1769\r", + "cfm epoch: 2, steps: 38, loss: 0.174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 39, loss: 0.1742\r", + "cfm epoch: 2, steps: 40, loss: 0.1692\r", + "cfm epoch: 2, steps: 41, loss: 0.1792\r", + "cfm epoch: 2, steps: 42, loss: 0.1733\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 43, loss: 0.1749\r", + "cfm epoch: 2, steps: 44, loss: 0.1873\r", + "cfm epoch: 2, steps: 45, loss: 0.1778\r", + "cfm epoch: 2, steps: 46, loss: 0.1817\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 47, loss: 0.1775\r", + "cfm epoch: 2, steps: 48, loss: 0.1706\r", + "cfm epoch: 2, steps: 49, loss: 0.1779\r", + "cfm epoch: 2, steps: 50, loss: 0.1724\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 51, loss: 0.1758\r", + "cfm epoch: 2, steps: 52, loss: 0.18\r", + "cfm epoch: 2, steps: 53, loss: 0.1724\r", + "cfm epoch: 2, steps: 54, loss: 0.1822\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 55, loss: 0.173\r", + "cfm epoch: 2, steps: 56, loss: 0.1765\r", + "cfm epoch: 2, steps: 57, loss: 0.1762\r", + "cfm epoch: 2, steps: 58, loss: 0.1602\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 59, loss: 0.1862\r", + "cfm epoch: 2, steps: 60, loss: 0.1734\r", + "cfm epoch: 2, steps: 61, loss: 0.1815\r", + "cfm epoch: 2, steps: 62, loss: 0.1825\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 63, loss: 0.1667\r", + "cfm epoch: 2, steps: 64, loss: 0.1801\r", + "cfm epoch: 2, steps: 65, loss: 0.1759\r", + "cfm epoch: 2, steps: 66, loss: 0.1811\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 67, loss: 0.1735\r", + "cfm epoch: 2, steps: 68, loss: 0.1835\r", + "cfm epoch: 2, steps: 69, loss: 0.1699\r", + "cfm epoch: 2, steps: 70, loss: 0.186\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 71, loss: 0.1722\r", + "cfm epoch: 2, steps: 72, loss: 0.1655\r", + "cfm epoch: 2, steps: 73, loss: 0.1649\r", + "cfm epoch: 2, steps: 74, loss: 0.1806\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 75, loss: 0.1789\r", + "cfm epoch: 2, steps: 76, loss: 0.1673\r", + "cfm epoch: 2, steps: 77, loss: 0.1658\r", + "cfm epoch: 2, steps: 78, loss: 0.1722\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 79, loss: 0.1833\r", + "cfm epoch: 2, steps: 80, loss: 0.1609\r", + "cfm epoch: 2, steps: 81, loss: 0.1558\r", + "cfm epoch: 2, steps: 82, loss: 0.176\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 83, loss: 0.174\r", + "cfm epoch: 2, steps: 84, loss: 0.1676\r", + "cfm epoch: 2, steps: 85, loss: 0.166\r", + "cfm epoch: 2, steps: 86, loss: 0.1781\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 87, loss: 0.1622\r", + "cfm epoch: 2, steps: 88, loss: 0.1658\r", + "cfm epoch: 2, steps: 89, loss: 0.1613\r", + "cfm epoch: 2, steps: 90, loss: 0.166\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 91, loss: 0.1725\r", + "cfm epoch: 2, steps: 92, loss: 0.1682\r", + "cfm epoch: 2, steps: 93, loss: 0.1746\r", + "cfm epoch: 2, steps: 94, loss: 0.1752\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 95, loss: 0.1749\r", + "cfm epoch: 2, steps: 96, loss: 0.1762\r", + "cfm epoch: 2, steps: 97, loss: 0.1822\r", + "cfm epoch: 2, steps: 98, loss: 0.1624\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 99, loss: 0.1782\r", + "cfm epoch: 2, steps: 100, loss: 0.1745\r", + "cfm epoch: 2, steps: 101, loss: 0.1754\r", + "cfm epoch: 2, steps: 102, loss: 0.178\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 103, loss: 0.1836\r", + "cfm epoch: 2, steps: 104, loss: 0.1769\r", + "cfm epoch: 2, steps: 105, loss: 0.1766\r", + "cfm epoch: 2, steps: 106, loss: 0.1846\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 107, loss: 0.1646\r", + "cfm epoch: 2, steps: 108, loss: 0.1795\r", + "cfm epoch: 2, steps: 109, loss: 0.1764\r", + "cfm epoch: 2, steps: 110, loss: 0.1698\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 111, loss: 0.1718\r", + "cfm epoch: 2, steps: 112, loss: 0.1753\r", + "cfm epoch: 2, steps: 113, loss: 0.1777\r", + "cfm epoch: 2, steps: 114, loss: 0.1704\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 115, loss: 0.1758\r", + "cfm epoch: 2, steps: 116, loss: 0.1665\r", + "cfm epoch: 2, steps: 117, loss: 0.1788\r", + "cfm epoch: 2, steps: 118, loss: 0.1656\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 119, loss: 0.1723\r", + "cfm epoch: 2, steps: 120, loss: 0.1751\r", + "cfm epoch: 2, steps: 121, loss: 0.1715\r", + "cfm epoch: 2, steps: 122, loss: 0.1641\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 123, loss: 0.168\r", + "cfm epoch: 2, steps: 124, loss: 0.1672\r", + "cfm epoch: 2, steps: 125, loss: 0.1707\r", + "cfm epoch: 2, steps: 126, loss: 0.1786\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 127, loss: 0.1867\r", + "cfm epoch: 2, steps: 128, loss: 0.1762\r", + "cfm epoch: 2, steps: 129, loss: 0.162\r", + "cfm epoch: 2, steps: 130, loss: 0.1773\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 131, loss: 0.1715\r", + "cfm epoch: 2, steps: 132, loss: 0.1659\r", + "cfm epoch: 2, steps: 133, loss: 0.1709\r", + "cfm epoch: 2, steps: 134, loss: 0.1771\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 135, loss: 0.1782\r", + "cfm epoch: 2, steps: 136, loss: 0.1666\r", + "cfm epoch: 2, steps: 137, loss: 0.1706\r", + "cfm epoch: 2, steps: 138, loss: 0.1634\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 139, loss: 0.1683\r", + "cfm epoch: 2, steps: 140, loss: 0.1708\r", + "cfm epoch: 2, steps: 141, loss: 0.1699\r", + "cfm epoch: 2, steps: 142, loss: 0.1635\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 143, loss: 0.1718\r", + "cfm epoch: 2, steps: 144, loss: 0.1497\r", + "cfm epoch: 2, steps: 145, loss: 0.1687\r", + "cfm epoch: 2, steps: 146, loss: 0.165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 147, loss: 0.1774\r", + "cfm epoch: 2, steps: 148, loss: 0.1717\r", + "cfm epoch: 2, steps: 149, loss: 0.1782\r", + "cfm epoch: 2, steps: 150, loss: 0.1777\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 151, loss: 0.1718\r", + "cfm epoch: 2, steps: 152, loss: 0.1686\r", + "cfm epoch: 2, steps: 153, loss: 0.1661\r", + "cfm epoch: 2, steps: 154, loss: 0.1684\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 155, loss: 0.1882\r", + "cfm epoch: 2, steps: 156, loss: 0.1719\r", + "cfm epoch: 2, steps: 157, loss: 0.173\r", + "cfm epoch: 2, steps: 158, loss: 0.1842\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 159, loss: 0.1777\r", + "cfm epoch: 2, steps: 160, loss: 0.1683\r", + "cfm epoch: 2, steps: 161, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 162, loss: 0.173\r", + "cfm epoch: 2, steps: 163, loss: 0.1822\r", + "cfm epoch: 2, steps: 164, loss: 0.1685\r", + "cfm epoch: 2, steps: 165, loss: 0.1586\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 166, loss: 0.1986\r", + "cfm epoch: 2, steps: 167, loss: 0.1746\r", + "cfm epoch: 2, steps: 168, loss: 0.1799\r", + "cfm epoch: 2, steps: 169, loss: 0.168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 170, loss: 0.1878\r", + "cfm epoch: 2, steps: 171, loss: 0.1695\r", + "cfm epoch: 2, steps: 172, loss: 0.1702\r", + "cfm epoch: 2, steps: 173, loss: 0.1804\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 174, loss: 0.173\r", + "cfm epoch: 2, steps: 175, loss: 0.1634\r", + "cfm epoch: 2, steps: 176, loss: 0.1811\r", + "cfm epoch: 2, steps: 177, loss: 0.1825\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 178, loss: 0.1629\r", + "cfm epoch: 2, steps: 179, loss: 0.1737\r", + "cfm epoch: 2, steps: 180, loss: 0.168\r", + "cfm epoch: 2, steps: 181, loss: 0.1771\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 182, loss: 0.1828\r", + "cfm epoch: 2, steps: 183, loss: 0.1768\r", + "cfm epoch: 2, steps: 184, loss: 0.1763\r", + "cfm epoch: 2, steps: 185, loss: 0.161\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 186, loss: 0.1685\r", + "cfm epoch: 2, steps: 187, loss: 0.1788\r", + "cfm epoch: 2, steps: 188, loss: 0.1713\r", + "cfm epoch: 2, steps: 189, loss: 0.1769\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 190, loss: 0.1714\r", + "cfm epoch: 2, steps: 191, loss: 0.1648\r", + "cfm epoch: 2, steps: 192, loss: 0.1774\r", + "cfm epoch: 2, steps: 193, loss: 0.1736\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 194, loss: 0.1682\r", + "cfm epoch: 2, steps: 195, loss: 0.1601\r", + "cfm epoch: 2, steps: 196, loss: 0.1764\r", + "cfm epoch: 2, steps: 197, loss: 0.1703\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 198, loss: 0.1639\r", + "cfm epoch: 2, steps: 199, loss: 0.1707\r", + "cfm epoch: 2, steps: 200, loss: 0.1739\r", + "cfm epoch: 2, steps: 201, loss: 0.1868\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 202, loss: 0.1745\r", + "cfm epoch: 2, steps: 203, loss: 0.1802\r", + "cfm epoch: 2, steps: 204, loss: 0.176\r", + "cfm epoch: 2, steps: 205, loss: 0.1716\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 206, loss: 0.1726\r", + "cfm epoch: 2, steps: 207, loss: 0.1685\r", + "cfm epoch: 2, steps: 208, loss: 0.1736\r", + "cfm epoch: 2, steps: 209, loss: 0.1701\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 210, loss: 0.1655\r", + "cfm epoch: 2, steps: 211, loss: 0.1628\r", + "cfm epoch: 2, steps: 212, loss: 0.1583\r", + "cfm epoch: 2, steps: 213, loss: 0.1631\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 214, loss: 0.1648\r", + "cfm epoch: 2, steps: 215, loss: 0.1733\r", + "cfm epoch: 2, steps: 216, loss: 0.1683\r", + "cfm epoch: 2, steps: 217, loss: 0.1715\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 218, loss: 0.1703\r", + "cfm epoch: 2, steps: 219, loss: 0.1726\r", + "cfm epoch: 2, steps: 220, loss: 0.1735\r", + "cfm epoch: 2, steps: 221, loss: 0.1788\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 222, loss: 0.1787\r", + "cfm epoch: 2, steps: 223, loss: 0.1805\r", + "cfm epoch: 2, steps: 224, loss: 0.1756\r", + "cfm epoch: 2, steps: 225, loss: 0.1651\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 226, loss: 0.1685\r", + "cfm epoch: 2, steps: 227, loss: 0.1652\r", + "cfm epoch: 2, steps: 228, loss: 0.1879\r", + "cfm epoch: 2, steps: 229, loss: 0.1608\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 230, loss: 0.1585\r", + "cfm epoch: 2, steps: 231, loss: 0.1754\r", + "cfm epoch: 2, steps: 232, loss: 0.1655\r", + "cfm epoch: 2, steps: 233, loss: 0.1741\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 234, loss: 0.1708\r", + "cfm epoch: 2, steps: 235, loss: 0.1729\r", + "cfm epoch: 2, steps: 236, loss: 0.1742\r", + "cfm epoch: 2, steps: 237, loss: 0.1697\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 238, loss: 0.1759\r", + "cfm epoch: 2, steps: 239, loss: 0.1684\r", + "cfm epoch: 2, steps: 240, loss: 0.1598\r", + "cfm epoch: 2, steps: 241, loss: 0.1684\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 242, loss: 0.1674\r", + "cfm epoch: 2, steps: 243, loss: 0.1811\r", + "cfm epoch: 2, steps: 244, loss: 0.1871\r", + "cfm epoch: 2, steps: 245, loss: 0.165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 246, loss: 0.1636\r", + "cfm epoch: 2, steps: 247, loss: 0.1674\r", + "cfm epoch: 2, steps: 248, loss: 0.1844\r", + "cfm epoch: 2, steps: 249, loss: 0.1756\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 250, loss: 0.1746\r", + "cfm epoch: 2, steps: 251, loss: 0.1746\r", + "cfm epoch: 2, steps: 252, loss: 0.1691\r", + "cfm epoch: 2, steps: 253, loss: 0.1708\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 254, loss: 0.1782\r", + "cfm epoch: 2, steps: 255, loss: 0.1702\r", + "cfm epoch: 2, steps: 256, loss: 0.1878\r", + "cfm epoch: 2, steps: 257, loss: 0.1813\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 258, loss: 0.1819\r", + "cfm epoch: 2, steps: 259, loss: 0.1697\r", + "cfm epoch: 2, steps: 260, loss: 0.1767\r", + "cfm epoch: 2, steps: 261, loss: 0.1908\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 262, loss: 0.1732\r", + "cfm epoch: 2, steps: 263, loss: 0.1737\r", + "cfm epoch: 2, steps: 264, loss: 0.1867\r", + "cfm epoch: 2, steps: 265, loss: 0.1853\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 266, loss: 0.1831\r", + "cfm epoch: 2, steps: 267, loss: 0.1828\r", + "cfm epoch: 2, steps: 268, loss: 0.1733\r", + "cfm epoch: 2, steps: 269, loss: 0.1685\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 270, loss: 0.1575\r", + "cfm epoch: 2, steps: 271, loss: 0.1763\r", + "cfm epoch: 2, steps: 272, loss: 0.1808\r", + "cfm epoch: 2, steps: 273, loss: 0.1768\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 274, loss: 0.172\r", + "cfm epoch: 2, steps: 275, loss: 0.1807\r", + "cfm epoch: 2, steps: 276, loss: 0.1836\r", + "cfm epoch: 2, steps: 277, loss: 0.1799\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 278, loss: 0.1789\r", + "cfm epoch: 2, steps: 279, loss: 0.1733\r", + "cfm epoch: 2, steps: 280, loss: 0.1723\r", + "cfm epoch: 2, steps: 281, loss: 0.1752\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 282, loss: 0.1828\r", + "cfm epoch: 2, steps: 283, loss: 0.1635\r", + "cfm epoch: 2, steps: 284, loss: 0.1825\r", + "cfm epoch: 2, steps: 285, loss: 0.1708\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 286, loss: 0.1648\r", + "cfm epoch: 2, steps: 287, loss: 0.1761\r", + "cfm epoch: 2, steps: 288, loss: 0.1923\r", + "cfm epoch: 2, steps: 289, loss: 0.1776\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 290, loss: 0.1848\r", + "cfm epoch: 2, steps: 291, loss: 0.1805\r", + "cfm epoch: 2, steps: 292, loss: 0.1733\r", + "cfm epoch: 2, steps: 293, loss: 0.167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 294, loss: 0.1726\r", + "cfm epoch: 2, steps: 295, loss: 0.1667\r", + "cfm epoch: 2, steps: 296, loss: 0.1623\r", + "cfm epoch: 2, steps: 297, loss: 0.1774\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 298, loss: 0.1758\r", + "cfm epoch: 2, steps: 299, loss: 0.1839\r", + "cfm epoch: 2, steps: 300, loss: 0.1683\r", + "cfm epoch: 2, steps: 301, loss: 0.1586\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 302, loss: 0.1899\r", + "cfm epoch: 2, steps: 303, loss: 0.1719\r", + "cfm epoch: 2, steps: 304, loss: 0.1732\r", + "cfm epoch: 2, steps: 305, loss: 0.1724\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 306, loss: 0.1655\r", + "cfm epoch: 2, steps: 307, loss: 0.1757\r", + "cfm epoch: 2, steps: 308, loss: 0.1768\r", + "cfm epoch: 2, steps: 309, loss: 0.1774\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 310, loss: 0.1766\r", + "cfm epoch: 2, steps: 311, loss: 0.1712\r", + "cfm epoch: 2, steps: 312, loss: 0.1572\r", + "cfm epoch: 2, steps: 313, loss: 0.174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 314, loss: 0.1803\r", + "cfm epoch: 2, steps: 315, loss: 0.1602\r", + "cfm epoch: 2, steps: 316, loss: 0.1716\r", + "cfm epoch: 2, steps: 317, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 318, loss: 0.1735\r", + "cfm epoch: 2, steps: 319, loss: 0.1781\r", + "cfm epoch: 2, steps: 320, loss: 0.1624\r", + "cfm epoch: 2, steps: 321, loss: 0.1698\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 322, loss: 0.1716\r", + "cfm epoch: 2, steps: 323, loss: 0.182\r", + "cfm epoch: 2, steps: 324, loss: 0.1602\r", + "cfm epoch: 2, steps: 325, loss: 0.1845\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 326, loss: 0.1674\r", + "cfm epoch: 2, steps: 327, loss: 0.1703\r", + "cfm epoch: 2, steps: 328, loss: 0.162\r", + "cfm epoch: 2, steps: 329, loss: 0.1673\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 330, loss: 0.1735\r", + "cfm epoch: 2, steps: 331, loss: 0.157\r", + "cfm epoch: 2, steps: 332, loss: 0.1734\r", + "cfm epoch: 2, steps: 333, loss: 0.1701\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 334, loss: 0.1711\r", + "cfm epoch: 2, steps: 335, loss: 0.1803\r", + "cfm epoch: 2, steps: 336, loss: 0.1781\r", + "cfm epoch: 2, steps: 337, loss: 0.1847\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 338, loss: 0.1669\r", + "cfm epoch: 2, steps: 339, loss: 0.1771\r", + "cfm epoch: 2, steps: 340, loss: 0.1666\r", + "cfm epoch: 2, steps: 341, loss: 0.1793\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 342, loss: 0.168\r", + "cfm epoch: 2, steps: 343, loss: 0.1704\r", + "cfm epoch: 2, steps: 344, loss: 0.1681\r", + "cfm epoch: 2, steps: 345, loss: 0.1677\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 346, loss: 0.175\r", + "cfm epoch: 2, steps: 347, loss: 0.1687\r", + "cfm epoch: 2, steps: 348, loss: 0.1688\r", + "cfm epoch: 2, steps: 349, loss: 0.174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 350, loss: 0.1676\r", + "cfm epoch: 2, steps: 351, loss: 0.157\r", + "cfm epoch: 2, steps: 352, loss: 0.1732\r", + "cfm epoch: 2, steps: 353, loss: 0.1692\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 354, loss: 0.1544\r", + "cfm epoch: 2, steps: 355, loss: 0.1658\r", + "cfm epoch: 2, steps: 356, loss: 0.1668\r", + "cfm epoch: 2, steps: 357, loss: 0.1809\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 358, loss: 0.1749\r", + "cfm epoch: 2, steps: 359, loss: 0.1743\r", + "cfm epoch: 2, steps: 360, loss: 0.1701\r", + "cfm epoch: 2, steps: 361, loss: 0.1656\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 362, loss: 0.1729\r", + "cfm epoch: 2, steps: 363, loss: 0.1708\r", + "cfm epoch: 2, steps: 364, loss: 0.1645\r", + "cfm epoch: 2, steps: 365, loss: 0.1662\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 366, loss: 0.1722\r", + "cfm epoch: 2, steps: 367, loss: 0.1672\r", + "cfm epoch: 2, steps: 368, loss: 0.1755\r", + "cfm epoch: 2, steps: 369, loss: 0.1643\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 370, loss: 0.1856\r", + "cfm epoch: 2, steps: 371, loss: 0.1598\r", + "cfm epoch: 2, steps: 372, loss: 0.1712\r", + "cfm epoch: 2, steps: 373, loss: 0.1735\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 374, loss: 0.1859\r", + "cfm epoch: 2, steps: 375, loss: 0.1697\r", + "cfm epoch: 2, steps: 376, loss: 0.1733\r", + "cfm epoch: 2, steps: 377, loss: 0.1785\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 378, loss: 0.1797\r", + "cfm epoch: 2, steps: 379, loss: 0.168\r", + "cfm epoch: 2, steps: 380, loss: 0.1591\r", + "cfm epoch: 2, steps: 381, loss: 0.1621\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 382, loss: 0.1678\r", + "cfm epoch: 2, steps: 383, loss: 0.1713\r", + "cfm epoch: 2, steps: 384, loss: 0.1696\r", + "cfm epoch: 2, steps: 385, loss: 0.1871\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 386, loss: 0.168\r", + "cfm epoch: 2, steps: 387, loss: 0.1772\r", + "cfm epoch: 2, steps: 388, loss: 0.1696\r", + "cfm epoch: 2, steps: 389, loss: 0.1751\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 390, loss: 0.1734\r", + "cfm epoch: 2, steps: 391, loss: 0.1561\r", + "cfm epoch: 2, steps: 392, loss: 0.1594\r", + "cfm epoch: 2, steps: 393, loss: 0.1738\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 394, loss: 0.1642\r", + "cfm epoch: 2, steps: 395, loss: 0.1696\r", + "cfm epoch: 2, steps: 396, loss: 0.1684\r", + "cfm epoch: 2, steps: 397, loss: 0.162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 398, loss: 0.1727\r", + "cfm epoch: 2, steps: 399, loss: 0.1565\r", + "cfm epoch: 2, steps: 400, loss: 0.173\r", + "cfm epoch: 2, steps: 401, loss: 0.1705\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 402, loss: 0.157\r", + "cfm epoch: 2, steps: 403, loss: 0.1793\r", + "cfm epoch: 2, steps: 404, loss: 0.1732\r", + "cfm epoch: 2, steps: 405, loss: 0.1733\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 406, loss: 0.1728\r", + "cfm epoch: 2, steps: 407, loss: 0.1713\r", + "cfm epoch: 2, steps: 408, loss: 0.1796\r", + "cfm epoch: 2, steps: 409, loss: 0.1693\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 410, loss: 0.1793\r", + "cfm epoch: 2, steps: 411, loss: 0.1669\r", + "cfm epoch: 2, steps: 412, loss: 0.1783\r", + "cfm epoch: 2, steps: 413, loss: 0.1758\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 414, loss: 0.1706\r", + "cfm epoch: 2, steps: 415, loss: 0.1721\r", + "cfm epoch: 2, steps: 416, loss: 0.1813\r", + "cfm epoch: 2, steps: 417, loss: 0.1668\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 418, loss: 0.1719\r", + "cfm epoch: 2, steps: 419, loss: 0.1644\r", + "cfm epoch: 2, steps: 420, loss: 0.1731\r", + "cfm epoch: 2, steps: 421, loss: 0.1691\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 422, loss: 0.1664\r", + "cfm epoch: 2, steps: 423, loss: 0.1619\r", + "cfm epoch: 2, steps: 424, loss: 0.1736\r", + "cfm epoch: 2, steps: 425, loss: 0.1561\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 426, loss: 0.1651\r", + "cfm epoch: 2, steps: 427, loss: 0.165\r", + "cfm epoch: 2, steps: 428, loss: 0.1695\r", + "cfm epoch: 2, steps: 429, loss: 0.1711\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 430, loss: 0.1681\r", + "cfm epoch: 2, steps: 431, loss: 0.168\r", + "cfm epoch: 2, steps: 432, loss: 0.1713\r", + "cfm epoch: 2, steps: 433, loss: 0.1753\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 434, loss: 0.1671\r", + "cfm epoch: 2, steps: 435, loss: 0.1716\r", + "cfm epoch: 2, steps: 436, loss: 0.1643\r", + "cfm epoch: 2, steps: 437, loss: 0.1668\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 438, loss: 0.16\r", + "cfm epoch: 2, steps: 439, loss: 0.1666\r", + "cfm epoch: 2, steps: 440, loss: 0.1721\r", + "cfm epoch: 2, steps: 441, loss: 0.1621\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 442, loss: 0.1615\r", + "cfm epoch: 2, steps: 443, loss: 0.1748\r", + "cfm epoch: 2, steps: 444, loss: 0.1571\r", + "cfm epoch: 2, steps: 445, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 446, loss: 0.1701\r", + "cfm epoch: 2, steps: 447, loss: 0.1626\r", + "cfm epoch: 2, steps: 448, loss: 0.1636\r", + "cfm epoch: 2, steps: 449, loss: 0.1723\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 450, loss: 0.1486\r", + "cfm epoch: 2, steps: 451, loss: 0.166\r", + "cfm epoch: 2, steps: 452, loss: 0.1679\r", + "cfm epoch: 2, steps: 453, loss: 0.1687\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 454, loss: 0.1613\r", + "cfm epoch: 2, steps: 455, loss: 0.1712\r", + "cfm epoch: 2, steps: 456, loss: 0.1814\r", + "cfm epoch: 2, steps: 457, loss: 0.1734\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 458, loss: 0.1562\r", + "cfm epoch: 2, steps: 459, loss: 0.186\r", + "cfm epoch: 2, steps: 460, loss: 0.1619\r", + "cfm epoch: 2, steps: 461, loss: 0.1803\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 462, loss: 0.1649\r", + "cfm epoch: 2, steps: 463, loss: 0.1692\r", + "cfm epoch: 2, steps: 464, loss: 0.1645\r", + "cfm epoch: 2, steps: 465, loss: 0.1586\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 2, steps: 466, loss: 0.1721\r", + "cfm epoch: 2, steps: 467, loss: 0.1547\r", + "cfm epoch: 3, steps: 0, loss: 0.1539\r", + "cfm epoch: 3, steps: 1, loss: 0.1615\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 2, loss: 0.1612\r", + "cfm epoch: 3, steps: 3, loss: 0.1586\r", + "cfm epoch: 3, steps: 4, loss: 0.1712\r", + "cfm epoch: 3, steps: 5, loss: 0.1728\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 6, loss: 0.1704\r", + "cfm epoch: 3, steps: 7, loss: 0.1728\r", + "cfm epoch: 3, steps: 8, loss: 0.1751\r", + "cfm epoch: 3, steps: 9, loss: 0.1731\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 10, loss: 0.1661\r", + "cfm epoch: 3, steps: 11, loss: 0.1744\r", + "cfm epoch: 3, steps: 12, loss: 0.166\r", + "cfm epoch: 3, steps: 13, loss: 0.1758\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 14, loss: 0.1671\r", + "cfm epoch: 3, steps: 15, loss: 0.1706\r", + "cfm epoch: 3, steps: 16, loss: 0.1674\r", + "cfm epoch: 3, steps: 17, loss: 0.1543\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 18, loss: 0.175\r", + "cfm epoch: 3, steps: 19, loss: 0.1669\r", + "cfm epoch: 3, steps: 20, loss: 0.1686\r", + "cfm epoch: 3, steps: 21, loss: 0.1703\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 22, loss: 0.1615\r", + "cfm epoch: 3, steps: 23, loss: 0.1569\r", + "cfm epoch: 3, steps: 24, loss: 0.178\r", + "cfm epoch: 3, steps: 25, loss: 0.1812\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 26, loss: 0.1742\r", + "cfm epoch: 3, steps: 27, loss: 0.1615\r", + "cfm epoch: 3, steps: 28, loss: 0.1651\r", + "cfm epoch: 3, steps: 29, loss: 0.1551\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 30, loss: 0.1858\r", + "cfm epoch: 3, steps: 31, loss: 0.1755\r", + "cfm epoch: 3, steps: 32, loss: 0.1673\r", + "cfm epoch: 3, steps: 33, loss: 0.1703\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 34, loss: 0.1784\r", + "cfm epoch: 3, steps: 35, loss: 0.1582\r", + "cfm epoch: 3, steps: 36, loss: 0.1732\r", + "cfm epoch: 3, steps: 37, loss: 0.1638\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 38, loss: 0.1749\r", + "cfm epoch: 3, steps: 39, loss: 0.1741\r", + "cfm epoch: 3, steps: 40, loss: 0.1593\r", + "cfm epoch: 3, steps: 41, loss: 0.1624\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 42, loss: 0.1541\r", + "cfm epoch: 3, steps: 43, loss: 0.1679\r", + "cfm epoch: 3, steps: 44, loss: 0.1627\r", + "cfm epoch: 3, steps: 45, loss: 0.1683\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 46, loss: 0.1702\r", + "cfm epoch: 3, steps: 47, loss: 0.1809\r", + "cfm epoch: 3, steps: 48, loss: 0.1705\r", + "cfm epoch: 3, steps: 49, loss: 0.1688\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 50, loss: 0.173\r", + "cfm epoch: 3, steps: 51, loss: 0.1651\r", + "cfm epoch: 3, steps: 52, loss: 0.1657\r", + "cfm epoch: 3, steps: 53, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 54, loss: 0.1841\r", + "cfm epoch: 3, steps: 55, loss: 0.1646\r", + "cfm epoch: 3, steps: 56, loss: 0.1729\r", + "cfm epoch: 3, steps: 57, loss: 0.155\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 58, loss: 0.1569\r", + "cfm epoch: 3, steps: 59, loss: 0.1597\r", + "cfm epoch: 3, steps: 60, loss: 0.182\r", + "cfm epoch: 3, steps: 61, loss: 0.169\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 62, loss: 0.1707\r", + "cfm epoch: 3, steps: 63, loss: 0.1695\r", + "cfm epoch: 3, steps: 64, loss: 0.1637\r", + "cfm epoch: 3, steps: 65, loss: 0.1774\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 66, loss: 0.1647\r", + "cfm epoch: 3, steps: 67, loss: 0.168\r", + "cfm epoch: 3, steps: 68, loss: 0.1762\r", + "cfm epoch: 3, steps: 69, loss: 0.1652\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 70, loss: 0.1785\r", + "cfm epoch: 3, steps: 71, loss: 0.1738\r", + "cfm epoch: 3, steps: 72, loss: 0.1525\r", + "cfm epoch: 3, steps: 73, loss: 0.1704\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 74, loss: 0.1673\r", + "cfm epoch: 3, steps: 75, loss: 0.1606\r", + "cfm epoch: 3, steps: 76, loss: 0.1774\r", + "cfm epoch: 3, steps: 77, loss: 0.1718\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 78, loss: 0.1746\r", + "cfm epoch: 3, steps: 79, loss: 0.1733\r", + "cfm epoch: 3, steps: 80, loss: 0.1869\r", + "cfm epoch: 3, steps: 81, loss: 0.1842\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 82, loss: 0.1642\r", + "cfm epoch: 3, steps: 83, loss: 0.1745\r", + "cfm epoch: 3, steps: 84, loss: 0.1769\r", + "cfm epoch: 3, steps: 85, loss: 0.1661\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 86, loss: 0.1526\r", + "cfm epoch: 3, steps: 87, loss: 0.1589\r", + "cfm epoch: 3, steps: 88, loss: 0.1648\r", + "cfm epoch: 3, steps: 89, loss: 0.1572\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 90, loss: 0.1856\r", + "cfm epoch: 3, steps: 91, loss: 0.176\r", + "cfm epoch: 3, steps: 92, loss: 0.1675\r", + "cfm epoch: 3, steps: 93, loss: 0.1609\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 94, loss: 0.151\r", + "cfm epoch: 3, steps: 95, loss: 0.1737\r", + "cfm epoch: 3, steps: 96, loss: 0.1516\r", + "cfm epoch: 3, steps: 97, loss: 0.1718\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 98, loss: 0.1598\r", + "cfm epoch: 3, steps: 99, loss: 0.1653\r", + "cfm epoch: 3, steps: 100, loss: 0.1802\r", + "cfm epoch: 3, steps: 101, loss: 0.1674\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 102, loss: 0.1674\r", + "cfm epoch: 3, steps: 103, loss: 0.1622\r", + "cfm epoch: 3, steps: 104, loss: 0.169\r", + "cfm epoch: 3, steps: 105, loss: 0.1675\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 106, loss: 0.1695\r", + "cfm epoch: 3, steps: 107, loss: 0.1654\r", + "cfm epoch: 3, steps: 108, loss: 0.1702\r", + "cfm epoch: 3, steps: 109, loss: 0.1847\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 110, loss: 0.1655\r", + "cfm epoch: 3, steps: 111, loss: 0.1824\r", + "cfm epoch: 3, steps: 112, loss: 0.1665\r", + "cfm epoch: 3, steps: 113, loss: 0.1712\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 114, loss: 0.1584\r", + "cfm epoch: 3, steps: 115, loss: 0.158\r", + "cfm epoch: 3, steps: 116, loss: 0.1589\r", + "cfm epoch: 3, steps: 117, loss: 0.1695\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 118, loss: 0.1668\r", + "cfm epoch: 3, steps: 119, loss: 0.1598\r", + "cfm epoch: 3, steps: 120, loss: 0.1608\r", + "cfm epoch: 3, steps: 121, loss: 0.1712\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 122, loss: 0.1816\r", + "cfm epoch: 3, steps: 123, loss: 0.1622\r", + "cfm epoch: 3, steps: 124, loss: 0.1619\r", + "cfm epoch: 3, steps: 125, loss: 0.1725\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 126, loss: 0.1569\r", + "cfm epoch: 3, steps: 127, loss: 0.1661\r", + "cfm epoch: 3, steps: 128, loss: 0.1591\r", + "cfm epoch: 3, steps: 129, loss: 0.1691\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 130, loss: 0.1714\r", + "cfm epoch: 3, steps: 131, loss: 0.1807\r", + "cfm epoch: 3, steps: 132, loss: 0.1619\r", + "cfm epoch: 3, steps: 133, loss: 0.1716\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 134, loss: 0.1756\r", + "cfm epoch: 3, steps: 135, loss: 0.1635\r", + "cfm epoch: 3, steps: 136, loss: 0.1744\r", + "cfm epoch: 3, steps: 137, loss: 0.1681\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 138, loss: 0.164\r", + "cfm epoch: 3, steps: 139, loss: 0.1838\r", + "cfm epoch: 3, steps: 140, loss: 0.169\r", + "cfm epoch: 3, steps: 141, loss: 0.1663\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 142, loss: 0.1641\r", + "cfm epoch: 3, steps: 143, loss: 0.1657\r", + "cfm epoch: 3, steps: 144, loss: 0.1636\r", + "cfm epoch: 3, steps: 145, loss: 0.1757\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 146, loss: 0.1738\r", + "cfm epoch: 3, steps: 147, loss: 0.1706\r", + "cfm epoch: 3, steps: 148, loss: 0.168\r", + "cfm epoch: 3, steps: 149, loss: 0.171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 150, loss: 0.1673\r", + "cfm epoch: 3, steps: 151, loss: 0.176\r", + "cfm epoch: 3, steps: 152, loss: 0.1713\r", + "cfm epoch: 3, steps: 153, loss: 0.1685\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 154, loss: 0.1696\r", + "cfm epoch: 3, steps: 155, loss: 0.1729\r", + "cfm epoch: 3, steps: 156, loss: 0.181\r", + "cfm epoch: 3, steps: 157, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 158, loss: 0.1632\r", + "cfm epoch: 3, steps: 159, loss: 0.1715\r", + "cfm epoch: 3, steps: 160, loss: 0.16\r", + "cfm epoch: 3, steps: 161, loss: 0.1708\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 162, loss: 0.1665\r", + "cfm epoch: 3, steps: 163, loss: 0.1656\r", + "cfm epoch: 3, steps: 164, loss: 0.1752\r", + "cfm epoch: 3, steps: 165, loss: 0.1653\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 166, loss: 0.1583\r", + "cfm epoch: 3, steps: 167, loss: 0.1746\r", + "cfm epoch: 3, steps: 168, loss: 0.1703\r", + "cfm epoch: 3, steps: 169, loss: 0.1697\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 170, loss: 0.1858\r", + "cfm epoch: 3, steps: 171, loss: 0.1724\r", + "cfm epoch: 3, steps: 172, loss: 0.1733\r", + "cfm epoch: 3, steps: 173, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 174, loss: 0.1648\r", + "cfm epoch: 3, steps: 175, loss: 0.1548\r", + "cfm epoch: 3, steps: 176, loss: 0.1686\r", + "cfm epoch: 3, steps: 177, loss: 0.1841\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 178, loss: 0.1763\r", + "cfm epoch: 3, steps: 179, loss: 0.1679\r", + "cfm epoch: 3, steps: 180, loss: 0.1714\r", + "cfm epoch: 3, steps: 181, loss: 0.1768\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 182, loss: 0.1715\r", + "cfm epoch: 3, steps: 183, loss: 0.1698\r", + "cfm epoch: 3, steps: 184, loss: 0.1875\r", + "cfm epoch: 3, steps: 185, loss: 0.1643\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 186, loss: 0.1571\r", + "cfm epoch: 3, steps: 187, loss: 0.1636\r", + "cfm epoch: 3, steps: 188, loss: 0.1597\r", + "cfm epoch: 3, steps: 189, loss: 0.1746\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 190, loss: 0.1514\r", + "cfm epoch: 3, steps: 191, loss: 0.165\r", + "cfm epoch: 3, steps: 192, loss: 0.1646\r", + "cfm epoch: 3, steps: 193, loss: 0.1856\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 194, loss: 0.1674\r", + "cfm epoch: 3, steps: 195, loss: 0.1625\r", + "cfm epoch: 3, steps: 196, loss: 0.1786\r", + "cfm epoch: 3, steps: 197, loss: 0.1567\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 198, loss: 0.1687\r", + "cfm epoch: 3, steps: 199, loss: 0.1815\r", + "cfm epoch: 3, steps: 200, loss: 0.1706\r", + "cfm epoch: 3, steps: 201, loss: 0.1713\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 202, loss: 0.1698\r", + "cfm epoch: 3, steps: 203, loss: 0.1588\r", + "cfm epoch: 3, steps: 204, loss: 0.1713\r", + "cfm epoch: 3, steps: 205, loss: 0.1716\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 206, loss: 0.1836\r", + "cfm epoch: 3, steps: 207, loss: 0.1818\r", + "cfm epoch: 3, steps: 208, loss: 0.1618\r", + "cfm epoch: 3, steps: 209, loss: 0.1647\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 210, loss: 0.1716\r", + "cfm epoch: 3, steps: 211, loss: 0.1656\r", + "cfm epoch: 3, steps: 212, loss: 0.1665\r", + "cfm epoch: 3, steps: 213, loss: 0.1702\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 214, loss: 0.1598\r", + "cfm epoch: 3, steps: 215, loss: 0.1582\r", + "cfm epoch: 3, steps: 216, loss: 0.1698\r", + "cfm epoch: 3, steps: 217, loss: 0.165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 218, loss: 0.1713\r", + "cfm epoch: 3, steps: 219, loss: 0.1589\r", + "cfm epoch: 3, steps: 220, loss: 0.1676\r", + "cfm epoch: 3, steps: 221, loss: 0.154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 222, loss: 0.1613\r", + "cfm epoch: 3, steps: 223, loss: 0.1712\r", + "cfm epoch: 3, steps: 224, loss: 0.1738\r", + "cfm epoch: 3, steps: 225, loss: 0.1574\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 226, loss: 0.1713\r", + "cfm epoch: 3, steps: 227, loss: 0.1812\r", + "cfm epoch: 3, steps: 228, loss: 0.1691\r", + "cfm epoch: 3, steps: 229, loss: 0.1716\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 230, loss: 0.1642\r", + "cfm epoch: 3, steps: 231, loss: 0.1676\r", + "cfm epoch: 3, steps: 232, loss: 0.1652\r", + "cfm epoch: 3, steps: 233, loss: 0.1592\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 234, loss: 0.1781\r", + "cfm epoch: 3, steps: 235, loss: 0.1673\r", + "cfm epoch: 3, steps: 236, loss: 0.1602\r", + "cfm epoch: 3, steps: 237, loss: 0.1627\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 238, loss: 0.1587\r", + "cfm epoch: 3, steps: 239, loss: 0.1607\r", + "cfm epoch: 3, steps: 240, loss: 0.1713\r", + "cfm epoch: 3, steps: 241, loss: 0.1649\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 242, loss: 0.1823\r", + "cfm epoch: 3, steps: 243, loss: 0.1756\r", + "cfm epoch: 3, steps: 244, loss: 0.1707\r", + "cfm epoch: 3, steps: 245, loss: 0.177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 246, loss: 0.1711\r", + "cfm epoch: 3, steps: 247, loss: 0.1739\r", + "cfm epoch: 3, steps: 248, loss: 0.1639\r", + "cfm epoch: 3, steps: 249, loss: 0.1667\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 250, loss: 0.1607\r", + "cfm epoch: 3, steps: 251, loss: 0.1705\r", + "cfm epoch: 3, steps: 252, loss: 0.1716\r", + "cfm epoch: 3, steps: 253, loss: 0.1748\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 254, loss: 0.1639\r", + "cfm epoch: 3, steps: 255, loss: 0.1736\r", + "cfm epoch: 3, steps: 256, loss: 0.1651\r", + "cfm epoch: 3, steps: 257, loss: 0.1679\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 258, loss: 0.1729\r", + "cfm epoch: 3, steps: 259, loss: 0.1688\r", + "cfm epoch: 3, steps: 260, loss: 0.1712\r", + "cfm epoch: 3, steps: 261, loss: 0.1694\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 262, loss: 0.1518\r", + "cfm epoch: 3, steps: 263, loss: 0.1711\r", + "cfm epoch: 3, steps: 264, loss: 0.1833\r", + "cfm epoch: 3, steps: 265, loss: 0.1658\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 266, loss: 0.161\r", + "cfm epoch: 3, steps: 267, loss: 0.1608\r", + "cfm epoch: 3, steps: 268, loss: 0.1711\r", + "cfm epoch: 3, steps: 269, loss: 0.1744\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 270, loss: 0.1635\r", + "cfm epoch: 3, steps: 271, loss: 0.1613\r", + "cfm epoch: 3, steps: 272, loss: 0.1685\r", + "cfm epoch: 3, steps: 273, loss: 0.1585\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 274, loss: 0.1801\r", + "cfm epoch: 3, steps: 275, loss: 0.1622\r", + "cfm epoch: 3, steps: 276, loss: 0.165\r", + "cfm epoch: 3, steps: 277, loss: 0.1649\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 278, loss: 0.1746\r", + "cfm epoch: 3, steps: 279, loss: 0.1729\r", + "cfm epoch: 3, steps: 280, loss: 0.1646\r", + "cfm epoch: 3, steps: 281, loss: 0.1683\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 282, loss: 0.157\r", + "cfm epoch: 3, steps: 283, loss: 0.1666\r", + "cfm epoch: 3, steps: 284, loss: 0.1659\r", + "cfm epoch: 3, steps: 285, loss: 0.1609\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 286, loss: 0.1713\r", + "cfm epoch: 3, steps: 287, loss: 0.1723\r", + "cfm epoch: 3, steps: 288, loss: 0.1733\r", + "cfm epoch: 3, steps: 289, loss: 0.1803\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 290, loss: 0.1768\r", + "cfm epoch: 3, steps: 291, loss: 0.1646\r", + "cfm epoch: 3, steps: 292, loss: 0.1588\r", + "cfm epoch: 3, steps: 293, loss: 0.1669\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 294, loss: 0.1723\r", + "cfm epoch: 3, steps: 295, loss: 0.1665\r", + "cfm epoch: 3, steps: 296, loss: 0.1566\r", + "cfm epoch: 3, steps: 297, loss: 0.1558\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 298, loss: 0.1557\r", + "cfm epoch: 3, steps: 299, loss: 0.1797\r", + "cfm epoch: 3, steps: 300, loss: 0.1585\r", + "cfm epoch: 3, steps: 301, loss: 0.1708\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 302, loss: 0.179\r", + "cfm epoch: 3, steps: 303, loss: 0.162\r", + "cfm epoch: 3, steps: 304, loss: 0.1758\r", + "cfm epoch: 3, steps: 305, loss: 0.1647\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 306, loss: 0.1635\r", + "cfm epoch: 3, steps: 307, loss: 0.1708\r", + "cfm epoch: 3, steps: 308, loss: 0.1722\r", + "cfm epoch: 3, steps: 309, loss: 0.1632\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 310, loss: 0.1585\r", + "cfm epoch: 3, steps: 311, loss: 0.1809\r", + "cfm epoch: 3, steps: 312, loss: 0.1644\r", + "cfm epoch: 3, steps: 313, loss: 0.1579\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 314, loss: 0.1672\r", + "cfm epoch: 3, steps: 315, loss: 0.1713\r", + "cfm epoch: 3, steps: 316, loss: 0.1641\r", + "cfm epoch: 3, steps: 317, loss: 0.1721\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 318, loss: 0.1666\r", + "cfm epoch: 3, steps: 319, loss: 0.1757\r", + "cfm epoch: 3, steps: 320, loss: 0.1897\r", + "cfm epoch: 3, steps: 321, loss: 0.1776\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 322, loss: 0.1678\r", + "cfm epoch: 3, steps: 323, loss: 0.1686\r", + "cfm epoch: 3, steps: 324, loss: 0.1665\r", + "cfm epoch: 3, steps: 325, loss: 0.1592\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 326, loss: 0.1758\r", + "cfm epoch: 3, steps: 327, loss: 0.1575\r", + "cfm epoch: 3, steps: 328, loss: 0.1629\r", + "cfm epoch: 3, steps: 329, loss: 0.1639\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 330, loss: 0.169\r", + "cfm epoch: 3, steps: 331, loss: 0.1655\r", + "cfm epoch: 3, steps: 332, loss: 0.165\r", + "cfm epoch: 3, steps: 333, loss: 0.1579\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 334, loss: 0.1532\r", + "cfm epoch: 3, steps: 335, loss: 0.1615\r", + "cfm epoch: 3, steps: 336, loss: 0.1666\r", + "cfm epoch: 3, steps: 337, loss: 0.1526\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 338, loss: 0.172\r", + "cfm epoch: 3, steps: 339, loss: 0.1654\r", + "cfm epoch: 3, steps: 340, loss: 0.1722\r", + "cfm epoch: 3, steps: 341, loss: 0.172\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 342, loss: 0.1713\r", + "cfm epoch: 3, steps: 343, loss: 0.1651\r", + "cfm epoch: 3, steps: 344, loss: 0.1674\r", + "cfm epoch: 3, steps: 345, loss: 0.1608\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 346, loss: 0.1798\r", + "cfm epoch: 3, steps: 347, loss: 0.1685\r", + "cfm epoch: 3, steps: 348, loss: 0.1797\r", + "cfm epoch: 3, steps: 349, loss: 0.1683\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 350, loss: 0.1602\r", + "cfm epoch: 3, steps: 351, loss: 0.1768\r", + "cfm epoch: 3, steps: 352, loss: 0.1738\r", + "cfm epoch: 3, steps: 353, loss: 0.1685\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 354, loss: 0.1763\r", + "cfm epoch: 3, steps: 355, loss: 0.1715\r", + "cfm epoch: 3, steps: 356, loss: 0.1784\r", + "cfm epoch: 3, steps: 357, loss: 0.1596\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 358, loss: 0.1602\r", + "cfm epoch: 3, steps: 359, loss: 0.1633\r", + "cfm epoch: 3, steps: 360, loss: 0.1572\r", + "cfm epoch: 3, steps: 361, loss: 0.1604\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 362, loss: 0.1687\r", + "cfm epoch: 3, steps: 363, loss: 0.1682\r", + "cfm epoch: 3, steps: 364, loss: 0.1659\r", + "cfm epoch: 3, steps: 365, loss: 0.1578\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 366, loss: 0.169\r", + "cfm epoch: 3, steps: 367, loss: 0.1722\r", + "cfm epoch: 3, steps: 368, loss: 0.1806\r", + "cfm epoch: 3, steps: 369, loss: 0.1633\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 370, loss: 0.1778\r", + "cfm epoch: 3, steps: 371, loss: 0.1599\r", + "cfm epoch: 3, steps: 372, loss: 0.1787\r", + "cfm epoch: 3, steps: 373, loss: 0.1602\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 374, loss: 0.1715\r", + "cfm epoch: 3, steps: 375, loss: 0.15\r", + "cfm epoch: 3, steps: 376, loss: 0.1749\r", + "cfm epoch: 3, steps: 377, loss: 0.169\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 378, loss: 0.1768\r", + "cfm epoch: 3, steps: 379, loss: 0.1578\r", + "cfm epoch: 3, steps: 380, loss: 0.1634\r", + "cfm epoch: 3, steps: 381, loss: 0.1539\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 382, loss: 0.1769\r", + "cfm epoch: 3, steps: 383, loss: 0.1636\r", + "cfm epoch: 3, steps: 384, loss: 0.1605\r", + "cfm epoch: 3, steps: 385, loss: 0.1637\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 386, loss: 0.1579\r", + "cfm epoch: 3, steps: 387, loss: 0.1704\r", + "cfm epoch: 3, steps: 388, loss: 0.1733\r", + "cfm epoch: 3, steps: 389, loss: 0.1794\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 390, loss: 0.162\r", + "cfm epoch: 3, steps: 391, loss: 0.1619\r", + "cfm epoch: 3, steps: 392, loss: 0.1779\r", + "cfm epoch: 3, steps: 393, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 394, loss: 0.1687\r", + "cfm epoch: 3, steps: 395, loss: 0.1545\r", + "cfm epoch: 3, steps: 396, loss: 0.1652\r", + "cfm epoch: 3, steps: 397, loss: 0.1733\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 398, loss: 0.1634\r", + "cfm epoch: 3, steps: 399, loss: 0.1566\r", + "cfm epoch: 3, steps: 400, loss: 0.1646\r", + "cfm epoch: 3, steps: 401, loss: 0.1743\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 402, loss: 0.1865\r", + "cfm epoch: 3, steps: 403, loss: 0.165\r", + "cfm epoch: 3, steps: 404, loss: 0.1598\r", + "cfm epoch: 3, steps: 405, loss: 0.1645\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 406, loss: 0.1686\r", + "cfm epoch: 3, steps: 407, loss: 0.1605\r", + "cfm epoch: 3, steps: 408, loss: 0.1667\r", + "cfm epoch: 3, steps: 409, loss: 0.1638\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 410, loss: 0.1629\r", + "cfm epoch: 3, steps: 411, loss: 0.1656\r", + "cfm epoch: 3, steps: 412, loss: 0.1741\r", + "cfm epoch: 3, steps: 413, loss: 0.1749\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 414, loss: 0.1714\r", + "cfm epoch: 3, steps: 415, loss: 0.1708\r", + "cfm epoch: 3, steps: 416, loss: 0.1661\r", + "cfm epoch: 3, steps: 417, loss: 0.1728\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 418, loss: 0.1512\r", + "cfm epoch: 3, steps: 419, loss: 0.1698\r", + "cfm epoch: 3, steps: 420, loss: 0.1714\r", + "cfm epoch: 3, steps: 421, loss: 0.1704\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 422, loss: 0.1623\r", + "cfm epoch: 3, steps: 423, loss: 0.1553\r", + "cfm epoch: 3, steps: 424, loss: 0.1691\r", + "cfm epoch: 3, steps: 425, loss: 0.1635\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 426, loss: 0.1616\r", + "cfm epoch: 3, steps: 427, loss: 0.152\r", + "cfm epoch: 3, steps: 428, loss: 0.1623\r", + "cfm epoch: 3, steps: 429, loss: 0.1683\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 430, loss: 0.1648\r", + "cfm epoch: 3, steps: 431, loss: 0.1601\r", + "cfm epoch: 3, steps: 432, loss: 0.1598\r", + "cfm epoch: 3, steps: 433, loss: 0.1698\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 434, loss: 0.162\r", + "cfm epoch: 3, steps: 435, loss: 0.1614\r", + "cfm epoch: 3, steps: 436, loss: 0.1654\r", + "cfm epoch: 3, steps: 437, loss: 0.1788\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 438, loss: 0.1699\r", + "cfm epoch: 3, steps: 439, loss: 0.1798\r", + "cfm epoch: 3, steps: 440, loss: 0.1625\r", + "cfm epoch: 3, steps: 441, loss: 0.175\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 442, loss: 0.1728\r", + "cfm epoch: 3, steps: 443, loss: 0.1677\r", + "cfm epoch: 3, steps: 444, loss: 0.1642\r", + "cfm epoch: 3, steps: 445, loss: 0.1738\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 446, loss: 0.1596\r", + "cfm epoch: 3, steps: 447, loss: 0.159\r", + "cfm epoch: 3, steps: 448, loss: 0.1641\r", + "cfm epoch: 3, steps: 449, loss: 0.165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 450, loss: 0.1628\r", + "cfm epoch: 3, steps: 451, loss: 0.175\r", + "cfm epoch: 3, steps: 452, loss: 0.1603\r", + "cfm epoch: 3, steps: 453, loss: 0.171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 454, loss: 0.1758\r", + "cfm epoch: 3, steps: 455, loss: 0.162\r", + "cfm epoch: 3, steps: 456, loss: 0.1742\r", + "cfm epoch: 3, steps: 457, loss: 0.1673\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 458, loss: 0.1747\r", + "cfm epoch: 3, steps: 459, loss: 0.1602\r", + "cfm epoch: 3, steps: 460, loss: 0.1841\r", + "cfm epoch: 3, steps: 461, loss: 0.1684\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 462, loss: 0.1601\r", + "cfm epoch: 3, steps: 463, loss: 0.1679\r", + "cfm epoch: 3, steps: 464, loss: 0.1648\r", + "cfm epoch: 3, steps: 465, loss: 0.1685\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 3, steps: 466, loss: 0.1783\r", + "cfm epoch: 3, steps: 467, loss: 0.173\r", + "cfm epoch: 4, steps: 0, loss: 0.1763\r", + "cfm epoch: 4, steps: 1, loss: 0.1667\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 2, loss: 0.1536\r", + "cfm epoch: 4, steps: 3, loss: 0.1654\r", + "cfm epoch: 4, steps: 4, loss: 0.1628\r", + "cfm epoch: 4, steps: 5, loss: 0.154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 6, loss: 0.1666\r", + "cfm epoch: 4, steps: 7, loss: 0.1547\r", + "cfm epoch: 4, steps: 8, loss: 0.1639\r", + "cfm epoch: 4, steps: 9, loss: 0.183\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 10, loss: 0.1692\r", + "cfm epoch: 4, steps: 11, loss: 0.161\r", + "cfm epoch: 4, steps: 12, loss: 0.166\r", + "cfm epoch: 4, steps: 13, loss: 0.1647\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 14, loss: 0.1796\r", + "cfm epoch: 4, steps: 15, loss: 0.1782\r", + "cfm epoch: 4, steps: 16, loss: 0.1697\r", + "cfm epoch: 4, steps: 17, loss: 0.1653\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 18, loss: 0.1558\r", + "cfm epoch: 4, steps: 19, loss: 0.1699\r", + "cfm epoch: 4, steps: 20, loss: 0.1709\r", + "cfm epoch: 4, steps: 21, loss: 0.1649\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 22, loss: 0.1587\r", + "cfm epoch: 4, steps: 23, loss: 0.1497\r", + "cfm epoch: 4, steps: 24, loss: 0.1825\r", + "cfm epoch: 4, steps: 25, loss: 0.154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 26, loss: 0.175\r", + "cfm epoch: 4, steps: 27, loss: 0.1669\r", + "cfm epoch: 4, steps: 28, loss: 0.1637\r", + "cfm epoch: 4, steps: 29, loss: 0.158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 30, loss: 0.1667\r", + "cfm epoch: 4, steps: 31, loss: 0.1706\r", + "cfm epoch: 4, steps: 32, loss: 0.1625\r", + "cfm epoch: 4, steps: 33, loss: 0.1847\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 34, loss: 0.1712\r", + "cfm epoch: 4, steps: 35, loss: 0.1686\r", + "cfm epoch: 4, steps: 36, loss: 0.1667\r", + "cfm epoch: 4, steps: 37, loss: 0.1676\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 38, loss: 0.1638\r", + "cfm epoch: 4, steps: 39, loss: 0.1706\r", + "cfm epoch: 4, steps: 40, loss: 0.1736\r", + "cfm epoch: 4, steps: 41, loss: 0.159\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 42, loss: 0.1644\r", + "cfm epoch: 4, steps: 43, loss: 0.158\r", + "cfm epoch: 4, steps: 44, loss: 0.159\r", + "cfm epoch: 4, steps: 45, loss: 0.1761\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 46, loss: 0.1469\r", + "cfm epoch: 4, steps: 47, loss: 0.1746\r", + "cfm epoch: 4, steps: 48, loss: 0.1703\r", + "cfm epoch: 4, steps: 49, loss: 0.1638\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 50, loss: 0.1612\r", + "cfm epoch: 4, steps: 51, loss: 0.1701\r", + "cfm epoch: 4, steps: 52, loss: 0.1687\r", + "cfm epoch: 4, steps: 53, loss: 0.1625\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 54, loss: 0.165\r", + "cfm epoch: 4, steps: 55, loss: 0.1711\r", + "cfm epoch: 4, steps: 56, loss: 0.1596\r", + "cfm epoch: 4, steps: 57, loss: 0.1578\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 58, loss: 0.1575\r", + "cfm epoch: 4, steps: 59, loss: 0.173\r", + "cfm epoch: 4, steps: 60, loss: 0.1703\r", + "cfm epoch: 4, steps: 61, loss: 0.1604\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 62, loss: 0.1641\r", + "cfm epoch: 4, steps: 63, loss: 0.1745\r", + "cfm epoch: 4, steps: 64, loss: 0.1752\r", + "cfm epoch: 4, steps: 65, loss: 0.1715\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 66, loss: 0.1583\r", + "cfm epoch: 4, steps: 67, loss: 0.1654\r", + "cfm epoch: 4, steps: 68, loss: 0.168\r", + "cfm epoch: 4, steps: 69, loss: 0.1648\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 70, loss: 0.1593\r", + "cfm epoch: 4, steps: 71, loss: 0.1721\r", + "cfm epoch: 4, steps: 72, loss: 0.1753\r", + "cfm epoch: 4, steps: 73, loss: 0.1558\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 74, loss: 0.1656\r", + "cfm epoch: 4, steps: 75, loss: 0.1693\r", + "cfm epoch: 4, steps: 76, loss: 0.1704\r", + "cfm epoch: 4, steps: 77, loss: 0.1709\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 78, loss: 0.1771\r", + "cfm epoch: 4, steps: 79, loss: 0.154\r", + "cfm epoch: 4, steps: 80, loss: 0.1684\r", + "cfm epoch: 4, steps: 81, loss: 0.1674\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 82, loss: 0.1652\r", + "cfm epoch: 4, steps: 83, loss: 0.1579\r", + "cfm epoch: 4, steps: 84, loss: 0.1718\r", + "cfm epoch: 4, steps: 85, loss: 0.1726\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 86, loss: 0.1661\r", + "cfm epoch: 4, steps: 87, loss: 0.1602\r", + "cfm epoch: 4, steps: 88, loss: 0.1515\r", + "cfm epoch: 4, steps: 89, loss: 0.1584\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 90, loss: 0.1761\r", + "cfm epoch: 4, steps: 91, loss: 0.1567\r", + "cfm epoch: 4, steps: 92, loss: 0.1634\r", + "cfm epoch: 4, steps: 93, loss: 0.1578\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 94, loss: 0.1652\r", + "cfm epoch: 4, steps: 95, loss: 0.16\r", + "cfm epoch: 4, steps: 96, loss: 0.1751\r", + "cfm epoch: 4, steps: 97, loss: 0.1637\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 98, loss: 0.1594\r", + "cfm epoch: 4, steps: 99, loss: 0.1676\r", + "cfm epoch: 4, steps: 100, loss: 0.1755\r", + "cfm epoch: 4, steps: 101, loss: 0.171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 102, loss: 0.1697\r", + "cfm epoch: 4, steps: 103, loss: 0.1723\r", + "cfm epoch: 4, steps: 104, loss: 0.1768\r", + "cfm epoch: 4, steps: 105, loss: 0.1654\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 106, loss: 0.1769\r", + "cfm epoch: 4, steps: 107, loss: 0.1757\r", + "cfm epoch: 4, steps: 108, loss: 0.1677\r", + "cfm epoch: 4, steps: 109, loss: 0.1592\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 110, loss: 0.1685\r", + "cfm epoch: 4, steps: 111, loss: 0.1501\r", + "cfm epoch: 4, steps: 112, loss: 0.1545\r", + "cfm epoch: 4, steps: 113, loss: 0.179\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 114, loss: 0.1674\r", + "cfm epoch: 4, steps: 115, loss: 0.1655\r", + "cfm epoch: 4, steps: 116, loss: 0.1625\r", + "cfm epoch: 4, steps: 117, loss: 0.1809\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 118, loss: 0.1707\r", + "cfm epoch: 4, steps: 119, loss: 0.1736\r", + "cfm epoch: 4, steps: 120, loss: 0.1747\r", + "cfm epoch: 4, steps: 121, loss: 0.1539\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 122, loss: 0.1722\r", + "cfm epoch: 4, steps: 123, loss: 0.154\r", + "cfm epoch: 4, steps: 124, loss: 0.1671\r", + "cfm epoch: 4, steps: 125, loss: 0.177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 126, loss: 0.1672\r", + "cfm epoch: 4, steps: 127, loss: 0.1631\r", + "cfm epoch: 4, steps: 128, loss: 0.1657\r", + "cfm epoch: 4, steps: 129, loss: 0.1804\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 130, loss: 0.1732\r", + "cfm epoch: 4, steps: 131, loss: 0.159\r", + "cfm epoch: 4, steps: 132, loss: 0.1748\r", + "cfm epoch: 4, steps: 133, loss: 0.18\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 134, loss: 0.1681\r", + "cfm epoch: 4, steps: 135, loss: 0.1653\r", + "cfm epoch: 4, steps: 136, loss: 0.1663\r", + "cfm epoch: 4, steps: 137, loss: 0.1779\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 138, loss: 0.1663\r", + "cfm epoch: 4, steps: 139, loss: 0.1604\r", + "cfm epoch: 4, steps: 140, loss: 0.1614\r", + "cfm epoch: 4, steps: 141, loss: 0.1719\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 142, loss: 0.1649\r", + "cfm epoch: 4, steps: 143, loss: 0.1698\r", + "cfm epoch: 4, steps: 144, loss: 0.1402\r", + "cfm epoch: 4, steps: 145, loss: 0.1656\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 146, loss: 0.1686\r", + "cfm epoch: 4, steps: 147, loss: 0.1754\r", + "cfm epoch: 4, steps: 148, loss: 0.1694\r", + "cfm epoch: 4, steps: 149, loss: 0.1662\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 150, loss: 0.1721\r", + "cfm epoch: 4, steps: 151, loss: 0.1697\r", + "cfm epoch: 4, steps: 152, loss: 0.172\r", + "cfm epoch: 4, steps: 153, loss: 0.1668\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 154, loss: 0.1657\r", + "cfm epoch: 4, steps: 155, loss: 0.1561\r", + "cfm epoch: 4, steps: 156, loss: 0.1651\r", + "cfm epoch: 4, steps: 157, loss: 0.162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 158, loss: 0.1547\r", + "cfm epoch: 4, steps: 159, loss: 0.1687\r", + "cfm epoch: 4, steps: 160, loss: 0.1656\r", + "cfm epoch: 4, steps: 161, loss: 0.1573\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 162, loss: 0.1797\r", + "cfm epoch: 4, steps: 163, loss: 0.1606\r", + "cfm epoch: 4, steps: 164, loss: 0.1739\r", + "cfm epoch: 4, steps: 165, loss: 0.1628\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 166, loss: 0.1573\r", + "cfm epoch: 4, steps: 167, loss: 0.1645\r", + "cfm epoch: 4, steps: 168, loss: 0.1611\r", + "cfm epoch: 4, steps: 169, loss: 0.1627\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 170, loss: 0.1645\r", + "cfm epoch: 4, steps: 171, loss: 0.1669\r", + "cfm epoch: 4, steps: 172, loss: 0.1632\r", + "cfm epoch: 4, steps: 173, loss: 0.1681\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 174, loss: 0.165\r", + "cfm epoch: 4, steps: 175, loss: 0.1748\r", + "cfm epoch: 4, steps: 176, loss: 0.1472\r", + "cfm epoch: 4, steps: 177, loss: 0.1601\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 178, loss: 0.1611\r", + "cfm epoch: 4, steps: 179, loss: 0.1787\r", + "cfm epoch: 4, steps: 180, loss: 0.1648\r", + "cfm epoch: 4, steps: 181, loss: 0.1612\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 182, loss: 0.1649\r", + "cfm epoch: 4, steps: 183, loss: 0.1719\r", + "cfm epoch: 4, steps: 184, loss: 0.1624\r", + "cfm epoch: 4, steps: 185, loss: 0.1643\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 186, loss: 0.1578\r", + "cfm epoch: 4, steps: 187, loss: 0.1606\r", + "cfm epoch: 4, steps: 188, loss: 0.1652\r", + "cfm epoch: 4, steps: 189, loss: 0.1662\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 190, loss: 0.1684\r", + "cfm epoch: 4, steps: 191, loss: 0.1631\r", + "cfm epoch: 4, steps: 192, loss: 0.1586\r", + "cfm epoch: 4, steps: 193, loss: 0.172\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 194, loss: 0.1737\r", + "cfm epoch: 4, steps: 195, loss: 0.1657\r", + "cfm epoch: 4, steps: 196, loss: 0.1574\r", + "cfm epoch: 4, steps: 197, loss: 0.1545\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 198, loss: 0.1693\r", + "cfm epoch: 4, steps: 199, loss: 0.173\r", + "cfm epoch: 4, steps: 200, loss: 0.1695\r", + "cfm epoch: 4, steps: 201, loss: 0.1691\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 202, loss: 0.1673\r", + "cfm epoch: 4, steps: 203, loss: 0.1557\r", + "cfm epoch: 4, steps: 204, loss: 0.1604\r", + "cfm epoch: 4, steps: 205, loss: 0.166\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 206, loss: 0.1731\r", + "cfm epoch: 4, steps: 207, loss: 0.1584\r", + "cfm epoch: 4, steps: 208, loss: 0.1662\r", + "cfm epoch: 4, steps: 209, loss: 0.1603\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 210, loss: 0.1697\r", + "cfm epoch: 4, steps: 211, loss: 0.151\r", + "cfm epoch: 4, steps: 212, loss: 0.1606\r", + "cfm epoch: 4, steps: 213, loss: 0.1678\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 214, loss: 0.1746\r", + "cfm epoch: 4, steps: 215, loss: 0.1759\r", + "cfm epoch: 4, steps: 216, loss: 0.1673\r", + "cfm epoch: 4, steps: 217, loss: 0.1654\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 218, loss: 0.1643\r", + "cfm epoch: 4, steps: 219, loss: 0.1653\r", + "cfm epoch: 4, steps: 220, loss: 0.1646\r", + "cfm epoch: 4, steps: 221, loss: 0.1564\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 222, loss: 0.1545\r", + "cfm epoch: 4, steps: 223, loss: 0.1609\r", + "cfm epoch: 4, steps: 224, loss: 0.1634\r", + "cfm epoch: 4, steps: 225, loss: 0.1815\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 226, loss: 0.1647\r", + "cfm epoch: 4, steps: 227, loss: 0.1802\r", + "cfm epoch: 4, steps: 228, loss: 0.1575\r", + "cfm epoch: 4, steps: 229, loss: 0.1799\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 230, loss: 0.1653\r", + "cfm epoch: 4, steps: 231, loss: 0.1589\r", + "cfm epoch: 4, steps: 232, loss: 0.1605\r", + "cfm epoch: 4, steps: 233, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 234, loss: 0.1627\r", + "cfm epoch: 4, steps: 235, loss: 0.1629\r", + "cfm epoch: 4, steps: 236, loss: 0.1637\r", + "cfm epoch: 4, steps: 237, loss: 0.1656\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 238, loss: 0.1757\r", + "cfm epoch: 4, steps: 239, loss: 0.1797\r", + "cfm epoch: 4, steps: 240, loss: 0.1731\r", + "cfm epoch: 4, steps: 241, loss: 0.173\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 242, loss: 0.1656\r", + "cfm epoch: 4, steps: 243, loss: 0.1624\r", + "cfm epoch: 4, steps: 244, loss: 0.1672\r", + "cfm epoch: 4, steps: 245, loss: 0.1795\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 246, loss: 0.1553\r", + "cfm epoch: 4, steps: 247, loss: 0.1714\r", + "cfm epoch: 4, steps: 248, loss: 0.1651\r", + "cfm epoch: 4, steps: 249, loss: 0.1719\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 250, loss: 0.1665\r", + "cfm epoch: 4, steps: 251, loss: 0.1632\r", + "cfm epoch: 4, steps: 252, loss: 0.1591\r", + "cfm epoch: 4, steps: 253, loss: 0.174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 254, loss: 0.1675\r", + "cfm epoch: 4, steps: 255, loss: 0.173\r", + "cfm epoch: 4, steps: 256, loss: 0.1685\r", + "cfm epoch: 4, steps: 257, loss: 0.1579\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 258, loss: 0.1709\r", + "cfm epoch: 4, steps: 259, loss: 0.1626\r", + "cfm epoch: 4, steps: 260, loss: 0.1575\r", + "cfm epoch: 4, steps: 261, loss: 0.1644\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 262, loss: 0.155\r", + "cfm epoch: 4, steps: 263, loss: 0.1668\r", + "cfm epoch: 4, steps: 264, loss: 0.1771\r", + "cfm epoch: 4, steps: 265, loss: 0.1687\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 266, loss: 0.1925\r", + "cfm epoch: 4, steps: 267, loss: 0.1794\r", + "cfm epoch: 4, steps: 268, loss: 0.166\r", + "cfm epoch: 4, steps: 269, loss: 0.1817\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 270, loss: 0.1565\r", + "cfm epoch: 4, steps: 271, loss: 0.1662\r", + "cfm epoch: 4, steps: 272, loss: 0.1704\r", + "cfm epoch: 4, steps: 273, loss: 0.1764\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 274, loss: 0.1695\r", + "cfm epoch: 4, steps: 275, loss: 0.1773\r", + "cfm epoch: 4, steps: 276, loss: 0.1692\r", + "cfm epoch: 4, steps: 277, loss: 0.1658\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 278, loss: 0.1531\r", + "cfm epoch: 4, steps: 279, loss: 0.167\r", + "cfm epoch: 4, steps: 280, loss: 0.1654\r", + "cfm epoch: 4, steps: 281, loss: 0.1726\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 282, loss: 0.1617\r", + "cfm epoch: 4, steps: 283, loss: 0.1706\r", + "cfm epoch: 4, steps: 284, loss: 0.169\r", + "cfm epoch: 4, steps: 285, loss: 0.1631\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 286, loss: 0.1436\r", + "cfm epoch: 4, steps: 287, loss: 0.1693\r", + "cfm epoch: 4, steps: 288, loss: 0.1714\r", + "cfm epoch: 4, steps: 289, loss: 0.1654\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 290, loss: 0.1592\r", + "cfm epoch: 4, steps: 291, loss: 0.1696\r", + "cfm epoch: 4, steps: 292, loss: 0.1688\r", + "cfm epoch: 4, steps: 293, loss: 0.1664\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 294, loss: 0.1586\r", + "cfm epoch: 4, steps: 295, loss: 0.1665\r", + "cfm epoch: 4, steps: 296, loss: 0.1779\r", + "cfm epoch: 4, steps: 297, loss: 0.1653\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 298, loss: 0.1682\r", + "cfm epoch: 4, steps: 299, loss: 0.172\r", + "cfm epoch: 4, steps: 300, loss: 0.1631\r", + "cfm epoch: 4, steps: 301, loss: 0.1715\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 302, loss: 0.163\r", + "cfm epoch: 4, steps: 303, loss: 0.1627\r", + "cfm epoch: 4, steps: 304, loss: 0.1584\r", + "cfm epoch: 4, steps: 305, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 306, loss: 0.1726\r", + "cfm epoch: 4, steps: 307, loss: 0.1687\r", + "cfm epoch: 4, steps: 308, loss: 0.166\r", + "cfm epoch: 4, steps: 309, loss: 0.1829\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 310, loss: 0.1587\r", + "cfm epoch: 4, steps: 311, loss: 0.1676\r", + "cfm epoch: 4, steps: 312, loss: 0.1743\r", + "cfm epoch: 4, steps: 313, loss: 0.1556\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 314, loss: 0.1618\r", + "cfm epoch: 4, steps: 315, loss: 0.1653\r", + "cfm epoch: 4, steps: 316, loss: 0.178\r", + "cfm epoch: 4, steps: 317, loss: 0.1661\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 318, loss: 0.1713\r", + "cfm epoch: 4, steps: 319, loss: 0.1642\r", + "cfm epoch: 4, steps: 320, loss: 0.1607\r", + "cfm epoch: 4, steps: 321, loss: 0.1549\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 322, loss: 0.1564\r", + "cfm epoch: 4, steps: 323, loss: 0.171\r", + "cfm epoch: 4, steps: 324, loss: 0.1672\r", + "cfm epoch: 4, steps: 325, loss: 0.1584\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 326, loss: 0.1617\r", + "cfm epoch: 4, steps: 327, loss: 0.1569\r", + "cfm epoch: 4, steps: 328, loss: 0.1713\r", + "cfm epoch: 4, steps: 329, loss: 0.1655\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 330, loss: 0.1586\r", + "cfm epoch: 4, steps: 331, loss: 0.162\r", + "cfm epoch: 4, steps: 332, loss: 0.1725\r", + "cfm epoch: 4, steps: 333, loss: 0.179\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 334, loss: 0.16\r", + "cfm epoch: 4, steps: 335, loss: 0.1532\r", + "cfm epoch: 4, steps: 336, loss: 0.1716\r", + "cfm epoch: 4, steps: 337, loss: 0.1635\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 338, loss: 0.1637\r", + "cfm epoch: 4, steps: 339, loss: 0.1627\r", + "cfm epoch: 4, steps: 340, loss: 0.1543\r", + "cfm epoch: 4, steps: 341, loss: 0.1619\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 342, loss: 0.1687\r", + "cfm epoch: 4, steps: 343, loss: 0.1756\r", + "cfm epoch: 4, steps: 344, loss: 0.159\r", + "cfm epoch: 4, steps: 345, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 346, loss: 0.1798\r", + "cfm epoch: 4, steps: 347, loss: 0.1631\r", + "cfm epoch: 4, steps: 348, loss: 0.1696\r", + "cfm epoch: 4, steps: 349, loss: 0.1723\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 350, loss: 0.1586\r", + "cfm epoch: 4, steps: 351, loss: 0.165\r", + "cfm epoch: 4, steps: 352, loss: 0.1681\r", + "cfm epoch: 4, steps: 353, loss: 0.1722\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 354, loss: 0.1706\r", + "cfm epoch: 4, steps: 355, loss: 0.1712\r", + "cfm epoch: 4, steps: 356, loss: 0.1651\r", + "cfm epoch: 4, steps: 357, loss: 0.1759\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 358, loss: 0.1742\r", + "cfm epoch: 4, steps: 359, loss: 0.1573\r", + "cfm epoch: 4, steps: 360, loss: 0.1824\r", + "cfm epoch: 4, steps: 361, loss: 0.1642\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 362, loss: 0.1616\r", + "cfm epoch: 4, steps: 363, loss: 0.1694\r", + "cfm epoch: 4, steps: 364, loss: 0.1556\r", + "cfm epoch: 4, steps: 365, loss: 0.167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 366, loss: 0.1653\r", + "cfm epoch: 4, steps: 367, loss: 0.1767\r", + "cfm epoch: 4, steps: 368, loss: 0.1703\r", + "cfm epoch: 4, steps: 369, loss: 0.1693\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 370, loss: 0.1541\r", + "cfm epoch: 4, steps: 371, loss: 0.1768\r", + "cfm epoch: 4, steps: 372, loss: 0.1657\r", + "cfm epoch: 4, steps: 373, loss: 0.1554\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 374, loss: 0.1585\r", + "cfm epoch: 4, steps: 375, loss: 0.1506\r", + "cfm epoch: 4, steps: 376, loss: 0.1641\r", + "cfm epoch: 4, steps: 377, loss: 0.1691\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 378, loss: 0.1648\r", + "cfm epoch: 4, steps: 379, loss: 0.1761\r", + "cfm epoch: 4, steps: 380, loss: 0.1688\r", + "cfm epoch: 4, steps: 381, loss: 0.1735\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 382, loss: 0.1516\r", + "cfm epoch: 4, steps: 383, loss: 0.1678\r", + "cfm epoch: 4, steps: 384, loss: 0.1662\r", + "cfm epoch: 4, steps: 385, loss: 0.1776\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 386, loss: 0.1699\r", + "cfm epoch: 4, steps: 387, loss: 0.1742\r", + "cfm epoch: 4, steps: 388, loss: 0.1574\r", + "cfm epoch: 4, steps: 389, loss: 0.1603\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 390, loss: 0.158\r", + "cfm epoch: 4, steps: 391, loss: 0.1587\r", + "cfm epoch: 4, steps: 392, loss: 0.1585\r", + "cfm epoch: 4, steps: 393, loss: 0.1598\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 394, loss: 0.1718\r", + "cfm epoch: 4, steps: 395, loss: 0.1606\r", + "cfm epoch: 4, steps: 396, loss: 0.1666\r", + "cfm epoch: 4, steps: 397, loss: 0.1649\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 398, loss: 0.1634\r", + "cfm epoch: 4, steps: 399, loss: 0.1595\r", + "cfm epoch: 4, steps: 400, loss: 0.1653\r", + "cfm epoch: 4, steps: 401, loss: 0.1629\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 402, loss: 0.1634\r", + "cfm epoch: 4, steps: 403, loss: 0.1639\r", + "cfm epoch: 4, steps: 404, loss: 0.1859\r", + "cfm epoch: 4, steps: 405, loss: 0.1598\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 406, loss: 0.1524\r", + "cfm epoch: 4, steps: 407, loss: 0.1642\r", + "cfm epoch: 4, steps: 408, loss: 0.1576\r", + "cfm epoch: 4, steps: 409, loss: 0.1673\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 410, loss: 0.1636\r", + "cfm epoch: 4, steps: 411, loss: 0.1724\r", + "cfm epoch: 4, steps: 412, loss: 0.1683\r", + "cfm epoch: 4, steps: 413, loss: 0.1621\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 414, loss: 0.1517\r", + "cfm epoch: 4, steps: 415, loss: 0.1581\r", + "cfm epoch: 4, steps: 416, loss: 0.1647\r", + "cfm epoch: 4, steps: 417, loss: 0.1682\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 418, loss: 0.1584\r", + "cfm epoch: 4, steps: 419, loss: 0.1651\r", + "cfm epoch: 4, steps: 420, loss: 0.1704\r", + "cfm epoch: 4, steps: 421, loss: 0.1641\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 422, loss: 0.1642\r", + "cfm epoch: 4, steps: 423, loss: 0.1754\r", + "cfm epoch: 4, steps: 424, loss: 0.1664\r", + "cfm epoch: 4, steps: 425, loss: 0.1633\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 426, loss: 0.1677\r", + "cfm epoch: 4, steps: 427, loss: 0.1804\r", + "cfm epoch: 4, steps: 428, loss: 0.1599\r", + "cfm epoch: 4, steps: 429, loss: 0.1635\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 430, loss: 0.174\r", + "cfm epoch: 4, steps: 431, loss: 0.1749\r", + "cfm epoch: 4, steps: 432, loss: 0.1828\r", + "cfm epoch: 4, steps: 433, loss: 0.1624\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 434, loss: 0.1668\r", + "cfm epoch: 4, steps: 435, loss: 0.1666\r", + "cfm epoch: 4, steps: 436, loss: 0.1582\r", + "cfm epoch: 4, steps: 437, loss: 0.1657\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 438, loss: 0.1608\r", + "cfm epoch: 4, steps: 439, loss: 0.1644\r", + "cfm epoch: 4, steps: 440, loss: 0.1729\r", + "cfm epoch: 4, steps: 441, loss: 0.1704\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 442, loss: 0.1607\r", + "cfm epoch: 4, steps: 443, loss: 0.1656\r", + "cfm epoch: 4, steps: 444, loss: 0.1714\r", + "cfm epoch: 4, steps: 445, loss: 0.1637\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 446, loss: 0.1754\r", + "cfm epoch: 4, steps: 447, loss: 0.1616\r", + "cfm epoch: 4, steps: 448, loss: 0.1607\r", + "cfm epoch: 4, steps: 449, loss: 0.162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 450, loss: 0.1777\r", + "cfm epoch: 4, steps: 451, loss: 0.1755\r", + "cfm epoch: 4, steps: 452, loss: 0.1637\r", + "cfm epoch: 4, steps: 453, loss: 0.1738\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 454, loss: 0.1676\r", + "cfm epoch: 4, steps: 455, loss: 0.156\r", + "cfm epoch: 4, steps: 456, loss: 0.1728\r", + "cfm epoch: 4, steps: 457, loss: 0.1705\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 458, loss: 0.1707\r", + "cfm epoch: 4, steps: 459, loss: 0.1618\r", + "cfm epoch: 4, steps: 460, loss: 0.159\r", + "cfm epoch: 4, steps: 461, loss: 0.1663\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 462, loss: 0.1794\r", + "cfm epoch: 4, steps: 463, loss: 0.1598\r", + "cfm epoch: 4, steps: 464, loss: 0.1648\r", + "cfm epoch: 4, steps: 465, loss: 0.1542\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 4, steps: 466, loss: 0.1591\r", + "cfm epoch: 4, steps: 467, loss: 0.1587\r", + "cfm epoch: 5, steps: 0, loss: 0.1654\r", + "cfm epoch: 5, steps: 1, loss: 0.1701\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 2, loss: 0.1658\r", + "cfm epoch: 5, steps: 3, loss: 0.1533\r", + "cfm epoch: 5, steps: 4, loss: 0.1798\r", + "cfm epoch: 5, steps: 5, loss: 0.1565\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 6, loss: 0.157\r", + "cfm epoch: 5, steps: 7, loss: 0.1708\r", + "cfm epoch: 5, steps: 8, loss: 0.1577\r", + "cfm epoch: 5, steps: 9, loss: 0.1613\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 10, loss: 0.167\r", + "cfm epoch: 5, steps: 11, loss: 0.1603\r", + "cfm epoch: 5, steps: 12, loss: 0.1779\r", + "cfm epoch: 5, steps: 13, loss: 0.1711\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 14, loss: 0.168\r", + "cfm epoch: 5, steps: 15, loss: 0.1593\r", + "cfm epoch: 5, steps: 16, loss: 0.1695\r", + "cfm epoch: 5, steps: 17, loss: 0.1697\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 18, loss: 0.1633\r", + "cfm epoch: 5, steps: 19, loss: 0.1552\r", + "cfm epoch: 5, steps: 20, loss: 0.1637\r", + "cfm epoch: 5, steps: 21, loss: 0.1742\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 22, loss: 0.1565\r", + "cfm epoch: 5, steps: 23, loss: 0.1585\r", + "cfm epoch: 5, steps: 24, loss: 0.1644\r", + "cfm epoch: 5, steps: 25, loss: 0.1815\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 26, loss: 0.1632\r", + "cfm epoch: 5, steps: 27, loss: 0.1696\r", + "cfm epoch: 5, steps: 28, loss: 0.1646\r", + "cfm epoch: 5, steps: 29, loss: 0.1732\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 30, loss: 0.1638\r", + "cfm epoch: 5, steps: 31, loss: 0.1731\r", + "cfm epoch: 5, steps: 32, loss: 0.1697\r", + "cfm epoch: 5, steps: 33, loss: 0.1664\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 34, loss: 0.172\r", + "cfm epoch: 5, steps: 35, loss: 0.1644\r", + "cfm epoch: 5, steps: 36, loss: 0.1664\r", + "cfm epoch: 5, steps: 37, loss: 0.1689\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 38, loss: 0.165\r", + "cfm epoch: 5, steps: 39, loss: 0.1732\r", + "cfm epoch: 5, steps: 40, loss: 0.1499\r", + "cfm epoch: 5, steps: 41, loss: 0.1641\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 42, loss: 0.1763\r", + "cfm epoch: 5, steps: 43, loss: 0.1701\r", + "cfm epoch: 5, steps: 44, loss: 0.1663\r", + "cfm epoch: 5, steps: 45, loss: 0.1573\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 46, loss: 0.1681\r", + "cfm epoch: 5, steps: 47, loss: 0.1715\r", + "cfm epoch: 5, steps: 48, loss: 0.1545\r", + "cfm epoch: 5, steps: 49, loss: 0.1651\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 50, loss: 0.1657\r", + "cfm epoch: 5, steps: 51, loss: 0.169\r", + "cfm epoch: 5, steps: 52, loss: 0.1622\r", + "cfm epoch: 5, steps: 53, loss: 0.171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 54, loss: 0.1568\r", + "cfm epoch: 5, steps: 55, loss: 0.16\r", + "cfm epoch: 5, steps: 56, loss: 0.1574\r", + "cfm epoch: 5, steps: 57, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 58, loss: 0.1804\r", + "cfm epoch: 5, steps: 59, loss: 0.162\r", + "cfm epoch: 5, steps: 60, loss: 0.1698\r", + "cfm epoch: 5, steps: 61, loss: 0.1687\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 62, loss: 0.1673\r", + "cfm epoch: 5, steps: 63, loss: 0.1698\r", + "cfm epoch: 5, steps: 64, loss: 0.1792\r", + "cfm epoch: 5, steps: 65, loss: 0.1632\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 66, loss: 0.1732\r", + "cfm epoch: 5, steps: 67, loss: 0.1689\r", + "cfm epoch: 5, steps: 68, loss: 0.1654\r", + "cfm epoch: 5, steps: 69, loss: 0.1519\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 70, loss: 0.1605\r", + "cfm epoch: 5, steps: 71, loss: 0.1608\r", + "cfm epoch: 5, steps: 72, loss: 0.1768\r", + "cfm epoch: 5, steps: 73, loss: 0.1693\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 74, loss: 0.1592\r", + "cfm epoch: 5, steps: 75, loss: 0.168\r", + "cfm epoch: 5, steps: 76, loss: 0.1645\r", + "cfm epoch: 5, steps: 77, loss: 0.1746\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 78, loss: 0.169\r", + "cfm epoch: 5, steps: 79, loss: 0.1612\r", + "cfm epoch: 5, steps: 80, loss: 0.164\r", + "cfm epoch: 5, steps: 81, loss: 0.1543\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 82, loss: 0.1675\r", + "cfm epoch: 5, steps: 83, loss: 0.1541\r", + "cfm epoch: 5, steps: 84, loss: 0.171\r", + "cfm epoch: 5, steps: 85, loss: 0.1631\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 86, loss: 0.158\r", + "cfm epoch: 5, steps: 87, loss: 0.162\r", + "cfm epoch: 5, steps: 88, loss: 0.1592\r", + "cfm epoch: 5, steps: 89, loss: 0.1707\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 90, loss: 0.169\r", + "cfm epoch: 5, steps: 91, loss: 0.1572\r", + "cfm epoch: 5, steps: 92, loss: 0.1689\r", + "cfm epoch: 5, steps: 93, loss: 0.1634\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 94, loss: 0.1692\r", + "cfm epoch: 5, steps: 95, loss: 0.1685\r", + "cfm epoch: 5, steps: 96, loss: 0.1651\r", + "cfm epoch: 5, steps: 97, loss: 0.1623\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 98, loss: 0.1591\r", + "cfm epoch: 5, steps: 99, loss: 0.1691\r", + "cfm epoch: 5, steps: 100, loss: 0.176\r", + "cfm epoch: 5, steps: 101, loss: 0.1584\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 102, loss: 0.1683\r", + "cfm epoch: 5, steps: 103, loss: 0.1604\r", + "cfm epoch: 5, steps: 104, loss: 0.1707\r", + "cfm epoch: 5, steps: 105, loss: 0.1675\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 106, loss: 0.1693\r", + "cfm epoch: 5, steps: 107, loss: 0.1652\r", + "cfm epoch: 5, steps: 108, loss: 0.1642\r", + "cfm epoch: 5, steps: 109, loss: 0.1557\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 110, loss: 0.1613\r", + "cfm epoch: 5, steps: 111, loss: 0.1651\r", + "cfm epoch: 5, steps: 112, loss: 0.1512\r", + "cfm epoch: 5, steps: 113, loss: 0.159\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 114, loss: 0.1591\r", + "cfm epoch: 5, steps: 115, loss: 0.1676\r", + "cfm epoch: 5, steps: 116, loss: 0.1611\r", + "cfm epoch: 5, steps: 117, loss: 0.16\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 118, loss: 0.1599\r", + "cfm epoch: 5, steps: 119, loss: 0.1579\r", + "cfm epoch: 5, steps: 120, loss: 0.1661\r", + "cfm epoch: 5, steps: 121, loss: 0.1672\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 122, loss: 0.1678\r", + "cfm epoch: 5, steps: 123, loss: 0.167\r", + "cfm epoch: 5, steps: 124, loss: 0.1526\r", + "cfm epoch: 5, steps: 125, loss: 0.1797\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 126, loss: 0.1615\r", + "cfm epoch: 5, steps: 127, loss: 0.1734\r", + "cfm epoch: 5, steps: 128, loss: 0.1689\r", + "cfm epoch: 5, steps: 129, loss: 0.1832\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 130, loss: 0.1607\r", + "cfm epoch: 5, steps: 131, loss: 0.166\r", + "cfm epoch: 5, steps: 132, loss: 0.1605\r", + "cfm epoch: 5, steps: 133, loss: 0.17\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 134, loss: 0.16\r", + "cfm epoch: 5, steps: 135, loss: 0.1664\r", + "cfm epoch: 5, steps: 136, loss: 0.1682\r", + "cfm epoch: 5, steps: 137, loss: 0.1726\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 138, loss: 0.1642\r", + "cfm epoch: 5, steps: 139, loss: 0.1708\r", + "cfm epoch: 5, steps: 140, loss: 0.1717\r", + "cfm epoch: 5, steps: 141, loss: 0.1648\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 142, loss: 0.1597\r", + "cfm epoch: 5, steps: 143, loss: 0.1645\r", + "cfm epoch: 5, steps: 144, loss: 0.175\r", + "cfm epoch: 5, steps: 145, loss: 0.1726\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 146, loss: 0.1585\r", + "cfm epoch: 5, steps: 147, loss: 0.164\r", + "cfm epoch: 5, steps: 148, loss: 0.165\r", + "cfm epoch: 5, steps: 149, loss: 0.1693\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 150, loss: 0.1673\r", + "cfm epoch: 5, steps: 151, loss: 0.1652\r", + "cfm epoch: 5, steps: 152, loss: 0.1506\r", + "cfm epoch: 5, steps: 153, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 154, loss: 0.1638\r", + "cfm epoch: 5, steps: 155, loss: 0.1609\r", + "cfm epoch: 5, steps: 156, loss: 0.1669\r", + "cfm epoch: 5, steps: 157, loss: 0.1734\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 158, loss: 0.1693\r", + "cfm epoch: 5, steps: 159, loss: 0.1642\r", + "cfm epoch: 5, steps: 160, loss: 0.16\r", + "cfm epoch: 5, steps: 161, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 162, loss: 0.1685\r", + "cfm epoch: 5, steps: 163, loss: 0.1614\r", + "cfm epoch: 5, steps: 164, loss: 0.1697\r", + "cfm epoch: 5, steps: 165, loss: 0.1613\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 166, loss: 0.1678\r", + "cfm epoch: 5, steps: 167, loss: 0.1669\r", + "cfm epoch: 5, steps: 168, loss: 0.1697\r", + "cfm epoch: 5, steps: 169, loss: 0.1674\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 170, loss: 0.1543\r", + "cfm epoch: 5, steps: 171, loss: 0.1521\r", + "cfm epoch: 5, steps: 172, loss: 0.1699\r", + "cfm epoch: 5, steps: 173, loss: 0.1547\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 174, loss: 0.1704\r", + "cfm epoch: 5, steps: 175, loss: 0.1727\r", + "cfm epoch: 5, steps: 176, loss: 0.1721\r", + "cfm epoch: 5, steps: 177, loss: 0.1735\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 178, loss: 0.1753\r", + "cfm epoch: 5, steps: 179, loss: 0.1644\r", + "cfm epoch: 5, steps: 180, loss: 0.1648\r", + "cfm epoch: 5, steps: 181, loss: 0.1675\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 182, loss: 0.1553\r", + "cfm epoch: 5, steps: 183, loss: 0.1605\r", + "cfm epoch: 5, steps: 184, loss: 0.1549\r", + "cfm epoch: 5, steps: 185, loss: 0.1715\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 186, loss: 0.1602\r", + "cfm epoch: 5, steps: 187, loss: 0.165\r", + "cfm epoch: 5, steps: 188, loss: 0.1642\r", + "cfm epoch: 5, steps: 189, loss: 0.1488\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 190, loss: 0.164\r", + "cfm epoch: 5, steps: 191, loss: 0.1652\r", + "cfm epoch: 5, steps: 192, loss: 0.1698\r", + "cfm epoch: 5, steps: 193, loss: 0.1713\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 194, loss: 0.1646\r", + "cfm epoch: 5, steps: 195, loss: 0.1656\r", + "cfm epoch: 5, steps: 196, loss: 0.1709\r", + "cfm epoch: 5, steps: 197, loss: 0.1661\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 198, loss: 0.1718\r", + "cfm epoch: 5, steps: 199, loss: 0.1593\r", + "cfm epoch: 5, steps: 200, loss: 0.1392\r", + "cfm epoch: 5, steps: 201, loss: 0.1542\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 202, loss: 0.1638\r", + "cfm epoch: 5, steps: 203, loss: 0.16\r", + "cfm epoch: 5, steps: 204, loss: 0.1842\r", + "cfm epoch: 5, steps: 205, loss: 0.161\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 206, loss: 0.1574\r", + "cfm epoch: 5, steps: 207, loss: 0.1649\r", + "cfm epoch: 5, steps: 208, loss: 0.1619\r", + "cfm epoch: 5, steps: 209, loss: 0.1665\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 210, loss: 0.1699\r", + "cfm epoch: 5, steps: 211, loss: 0.1705\r", + "cfm epoch: 5, steps: 212, loss: 0.1655\r", + "cfm epoch: 5, steps: 213, loss: 0.1837\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 214, loss: 0.1702\r", + "cfm epoch: 5, steps: 215, loss: 0.1663\r", + "cfm epoch: 5, steps: 216, loss: 0.164\r", + "cfm epoch: 5, steps: 217, loss: 0.1742\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 218, loss: 0.1644\r", + "cfm epoch: 5, steps: 219, loss: 0.1572\r", + "cfm epoch: 5, steps: 220, loss: 0.156\r", + "cfm epoch: 5, steps: 221, loss: 0.1671\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 222, loss: 0.1692\r", + "cfm epoch: 5, steps: 223, loss: 0.1594\r", + "cfm epoch: 5, steps: 224, loss: 0.1661\r", + "cfm epoch: 5, steps: 225, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 226, loss: 0.1601\r", + "cfm epoch: 5, steps: 227, loss: 0.1527\r", + "cfm epoch: 5, steps: 228, loss: 0.1606\r", + "cfm epoch: 5, steps: 229, loss: 0.1631\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 230, loss: 0.1615\r", + "cfm epoch: 5, steps: 231, loss: 0.1677\r", + "cfm epoch: 5, steps: 232, loss: 0.1698\r", + "cfm epoch: 5, steps: 233, loss: 0.1658\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 234, loss: 0.1805\r", + "cfm epoch: 5, steps: 235, loss: 0.1632\r", + "cfm epoch: 5, steps: 236, loss: 0.1733\r", + "cfm epoch: 5, steps: 237, loss: 0.1574\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 238, loss: 0.1605\r", + "cfm epoch: 5, steps: 239, loss: 0.1645\r", + "cfm epoch: 5, steps: 240, loss: 0.1658\r", + "cfm epoch: 5, steps: 241, loss: 0.1625\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 242, loss: 0.1721\r", + "cfm epoch: 5, steps: 243, loss: 0.1519\r", + "cfm epoch: 5, steps: 244, loss: 0.1767\r", + "cfm epoch: 5, steps: 245, loss: 0.1501\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 246, loss: 0.165\r", + "cfm epoch: 5, steps: 247, loss: 0.1644\r", + "cfm epoch: 5, steps: 248, loss: 0.1601\r", + "cfm epoch: 5, steps: 249, loss: 0.1639\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 250, loss: 0.1581\r", + "cfm epoch: 5, steps: 251, loss: 0.1726\r", + "cfm epoch: 5, steps: 252, loss: 0.1613\r", + "cfm epoch: 5, steps: 253, loss: 0.1647\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 254, loss: 0.163\r", + "cfm epoch: 5, steps: 255, loss: 0.1571\r", + "cfm epoch: 5, steps: 256, loss: 0.1772\r", + "cfm epoch: 5, steps: 257, loss: 0.1631\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 258, loss: 0.1566\r", + "cfm epoch: 5, steps: 259, loss: 0.1621\r", + "cfm epoch: 5, steps: 260, loss: 0.1687\r", + "cfm epoch: 5, steps: 261, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 262, loss: 0.156\r", + "cfm epoch: 5, steps: 263, loss: 0.1579\r", + "cfm epoch: 5, steps: 264, loss: 0.1642\r", + "cfm epoch: 5, steps: 265, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 266, loss: 0.1717\r", + "cfm epoch: 5, steps: 267, loss: 0.1636\r", + "cfm epoch: 5, steps: 268, loss: 0.1716\r", + "cfm epoch: 5, steps: 269, loss: 0.1602\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 270, loss: 0.1754\r", + "cfm epoch: 5, steps: 271, loss: 0.1521\r", + "cfm epoch: 5, steps: 272, loss: 0.1704\r", + "cfm epoch: 5, steps: 273, loss: 0.1667\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 274, loss: 0.1629\r", + "cfm epoch: 5, steps: 275, loss: 0.1565\r", + "cfm epoch: 5, steps: 276, loss: 0.1536\r", + "cfm epoch: 5, steps: 277, loss: 0.1644\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 278, loss: 0.1528\r", + "cfm epoch: 5, steps: 279, loss: 0.1613\r", + "cfm epoch: 5, steps: 280, loss: 0.1648\r", + "cfm epoch: 5, steps: 281, loss: 0.1733\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 282, loss: 0.1654\r", + "cfm epoch: 5, steps: 283, loss: 0.1643\r", + "cfm epoch: 5, steps: 284, loss: 0.1716\r", + "cfm epoch: 5, steps: 285, loss: 0.1668\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 286, loss: 0.1636\r", + "cfm epoch: 5, steps: 287, loss: 0.1604\r", + "cfm epoch: 5, steps: 288, loss: 0.1705\r", + "cfm epoch: 5, steps: 289, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 290, loss: 0.1628\r", + "cfm epoch: 5, steps: 291, loss: 0.172\r", + "cfm epoch: 5, steps: 292, loss: 0.1741\r", + "cfm epoch: 5, steps: 293, loss: 0.1687\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 294, loss: 0.1732\r", + "cfm epoch: 5, steps: 295, loss: 0.1528\r", + "cfm epoch: 5, steps: 296, loss: 0.151\r", + "cfm epoch: 5, steps: 297, loss: 0.1625\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 298, loss: 0.1706\r", + "cfm epoch: 5, steps: 299, loss: 0.1689\r", + "cfm epoch: 5, steps: 300, loss: 0.1648\r", + "cfm epoch: 5, steps: 301, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 302, loss: 0.1544\r", + "cfm epoch: 5, steps: 303, loss: 0.1802\r", + "cfm epoch: 5, steps: 304, loss: 0.1742\r", + "cfm epoch: 5, steps: 305, loss: 0.1555\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 306, loss: 0.1564\r", + "cfm epoch: 5, steps: 307, loss: 0.1637\r", + "cfm epoch: 5, steps: 308, loss: 0.173\r", + "cfm epoch: 5, steps: 309, loss: 0.1676\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 310, loss: 0.1748\r", + "cfm epoch: 5, steps: 311, loss: 0.1613\r", + "cfm epoch: 5, steps: 312, loss: 0.1663\r", + "cfm epoch: 5, steps: 313, loss: 0.17\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 314, loss: 0.1691\r", + "cfm epoch: 5, steps: 315, loss: 0.1572\r", + "cfm epoch: 5, steps: 316, loss: 0.1657\r", + "cfm epoch: 5, steps: 317, loss: 0.1652\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 318, loss: 0.1664\r", + "cfm epoch: 5, steps: 319, loss: 0.1629\r", + "cfm epoch: 5, steps: 320, loss: 0.1614\r", + "cfm epoch: 5, steps: 321, loss: 0.1782\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 322, loss: 0.1617\r", + "cfm epoch: 5, steps: 323, loss: 0.1667\r", + "cfm epoch: 5, steps: 324, loss: 0.166\r", + "cfm epoch: 5, steps: 325, loss: 0.1555\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 326, loss: 0.1613\r", + "cfm epoch: 5, steps: 327, loss: 0.1697\r", + "cfm epoch: 5, steps: 328, loss: 0.1697\r", + "cfm epoch: 5, steps: 329, loss: 0.1654\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 330, loss: 0.1586\r", + "cfm epoch: 5, steps: 331, loss: 0.1545\r", + "cfm epoch: 5, steps: 332, loss: 0.1603\r", + "cfm epoch: 5, steps: 333, loss: 0.1601\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 334, loss: 0.156\r", + "cfm epoch: 5, steps: 335, loss: 0.1683\r", + "cfm epoch: 5, steps: 336, loss: 0.1826\r", + "cfm epoch: 5, steps: 337, loss: 0.1732\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 338, loss: 0.1726\r", + "cfm epoch: 5, steps: 339, loss: 0.1449\r", + "cfm epoch: 5, steps: 340, loss: 0.1541\r", + "cfm epoch: 5, steps: 341, loss: 0.1657\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 342, loss: 0.1569\r", + "cfm epoch: 5, steps: 343, loss: 0.1632\r", + "cfm epoch: 5, steps: 344, loss: 0.1669\r", + "cfm epoch: 5, steps: 345, loss: 0.1527\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 346, loss: 0.1587\r", + "cfm epoch: 5, steps: 347, loss: 0.1545\r", + "cfm epoch: 5, steps: 348, loss: 0.1575\r", + "cfm epoch: 5, steps: 349, loss: 0.1642\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 350, loss: 0.1592\r", + "cfm epoch: 5, steps: 351, loss: 0.1591\r", + "cfm epoch: 5, steps: 352, loss: 0.162\r", + "cfm epoch: 5, steps: 353, loss: 0.1765\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 354, loss: 0.1676\r", + "cfm epoch: 5, steps: 355, loss: 0.1493\r", + "cfm epoch: 5, steps: 356, loss: 0.18\r", + "cfm epoch: 5, steps: 357, loss: 0.1672\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 358, loss: 0.1561\r", + "cfm epoch: 5, steps: 359, loss: 0.1621\r", + "cfm epoch: 5, steps: 360, loss: 0.186\r", + "cfm epoch: 5, steps: 361, loss: 0.1675\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 362, loss: 0.1591\r", + "cfm epoch: 5, steps: 363, loss: 0.1583\r", + "cfm epoch: 5, steps: 364, loss: 0.1592\r", + "cfm epoch: 5, steps: 365, loss: 0.1645\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 366, loss: 0.17\r", + "cfm epoch: 5, steps: 367, loss: 0.1752\r", + "cfm epoch: 5, steps: 368, loss: 0.1565\r", + "cfm epoch: 5, steps: 369, loss: 0.1667\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 370, loss: 0.1742\r", + "cfm epoch: 5, steps: 371, loss: 0.1656\r", + "cfm epoch: 5, steps: 372, loss: 0.165\r", + "cfm epoch: 5, steps: 373, loss: 0.1781\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 374, loss: 0.1625\r", + "cfm epoch: 5, steps: 375, loss: 0.1798\r", + "cfm epoch: 5, steps: 376, loss: 0.1685\r", + "cfm epoch: 5, steps: 377, loss: 0.1657\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 378, loss: 0.148\r", + "cfm epoch: 5, steps: 379, loss: 0.1416\r", + "cfm epoch: 5, steps: 380, loss: 0.1387\r", + "cfm epoch: 5, steps: 381, loss: 0.1552\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 382, loss: 0.165\r", + "cfm epoch: 5, steps: 383, loss: 0.1612\r", + "cfm epoch: 5, steps: 384, loss: 0.1689\r", + "cfm epoch: 5, steps: 385, loss: 0.1586\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 386, loss: 0.1774\r", + "cfm epoch: 5, steps: 387, loss: 0.163\r", + "cfm epoch: 5, steps: 388, loss: 0.158\r", + "cfm epoch: 5, steps: 389, loss: 0.1547\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 390, loss: 0.1759\r", + "cfm epoch: 5, steps: 391, loss: 0.1494\r", + "cfm epoch: 5, steps: 392, loss: 0.179\r", + "cfm epoch: 5, steps: 393, loss: 0.1613\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 394, loss: 0.1719\r", + "cfm epoch: 5, steps: 395, loss: 0.1562\r", + "cfm epoch: 5, steps: 396, loss: 0.1604\r", + "cfm epoch: 5, steps: 397, loss: 0.1696\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 398, loss: 0.1664\r", + "cfm epoch: 5, steps: 399, loss: 0.169\r", + "cfm epoch: 5, steps: 400, loss: 0.1741\r", + "cfm epoch: 5, steps: 401, loss: 0.1682\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 402, loss: 0.1614\r", + "cfm epoch: 5, steps: 403, loss: 0.1641\r", + "cfm epoch: 5, steps: 404, loss: 0.1732\r", + "cfm epoch: 5, steps: 405, loss: 0.1636\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 406, loss: 0.1592\r", + "cfm epoch: 5, steps: 407, loss: 0.1553\r", + "cfm epoch: 5, steps: 408, loss: 0.1702\r", + "cfm epoch: 5, steps: 409, loss: 0.1573\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 410, loss: 0.1683\r", + "cfm epoch: 5, steps: 411, loss: 0.1637\r", + "cfm epoch: 5, steps: 412, loss: 0.1719\r", + "cfm epoch: 5, steps: 413, loss: 0.1696\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 414, loss: 0.1664\r", + "cfm epoch: 5, steps: 415, loss: 0.1519\r", + "cfm epoch: 5, steps: 416, loss: 0.1685\r", + "cfm epoch: 5, steps: 417, loss: 0.1727\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 418, loss: 0.1566\r", + "cfm epoch: 5, steps: 419, loss: 0.1584\r", + "cfm epoch: 5, steps: 420, loss: 0.1641\r", + "cfm epoch: 5, steps: 421, loss: 0.1544\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 422, loss: 0.1845\r", + "cfm epoch: 5, steps: 423, loss: 0.1634\r", + "cfm epoch: 5, steps: 424, loss: 0.1535\r", + "cfm epoch: 5, steps: 425, loss: 0.1544\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 426, loss: 0.1683\r", + "cfm epoch: 5, steps: 427, loss: 0.1612\r", + "cfm epoch: 5, steps: 428, loss: 0.1639\r", + "cfm epoch: 5, steps: 429, loss: 0.1844\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 430, loss: 0.1713\r", + "cfm epoch: 5, steps: 431, loss: 0.1666\r", + "cfm epoch: 5, steps: 432, loss: 0.1625\r", + "cfm epoch: 5, steps: 433, loss: 0.1742\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 434, loss: 0.1773\r", + "cfm epoch: 5, steps: 435, loss: 0.1561\r", + "cfm epoch: 5, steps: 436, loss: 0.1609\r", + "cfm epoch: 5, steps: 437, loss: 0.1537\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 438, loss: 0.1743\r", + "cfm epoch: 5, steps: 439, loss: 0.155\r", + "cfm epoch: 5, steps: 440, loss: 0.1559\r", + "cfm epoch: 5, steps: 441, loss: 0.1674\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 442, loss: 0.1665\r", + "cfm epoch: 5, steps: 443, loss: 0.1551\r", + "cfm epoch: 5, steps: 444, loss: 0.1639\r", + "cfm epoch: 5, steps: 445, loss: 0.1613\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 446, loss: 0.1602\r", + "cfm epoch: 5, steps: 447, loss: 0.1671\r", + "cfm epoch: 5, steps: 448, loss: 0.179\r", + "cfm epoch: 5, steps: 449, loss: 0.1647\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 450, loss: 0.1768\r", + "cfm epoch: 5, steps: 451, loss: 0.1519\r", + "cfm epoch: 5, steps: 452, loss: 0.1638\r", + "cfm epoch: 5, steps: 453, loss: 0.1616\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 454, loss: 0.1701\r", + "cfm epoch: 5, steps: 455, loss: 0.1739\r", + "cfm epoch: 5, steps: 456, loss: 0.1632\r", + "cfm epoch: 5, steps: 457, loss: 0.1564\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 458, loss: 0.1656\r", + "cfm epoch: 5, steps: 459, loss: 0.1596\r", + "cfm epoch: 5, steps: 460, loss: 0.1633\r", + "cfm epoch: 5, steps: 461, loss: 0.155\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 462, loss: 0.1656\r", + "cfm epoch: 5, steps: 463, loss: 0.1546\r", + "cfm epoch: 5, steps: 464, loss: 0.1632\r", + "cfm epoch: 5, steps: 465, loss: 0.1646\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 5, steps: 466, loss: 0.1609\r", + "cfm epoch: 5, steps: 467, loss: 0.1666\r", + "cfm epoch: 6, steps: 0, loss: 0.1641\r", + "cfm epoch: 6, steps: 1, loss: 0.1675\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 2, loss: 0.1676\r", + "cfm epoch: 6, steps: 3, loss: 0.1654\r", + "cfm epoch: 6, steps: 4, loss: 0.1747\r", + "cfm epoch: 6, steps: 5, loss: 0.1616\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 6, loss: 0.1532\r", + "cfm epoch: 6, steps: 7, loss: 0.1587\r", + "cfm epoch: 6, steps: 8, loss: 0.1552\r", + "cfm epoch: 6, steps: 9, loss: 0.1624\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 10, loss: 0.154\r", + "cfm epoch: 6, steps: 11, loss: 0.1524\r", + "cfm epoch: 6, steps: 12, loss: 0.1723\r", + "cfm epoch: 6, steps: 13, loss: 0.1629\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 14, loss: 0.1612\r", + "cfm epoch: 6, steps: 15, loss: 0.1735\r", + "cfm epoch: 6, steps: 16, loss: 0.1668\r", + "cfm epoch: 6, steps: 17, loss: 0.1706\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 18, loss: 0.1567\r", + "cfm epoch: 6, steps: 19, loss: 0.1687\r", + "cfm epoch: 6, steps: 20, loss: 0.17\r", + "cfm epoch: 6, steps: 21, loss: 0.1593\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 22, loss: 0.1676\r", + "cfm epoch: 6, steps: 23, loss: 0.1649\r", + "cfm epoch: 6, steps: 24, loss: 0.1591\r", + "cfm epoch: 6, steps: 25, loss: 0.1629\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 26, loss: 0.1498\r", + "cfm epoch: 6, steps: 27, loss: 0.16\r", + "cfm epoch: 6, steps: 28, loss: 0.1551\r", + "cfm epoch: 6, steps: 29, loss: 0.1688\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 30, loss: 0.1641\r", + "cfm epoch: 6, steps: 31, loss: 0.1566\r", + "cfm epoch: 6, steps: 32, loss: 0.1724\r", + "cfm epoch: 6, steps: 33, loss: 0.171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 34, loss: 0.1729\r", + "cfm epoch: 6, steps: 35, loss: 0.1622\r", + "cfm epoch: 6, steps: 36, loss: 0.1614\r", + "cfm epoch: 6, steps: 37, loss: 0.1541\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 38, loss: 0.1689\r", + "cfm epoch: 6, steps: 39, loss: 0.1595\r", + "cfm epoch: 6, steps: 40, loss: 0.1654\r", + "cfm epoch: 6, steps: 41, loss: 0.1601\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 42, loss: 0.1707\r", + "cfm epoch: 6, steps: 43, loss: 0.1689\r", + "cfm epoch: 6, steps: 44, loss: 0.1584\r", + "cfm epoch: 6, steps: 45, loss: 0.1732\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 46, loss: 0.169\r", + "cfm epoch: 6, steps: 47, loss: 0.1634\r", + "cfm epoch: 6, steps: 48, loss: 0.1644\r", + "cfm epoch: 6, steps: 49, loss: 0.1666\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 50, loss: 0.1561\r", + "cfm epoch: 6, steps: 51, loss: 0.165\r", + "cfm epoch: 6, steps: 52, loss: 0.1649\r", + "cfm epoch: 6, steps: 53, loss: 0.1579\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 54, loss: 0.1539\r", + "cfm epoch: 6, steps: 55, loss: 0.1637\r", + "cfm epoch: 6, steps: 56, loss: 0.1728\r", + "cfm epoch: 6, steps: 57, loss: 0.1602\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 58, loss: 0.1619\r", + "cfm epoch: 6, steps: 59, loss: 0.1638\r", + "cfm epoch: 6, steps: 60, loss: 0.1617\r", + "cfm epoch: 6, steps: 61, loss: 0.1592\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 62, loss: 0.1632\r", + "cfm epoch: 6, steps: 63, loss: 0.171\r", + "cfm epoch: 6, steps: 64, loss: 0.158\r", + "cfm epoch: 6, steps: 65, loss: 0.1455\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 66, loss: 0.1696\r", + "cfm epoch: 6, steps: 67, loss: 0.1502\r", + "cfm epoch: 6, steps: 68, loss: 0.1609\r", + "cfm epoch: 6, steps: 69, loss: 0.1567\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 70, loss: 0.162\r", + "cfm epoch: 6, steps: 71, loss: 0.1602\r", + "cfm epoch: 6, steps: 72, loss: 0.1625\r", + "cfm epoch: 6, steps: 73, loss: 0.1619\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 74, loss: 0.1588\r", + "cfm epoch: 6, steps: 75, loss: 0.163\r", + "cfm epoch: 6, steps: 76, loss: 0.1716\r", + "cfm epoch: 6, steps: 77, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 78, loss: 0.1536\r", + "cfm epoch: 6, steps: 79, loss: 0.1601\r", + "cfm epoch: 6, steps: 80, loss: 0.1589\r", + "cfm epoch: 6, steps: 81, loss: 0.1801\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 82, loss: 0.1667\r", + "cfm epoch: 6, steps: 83, loss: 0.1533\r", + "cfm epoch: 6, steps: 84, loss: 0.1548\r", + "cfm epoch: 6, steps: 85, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 86, loss: 0.1785\r", + "cfm epoch: 6, steps: 87, loss: 0.1596\r", + "cfm epoch: 6, steps: 88, loss: 0.1629\r", + "cfm epoch: 6, steps: 89, loss: 0.1567\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 90, loss: 0.1474\r", + "cfm epoch: 6, steps: 91, loss: 0.1718\r", + "cfm epoch: 6, steps: 92, loss: 0.1476\r", + "cfm epoch: 6, steps: 93, loss: 0.1777\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 94, loss: 0.1563\r", + "cfm epoch: 6, steps: 95, loss: 0.1605\r", + "cfm epoch: 6, steps: 96, loss: 0.1765\r", + "cfm epoch: 6, steps: 97, loss: 0.1564\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 98, loss: 0.172\r", + "cfm epoch: 6, steps: 99, loss: 0.1661\r", + "cfm epoch: 6, steps: 100, loss: 0.16\r", + "cfm epoch: 6, steps: 101, loss: 0.1548\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 102, loss: 0.1527\r", + "cfm epoch: 6, steps: 103, loss: 0.1541\r", + "cfm epoch: 6, steps: 104, loss: 0.1574\r", + "cfm epoch: 6, steps: 105, loss: 0.1602\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 106, loss: 0.1604\r", + "cfm epoch: 6, steps: 107, loss: 0.1665\r", + "cfm epoch: 6, steps: 108, loss: 0.1494\r", + "cfm epoch: 6, steps: 109, loss: 0.1493\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 110, loss: 0.1555\r", + "cfm epoch: 6, steps: 111, loss: 0.154\r", + "cfm epoch: 6, steps: 112, loss: 0.1593\r", + "cfm epoch: 6, steps: 113, loss: 0.1626\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 114, loss: 0.1696\r", + "cfm epoch: 6, steps: 115, loss: 0.1756\r", + "cfm epoch: 6, steps: 116, loss: 0.1686\r", + "cfm epoch: 6, steps: 117, loss: 0.178\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 118, loss: 0.1641\r", + "cfm epoch: 6, steps: 119, loss: 0.1552\r", + "cfm epoch: 6, steps: 120, loss: 0.1546\r", + "cfm epoch: 6, steps: 121, loss: 0.1701\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 122, loss: 0.1588\r", + "cfm epoch: 6, steps: 123, loss: 0.151\r", + "cfm epoch: 6, steps: 124, loss: 0.1599\r", + "cfm epoch: 6, steps: 125, loss: 0.1689\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 126, loss: 0.1572\r", + "cfm epoch: 6, steps: 127, loss: 0.169\r", + "cfm epoch: 6, steps: 128, loss: 0.1604\r", + "cfm epoch: 6, steps: 129, loss: 0.1609\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 130, loss: 0.1608\r", + "cfm epoch: 6, steps: 131, loss: 0.1719\r", + "cfm epoch: 6, steps: 132, loss: 0.1617\r", + "cfm epoch: 6, steps: 133, loss: 0.1695\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 134, loss: 0.1631\r", + "cfm epoch: 6, steps: 135, loss: 0.177\r", + "cfm epoch: 6, steps: 136, loss: 0.1705\r", + "cfm epoch: 6, steps: 137, loss: 0.1534\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 138, loss: 0.1653\r", + "cfm epoch: 6, steps: 139, loss: 0.1545\r", + "cfm epoch: 6, steps: 140, loss: 0.1702\r", + "cfm epoch: 6, steps: 141, loss: 0.1759\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 142, loss: 0.1625\r", + "cfm epoch: 6, steps: 143, loss: 0.167\r", + "cfm epoch: 6, steps: 144, loss: 0.1735\r", + "cfm epoch: 6, steps: 145, loss: 0.157\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 146, loss: 0.1619\r", + "cfm epoch: 6, steps: 147, loss: 0.1497\r", + "cfm epoch: 6, steps: 148, loss: 0.1627\r", + "cfm epoch: 6, steps: 149, loss: 0.1707\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 150, loss: 0.159\r", + "cfm epoch: 6, steps: 151, loss: 0.1515\r", + "cfm epoch: 6, steps: 152, loss: 0.1659\r", + "cfm epoch: 6, steps: 153, loss: 0.1787\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 154, loss: 0.1454\r", + "cfm epoch: 6, steps: 155, loss: 0.1707\r", + "cfm epoch: 6, steps: 156, loss: 0.1682\r", + "cfm epoch: 6, steps: 157, loss: 0.1707\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 158, loss: 0.1546\r", + "cfm epoch: 6, steps: 159, loss: 0.154\r", + "cfm epoch: 6, steps: 160, loss: 0.171\r", + "cfm epoch: 6, steps: 161, loss: 0.1716\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 162, loss: 0.1648\r", + "cfm epoch: 6, steps: 163, loss: 0.1524\r", + "cfm epoch: 6, steps: 164, loss: 0.1538\r", + "cfm epoch: 6, steps: 165, loss: 0.1628\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 166, loss: 0.158\r", + "cfm epoch: 6, steps: 167, loss: 0.1576\r", + "cfm epoch: 6, steps: 168, loss: 0.1612\r", + "cfm epoch: 6, steps: 169, loss: 0.1565\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 170, loss: 0.1578\r", + "cfm epoch: 6, steps: 171, loss: 0.1551\r", + "cfm epoch: 6, steps: 172, loss: 0.1637\r", + "cfm epoch: 6, steps: 173, loss: 0.1686\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 174, loss: 0.1587\r", + "cfm epoch: 6, steps: 175, loss: 0.1717\r", + "cfm epoch: 6, steps: 176, loss: 0.1569\r", + "cfm epoch: 6, steps: 177, loss: 0.1542\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 178, loss: 0.1723\r", + "cfm epoch: 6, steps: 179, loss: 0.1596\r", + "cfm epoch: 6, steps: 180, loss: 0.1617\r", + "cfm epoch: 6, steps: 181, loss: 0.1579\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 182, loss: 0.1611\r", + "cfm epoch: 6, steps: 183, loss: 0.1754\r", + "cfm epoch: 6, steps: 184, loss: 0.1662\r", + "cfm epoch: 6, steps: 185, loss: 0.1577\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 186, loss: 0.1754\r", + "cfm epoch: 6, steps: 187, loss: 0.1525\r", + "cfm epoch: 6, steps: 188, loss: 0.1652\r", + "cfm epoch: 6, steps: 189, loss: 0.1608\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 190, loss: 0.1573\r", + "cfm epoch: 6, steps: 191, loss: 0.155\r", + "cfm epoch: 6, steps: 192, loss: 0.1547\r", + "cfm epoch: 6, steps: 193, loss: 0.1676\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 194, loss: 0.1591\r", + "cfm epoch: 6, steps: 195, loss: 0.1613\r", + "cfm epoch: 6, steps: 196, loss: 0.178\r", + "cfm epoch: 6, steps: 197, loss: 0.153\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 198, loss: 0.1472\r", + "cfm epoch: 6, steps: 199, loss: 0.1599\r", + "cfm epoch: 6, steps: 200, loss: 0.1698\r", + "cfm epoch: 6, steps: 201, loss: 0.1695\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 202, loss: 0.1642\r", + "cfm epoch: 6, steps: 203, loss: 0.1594\r", + "cfm epoch: 6, steps: 204, loss: 0.1569\r", + "cfm epoch: 6, steps: 205, loss: 0.167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 206, loss: 0.1647\r", + "cfm epoch: 6, steps: 207, loss: 0.1782\r", + "cfm epoch: 6, steps: 208, loss: 0.1662\r", + "cfm epoch: 6, steps: 209, loss: 0.1585\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 210, loss: 0.1615\r", + "cfm epoch: 6, steps: 211, loss: 0.1715\r", + "cfm epoch: 6, steps: 212, loss: 0.1589\r", + "cfm epoch: 6, steps: 213, loss: 0.1502\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 214, loss: 0.1531\r", + "cfm epoch: 6, steps: 215, loss: 0.1601\r", + "cfm epoch: 6, steps: 216, loss: 0.1625\r", + "cfm epoch: 6, steps: 217, loss: 0.1483\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 218, loss: 0.1525\r", + "cfm epoch: 6, steps: 219, loss: 0.1568\r", + "cfm epoch: 6, steps: 220, loss: 0.1716\r", + "cfm epoch: 6, steps: 221, loss: 0.1641\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 222, loss: 0.1496\r", + "cfm epoch: 6, steps: 223, loss: 0.1614\r", + "cfm epoch: 6, steps: 224, loss: 0.1763\r", + "cfm epoch: 6, steps: 225, loss: 0.1579\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 226, loss: 0.1528\r", + "cfm epoch: 6, steps: 227, loss: 0.1695\r", + "cfm epoch: 6, steps: 228, loss: 0.1696\r", + "cfm epoch: 6, steps: 229, loss: 0.1511\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 230, loss: 0.1501\r", + "cfm epoch: 6, steps: 231, loss: 0.1596\r", + "cfm epoch: 6, steps: 232, loss: 0.1625\r", + "cfm epoch: 6, steps: 233, loss: 0.1759\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 234, loss: 0.1699\r", + "cfm epoch: 6, steps: 235, loss: 0.1626\r", + "cfm epoch: 6, steps: 236, loss: 0.1597\r", + "cfm epoch: 6, steps: 237, loss: 0.1706\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 238, loss: 0.1912\r", + "cfm epoch: 6, steps: 239, loss: 0.17\r", + "cfm epoch: 6, steps: 240, loss: 0.1605\r", + "cfm epoch: 6, steps: 241, loss: 0.1728\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 242, loss: 0.1704\r", + "cfm epoch: 6, steps: 243, loss: 0.1523\r", + "cfm epoch: 6, steps: 244, loss: 0.166\r", + "cfm epoch: 6, steps: 245, loss: 0.1603\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 246, loss: 0.1656\r", + "cfm epoch: 6, steps: 247, loss: 0.1569\r", + "cfm epoch: 6, steps: 248, loss: 0.1656\r", + "cfm epoch: 6, steps: 249, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 250, loss: 0.1464\r", + "cfm epoch: 6, steps: 251, loss: 0.159\r", + "cfm epoch: 6, steps: 252, loss: 0.1794\r", + "cfm epoch: 6, steps: 253, loss: 0.154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 254, loss: 0.1645\r", + "cfm epoch: 6, steps: 255, loss: 0.1625\r", + "cfm epoch: 6, steps: 256, loss: 0.1604\r", + "cfm epoch: 6, steps: 257, loss: 0.1657\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 258, loss: 0.1734\r", + "cfm epoch: 6, steps: 259, loss: 0.1592\r", + "cfm epoch: 6, steps: 260, loss: 0.1675\r", + "cfm epoch: 6, steps: 261, loss: 0.1751\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 262, loss: 0.1539\r", + "cfm epoch: 6, steps: 263, loss: 0.1798\r", + "cfm epoch: 6, steps: 264, loss: 0.1682\r", + "cfm epoch: 6, steps: 265, loss: 0.1704\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 266, loss: 0.1582\r", + "cfm epoch: 6, steps: 267, loss: 0.1714\r", + "cfm epoch: 6, steps: 268, loss: 0.1628\r", + "cfm epoch: 6, steps: 269, loss: 0.1528\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 270, loss: 0.1683\r", + "cfm epoch: 6, steps: 271, loss: 0.1664\r", + "cfm epoch: 6, steps: 272, loss: 0.1603\r", + "cfm epoch: 6, steps: 273, loss: 0.1629\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 274, loss: 0.1642\r", + "cfm epoch: 6, steps: 275, loss: 0.1744\r", + "cfm epoch: 6, steps: 276, loss: 0.168\r", + "cfm epoch: 6, steps: 277, loss: 0.1573\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 278, loss: 0.1625\r", + "cfm epoch: 6, steps: 279, loss: 0.1602\r", + "cfm epoch: 6, steps: 280, loss: 0.1565\r", + "cfm epoch: 6, steps: 281, loss: 0.1524\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 282, loss: 0.1541\r", + "cfm epoch: 6, steps: 283, loss: 0.1696\r", + "cfm epoch: 6, steps: 284, loss: 0.1485\r", + "cfm epoch: 6, steps: 285, loss: 0.1616\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 286, loss: 0.1521\r", + "cfm epoch: 6, steps: 287, loss: 0.1755\r", + "cfm epoch: 6, steps: 288, loss: 0.1655\r", + "cfm epoch: 6, steps: 289, loss: 0.1756\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 290, loss: 0.1536\r", + "cfm epoch: 6, steps: 291, loss: 0.154\r", + "cfm epoch: 6, steps: 292, loss: 0.1598\r", + "cfm epoch: 6, steps: 293, loss: 0.1742\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 294, loss: 0.1596\r", + "cfm epoch: 6, steps: 295, loss: 0.1606\r", + "cfm epoch: 6, steps: 296, loss: 0.1633\r", + "cfm epoch: 6, steps: 297, loss: 0.1823\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 298, loss: 0.1484\r", + "cfm epoch: 6, steps: 299, loss: 0.1627\r", + "cfm epoch: 6, steps: 300, loss: 0.1681\r", + "cfm epoch: 6, steps: 301, loss: 0.1702\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 302, loss: 0.1566\r", + "cfm epoch: 6, steps: 303, loss: 0.1564\r", + "cfm epoch: 6, steps: 304, loss: 0.1537\r", + "cfm epoch: 6, steps: 305, loss: 0.1593\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 306, loss: 0.1643\r", + "cfm epoch: 6, steps: 307, loss: 0.1592\r", + "cfm epoch: 6, steps: 308, loss: 0.1645\r", + "cfm epoch: 6, steps: 309, loss: 0.1659\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 310, loss: 0.1671\r", + "cfm epoch: 6, steps: 311, loss: 0.1756\r", + "cfm epoch: 6, steps: 312, loss: 0.1612\r", + "cfm epoch: 6, steps: 313, loss: 0.1661\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 314, loss: 0.1633\r", + "cfm epoch: 6, steps: 315, loss: 0.1692\r", + "cfm epoch: 6, steps: 316, loss: 0.1766\r", + "cfm epoch: 6, steps: 317, loss: 0.1551\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 318, loss: 0.1596\r", + "cfm epoch: 6, steps: 319, loss: 0.1659\r", + "cfm epoch: 6, steps: 320, loss: 0.1518\r", + "cfm epoch: 6, steps: 321, loss: 0.1728\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 322, loss: 0.1675\r", + "cfm epoch: 6, steps: 323, loss: 0.1568\r", + "cfm epoch: 6, steps: 324, loss: 0.165\r", + "cfm epoch: 6, steps: 325, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 326, loss: 0.1516\r", + "cfm epoch: 6, steps: 327, loss: 0.1636\r", + "cfm epoch: 6, steps: 328, loss: 0.1622\r", + "cfm epoch: 6, steps: 329, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 330, loss: 0.1638\r", + "cfm epoch: 6, steps: 331, loss: 0.1669\r", + "cfm epoch: 6, steps: 332, loss: 0.1727\r", + "cfm epoch: 6, steps: 333, loss: 0.1566\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 334, loss: 0.1568\r", + "cfm epoch: 6, steps: 335, loss: 0.1618\r", + "cfm epoch: 6, steps: 336, loss: 0.1526\r", + "cfm epoch: 6, steps: 337, loss: 0.1657\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 338, loss: 0.1641\r", + "cfm epoch: 6, steps: 339, loss: 0.1627\r", + "cfm epoch: 6, steps: 340, loss: 0.1442\r", + "cfm epoch: 6, steps: 341, loss: 0.1577\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 342, loss: 0.1661\r", + "cfm epoch: 6, steps: 343, loss: 0.1691\r", + "cfm epoch: 6, steps: 344, loss: 0.1482\r", + "cfm epoch: 6, steps: 345, loss: 0.158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 346, loss: 0.1584\r", + "cfm epoch: 6, steps: 347, loss: 0.1637\r", + "cfm epoch: 6, steps: 348, loss: 0.1627\r", + "cfm epoch: 6, steps: 349, loss: 0.1692\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 350, loss: 0.1609\r", + "cfm epoch: 6, steps: 351, loss: 0.1579\r", + "cfm epoch: 6, steps: 352, loss: 0.1493\r", + "cfm epoch: 6, steps: 353, loss: 0.1622\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 354, loss: 0.1657\r", + "cfm epoch: 6, steps: 355, loss: 0.1564\r", + "cfm epoch: 6, steps: 356, loss: 0.1671\r", + "cfm epoch: 6, steps: 357, loss: 0.1688\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 358, loss: 0.1738\r", + "cfm epoch: 6, steps: 359, loss: 0.173\r", + "cfm epoch: 6, steps: 360, loss: 0.1619\r", + "cfm epoch: 6, steps: 361, loss: 0.1602\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 362, loss: 0.1602\r", + "cfm epoch: 6, steps: 363, loss: 0.1599\r", + "cfm epoch: 6, steps: 364, loss: 0.165\r", + "cfm epoch: 6, steps: 365, loss: 0.1499\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 366, loss: 0.1568\r", + "cfm epoch: 6, steps: 367, loss: 0.1559\r", + "cfm epoch: 6, steps: 368, loss: 0.1581\r", + "cfm epoch: 6, steps: 369, loss: 0.1608\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 370, loss: 0.1553\r", + "cfm epoch: 6, steps: 371, loss: 0.1647\r", + "cfm epoch: 6, steps: 372, loss: 0.1605\r", + "cfm epoch: 6, steps: 373, loss: 0.1666\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 374, loss: 0.1573\r", + "cfm epoch: 6, steps: 375, loss: 0.1593\r", + "cfm epoch: 6, steps: 376, loss: 0.1573\r", + "cfm epoch: 6, steps: 377, loss: 0.1609\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 378, loss: 0.1605\r", + "cfm epoch: 6, steps: 379, loss: 0.1613\r", + "cfm epoch: 6, steps: 380, loss: 0.1498\r", + "cfm epoch: 6, steps: 381, loss: 0.1595\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 382, loss: 0.1688\r", + "cfm epoch: 6, steps: 383, loss: 0.1544\r", + "cfm epoch: 6, steps: 384, loss: 0.1691\r", + "cfm epoch: 6, steps: 385, loss: 0.1736\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 386, loss: 0.1591\r", + "cfm epoch: 6, steps: 387, loss: 0.1639\r", + "cfm epoch: 6, steps: 388, loss: 0.1677\r", + "cfm epoch: 6, steps: 389, loss: 0.1646\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 390, loss: 0.1676\r", + "cfm epoch: 6, steps: 391, loss: 0.1554\r", + "cfm epoch: 6, steps: 392, loss: 0.1639\r", + "cfm epoch: 6, steps: 393, loss: 0.1752\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 394, loss: 0.1563\r", + "cfm epoch: 6, steps: 395, loss: 0.166\r", + "cfm epoch: 6, steps: 396, loss: 0.1756\r", + "cfm epoch: 6, steps: 397, loss: 0.1722\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 398, loss: 0.1692\r", + "cfm epoch: 6, steps: 399, loss: 0.1651\r", + "cfm epoch: 6, steps: 400, loss: 0.157\r", + "cfm epoch: 6, steps: 401, loss: 0.1574\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 402, loss: 0.1604\r", + "cfm epoch: 6, steps: 403, loss: 0.1743\r", + "cfm epoch: 6, steps: 404, loss: 0.157\r", + "cfm epoch: 6, steps: 405, loss: 0.1652\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 406, loss: 0.1665\r", + "cfm epoch: 6, steps: 407, loss: 0.1667\r", + "cfm epoch: 6, steps: 408, loss: 0.1751\r", + "cfm epoch: 6, steps: 409, loss: 0.1656\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 410, loss: 0.152\r", + "cfm epoch: 6, steps: 411, loss: 0.1721\r", + "cfm epoch: 6, steps: 412, loss: 0.161\r", + "cfm epoch: 6, steps: 413, loss: 0.1504\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 414, loss: 0.1758\r", + "cfm epoch: 6, steps: 415, loss: 0.1672\r", + "cfm epoch: 6, steps: 416, loss: 0.1519\r", + "cfm epoch: 6, steps: 417, loss: 0.1632\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 418, loss: 0.1568\r", + "cfm epoch: 6, steps: 419, loss: 0.16\r", + "cfm epoch: 6, steps: 420, loss: 0.1654\r", + "cfm epoch: 6, steps: 421, loss: 0.1898\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 422, loss: 0.1561\r", + "cfm epoch: 6, steps: 423, loss: 0.1573\r", + "cfm epoch: 6, steps: 424, loss: 0.1548\r", + "cfm epoch: 6, steps: 425, loss: 0.1682\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 426, loss: 0.1686\r", + "cfm epoch: 6, steps: 427, loss: 0.1658\r", + "cfm epoch: 6, steps: 428, loss: 0.1464\r", + "cfm epoch: 6, steps: 429, loss: 0.1622\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 430, loss: 0.1609\r", + "cfm epoch: 6, steps: 431, loss: 0.171\r", + "cfm epoch: 6, steps: 432, loss: 0.1767\r", + "cfm epoch: 6, steps: 433, loss: 0.1685\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 434, loss: 0.1627\r", + "cfm epoch: 6, steps: 435, loss: 0.1666\r", + "cfm epoch: 6, steps: 436, loss: 0.1672\r", + "cfm epoch: 6, steps: 437, loss: 0.1619\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 438, loss: 0.1648\r", + "cfm epoch: 6, steps: 439, loss: 0.1748\r", + "cfm epoch: 6, steps: 440, loss: 0.1478\r", + "cfm epoch: 6, steps: 441, loss: 0.1603\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 442, loss: 0.1675\r", + "cfm epoch: 6, steps: 443, loss: 0.1675\r", + "cfm epoch: 6, steps: 444, loss: 0.1561\r", + "cfm epoch: 6, steps: 445, loss: 0.1631\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 446, loss: 0.1571\r", + "cfm epoch: 6, steps: 447, loss: 0.1567\r", + "cfm epoch: 6, steps: 448, loss: 0.1657\r", + "cfm epoch: 6, steps: 449, loss: 0.1639\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 450, loss: 0.1529\r", + "cfm epoch: 6, steps: 451, loss: 0.1587\r", + "cfm epoch: 6, steps: 452, loss: 0.1757\r", + "cfm epoch: 6, steps: 453, loss: 0.1555\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 454, loss: 0.1602\r", + "cfm epoch: 6, steps: 455, loss: 0.1587\r", + "cfm epoch: 6, steps: 456, loss: 0.1533\r", + "cfm epoch: 6, steps: 457, loss: 0.1623\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 458, loss: 0.167\r", + "cfm epoch: 6, steps: 459, loss: 0.1605\r", + "cfm epoch: 6, steps: 460, loss: 0.1585\r", + "cfm epoch: 6, steps: 461, loss: 0.1536\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 462, loss: 0.1686\r", + "cfm epoch: 6, steps: 463, loss: 0.1701\r", + "cfm epoch: 6, steps: 464, loss: 0.1655\r", + "cfm epoch: 6, steps: 465, loss: 0.1663\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 6, steps: 466, loss: 0.1609\r", + "cfm epoch: 6, steps: 467, loss: 0.1612\r", + "cfm epoch: 7, steps: 0, loss: 0.1507\r", + "cfm epoch: 7, steps: 1, loss: 0.1785\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 2, loss: 0.1639\r", + "cfm epoch: 7, steps: 3, loss: 0.155\r", + "cfm epoch: 7, steps: 4, loss: 0.1615\r", + "cfm epoch: 7, steps: 5, loss: 0.1512\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 6, loss: 0.162\r", + "cfm epoch: 7, steps: 7, loss: 0.1698\r", + "cfm epoch: 7, steps: 8, loss: 0.157\r", + "cfm epoch: 7, steps: 9, loss: 0.1727\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 10, loss: 0.1637\r", + "cfm epoch: 7, steps: 11, loss: 0.1657\r", + "cfm epoch: 7, steps: 12, loss: 0.1621\r", + "cfm epoch: 7, steps: 13, loss: 0.1681\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 14, loss: 0.1549\r", + "cfm epoch: 7, steps: 15, loss: 0.1642\r", + "cfm epoch: 7, steps: 16, loss: 0.1599\r", + "cfm epoch: 7, steps: 17, loss: 0.156\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 18, loss: 0.1649\r", + "cfm epoch: 7, steps: 19, loss: 0.1636\r", + "cfm epoch: 7, steps: 20, loss: 0.1611\r", + "cfm epoch: 7, steps: 21, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 22, loss: 0.151\r", + "cfm epoch: 7, steps: 23, loss: 0.1508\r", + "cfm epoch: 7, steps: 24, loss: 0.1765\r", + "cfm epoch: 7, steps: 25, loss: 0.1614\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 26, loss: 0.158\r", + "cfm epoch: 7, steps: 27, loss: 0.1532\r", + "cfm epoch: 7, steps: 28, loss: 0.1638\r", + "cfm epoch: 7, steps: 29, loss: 0.1711\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 30, loss: 0.1752\r", + "cfm epoch: 7, steps: 31, loss: 0.1615\r", + "cfm epoch: 7, steps: 32, loss: 0.1622\r", + "cfm epoch: 7, steps: 33, loss: 0.1543\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 34, loss: 0.1505\r", + "cfm epoch: 7, steps: 35, loss: 0.1534\r", + "cfm epoch: 7, steps: 36, loss: 0.1589\r", + "cfm epoch: 7, steps: 37, loss: 0.1715\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 38, loss: 0.1643\r", + "cfm epoch: 7, steps: 39, loss: 0.1498\r", + "cfm epoch: 7, steps: 40, loss: 0.1643\r", + "cfm epoch: 7, steps: 41, loss: 0.1662\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 42, loss: 0.1575\r", + "cfm epoch: 7, steps: 43, loss: 0.1626\r", + "cfm epoch: 7, steps: 44, loss: 0.1667\r", + "cfm epoch: 7, steps: 45, loss: 0.1596\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 46, loss: 0.1645\r", + "cfm epoch: 7, steps: 47, loss: 0.1632\r", + "cfm epoch: 7, steps: 48, loss: 0.1531\r", + "cfm epoch: 7, steps: 49, loss: 0.1597\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 50, loss: 0.17\r", + "cfm epoch: 7, steps: 51, loss: 0.175\r", + "cfm epoch: 7, steps: 52, loss: 0.1702\r", + "cfm epoch: 7, steps: 53, loss: 0.1609\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 54, loss: 0.1596\r", + "cfm epoch: 7, steps: 55, loss: 0.1648\r", + "cfm epoch: 7, steps: 56, loss: 0.1598\r", + "cfm epoch: 7, steps: 57, loss: 0.1555\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 58, loss: 0.1477\r", + "cfm epoch: 7, steps: 59, loss: 0.1545\r", + "cfm epoch: 7, steps: 60, loss: 0.1573\r", + "cfm epoch: 7, steps: 61, loss: 0.1572\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 62, loss: 0.1687\r", + "cfm epoch: 7, steps: 63, loss: 0.1595\r", + "cfm epoch: 7, steps: 64, loss: 0.1601\r", + "cfm epoch: 7, steps: 65, loss: 0.1562\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 66, loss: 0.1516\r", + "cfm epoch: 7, steps: 67, loss: 0.1602\r", + "cfm epoch: 7, steps: 68, loss: 0.1578\r", + "cfm epoch: 7, steps: 69, loss: 0.1589\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 70, loss: 0.16\r", + "cfm epoch: 7, steps: 71, loss: 0.1647\r", + "cfm epoch: 7, steps: 72, loss: 0.1717\r", + "cfm epoch: 7, steps: 73, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 74, loss: 0.1595\r", + "cfm epoch: 7, steps: 75, loss: 0.1668\r", + "cfm epoch: 7, steps: 76, loss: 0.1589\r", + "cfm epoch: 7, steps: 77, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 78, loss: 0.1501\r", + "cfm epoch: 7, steps: 79, loss: 0.172\r", + "cfm epoch: 7, steps: 80, loss: 0.1616\r", + "cfm epoch: 7, steps: 81, loss: 0.1616\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 82, loss: 0.1597\r", + "cfm epoch: 7, steps: 83, loss: 0.1518\r", + "cfm epoch: 7, steps: 84, loss: 0.1662\r", + "cfm epoch: 7, steps: 85, loss: 0.1559\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 86, loss: 0.1687\r", + "cfm epoch: 7, steps: 87, loss: 0.1631\r", + "cfm epoch: 7, steps: 88, loss: 0.1574\r", + "cfm epoch: 7, steps: 89, loss: 0.1612\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 90, loss: 0.1622\r", + "cfm epoch: 7, steps: 91, loss: 0.1616\r", + "cfm epoch: 7, steps: 92, loss: 0.1649\r", + "cfm epoch: 7, steps: 93, loss: 0.1604\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 94, loss: 0.1519\r", + "cfm epoch: 7, steps: 95, loss: 0.1727\r", + "cfm epoch: 7, steps: 96, loss: 0.1636\r", + "cfm epoch: 7, steps: 97, loss: 0.1595\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 98, loss: 0.1489\r", + "cfm epoch: 7, steps: 99, loss: 0.153\r", + "cfm epoch: 7, steps: 100, loss: 0.1638\r", + "cfm epoch: 7, steps: 101, loss: 0.1625\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 102, loss: 0.1681\r", + "cfm epoch: 7, steps: 103, loss: 0.1625\r", + "cfm epoch: 7, steps: 104, loss: 0.1725\r", + "cfm epoch: 7, steps: 105, loss: 0.1615\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 106, loss: 0.173\r", + "cfm epoch: 7, steps: 107, loss: 0.1655\r", + "cfm epoch: 7, steps: 108, loss: 0.1511\r", + "cfm epoch: 7, steps: 109, loss: 0.1601\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 110, loss: 0.1545\r", + "cfm epoch: 7, steps: 111, loss: 0.1511\r", + "cfm epoch: 7, steps: 112, loss: 0.1596\r", + "cfm epoch: 7, steps: 113, loss: 0.1599\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 114, loss: 0.1573\r", + "cfm epoch: 7, steps: 115, loss: 0.1546\r", + "cfm epoch: 7, steps: 116, loss: 0.1561\r", + "cfm epoch: 7, steps: 117, loss: 0.1492\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 118, loss: 0.1565\r", + "cfm epoch: 7, steps: 119, loss: 0.1541\r", + "cfm epoch: 7, steps: 120, loss: 0.1779\r", + "cfm epoch: 7, steps: 121, loss: 0.1772\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 122, loss: 0.1578\r", + "cfm epoch: 7, steps: 123, loss: 0.1687\r", + "cfm epoch: 7, steps: 124, loss: 0.1618\r", + "cfm epoch: 7, steps: 125, loss: 0.1752\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 126, loss: 0.1628\r", + "cfm epoch: 7, steps: 127, loss: 0.1721\r", + "cfm epoch: 7, steps: 128, loss: 0.157\r", + "cfm epoch: 7, steps: 129, loss: 0.1687\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 130, loss: 0.1638\r", + "cfm epoch: 7, steps: 131, loss: 0.1652\r", + "cfm epoch: 7, steps: 132, loss: 0.1607\r", + "cfm epoch: 7, steps: 133, loss: 0.1582\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 134, loss: 0.1563\r", + "cfm epoch: 7, steps: 135, loss: 0.1633\r", + "cfm epoch: 7, steps: 136, loss: 0.1643\r", + "cfm epoch: 7, steps: 137, loss: 0.1663\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 138, loss: 0.1639\r", + "cfm epoch: 7, steps: 139, loss: 0.1591\r", + "cfm epoch: 7, steps: 140, loss: 0.1601\r", + "cfm epoch: 7, steps: 141, loss: 0.154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 142, loss: 0.1664\r", + "cfm epoch: 7, steps: 143, loss: 0.1715\r", + "cfm epoch: 7, steps: 144, loss: 0.1494\r", + "cfm epoch: 7, steps: 145, loss: 0.149\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 146, loss: 0.1739\r", + "cfm epoch: 7, steps: 147, loss: 0.1554\r", + "cfm epoch: 7, steps: 148, loss: 0.1725\r", + "cfm epoch: 7, steps: 149, loss: 0.1611\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 150, loss: 0.1751\r", + "cfm epoch: 7, steps: 151, loss: 0.1598\r", + "cfm epoch: 7, steps: 152, loss: 0.1655\r", + "cfm epoch: 7, steps: 153, loss: 0.163\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 154, loss: 0.1572\r", + "cfm epoch: 7, steps: 155, loss: 0.1696\r", + "cfm epoch: 7, steps: 156, loss: 0.1694\r", + "cfm epoch: 7, steps: 157, loss: 0.165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 158, loss: 0.1641\r", + "cfm epoch: 7, steps: 159, loss: 0.1705\r", + "cfm epoch: 7, steps: 160, loss: 0.163\r", + "cfm epoch: 7, steps: 161, loss: 0.1567\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 162, loss: 0.1481\r", + "cfm epoch: 7, steps: 163, loss: 0.1713\r", + "cfm epoch: 7, steps: 164, loss: 0.159\r", + "cfm epoch: 7, steps: 165, loss: 0.1676\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 166, loss: 0.1514\r", + "cfm epoch: 7, steps: 167, loss: 0.1653\r", + "cfm epoch: 7, steps: 168, loss: 0.1714\r", + "cfm epoch: 7, steps: 169, loss: 0.1601\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 170, loss: 0.1657\r", + "cfm epoch: 7, steps: 171, loss: 0.1558\r", + "cfm epoch: 7, steps: 172, loss: 0.1535\r", + "cfm epoch: 7, steps: 173, loss: 0.148\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 174, loss: 0.1679\r", + "cfm epoch: 7, steps: 175, loss: 0.1568\r", + "cfm epoch: 7, steps: 176, loss: 0.1534\r", + "cfm epoch: 7, steps: 177, loss: 0.1624\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 178, loss: 0.1636\r", + "cfm epoch: 7, steps: 179, loss: 0.1546\r", + "cfm epoch: 7, steps: 180, loss: 0.1615\r", + "cfm epoch: 7, steps: 181, loss: 0.164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 182, loss: 0.1581\r", + "cfm epoch: 7, steps: 183, loss: 0.1631\r", + "cfm epoch: 7, steps: 184, loss: 0.171\r", + "cfm epoch: 7, steps: 185, loss: 0.1557\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 186, loss: 0.1707\r", + "cfm epoch: 7, steps: 187, loss: 0.162\r", + "cfm epoch: 7, steps: 188, loss: 0.1675\r", + "cfm epoch: 7, steps: 189, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 190, loss: 0.1635\r", + "cfm epoch: 7, steps: 191, loss: 0.1713\r", + "cfm epoch: 7, steps: 192, loss: 0.1472\r", + "cfm epoch: 7, steps: 193, loss: 0.1531\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 194, loss: 0.1643\r", + "cfm epoch: 7, steps: 195, loss: 0.1642\r", + "cfm epoch: 7, steps: 196, loss: 0.1706\r", + "cfm epoch: 7, steps: 197, loss: 0.1588\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 198, loss: 0.1733\r", + "cfm epoch: 7, steps: 199, loss: 0.1592\r", + "cfm epoch: 7, steps: 200, loss: 0.167\r", + "cfm epoch: 7, steps: 201, loss: 0.1762\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 202, loss: 0.1588\r", + "cfm epoch: 7, steps: 203, loss: 0.1558\r", + "cfm epoch: 7, steps: 204, loss: 0.1609\r", + "cfm epoch: 7, steps: 205, loss: 0.1686\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 206, loss: 0.1634\r", + "cfm epoch: 7, steps: 207, loss: 0.173\r", + "cfm epoch: 7, steps: 208, loss: 0.1771\r", + "cfm epoch: 7, steps: 209, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 210, loss: 0.1687\r", + "cfm epoch: 7, steps: 211, loss: 0.1637\r", + "cfm epoch: 7, steps: 212, loss: 0.1723\r", + "cfm epoch: 7, steps: 213, loss: 0.1728\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 214, loss: 0.1758\r", + "cfm epoch: 7, steps: 215, loss: 0.1635\r", + "cfm epoch: 7, steps: 216, loss: 0.1687\r", + "cfm epoch: 7, steps: 217, loss: 0.171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 218, loss: 0.1593\r", + "cfm epoch: 7, steps: 219, loss: 0.172\r", + "cfm epoch: 7, steps: 220, loss: 0.1552\r", + "cfm epoch: 7, steps: 221, loss: 0.1596\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 222, loss: 0.1729\r", + "cfm epoch: 7, steps: 223, loss: 0.1642\r", + "cfm epoch: 7, steps: 224, loss: 0.17\r", + "cfm epoch: 7, steps: 225, loss: 0.167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 226, loss: 0.1744\r", + "cfm epoch: 7, steps: 227, loss: 0.1541\r", + "cfm epoch: 7, steps: 228, loss: 0.1701\r", + "cfm epoch: 7, steps: 229, loss: 0.159\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 230, loss: 0.1609\r", + "cfm epoch: 7, steps: 231, loss: 0.1715\r", + "cfm epoch: 7, steps: 232, loss: 0.1633\r", + "cfm epoch: 7, steps: 233, loss: 0.1508\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 234, loss: 0.1691\r", + "cfm epoch: 7, steps: 235, loss: 0.1461\r", + "cfm epoch: 7, steps: 236, loss: 0.1747\r", + "cfm epoch: 7, steps: 237, loss: 0.1567\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 238, loss: 0.1744\r", + "cfm epoch: 7, steps: 239, loss: 0.1679\r", + "cfm epoch: 7, steps: 240, loss: 0.1616\r", + "cfm epoch: 7, steps: 241, loss: 0.1645\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 242, loss: 0.1537\r", + "cfm epoch: 7, steps: 243, loss: 0.1655\r", + "cfm epoch: 7, steps: 244, loss: 0.1651\r", + "cfm epoch: 7, steps: 245, loss: 0.1601\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 246, loss: 0.1579\r", + "cfm epoch: 7, steps: 247, loss: 0.1595\r", + "cfm epoch: 7, steps: 248, loss: 0.1699\r", + "cfm epoch: 7, steps: 249, loss: 0.1594\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 250, loss: 0.1606\r", + "cfm epoch: 7, steps: 251, loss: 0.1547\r", + "cfm epoch: 7, steps: 252, loss: 0.1612\r", + "cfm epoch: 7, steps: 253, loss: 0.1572\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 254, loss: 0.1625\r", + "cfm epoch: 7, steps: 255, loss: 0.1657\r", + "cfm epoch: 7, steps: 256, loss: 0.166\r", + "cfm epoch: 7, steps: 257, loss: 0.1701\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 258, loss: 0.1673\r", + "cfm epoch: 7, steps: 259, loss: 0.1558\r", + "cfm epoch: 7, steps: 260, loss: 0.1669\r", + "cfm epoch: 7, steps: 261, loss: 0.163\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 262, loss: 0.1586\r", + "cfm epoch: 7, steps: 263, loss: 0.1534\r", + "cfm epoch: 7, steps: 264, loss: 0.1479\r", + "cfm epoch: 7, steps: 265, loss: 0.174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 266, loss: 0.1727\r", + "cfm epoch: 7, steps: 267, loss: 0.1444\r", + "cfm epoch: 7, steps: 268, loss: 0.1426\r", + "cfm epoch: 7, steps: 269, loss: 0.1684\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 270, loss: 0.1548\r", + "cfm epoch: 7, steps: 271, loss: 0.1578\r", + "cfm epoch: 7, steps: 272, loss: 0.1577\r", + "cfm epoch: 7, steps: 273, loss: 0.1573\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 274, loss: 0.1554\r", + "cfm epoch: 7, steps: 275, loss: 0.1673\r", + "cfm epoch: 7, steps: 276, loss: 0.1634\r", + "cfm epoch: 7, steps: 277, loss: 0.171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 278, loss: 0.1598\r", + "cfm epoch: 7, steps: 279, loss: 0.1701\r", + "cfm epoch: 7, steps: 280, loss: 0.1678\r", + "cfm epoch: 7, steps: 281, loss: 0.1521\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 282, loss: 0.1639\r", + "cfm epoch: 7, steps: 283, loss: 0.1535\r", + "cfm epoch: 7, steps: 284, loss: 0.1691\r", + "cfm epoch: 7, steps: 285, loss: 0.1559\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 286, loss: 0.1653\r", + "cfm epoch: 7, steps: 287, loss: 0.157\r", + "cfm epoch: 7, steps: 288, loss: 0.1628\r", + "cfm epoch: 7, steps: 289, loss: 0.1546\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 290, loss: 0.1625\r", + "cfm epoch: 7, steps: 291, loss: 0.1518\r", + "cfm epoch: 7, steps: 292, loss: 0.1604\r", + "cfm epoch: 7, steps: 293, loss: 0.1574\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 294, loss: 0.1635\r", + "cfm epoch: 7, steps: 295, loss: 0.1595\r", + "cfm epoch: 7, steps: 296, loss: 0.1588\r", + "cfm epoch: 7, steps: 297, loss: 0.1466\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 298, loss: 0.1609\r", + "cfm epoch: 7, steps: 299, loss: 0.1707\r", + "cfm epoch: 7, steps: 300, loss: 0.1566\r", + "cfm epoch: 7, steps: 301, loss: 0.1541\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 302, loss: 0.1598\r", + "cfm epoch: 7, steps: 303, loss: 0.1557\r", + "cfm epoch: 7, steps: 304, loss: 0.165\r", + "cfm epoch: 7, steps: 305, loss: 0.1629\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 306, loss: 0.159\r", + "cfm epoch: 7, steps: 307, loss: 0.1667\r", + "cfm epoch: 7, steps: 308, loss: 0.1614\r", + "cfm epoch: 7, steps: 309, loss: 0.1458\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 310, loss: 0.1709\r", + "cfm epoch: 7, steps: 311, loss: 0.1589\r", + "cfm epoch: 7, steps: 312, loss: 0.1527\r", + "cfm epoch: 7, steps: 313, loss: 0.1523\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 314, loss: 0.1534\r", + "cfm epoch: 7, steps: 315, loss: 0.148\r", + "cfm epoch: 7, steps: 316, loss: 0.159\r", + "cfm epoch: 7, steps: 317, loss: 0.1525\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 318, loss: 0.1752\r", + "cfm epoch: 7, steps: 319, loss: 0.1509\r", + "cfm epoch: 7, steps: 320, loss: 0.1648\r", + "cfm epoch: 7, steps: 321, loss: 0.1564\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 322, loss: 0.1625\r", + "cfm epoch: 7, steps: 323, loss: 0.1605\r", + "cfm epoch: 7, steps: 324, loss: 0.169\r", + "cfm epoch: 7, steps: 325, loss: 0.1668\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 326, loss: 0.1649\r", + "cfm epoch: 7, steps: 327, loss: 0.1682\r", + "cfm epoch: 7, steps: 328, loss: 0.1624\r", + "cfm epoch: 7, steps: 329, loss: 0.1701\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 330, loss: 0.1681\r", + "cfm epoch: 7, steps: 331, loss: 0.1688\r", + "cfm epoch: 7, steps: 332, loss: 0.1589\r", + "cfm epoch: 7, steps: 333, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 334, loss: 0.1742\r", + "cfm epoch: 7, steps: 335, loss: 0.1628\r", + "cfm epoch: 7, steps: 336, loss: 0.1732\r", + "cfm epoch: 7, steps: 337, loss: 0.156\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 338, loss: 0.163\r", + "cfm epoch: 7, steps: 339, loss: 0.1588\r", + "cfm epoch: 7, steps: 340, loss: 0.1602\r", + "cfm epoch: 7, steps: 341, loss: 0.1633\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 342, loss: 0.1553\r", + "cfm epoch: 7, steps: 343, loss: 0.1605\r", + "cfm epoch: 7, steps: 344, loss: 0.1634\r", + "cfm epoch: 7, steps: 345, loss: 0.162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 346, loss: 0.1646\r", + "cfm epoch: 7, steps: 347, loss: 0.1618\r", + "cfm epoch: 7, steps: 348, loss: 0.1886\r", + "cfm epoch: 7, steps: 349, loss: 0.1691\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 350, loss: 0.1664\r", + "cfm epoch: 7, steps: 351, loss: 0.1702\r", + "cfm epoch: 7, steps: 352, loss: 0.1563\r", + "cfm epoch: 7, steps: 353, loss: 0.1566\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 354, loss: 0.1576\r", + "cfm epoch: 7, steps: 355, loss: 0.1601\r", + "cfm epoch: 7, steps: 356, loss: 0.1664\r", + "cfm epoch: 7, steps: 357, loss: 0.1562\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 358, loss: 0.1614\r", + "cfm epoch: 7, steps: 359, loss: 0.1656\r", + "cfm epoch: 7, steps: 360, loss: 0.1681\r", + "cfm epoch: 7, steps: 361, loss: 0.1592\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 362, loss: 0.1593\r", + "cfm epoch: 7, steps: 363, loss: 0.154\r", + "cfm epoch: 7, steps: 364, loss: 0.1629\r", + "cfm epoch: 7, steps: 365, loss: 0.1613\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 366, loss: 0.168\r", + "cfm epoch: 7, steps: 367, loss: 0.1647\r", + "cfm epoch: 7, steps: 368, loss: 0.167\r", + "cfm epoch: 7, steps: 369, loss: 0.1547\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 370, loss: 0.154\r", + "cfm epoch: 7, steps: 371, loss: 0.151\r", + "cfm epoch: 7, steps: 372, loss: 0.1694\r", + "cfm epoch: 7, steps: 373, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 374, loss: 0.1703\r", + "cfm epoch: 7, steps: 375, loss: 0.1514\r", + "cfm epoch: 7, steps: 376, loss: 0.1638\r", + "cfm epoch: 7, steps: 377, loss: 0.1687\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 378, loss: 0.1645\r", + "cfm epoch: 7, steps: 379, loss: 0.1516\r", + "cfm epoch: 7, steps: 380, loss: 0.1544\r", + "cfm epoch: 7, steps: 381, loss: 0.1629\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 382, loss: 0.1738\r", + "cfm epoch: 7, steps: 383, loss: 0.1655\r", + "cfm epoch: 7, steps: 384, loss: 0.1598\r", + "cfm epoch: 7, steps: 385, loss: 0.1599\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 386, loss: 0.1628\r", + "cfm epoch: 7, steps: 387, loss: 0.1622\r", + "cfm epoch: 7, steps: 388, loss: 0.1517\r", + "cfm epoch: 7, steps: 389, loss: 0.167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 390, loss: 0.1736\r", + "cfm epoch: 7, steps: 391, loss: 0.1625\r", + "cfm epoch: 7, steps: 392, loss: 0.1676\r", + "cfm epoch: 7, steps: 393, loss: 0.1685\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 394, loss: 0.1583\r", + "cfm epoch: 7, steps: 395, loss: 0.1643\r", + "cfm epoch: 7, steps: 396, loss: 0.1682\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 397, loss: 0.1627\r", + "cfm epoch: 7, steps: 398, loss: 0.174\r", + "cfm epoch: 7, steps: 399, loss: 0.1541\r", + "cfm epoch: 7, steps: 400, loss: 0.1556\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 401, loss: 0.1594\r", + "cfm epoch: 7, steps: 402, loss: 0.1789\r", + "cfm epoch: 7, steps: 403, loss: 0.1653\r", + "cfm epoch: 7, steps: 404, loss: 0.1737\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 405, loss: 0.1572\r", + "cfm epoch: 7, steps: 406, loss: 0.1596\r", + "cfm epoch: 7, steps: 407, loss: 0.1581\r", + "cfm epoch: 7, steps: 408, loss: 0.1603\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 409, loss: 0.1537\r", + "cfm epoch: 7, steps: 410, loss: 0.1678\r", + "cfm epoch: 7, steps: 411, loss: 0.1605\r", + "cfm epoch: 7, steps: 412, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 413, loss: 0.1654\r", + "cfm epoch: 7, steps: 414, loss: 0.1644\r", + "cfm epoch: 7, steps: 415, loss: 0.1613\r", + "cfm epoch: 7, steps: 416, loss: 0.1515\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 417, loss: 0.1607\r", + "cfm epoch: 7, steps: 418, loss: 0.1466\r", + "cfm epoch: 7, steps: 419, loss: 0.1678\r", + "cfm epoch: 7, steps: 420, loss: 0.148\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 421, loss: 0.1723\r", + "cfm epoch: 7, steps: 422, loss: 0.156\r", + "cfm epoch: 7, steps: 423, loss: 0.1579\r", + "cfm epoch: 7, steps: 424, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 425, loss: 0.1612\r", + "cfm epoch: 7, steps: 426, loss: 0.1612\r", + "cfm epoch: 7, steps: 427, loss: 0.161\r", + "cfm epoch: 7, steps: 428, loss: 0.1624\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 429, loss: 0.1644\r", + "cfm epoch: 7, steps: 430, loss: 0.1491\r", + "cfm epoch: 7, steps: 431, loss: 0.1657\r", + "cfm epoch: 7, steps: 432, loss: 0.1573\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 433, loss: 0.1538\r", + "cfm epoch: 7, steps: 434, loss: 0.1588\r", + "cfm epoch: 7, steps: 435, loss: 0.1476\r", + "cfm epoch: 7, steps: 436, loss: 0.1505\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 437, loss: 0.1546\r", + "cfm epoch: 7, steps: 438, loss: 0.1648\r", + "cfm epoch: 7, steps: 439, loss: 0.1706\r", + "cfm epoch: 7, steps: 440, loss: 0.1593\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 441, loss: 0.1697\r", + "cfm epoch: 7, steps: 442, loss: 0.1731\r", + "cfm epoch: 7, steps: 443, loss: 0.154\r", + "cfm epoch: 7, steps: 444, loss: 0.1679\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 445, loss: 0.1626\r", + "cfm epoch: 7, steps: 446, loss: 0.1587\r", + "cfm epoch: 7, steps: 447, loss: 0.156\r", + "cfm epoch: 7, steps: 448, loss: 0.1629\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 449, loss: 0.1542\r", + "cfm epoch: 7, steps: 450, loss: 0.1599\r", + "cfm epoch: 7, steps: 451, loss: 0.1697\r", + "cfm epoch: 7, steps: 452, loss: 0.1682\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 453, loss: 0.1617\r", + "cfm epoch: 7, steps: 454, loss: 0.1526\r", + "cfm epoch: 7, steps: 455, loss: 0.16\r", + "cfm epoch: 7, steps: 456, loss: 0.16\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 457, loss: 0.1583\r", + "cfm epoch: 7, steps: 458, loss: 0.1691\r", + "cfm epoch: 7, steps: 459, loss: 0.1559\r", + "cfm epoch: 7, steps: 460, loss: 0.1586\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 461, loss: 0.1604\r", + "cfm epoch: 7, steps: 462, loss: 0.1484\r", + "cfm epoch: 7, steps: 463, loss: 0.1706\r", + "cfm epoch: 7, steps: 464, loss: 0.1741\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 7, steps: 465, loss: 0.1673\r", + "cfm epoch: 7, steps: 466, loss: 0.1559\r", + "cfm epoch: 7, steps: 467, loss: 0.1548\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 0, loss: 0.1685\r", + "cfm epoch: 8, steps: 1, loss: 0.1573\r", + "cfm epoch: 8, steps: 2, loss: 0.1603\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 3, loss: 0.1575\r", + "cfm epoch: 8, steps: 4, loss: 0.1613\r", + "cfm epoch: 8, steps: 5, loss: 0.161\r", + "cfm epoch: 8, steps: 6, loss: 0.1615\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 7, loss: 0.1604\r", + "cfm epoch: 8, steps: 8, loss: 0.1725\r", + "cfm epoch: 8, steps: 9, loss: 0.1547\r", + "cfm epoch: 8, steps: 10, loss: 0.162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 11, loss: 0.161\r", + "cfm epoch: 8, steps: 12, loss: 0.1731\r", + "cfm epoch: 8, steps: 13, loss: 0.1538\r", + "cfm epoch: 8, steps: 14, loss: 0.1627\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 15, loss: 0.1571\r", + "cfm epoch: 8, steps: 16, loss: 0.1504\r", + "cfm epoch: 8, steps: 17, loss: 0.163\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 18, loss: 0.1576\r", + "cfm epoch: 8, steps: 19, loss: 0.1727\r", + "cfm epoch: 8, steps: 20, loss: 0.1609\r", + "cfm epoch: 8, steps: 21, loss: 0.1683\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 22, loss: 0.1662\r", + "cfm epoch: 8, steps: 23, loss: 0.1644\r", + "cfm epoch: 8, steps: 24, loss: 0.1701\r", + "cfm epoch: 8, steps: 25, loss: 0.161\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 26, loss: 0.1532\r", + "cfm epoch: 8, steps: 27, loss: 0.1599\r", + "cfm epoch: 8, steps: 28, loss: 0.1527\r", + "cfm epoch: 8, steps: 29, loss: 0.1578\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 30, loss: 0.1701\r", + "cfm epoch: 8, steps: 31, loss: 0.1541\r", + "cfm epoch: 8, steps: 32, loss: 0.165\r", + "cfm epoch: 8, steps: 33, loss: 0.1561\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 34, loss: 0.1645\r", + "cfm epoch: 8, steps: 35, loss: 0.1659\r", + "cfm epoch: 8, steps: 36, loss: 0.1626\r", + "cfm epoch: 8, steps: 37, loss: 0.1611\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 38, loss: 0.1672\r", + "cfm epoch: 8, steps: 39, loss: 0.1586\r", + "cfm epoch: 8, steps: 40, loss: 0.1616\r", + "cfm epoch: 8, steps: 41, loss: 0.1671\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 42, loss: 0.1811\r", + "cfm epoch: 8, steps: 43, loss: 0.1644\r", + "cfm epoch: 8, steps: 44, loss: 0.1693\r", + "cfm epoch: 8, steps: 45, loss: 0.1625\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 46, loss: 0.1586\r", + "cfm epoch: 8, steps: 47, loss: 0.1545\r", + "cfm epoch: 8, steps: 48, loss: 0.1612\r", + "cfm epoch: 8, steps: 49, loss: 0.1542\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 50, loss: 0.1656\r", + "cfm epoch: 8, steps: 51, loss: 0.1576\r", + "cfm epoch: 8, steps: 52, loss: 0.148\r", + "cfm epoch: 8, steps: 53, loss: 0.1571\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 54, loss: 0.1565\r", + "cfm epoch: 8, steps: 55, loss: 0.154\r", + "cfm epoch: 8, steps: 56, loss: 0.1681\r", + "cfm epoch: 8, steps: 57, loss: 0.1739\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 58, loss: 0.1588\r", + "cfm epoch: 8, steps: 59, loss: 0.1706\r", + "cfm epoch: 8, steps: 60, loss: 0.1667\r", + "cfm epoch: 8, steps: 61, loss: 0.1669\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 62, loss: 0.1512\r", + "cfm epoch: 8, steps: 63, loss: 0.1653\r", + "cfm epoch: 8, steps: 64, loss: 0.1595\r", + "cfm epoch: 8, steps: 65, loss: 0.1615\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 66, loss: 0.16\r", + "cfm epoch: 8, steps: 67, loss: 0.1594\r", + "cfm epoch: 8, steps: 68, loss: 0.1661\r", + "cfm epoch: 8, steps: 69, loss: 0.1591\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 70, loss: 0.1561\r", + "cfm epoch: 8, steps: 71, loss: 0.1728\r", + "cfm epoch: 8, steps: 72, loss: 0.1571\r", + "cfm epoch: 8, steps: 73, loss: 0.1727\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 74, loss: 0.1579\r", + "cfm epoch: 8, steps: 75, loss: 0.1619\r", + "cfm epoch: 8, steps: 76, loss: 0.1559\r", + "cfm epoch: 8, steps: 77, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 78, loss: 0.1652\r", + "cfm epoch: 8, steps: 79, loss: 0.1563\r", + "cfm epoch: 8, steps: 80, loss: 0.1553\r", + "cfm epoch: 8, steps: 81, loss: 0.153\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 82, loss: 0.1575\r", + "cfm epoch: 8, steps: 83, loss: 0.1489\r", + "cfm epoch: 8, steps: 84, loss: 0.169\r", + "cfm epoch: 8, steps: 85, loss: 0.1485\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 86, loss: 0.1608\r", + "cfm epoch: 8, steps: 87, loss: 0.167\r", + "cfm epoch: 8, steps: 88, loss: 0.1693\r", + "cfm epoch: 8, steps: 89, loss: 0.1761\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 90, loss: 0.1565\r", + "cfm epoch: 8, steps: 91, loss: 0.1741\r", + "cfm epoch: 8, steps: 92, loss: 0.156\r", + "cfm epoch: 8, steps: 93, loss: 0.1508\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 94, loss: 0.159\r", + "cfm epoch: 8, steps: 95, loss: 0.1672\r", + "cfm epoch: 8, steps: 96, loss: 0.1622\r", + "cfm epoch: 8, steps: 97, loss: 0.1595\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 98, loss: 0.1633\r", + "cfm epoch: 8, steps: 99, loss: 0.1577\r", + "cfm epoch: 8, steps: 100, loss: 0.174\r", + "cfm epoch: 8, steps: 101, loss: 0.1791\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 102, loss: 0.1701\r", + "cfm epoch: 8, steps: 103, loss: 0.1653\r", + "cfm epoch: 8, steps: 104, loss: 0.174\r", + "cfm epoch: 8, steps: 105, loss: 0.1487\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 106, loss: 0.1628\r", + "cfm epoch: 8, steps: 107, loss: 0.1615\r", + "cfm epoch: 8, steps: 108, loss: 0.1574\r", + "cfm epoch: 8, steps: 109, loss: 0.1572\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 110, loss: 0.1624\r", + "cfm epoch: 8, steps: 111, loss: 0.1772\r", + "cfm epoch: 8, steps: 112, loss: 0.1708\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 113, loss: 0.1482\r", + "cfm epoch: 8, steps: 114, loss: 0.1674\r", + "cfm epoch: 8, steps: 115, loss: 0.1676\r", + "cfm epoch: 8, steps: 116, loss: 0.1579\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 117, loss: 0.189\r", + "cfm epoch: 8, steps: 118, loss: 0.1688\r", + "cfm epoch: 8, steps: 119, loss: 0.1653\r", + "cfm epoch: 8, steps: 120, loss: 0.1655\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 121, loss: 0.1627\r", + "cfm epoch: 8, steps: 122, loss: 0.1747\r", + "cfm epoch: 8, steps: 123, loss: 0.1602\r", + "cfm epoch: 8, steps: 124, loss: 0.1729\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 125, loss: 0.1735\r", + "cfm epoch: 8, steps: 126, loss: 0.1595\r", + "cfm epoch: 8, steps: 127, loss: 0.1593\r", + "cfm epoch: 8, steps: 128, loss: 0.1634\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 129, loss: 0.1597\r", + "cfm epoch: 8, steps: 130, loss: 0.1535\r", + "cfm epoch: 8, steps: 131, loss: 0.1543\r", + "cfm epoch: 8, steps: 132, loss: 0.172\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 133, loss: 0.1609\r", + "cfm epoch: 8, steps: 134, loss: 0.1742\r", + "cfm epoch: 8, steps: 135, loss: 0.1593\r", + "cfm epoch: 8, steps: 136, loss: 0.1691\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 137, loss: 0.1662\r", + "cfm epoch: 8, steps: 138, loss: 0.1527\r", + "cfm epoch: 8, steps: 139, loss: 0.1564\r", + "cfm epoch: 8, steps: 140, loss: 0.15\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 141, loss: 0.1647\r", + "cfm epoch: 8, steps: 142, loss: 0.1598\r", + "cfm epoch: 8, steps: 143, loss: 0.1551\r", + "cfm epoch: 8, steps: 144, loss: 0.1701\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 145, loss: 0.158\r", + "cfm epoch: 8, steps: 146, loss: 0.158\r", + "cfm epoch: 8, steps: 147, loss: 0.1772\r", + "cfm epoch: 8, steps: 148, loss: 0.1702\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 149, loss: 0.1695\r", + "cfm epoch: 8, steps: 150, loss: 0.1507\r", + "cfm epoch: 8, steps: 151, loss: 0.1617\r", + "cfm epoch: 8, steps: 152, loss: 0.158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 153, loss: 0.1525\r", + "cfm epoch: 8, steps: 154, loss: 0.161\r", + "cfm epoch: 8, steps: 155, loss: 0.154\r", + "cfm epoch: 8, steps: 156, loss: 0.1776\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 157, loss: 0.167\r", + "cfm epoch: 8, steps: 158, loss: 0.1497\r", + "cfm epoch: 8, steps: 159, loss: 0.1636\r", + "cfm epoch: 8, steps: 160, loss: 0.1705\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 161, loss: 0.1407\r", + "cfm epoch: 8, steps: 162, loss: 0.1605\r", + "cfm epoch: 8, steps: 163, loss: 0.1655\r", + "cfm epoch: 8, steps: 164, loss: 0.1577\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 165, loss: 0.1636\r", + "cfm epoch: 8, steps: 166, loss: 0.1616\r", + "cfm epoch: 8, steps: 167, loss: 0.1552\r", + "cfm epoch: 8, steps: 168, loss: 0.1656\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 169, loss: 0.1635\r", + "cfm epoch: 8, steps: 170, loss: 0.1582\r", + "cfm epoch: 8, steps: 171, loss: 0.1624\r", + "cfm epoch: 8, steps: 172, loss: 0.1595\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 173, loss: 0.1539\r", + "cfm epoch: 8, steps: 174, loss: 0.1706\r", + "cfm epoch: 8, steps: 175, loss: 0.1497\r", + "cfm epoch: 8, steps: 176, loss: 0.1563\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 177, loss: 0.1467\r", + "cfm epoch: 8, steps: 178, loss: 0.158\r", + "cfm epoch: 8, steps: 179, loss: 0.1661\r", + "cfm epoch: 8, steps: 180, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 181, loss: 0.163\r", + "cfm epoch: 8, steps: 182, loss: 0.1569\r", + "cfm epoch: 8, steps: 183, loss: 0.1594\r", + "cfm epoch: 8, steps: 184, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 185, loss: 0.1606\r", + "cfm epoch: 8, steps: 186, loss: 0.1607\r", + "cfm epoch: 8, steps: 187, loss: 0.1602\r", + "cfm epoch: 8, steps: 188, loss: 0.1665\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 189, loss: 0.1694\r", + "cfm epoch: 8, steps: 190, loss: 0.1637\r", + "cfm epoch: 8, steps: 191, loss: 0.1588\r", + "cfm epoch: 8, steps: 192, loss: 0.1759\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 193, loss: 0.1722\r", + "cfm epoch: 8, steps: 194, loss: 0.1563\r", + "cfm epoch: 8, steps: 195, loss: 0.1666\r", + "cfm epoch: 8, steps: 196, loss: 0.1538\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 197, loss: 0.1661\r", + "cfm epoch: 8, steps: 198, loss: 0.1629\r", + "cfm epoch: 8, steps: 199, loss: 0.1581\r", + "cfm epoch: 8, steps: 200, loss: 0.1589\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 201, loss: 0.1561\r", + "cfm epoch: 8, steps: 202, loss: 0.1739\r", + "cfm epoch: 8, steps: 203, loss: 0.1662\r", + "cfm epoch: 8, steps: 204, loss: 0.1658\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 205, loss: 0.159\r", + "cfm epoch: 8, steps: 206, loss: 0.1774\r", + "cfm epoch: 8, steps: 207, loss: 0.1535\r", + "cfm epoch: 8, steps: 208, loss: 0.1549\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 209, loss: 0.1668\r", + "cfm epoch: 8, steps: 210, loss: 0.1643\r", + "cfm epoch: 8, steps: 211, loss: 0.1689\r", + "cfm epoch: 8, steps: 212, loss: 0.1574\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 213, loss: 0.1548\r", + "cfm epoch: 8, steps: 214, loss: 0.1547\r", + "cfm epoch: 8, steps: 215, loss: 0.157\r", + "cfm epoch: 8, steps: 216, loss: 0.1601\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 217, loss: 0.1673\r", + "cfm epoch: 8, steps: 218, loss: 0.1652\r", + "cfm epoch: 8, steps: 219, loss: 0.1677\r", + "cfm epoch: 8, steps: 220, loss: 0.1583\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 221, loss: 0.1553\r", + "cfm epoch: 8, steps: 222, loss: 0.159\r", + "cfm epoch: 8, steps: 223, loss: 0.1762\r", + "cfm epoch: 8, steps: 224, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 225, loss: 0.1583\r", + "cfm epoch: 8, steps: 226, loss: 0.159\r", + "cfm epoch: 8, steps: 227, loss: 0.1502\r", + "cfm epoch: 8, steps: 228, loss: 0.1717\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 229, loss: 0.1561\r", + "cfm epoch: 8, steps: 230, loss: 0.1595\r", + "cfm epoch: 8, steps: 231, loss: 0.1521\r", + "cfm epoch: 8, steps: 232, loss: 0.1683\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 233, loss: 0.1617\r", + "cfm epoch: 8, steps: 234, loss: 0.1593\r", + "cfm epoch: 8, steps: 235, loss: 0.1597\r", + "cfm epoch: 8, steps: 236, loss: 0.1543\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 237, loss: 0.161\r", + "cfm epoch: 8, steps: 238, loss: 0.1537\r", + "cfm epoch: 8, steps: 239, loss: 0.1579\r", + "cfm epoch: 8, steps: 240, loss: 0.161\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 241, loss: 0.1629\r", + "cfm epoch: 8, steps: 242, loss: 0.1726\r", + "cfm epoch: 8, steps: 243, loss: 0.1512\r", + "cfm epoch: 8, steps: 244, loss: 0.1542\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 245, loss: 0.1498\r", + "cfm epoch: 8, steps: 246, loss: 0.156\r", + "cfm epoch: 8, steps: 247, loss: 0.1665\r", + "cfm epoch: 8, steps: 248, loss: 0.1816\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 249, loss: 0.1728\r", + "cfm epoch: 8, steps: 250, loss: 0.1632\r", + "cfm epoch: 8, steps: 251, loss: 0.1564\r", + "cfm epoch: 8, steps: 252, loss: 0.1626\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 253, loss: 0.1578\r", + "cfm epoch: 8, steps: 254, loss: 0.1672\r", + "cfm epoch: 8, steps: 255, loss: 0.1731\r", + "cfm epoch: 8, steps: 256, loss: 0.1705\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 257, loss: 0.1554\r", + "cfm epoch: 8, steps: 258, loss: 0.1529\r", + "cfm epoch: 8, steps: 259, loss: 0.1638\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 260, loss: 0.1627\r", + "cfm epoch: 8, steps: 261, loss: 0.1803\r", + "cfm epoch: 8, steps: 262, loss: 0.1596\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 263, loss: 0.1562\r", + "cfm epoch: 8, steps: 264, loss: 0.1731\r", + "cfm epoch: 8, steps: 265, loss: 0.1492\r", + "cfm epoch: 8, steps: 266, loss: 0.1529\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 267, loss: 0.1613\r", + "cfm epoch: 8, steps: 268, loss: 0.1583\r", + "cfm epoch: 8, steps: 269, loss: 0.1609\r", + "cfm epoch: 8, steps: 270, loss: 0.165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 271, loss: 0.1615\r", + "cfm epoch: 8, steps: 272, loss: 0.1565\r", + "cfm epoch: 8, steps: 273, loss: 0.1464\r", + "cfm epoch: 8, steps: 274, loss: 0.1526\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 275, loss: 0.1672\r", + "cfm epoch: 8, steps: 276, loss: 0.1518\r", + "cfm epoch: 8, steps: 277, loss: 0.159\r", + "cfm epoch: 8, steps: 278, loss: 0.1566\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 279, loss: 0.1671\r", + "cfm epoch: 8, steps: 280, loss: 0.1513\r", + "cfm epoch: 8, steps: 281, loss: 0.1555\r", + "cfm epoch: 8, steps: 282, loss: 0.145\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 283, loss: 0.1446\r", + "cfm epoch: 8, steps: 284, loss: 0.1703\r", + "cfm epoch: 8, steps: 285, loss: 0.154\r", + "cfm epoch: 8, steps: 286, loss: 0.1655\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 287, loss: 0.1619\r", + "cfm epoch: 8, steps: 288, loss: 0.159\r", + "cfm epoch: 8, steps: 289, loss: 0.158\r", + "cfm epoch: 8, steps: 290, loss: 0.1635\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 291, loss: 0.1666\r", + "cfm epoch: 8, steps: 292, loss: 0.1553\r", + "cfm epoch: 8, steps: 293, loss: 0.1554\r", + "cfm epoch: 8, steps: 294, loss: 0.1678\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 295, loss: 0.1683\r", + "cfm epoch: 8, steps: 296, loss: 0.171\r", + "cfm epoch: 8, steps: 297, loss: 0.1583\r", + "cfm epoch: 8, steps: 298, loss: 0.1538\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 299, loss: 0.1534\r", + "cfm epoch: 8, steps: 300, loss: 0.1519\r", + "cfm epoch: 8, steps: 301, loss: 0.1518\r", + "cfm epoch: 8, steps: 302, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 303, loss: 0.1677\r", + "cfm epoch: 8, steps: 304, loss: 0.1524\r", + "cfm epoch: 8, steps: 305, loss: 0.1655\r", + "cfm epoch: 8, steps: 306, loss: 0.1567\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 307, loss: 0.1587\r", + "cfm epoch: 8, steps: 308, loss: 0.1613\r", + "cfm epoch: 8, steps: 309, loss: 0.1487\r", + "cfm epoch: 8, steps: 310, loss: 0.1625\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 311, loss: 0.1644\r", + "cfm epoch: 8, steps: 312, loss: 0.1505\r", + "cfm epoch: 8, steps: 313, loss: 0.1522\r", + "cfm epoch: 8, steps: 314, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 315, loss: 0.1599\r", + "cfm epoch: 8, steps: 316, loss: 0.1559\r", + "cfm epoch: 8, steps: 317, loss: 0.1581\r", + "cfm epoch: 8, steps: 318, loss: 0.1737\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 319, loss: 0.162\r", + "cfm epoch: 8, steps: 320, loss: 0.1685\r", + "cfm epoch: 8, steps: 321, loss: 0.1551\r", + "cfm epoch: 8, steps: 322, loss: 0.1551\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 323, loss: 0.1621\r", + "cfm epoch: 8, steps: 324, loss: 0.1531\r", + "cfm epoch: 8, steps: 325, loss: 0.1506\r", + "cfm epoch: 8, steps: 326, loss: 0.1729\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 327, loss: 0.1643\r", + "cfm epoch: 8, steps: 328, loss: 0.1621\r", + "cfm epoch: 8, steps: 329, loss: 0.1539\r", + "cfm epoch: 8, steps: 330, loss: 0.1608\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 331, loss: 0.1601\r", + "cfm epoch: 8, steps: 332, loss: 0.1658\r", + "cfm epoch: 8, steps: 333, loss: 0.169\r", + "cfm epoch: 8, steps: 334, loss: 0.164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 335, loss: 0.164\r", + "cfm epoch: 8, steps: 336, loss: 0.1797\r", + "cfm epoch: 8, steps: 337, loss: 0.1559\r", + "cfm epoch: 8, steps: 338, loss: 0.1581\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 339, loss: 0.159\r", + "cfm epoch: 8, steps: 340, loss: 0.1718\r", + "cfm epoch: 8, steps: 341, loss: 0.1682\r", + "cfm epoch: 8, steps: 342, loss: 0.1665\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 343, loss: 0.1487\r", + "cfm epoch: 8, steps: 344, loss: 0.1671\r", + "cfm epoch: 8, steps: 345, loss: 0.1653\r", + "cfm epoch: 8, steps: 346, loss: 0.1628\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 347, loss: 0.1657\r", + "cfm epoch: 8, steps: 348, loss: 0.1604\r", + "cfm epoch: 8, steps: 349, loss: 0.156\r", + "cfm epoch: 8, steps: 350, loss: 0.1645\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 351, loss: 0.1602\r", + "cfm epoch: 8, steps: 352, loss: 0.1578\r", + "cfm epoch: 8, steps: 353, loss: 0.161\r", + "cfm epoch: 8, steps: 354, loss: 0.1631\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 355, loss: 0.1596\r", + "cfm epoch: 8, steps: 356, loss: 0.1463\r", + "cfm epoch: 8, steps: 357, loss: 0.1581\r", + "cfm epoch: 8, steps: 358, loss: 0.1501\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 359, loss: 0.1552\r", + "cfm epoch: 8, steps: 360, loss: 0.1643\r", + "cfm epoch: 8, steps: 361, loss: 0.1421\r", + "cfm epoch: 8, steps: 362, loss: 0.1611\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 363, loss: 0.1502\r", + "cfm epoch: 8, steps: 364, loss: 0.1555\r", + "cfm epoch: 8, steps: 365, loss: 0.1611\r", + "cfm epoch: 8, steps: 366, loss: 0.1572\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 367, loss: 0.1566\r", + "cfm epoch: 8, steps: 368, loss: 0.1728\r", + "cfm epoch: 8, steps: 369, loss: 0.1572\r", + "cfm epoch: 8, steps: 370, loss: 0.1584\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 371, loss: 0.1875\r", + "cfm epoch: 8, steps: 372, loss: 0.1634\r", + "cfm epoch: 8, steps: 373, loss: 0.163\r", + "cfm epoch: 8, steps: 374, loss: 0.1606\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 375, loss: 0.1655\r", + "cfm epoch: 8, steps: 376, loss: 0.1752\r", + "cfm epoch: 8, steps: 377, loss: 0.1618\r", + "cfm epoch: 8, steps: 378, loss: 0.1466\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 379, loss: 0.1561\r", + "cfm epoch: 8, steps: 380, loss: 0.1569\r", + "cfm epoch: 8, steps: 381, loss: 0.172\r", + "cfm epoch: 8, steps: 382, loss: 0.1653\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 383, loss: 0.1787\r", + "cfm epoch: 8, steps: 384, loss: 0.1581\r", + "cfm epoch: 8, steps: 385, loss: 0.1558\r", + "cfm epoch: 8, steps: 386, loss: 0.1664\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 387, loss: 0.1603\r", + "cfm epoch: 8, steps: 388, loss: 0.1686\r", + "cfm epoch: 8, steps: 389, loss: 0.1633\r", + "cfm epoch: 8, steps: 390, loss: 0.1699\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 391, loss: 0.1687\r", + "cfm epoch: 8, steps: 392, loss: 0.1584\r", + "cfm epoch: 8, steps: 393, loss: 0.1614\r", + "cfm epoch: 8, steps: 394, loss: 0.1482\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 395, loss: 0.1587\r", + "cfm epoch: 8, steps: 396, loss: 0.1648\r", + "cfm epoch: 8, steps: 397, loss: 0.1488\r", + "cfm epoch: 8, steps: 398, loss: 0.1648\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 399, loss: 0.151\r", + "cfm epoch: 8, steps: 400, loss: 0.1582\r", + "cfm epoch: 8, steps: 401, loss: 0.1586\r", + "cfm epoch: 8, steps: 402, loss: 0.158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 403, loss: 0.1522\r", + "cfm epoch: 8, steps: 404, loss: 0.164\r", + "cfm epoch: 8, steps: 405, loss: 0.1613\r", + "cfm epoch: 8, steps: 406, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 407, loss: 0.1606\r", + "cfm epoch: 8, steps: 408, loss: 0.1697\r", + "cfm epoch: 8, steps: 409, loss: 0.1556\r", + "cfm epoch: 8, steps: 410, loss: 0.159\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 411, loss: 0.1718\r", + "cfm epoch: 8, steps: 412, loss: 0.1657\r", + "cfm epoch: 8, steps: 413, loss: 0.1426\r", + "cfm epoch: 8, steps: 414, loss: 0.1674\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 415, loss: 0.1594\r", + "cfm epoch: 8, steps: 416, loss: 0.1618\r", + "cfm epoch: 8, steps: 417, loss: 0.163\r", + "cfm epoch: 8, steps: 418, loss: 0.1679\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 419, loss: 0.156\r", + "cfm epoch: 8, steps: 420, loss: 0.1573\r", + "cfm epoch: 8, steps: 421, loss: 0.1621\r", + "cfm epoch: 8, steps: 422, loss: 0.1576\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 423, loss: 0.1587\r", + "cfm epoch: 8, steps: 424, loss: 0.1658\r", + "cfm epoch: 8, steps: 425, loss: 0.1488\r", + "cfm epoch: 8, steps: 426, loss: 0.1544\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 427, loss: 0.1473\r", + "cfm epoch: 8, steps: 428, loss: 0.1589\r", + "cfm epoch: 8, steps: 429, loss: 0.156\r", + "cfm epoch: 8, steps: 430, loss: 0.1554\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 431, loss: 0.1557\r", + "cfm epoch: 8, steps: 432, loss: 0.1618\r", + "cfm epoch: 8, steps: 433, loss: 0.1787\r", + "cfm epoch: 8, steps: 434, loss: 0.1591\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 435, loss: 0.1769\r", + "cfm epoch: 8, steps: 436, loss: 0.1667\r", + "cfm epoch: 8, steps: 437, loss: 0.1652\r", + "cfm epoch: 8, steps: 438, loss: 0.1564\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 439, loss: 0.1696\r", + "cfm epoch: 8, steps: 440, loss: 0.1642\r", + "cfm epoch: 8, steps: 441, loss: 0.1559\r", + "cfm epoch: 8, steps: 442, loss: 0.1714\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 443, loss: 0.1667\r", + "cfm epoch: 8, steps: 444, loss: 0.1613\r", + "cfm epoch: 8, steps: 445, loss: 0.1477\r", + "cfm epoch: 8, steps: 446, loss: 0.17\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 447, loss: 0.1521\r", + "cfm epoch: 8, steps: 448, loss: 0.1595\r", + "cfm epoch: 8, steps: 449, loss: 0.1523\r", + "cfm epoch: 8, steps: 450, loss: 0.1556\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 451, loss: 0.1647\r", + "cfm epoch: 8, steps: 452, loss: 0.1642\r", + "cfm epoch: 8, steps: 453, loss: 0.1635\r", + "cfm epoch: 8, steps: 454, loss: 0.1667\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 455, loss: 0.1575\r", + "cfm epoch: 8, steps: 456, loss: 0.1591\r", + "cfm epoch: 8, steps: 457, loss: 0.1543\r", + "cfm epoch: 8, steps: 458, loss: 0.155\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 459, loss: 0.1697\r", + "cfm epoch: 8, steps: 460, loss: 0.1588\r", + "cfm epoch: 8, steps: 461, loss: 0.1514\r", + "cfm epoch: 8, steps: 462, loss: 0.1668\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 463, loss: 0.1619\r", + "cfm epoch: 8, steps: 464, loss: 0.1593\r", + "cfm epoch: 8, steps: 465, loss: 0.1619\r", + "cfm epoch: 8, steps: 466, loss: 0.1595\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 8, steps: 467, loss: 0.1555\r", + "cfm epoch: 9, steps: 0, loss: 0.1645\r", + "cfm epoch: 9, steps: 1, loss: 0.1545\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 2, loss: 0.1537\r", + "cfm epoch: 9, steps: 3, loss: 0.1557\r", + "cfm epoch: 9, steps: 4, loss: 0.1645\r", + "cfm epoch: 9, steps: 5, loss: 0.1564\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 6, loss: 0.1588\r", + "cfm epoch: 9, steps: 7, loss: 0.1581\r", + "cfm epoch: 9, steps: 8, loss: 0.1496\r", + "cfm epoch: 9, steps: 9, loss: 0.155\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 10, loss: 0.162\r", + "cfm epoch: 9, steps: 11, loss: 0.1634\r", + "cfm epoch: 9, steps: 12, loss: 0.1479\r", + "cfm epoch: 9, steps: 13, loss: 0.1725\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 14, loss: 0.162\r", + "cfm epoch: 9, steps: 15, loss: 0.1726\r", + "cfm epoch: 9, steps: 16, loss: 0.1558\r", + "cfm epoch: 9, steps: 17, loss: 0.1608\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 18, loss: 0.1575\r", + "cfm epoch: 9, steps: 19, loss: 0.1644\r", + "cfm epoch: 9, steps: 20, loss: 0.1604\r", + "cfm epoch: 9, steps: 21, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 22, loss: 0.1676\r", + "cfm epoch: 9, steps: 23, loss: 0.1603\r", + "cfm epoch: 9, steps: 24, loss: 0.1647\r", + "cfm epoch: 9, steps: 25, loss: 0.1644\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 26, loss: 0.1577\r", + "cfm epoch: 9, steps: 27, loss: 0.1607\r", + "cfm epoch: 9, steps: 28, loss: 0.1439\r", + "cfm epoch: 9, steps: 29, loss: 0.1589\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 30, loss: 0.1587\r", + "cfm epoch: 9, steps: 31, loss: 0.1637\r", + "cfm epoch: 9, steps: 32, loss: 0.1675\r", + "cfm epoch: 9, steps: 33, loss: 0.1587\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 34, loss: 0.1493\r", + "cfm epoch: 9, steps: 35, loss: 0.1544\r", + "cfm epoch: 9, steps: 36, loss: 0.1595\r", + "cfm epoch: 9, steps: 37, loss: 0.152\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 38, loss: 0.175\r", + "cfm epoch: 9, steps: 39, loss: 0.1647\r", + "cfm epoch: 9, steps: 40, loss: 0.1561\r", + "cfm epoch: 9, steps: 41, loss: 0.16\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 42, loss: 0.1632\r", + "cfm epoch: 9, steps: 43, loss: 0.1555\r", + "cfm epoch: 9, steps: 44, loss: 0.1499\r", + "cfm epoch: 9, steps: 45, loss: 0.1591\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 46, loss: 0.1653\r", + "cfm epoch: 9, steps: 47, loss: 0.1634\r", + "cfm epoch: 9, steps: 48, loss: 0.1667\r", + "cfm epoch: 9, steps: 49, loss: 0.1576\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 50, loss: 0.1561\r", + "cfm epoch: 9, steps: 51, loss: 0.1485\r", + "cfm epoch: 9, steps: 52, loss: 0.1557\r", + "cfm epoch: 9, steps: 53, loss: 0.1558\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 54, loss: 0.1608\r", + "cfm epoch: 9, steps: 55, loss: 0.161\r", + "cfm epoch: 9, steps: 56, loss: 0.1736\r", + "cfm epoch: 9, steps: 57, loss: 0.1498\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 58, loss: 0.1579\r", + "cfm epoch: 9, steps: 59, loss: 0.1735\r", + "cfm epoch: 9, steps: 60, loss: 0.1623\r", + "cfm epoch: 9, steps: 61, loss: 0.162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 62, loss: 0.1712\r", + "cfm epoch: 9, steps: 63, loss: 0.1641\r", + "cfm epoch: 9, steps: 64, loss: 0.1569\r", + "cfm epoch: 9, steps: 65, loss: 0.1752\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 66, loss: 0.1561\r", + "cfm epoch: 9, steps: 67, loss: 0.155\r", + "cfm epoch: 9, steps: 68, loss: 0.1734\r", + "cfm epoch: 9, steps: 69, loss: 0.1613\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 70, loss: 0.1521\r", + "cfm epoch: 9, steps: 71, loss: 0.1525\r", + "cfm epoch: 9, steps: 72, loss: 0.1596\r", + "cfm epoch: 9, steps: 73, loss: 0.1663\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 74, loss: 0.156\r", + "cfm epoch: 9, steps: 75, loss: 0.1705\r", + "cfm epoch: 9, steps: 76, loss: 0.1722\r", + "cfm epoch: 9, steps: 77, loss: 0.1699\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 78, loss: 0.1552\r", + "cfm epoch: 9, steps: 79, loss: 0.1486\r", + "cfm epoch: 9, steps: 80, loss: 0.1654\r", + "cfm epoch: 9, steps: 81, loss: 0.1555\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 82, loss: 0.1665\r", + "cfm epoch: 9, steps: 83, loss: 0.1734\r", + "cfm epoch: 9, steps: 84, loss: 0.1654\r", + "cfm epoch: 9, steps: 85, loss: 0.1828\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 86, loss: 0.1573\r", + "cfm epoch: 9, steps: 87, loss: 0.1651\r", + "cfm epoch: 9, steps: 88, loss: 0.1615\r", + "cfm epoch: 9, steps: 89, loss: 0.1599\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 90, loss: 0.156\r", + "cfm epoch: 9, steps: 91, loss: 0.1685\r", + "cfm epoch: 9, steps: 92, loss: 0.1572\r", + "cfm epoch: 9, steps: 93, loss: 0.1515\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 94, loss: 0.1568\r", + "cfm epoch: 9, steps: 95, loss: 0.1613\r", + "cfm epoch: 9, steps: 96, loss: 0.1653\r", + "cfm epoch: 9, steps: 97, loss: 0.1512\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 98, loss: 0.164\r", + "cfm epoch: 9, steps: 99, loss: 0.1566\r", + "cfm epoch: 9, steps: 100, loss: 0.1622\r", + "cfm epoch: 9, steps: 101, loss: 0.1413\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 102, loss: 0.1552\r", + "cfm epoch: 9, steps: 103, loss: 0.1533\r", + "cfm epoch: 9, steps: 104, loss: 0.1444\r", + "cfm epoch: 9, steps: 105, loss: 0.1654\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 106, loss: 0.1643\r", + "cfm epoch: 9, steps: 107, loss: 0.1536\r", + "cfm epoch: 9, steps: 108, loss: 0.1636\r", + "cfm epoch: 9, steps: 109, loss: 0.1726\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 110, loss: 0.1712\r", + "cfm epoch: 9, steps: 111, loss: 0.1579\r", + "cfm epoch: 9, steps: 112, loss: 0.1538\r", + "cfm epoch: 9, steps: 113, loss: 0.1677\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 114, loss: 0.1632\r", + "cfm epoch: 9, steps: 115, loss: 0.1628\r", + "cfm epoch: 9, steps: 116, loss: 0.1605\r", + "cfm epoch: 9, steps: 117, loss: 0.1641\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 118, loss: 0.1544\r", + "cfm epoch: 9, steps: 119, loss: 0.1614\r", + "cfm epoch: 9, steps: 120, loss: 0.1612\r", + "cfm epoch: 9, steps: 121, loss: 0.1615\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 122, loss: 0.1524\r", + "cfm epoch: 9, steps: 123, loss: 0.1609\r", + "cfm epoch: 9, steps: 124, loss: 0.1571\r", + "cfm epoch: 9, steps: 125, loss: 0.1576\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 126, loss: 0.1596\r", + "cfm epoch: 9, steps: 127, loss: 0.1595\r", + "cfm epoch: 9, steps: 128, loss: 0.1538\r", + "cfm epoch: 9, steps: 129, loss: 0.1715\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 130, loss: 0.1624\r", + "cfm epoch: 9, steps: 131, loss: 0.1676\r", + "cfm epoch: 9, steps: 132, loss: 0.1538\r", + "cfm epoch: 9, steps: 133, loss: 0.1593\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 134, loss: 0.1555\r", + "cfm epoch: 9, steps: 135, loss: 0.1566\r", + "cfm epoch: 9, steps: 136, loss: 0.1587\r", + "cfm epoch: 9, steps: 137, loss: 0.1543\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 138, loss: 0.1704\r", + "cfm epoch: 9, steps: 139, loss: 0.1675\r", + "cfm epoch: 9, steps: 140, loss: 0.1501\r", + "cfm epoch: 9, steps: 141, loss: 0.1712\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 142, loss: 0.1577\r", + "cfm epoch: 9, steps: 143, loss: 0.1678\r", + "cfm epoch: 9, steps: 144, loss: 0.1691\r", + "cfm epoch: 9, steps: 145, loss: 0.1737\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 146, loss: 0.1664\r", + "cfm epoch: 9, steps: 147, loss: 0.1526\r", + "cfm epoch: 9, steps: 148, loss: 0.1623\r", + "cfm epoch: 9, steps: 149, loss: 0.171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 150, loss: 0.1549\r", + "cfm epoch: 9, steps: 151, loss: 0.1647\r", + "cfm epoch: 9, steps: 152, loss: 0.178\r", + "cfm epoch: 9, steps: 153, loss: 0.1562\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 154, loss: 0.1569\r", + "cfm epoch: 9, steps: 155, loss: 0.1697\r", + "cfm epoch: 9, steps: 156, loss: 0.1576\r", + "cfm epoch: 9, steps: 157, loss: 0.1738\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 158, loss: 0.1586\r", + "cfm epoch: 9, steps: 159, loss: 0.1655\r", + "cfm epoch: 9, steps: 160, loss: 0.1454\r", + "cfm epoch: 9, steps: 161, loss: 0.1484\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 162, loss: 0.1553\r", + "cfm epoch: 9, steps: 163, loss: 0.1482\r", + "cfm epoch: 9, steps: 164, loss: 0.1543\r", + "cfm epoch: 9, steps: 165, loss: 0.15\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 166, loss: 0.1685\r", + "cfm epoch: 9, steps: 167, loss: 0.1442\r", + "cfm epoch: 9, steps: 168, loss: 0.1572\r", + "cfm epoch: 9, steps: 169, loss: 0.1616\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 170, loss: 0.1715\r", + "cfm epoch: 9, steps: 171, loss: 0.1589\r", + "cfm epoch: 9, steps: 172, loss: 0.1529\r", + "cfm epoch: 9, steps: 173, loss: 0.1732\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 174, loss: 0.1606\r", + "cfm epoch: 9, steps: 175, loss: 0.1593\r", + "cfm epoch: 9, steps: 176, loss: 0.1582\r", + "cfm epoch: 9, steps: 177, loss: 0.1644\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 178, loss: 0.1717\r", + "cfm epoch: 9, steps: 179, loss: 0.168\r", + "cfm epoch: 9, steps: 180, loss: 0.1482\r", + "cfm epoch: 9, steps: 181, loss: 0.1537\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 182, loss: 0.1609\r", + "cfm epoch: 9, steps: 183, loss: 0.1585\r", + "cfm epoch: 9, steps: 184, loss: 0.1607\r", + "cfm epoch: 9, steps: 185, loss: 0.1687\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 186, loss: 0.1447\r", + "cfm epoch: 9, steps: 187, loss: 0.1471\r", + "cfm epoch: 9, steps: 188, loss: 0.1655\r", + "cfm epoch: 9, steps: 189, loss: 0.1846\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 190, loss: 0.1611\r", + "cfm epoch: 9, steps: 191, loss: 0.1656\r", + "cfm epoch: 9, steps: 192, loss: 0.1544\r", + "cfm epoch: 9, steps: 193, loss: 0.1614\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 194, loss: 0.154\r", + "cfm epoch: 9, steps: 195, loss: 0.1709\r", + "cfm epoch: 9, steps: 196, loss: 0.1572\r", + "cfm epoch: 9, steps: 197, loss: 0.1595\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 198, loss: 0.1641\r", + "cfm epoch: 9, steps: 199, loss: 0.1668\r", + "cfm epoch: 9, steps: 200, loss: 0.1604\r", + "cfm epoch: 9, steps: 201, loss: 0.1589\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 202, loss: 0.1497\r", + "cfm epoch: 9, steps: 203, loss: 0.1616\r", + "cfm epoch: 9, steps: 204, loss: 0.1569\r", + "cfm epoch: 9, steps: 205, loss: 0.1592\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 206, loss: 0.1753\r", + "cfm epoch: 9, steps: 207, loss: 0.158\r", + "cfm epoch: 9, steps: 208, loss: 0.1532\r", + "cfm epoch: 9, steps: 209, loss: 0.1605\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 210, loss: 0.1573\r", + "cfm epoch: 9, steps: 211, loss: 0.1567\r", + "cfm epoch: 9, steps: 212, loss: 0.1666\r", + "cfm epoch: 9, steps: 213, loss: 0.1508\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 214, loss: 0.1583\r", + "cfm epoch: 9, steps: 215, loss: 0.1515\r", + "cfm epoch: 9, steps: 216, loss: 0.1597\r", + "cfm epoch: 9, steps: 217, loss: 0.1522\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 218, loss: 0.1607\r", + "cfm epoch: 9, steps: 219, loss: 0.1684\r", + "cfm epoch: 9, steps: 220, loss: 0.159\r", + "cfm epoch: 9, steps: 221, loss: 0.1561\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 222, loss: 0.1541\r", + "cfm epoch: 9, steps: 223, loss: 0.166\r", + "cfm epoch: 9, steps: 224, loss: 0.1518\r", + "cfm epoch: 9, steps: 225, loss: 0.1533\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 226, loss: 0.1466\r", + "cfm epoch: 9, steps: 227, loss: 0.166\r", + "cfm epoch: 9, steps: 228, loss: 0.1582\r", + "cfm epoch: 9, steps: 229, loss: 0.1626\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 230, loss: 0.153\r", + "cfm epoch: 9, steps: 231, loss: 0.1671\r", + "cfm epoch: 9, steps: 232, loss: 0.1634\r", + "cfm epoch: 9, steps: 233, loss: 0.1607\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 234, loss: 0.1699\r", + "cfm epoch: 9, steps: 235, loss: 0.1567\r", + "cfm epoch: 9, steps: 236, loss: 0.1514\r", + "cfm epoch: 9, steps: 237, loss: 0.1597\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 238, loss: 0.1561\r", + "cfm epoch: 9, steps: 239, loss: 0.1499\r", + "cfm epoch: 9, steps: 240, loss: 0.1507\r", + "cfm epoch: 9, steps: 241, loss: 0.16\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 242, loss: 0.1629\r", + "cfm epoch: 9, steps: 243, loss: 0.1531\r", + "cfm epoch: 9, steps: 244, loss: 0.1543\r", + "cfm epoch: 9, steps: 245, loss: 0.157\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 246, loss: 0.1533\r", + "cfm epoch: 9, steps: 247, loss: 0.1606\r", + "cfm epoch: 9, steps: 248, loss: 0.1628\r", + "cfm epoch: 9, steps: 249, loss: 0.1776\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 250, loss: 0.1472\r", + "cfm epoch: 9, steps: 251, loss: 0.1569\r", + "cfm epoch: 9, steps: 252, loss: 0.1619\r", + "cfm epoch: 9, steps: 253, loss: 0.1573\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 254, loss: 0.1753\r", + "cfm epoch: 9, steps: 255, loss: 0.1624\r", + "cfm epoch: 9, steps: 256, loss: 0.1738\r", + "cfm epoch: 9, steps: 257, loss: 0.1565\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 258, loss: 0.1511\r", + "cfm epoch: 9, steps: 259, loss: 0.1625\r", + "cfm epoch: 9, steps: 260, loss: 0.159\r", + "cfm epoch: 9, steps: 261, loss: 0.1632\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 262, loss: 0.1668\r", + "cfm epoch: 9, steps: 263, loss: 0.1549\r", + "cfm epoch: 9, steps: 264, loss: 0.1577\r", + "cfm epoch: 9, steps: 265, loss: 0.1527\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 266, loss: 0.161\r", + "cfm epoch: 9, steps: 267, loss: 0.1538\r", + "cfm epoch: 9, steps: 268, loss: 0.1505\r", + "cfm epoch: 9, steps: 269, loss: 0.1631\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 270, loss: 0.1649\r", + "cfm epoch: 9, steps: 271, loss: 0.1545\r", + "cfm epoch: 9, steps: 272, loss: 0.1418\r", + "cfm epoch: 9, steps: 273, loss: 0.158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 274, loss: 0.1583\r", + "cfm epoch: 9, steps: 275, loss: 0.1584\r", + "cfm epoch: 9, steps: 276, loss: 0.1595\r", + "cfm epoch: 9, steps: 277, loss: 0.1419\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 278, loss: 0.1578\r", + "cfm epoch: 9, steps: 279, loss: 0.1541\r", + "cfm epoch: 9, steps: 280, loss: 0.1547\r", + "cfm epoch: 9, steps: 281, loss: 0.1557\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 282, loss: 0.169\r", + "cfm epoch: 9, steps: 283, loss: 0.171\r", + "cfm epoch: 9, steps: 284, loss: 0.1543\r", + "cfm epoch: 9, steps: 285, loss: 0.1559\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 286, loss: 0.1595\r", + "cfm epoch: 9, steps: 287, loss: 0.1632\r", + "cfm epoch: 9, steps: 288, loss: 0.1529\r", + "cfm epoch: 9, steps: 289, loss: 0.158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 290, loss: 0.1641\r", + "cfm epoch: 9, steps: 291, loss: 0.17\r", + "cfm epoch: 9, steps: 292, loss: 0.1586\r", + "cfm epoch: 9, steps: 293, loss: 0.1591\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 294, loss: 0.1697\r", + "cfm epoch: 9, steps: 295, loss: 0.1618\r", + "cfm epoch: 9, steps: 296, loss: 0.1434\r", + "cfm epoch: 9, steps: 297, loss: 0.1583\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 298, loss: 0.1581\r", + "cfm epoch: 9, steps: 299, loss: 0.1617\r", + "cfm epoch: 9, steps: 300, loss: 0.162\r", + "cfm epoch: 9, steps: 301, loss: 0.1593\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 302, loss: 0.1545\r", + "cfm epoch: 9, steps: 303, loss: 0.1507\r", + "cfm epoch: 9, steps: 304, loss: 0.158\r", + "cfm epoch: 9, steps: 305, loss: 0.1562\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 306, loss: 0.1493\r", + "cfm epoch: 9, steps: 307, loss: 0.162\r", + "cfm epoch: 9, steps: 308, loss: 0.1618\r", + "cfm epoch: 9, steps: 309, loss: 0.1488\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 310, loss: 0.1532\r", + "cfm epoch: 9, steps: 311, loss: 0.156\r", + "cfm epoch: 9, steps: 312, loss: 0.1606\r", + "cfm epoch: 9, steps: 313, loss: 0.1615\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 314, loss: 0.1571\r", + "cfm epoch: 9, steps: 315, loss: 0.1512\r", + "cfm epoch: 9, steps: 316, loss: 0.1575\r", + "cfm epoch: 9, steps: 317, loss: 0.1562\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 318, loss: 0.1612\r", + "cfm epoch: 9, steps: 319, loss: 0.1546\r", + "cfm epoch: 9, steps: 320, loss: 0.1566\r", + "cfm epoch: 9, steps: 321, loss: 0.1534\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 322, loss: 0.1601\r", + "cfm epoch: 9, steps: 323, loss: 0.1568\r", + "cfm epoch: 9, steps: 324, loss: 0.1513\r", + "cfm epoch: 9, steps: 325, loss: 0.149\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 326, loss: 0.1572\r", + "cfm epoch: 9, steps: 327, loss: 0.1539\r", + "cfm epoch: 9, steps: 328, loss: 0.152\r", + "cfm epoch: 9, steps: 329, loss: 0.1692\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 330, loss: 0.1455\r", + "cfm epoch: 9, steps: 331, loss: 0.1629\r", + "cfm epoch: 9, steps: 332, loss: 0.1483\r", + "cfm epoch: 9, steps: 333, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 334, loss: 0.1448\r", + "cfm epoch: 9, steps: 335, loss: 0.1611\r", + "cfm epoch: 9, steps: 336, loss: 0.1516\r", + "cfm epoch: 9, steps: 337, loss: 0.1476\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 338, loss: 0.151\r", + "cfm epoch: 9, steps: 339, loss: 0.1661\r", + "cfm epoch: 9, steps: 340, loss: 0.1535\r", + "cfm epoch: 9, steps: 341, loss: 0.1609\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 342, loss: 0.1616\r", + "cfm epoch: 9, steps: 343, loss: 0.1619\r", + "cfm epoch: 9, steps: 344, loss: 0.1557\r", + "cfm epoch: 9, steps: 345, loss: 0.1608\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 346, loss: 0.1603\r", + "cfm epoch: 9, steps: 347, loss: 0.1667\r", + "cfm epoch: 9, steps: 348, loss: 0.1612\r", + "cfm epoch: 9, steps: 349, loss: 0.1565\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 350, loss: 0.1522\r", + "cfm epoch: 9, steps: 351, loss: 0.1582\r", + "cfm epoch: 9, steps: 352, loss: 0.1632\r", + "cfm epoch: 9, steps: 353, loss: 0.155\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 354, loss: 0.1679\r", + "cfm epoch: 9, steps: 355, loss: 0.1602\r", + "cfm epoch: 9, steps: 356, loss: 0.1678\r", + "cfm epoch: 9, steps: 357, loss: 0.1488\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 358, loss: 0.1627\r", + "cfm epoch: 9, steps: 359, loss: 0.1545\r", + "cfm epoch: 9, steps: 360, loss: 0.167\r", + "cfm epoch: 9, steps: 361, loss: 0.1543\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 362, loss: 0.1652\r", + "cfm epoch: 9, steps: 363, loss: 0.1594\r", + "cfm epoch: 9, steps: 364, loss: 0.1681\r", + "cfm epoch: 9, steps: 365, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 366, loss: 0.1511\r", + "cfm epoch: 9, steps: 367, loss: 0.1464\r", + "cfm epoch: 9, steps: 368, loss: 0.1578\r", + "cfm epoch: 9, steps: 369, loss: 0.1523\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 370, loss: 0.1685\r", + "cfm epoch: 9, steps: 371, loss: 0.1729\r", + "cfm epoch: 9, steps: 372, loss: 0.172\r", + "cfm epoch: 9, steps: 373, loss: 0.1686\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 374, loss: 0.1799\r", + "cfm epoch: 9, steps: 375, loss: 0.1683\r", + "cfm epoch: 9, steps: 376, loss: 0.1613\r", + "cfm epoch: 9, steps: 377, loss: 0.1496\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 378, loss: 0.1658\r", + "cfm epoch: 9, steps: 379, loss: 0.1467\r", + "cfm epoch: 9, steps: 380, loss: 0.1651\r", + "cfm epoch: 9, steps: 381, loss: 0.1699\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 382, loss: 0.157\r", + "cfm epoch: 9, steps: 383, loss: 0.1565\r", + "cfm epoch: 9, steps: 384, loss: 0.1715\r", + "cfm epoch: 9, steps: 385, loss: 0.1583\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 386, loss: 0.1679\r", + "cfm epoch: 9, steps: 387, loss: 0.1517\r", + "cfm epoch: 9, steps: 388, loss: 0.1525\r", + "cfm epoch: 9, steps: 389, loss: 0.168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 390, loss: 0.1681\r", + "cfm epoch: 9, steps: 391, loss: 0.1708\r", + "cfm epoch: 9, steps: 392, loss: 0.1514\r", + "cfm epoch: 9, steps: 393, loss: 0.1585\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 394, loss: 0.159\r", + "cfm epoch: 9, steps: 395, loss: 0.1612\r", + "cfm epoch: 9, steps: 396, loss: 0.1511\r", + "cfm epoch: 9, steps: 397, loss: 0.1636\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 398, loss: 0.1658\r", + "cfm epoch: 9, steps: 399, loss: 0.1686\r", + "cfm epoch: 9, steps: 400, loss: 0.1662\r", + "cfm epoch: 9, steps: 401, loss: 0.1688\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 402, loss: 0.1511\r", + "cfm epoch: 9, steps: 403, loss: 0.1581\r", + "cfm epoch: 9, steps: 404, loss: 0.1472\r", + "cfm epoch: 9, steps: 405, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 406, loss: 0.1726\r", + "cfm epoch: 9, steps: 407, loss: 0.1578\r", + "cfm epoch: 9, steps: 408, loss: 0.1512\r", + "cfm epoch: 9, steps: 409, loss: 0.1678\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 410, loss: 0.1514\r", + "cfm epoch: 9, steps: 411, loss: 0.155\r", + "cfm epoch: 9, steps: 412, loss: 0.1601\r", + "cfm epoch: 9, steps: 413, loss: 0.1671\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 414, loss: 0.1592\r", + "cfm epoch: 9, steps: 415, loss: 0.1702\r", + "cfm epoch: 9, steps: 416, loss: 0.1672\r", + "cfm epoch: 9, steps: 417, loss: 0.1565\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 418, loss: 0.1665\r", + "cfm epoch: 9, steps: 419, loss: 0.1503\r", + "cfm epoch: 9, steps: 420, loss: 0.1606\r", + "cfm epoch: 9, steps: 421, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 422, loss: 0.1675\r", + "cfm epoch: 9, steps: 423, loss: 0.1589\r", + "cfm epoch: 9, steps: 424, loss: 0.157\r", + "cfm epoch: 9, steps: 425, loss: 0.1593\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 426, loss: 0.1637\r", + "cfm epoch: 9, steps: 427, loss: 0.1624\r", + "cfm epoch: 9, steps: 428, loss: 0.1574\r", + "cfm epoch: 9, steps: 429, loss: 0.1601\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 430, loss: 0.158\r", + "cfm epoch: 9, steps: 431, loss: 0.1733\r", + "cfm epoch: 9, steps: 432, loss: 0.1569\r", + "cfm epoch: 9, steps: 433, loss: 0.1548\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 434, loss: 0.1682\r", + "cfm epoch: 9, steps: 435, loss: 0.165\r", + "cfm epoch: 9, steps: 436, loss: 0.157\r", + "cfm epoch: 9, steps: 437, loss: 0.1627\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 438, loss: 0.1595\r", + "cfm epoch: 9, steps: 439, loss: 0.1661\r", + "cfm epoch: 9, steps: 440, loss: 0.1633\r", + "cfm epoch: 9, steps: 441, loss: 0.1518\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 442, loss: 0.1619\r", + "cfm epoch: 9, steps: 443, loss: 0.1727\r", + "cfm epoch: 9, steps: 444, loss: 0.1576\r", + "cfm epoch: 9, steps: 445, loss: 0.1582\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 446, loss: 0.1652\r", + "cfm epoch: 9, steps: 447, loss: 0.1563\r", + "cfm epoch: 9, steps: 448, loss: 0.1704\r", + "cfm epoch: 9, steps: 449, loss: 0.1565\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 450, loss: 0.1595\r", + "cfm epoch: 9, steps: 451, loss: 0.1556\r", + "cfm epoch: 9, steps: 452, loss: 0.1674\r", + "cfm epoch: 9, steps: 453, loss: 0.16\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 454, loss: 0.1655\r", + "cfm epoch: 9, steps: 455, loss: 0.164\r", + "cfm epoch: 9, steps: 456, loss: 0.1662\r", + "cfm epoch: 9, steps: 457, loss: 0.1559\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 458, loss: 0.1521\r", + "cfm epoch: 9, steps: 459, loss: 0.1639\r", + "cfm epoch: 9, steps: 460, loss: 0.1633\r", + "cfm epoch: 9, steps: 461, loss: 0.1613\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 462, loss: 0.1514\r", + "cfm epoch: 9, steps: 463, loss: 0.1685\r", + "cfm epoch: 9, steps: 464, loss: 0.1595\r", + "cfm epoch: 9, steps: 465, loss: 0.1612\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cfm epoch: 9, steps: 466, loss: 0.1762\r", + "cfm epoch: 9, steps: 467, loss: 0.1695\r" + ] + } + ], + "source": [ + "for epoch in range(n_epochs):\n", + " for i, data in enumerate(train_loader):\n", + " optimizer.zero_grad()\n", + " x1 = data[0].to(device)\n", + " y = (\n", + " data[1].float().to(device).reshape((batch_size, 1)) / 2.0\n", + " ) # just to have a floating point label\n", + " x0 = torch.randn_like(x1)\n", + " t, xt, ut = FM.sample_location_and_conditional_flow(x0, x1)\n", + " vt = model(t, xt, y)\n", + " loss = torch.mean((vt - ut) ** 2)\n", + " loss.backward()\n", + " optimizer.step()\n", + " print(f\"cfm epoch: {epoch}, steps: {i}, loss: {loss.item():.4}\", end=\"\\r\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3fb1b0fc", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T13:00:07.156895Z", + "iopub.status.busy": "2025-05-08T13:00:07.156466Z", + "iopub.status.idle": "2025-05-08T13:00:11.617808Z", + "shell.execute_reply": "2025-05-08T13:00:11.617375Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHICAYAAADujojbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsXXd4VNX2XdNrMpn03kMgBULvhA7Sq4IiIPgsqKgo+nz6VLArlic2sGHDZ0NRQTpIL4EAIY2Q3nsmZfrM+f3Bd453JoVU4Pe86/vywdy55cy5956zz95rry0ghBDw4MGDBw8ePHhcJwhvdAN48ODBgwcPHn8v8MYHDx48ePDgweO6gjc+ePDgwYMHDx7XFbzxwYMHDx48ePC4ruCNDx48ePDgwYPHdQVvfPDgwYMHDx48rit444MHDx48ePDgcV3BGx88ePDgwYMHj+sK3vjgwYMHDx48eFxX8MYHj78dzpw5gxEjRkClUkEgEOD8+fN4/vnnIRAIbnTTblocOnQIAoEAhw4dYtuWL1+O0NDQdh1/M/VvXl4eBAIBtmzZ0i3nKy8vx4IFC+Dh4QGBQIB33nmnW87Lg8f/MsQ3ugE8eFxPWCwWLFy4EHK5HG+//TaUSiVCQkKuy7W3bt2KiooKPPLII9fletcber0er7/+OsaOHYuxY8fe6OZcNzz66KPYvXs3nnvuOfj6+mLQoEE3ukk8eNz04I0PHn8rZGdnIz8/Hx9//DHuvvvu63rtrVu34tKlS/8zxsfHH38Mu93OPuv1eqxbtw4AmhkfzzzzDP75z39ez+ZdNxw4cACzZ8/G448/fqObwoPH/xvwxgePvxUqKioAAG5ubje2If8DkEgk7d5XLBZDLP7fHG4qKir454kHjw6C53zw+Ntg+fLlSExMBAAsXLgQAoGgzfCA1WrFCy+8gIiICMhkMoSGhuJf//oXTCaTw37bt2/H9OnT4e/vD5lMhoiICLzwwguw2Wxsn7Fjx2LHjh3Iz8+HQCCAQCBoF1/i66+/xpAhQ6BUKqHVajFmzBjs2bPHYZ8PPvgAsbGxkMlk8Pf3xwMPPIC6ujqHfcaOHYu4uDikpaVh3LhxUCqVCAgIwOuvv97smkVFRZgzZw5UKhW8vb3x6KOPNvvNgCPnIy8vD15eXgCAdevWsd/4/PPPA2iZ89He/g0NDcWMGTNw9OhRDBkyBHK5HOHh4fjyyy8d9qupqcHjjz+O+Ph4qNVquLq64pZbbsGFCxeu2c+toa6uDo8++ihCQ0Mhk8kQGBiIpUuXoqqqClu2bIFAIAAhBO+//z77zQDYd0ePHsXq1avh5eUFNzc33HvvvTCbzairq8PSpUuh1Wqh1WrxxBNPgC8wzuPvhP/NpQgPHi3g3nvvRUBAAF5++WWsXr0agwcPho+PT6v733333fjiiy+wYMECPPbYYzh16hReeeUVpKen4+eff2b7bdmyBWq1GmvWrIFarcaBAwfw7LPPor6+Hm+88QYA4Omnn4ZOp0NRURHefvttAIBarW6zvevWrcPzzz+PESNGYP369ZBKpTh16hQOHDiAyZMnA7g6qa9btw4TJ07E/fffj8zMTHz44Yc4c+YMjh075uCdqK2txdSpUzFv3jzceuut+PHHH/Hkk08iPj4et9xyCwDAYDBgwoQJKCgowOrVq+Hv74+vvvoKBw4caLOtXl5e+PDDD3H//fdj7ty5mDdvHgCgb9++Xe5fALhy5QoWLFiAlStXYtmyZfjss8+wfPlyDBw4ELGxsQCAnJwc/PLLL1i4cCHCwsJQXl6OTZs2ITExEWlpafD392/zNzijsbERo0ePRnp6OlasWIEBAwagqqoKv/76K4qKijBmzBh89dVXuPPOOzFp0iQsXbq02Tkeeugh+Pr6Yt26dTh58iQ2b94MNzc3HD9+HMHBwXj55Zexc+dOvPHGG4iLi2vxHDx4/E+C8ODxN8LBgwcJAPLDDz84bH/uuecI93U4f/48AUDuvvtuh/0ef/xxAoAcOHCAbdPr9c2uc++99xKlUkmMRiPbNn36dBISEtKudmZlZRGhUEjmzp1LbDabw3d2u50QQkhFRQWRSqVk8uTJDvu89957BAD57LPP2LbExEQCgHz55Zdsm8lkIr6+vmT+/Pls2zvvvEMAkO+//55ta2pqIpGRkQQAOXjwINu+bNkyh99TWVlJAJDnnnuu2e/pSv+GhIQQAOTw4cNsW0VFBZHJZOSxxx5j24xGY7O+ys3NJTKZjKxfv95hGwDy+eefN2snF88++ywBQLZt29bsO3oPCCEEAHnggQccvv/8888JADJlyhSHfYcPH04EAgG577772Dar1UoCAwNJYmJim+3hweN/CXzYhQePFrBz504AwJo1axy2P/bYYwCAHTt2sG0KhYL9v6GhAVVVVRg9ejT0ej0yMjI6df1ffvkFdrsdzz77LIRCx9eUuvb37dsHs9mMRx55xGGff/zjH3B1dXVoI3DV07JkyRL2WSqVYsiQIcjJyXH43X5+fliwYAHbplQqcc8993Tqd7SGjvQvAMTExGD06NHss5eXF6Kjox3aLpPJWD/YbDZUV1dDrVYjOjoa586d63Abf/rpJ/Tr1w9z585t9l1704ZXrlzpsO/QoUNBCMHKlSvZNpFIhEGDBjn8Fh48/tfBGx88eLSA/Px8CIVCREZGOmz39fWFm5sb8vPz2bbU1FTMnTsXGo0Grq6u8PLyYpO8Tqfr1PWzs7MhFAoRExPTZhsBIDo62mG7VCpFeHi4QxsBIDAwsNmkqdVqUVtb63DOyMjIZvs5X6Or6Ej/AkBwcHCzczi33W634+2330ZUVBRkMhk8PT3h5eWFixcvduo+ZGdnIy4ursPHtdVujUYDAAgKCmq2nftbePD4XwfP+eDBow1ca4VbV1eHxMREuLq6Yv369YiIiIBcLse5c+fw5JNPOqSi3miIRKIWt5MbSHRsrwehPW1/+eWX8e9//xsrVqzACy+8AHd3dwiFQjzyyCM37D601u6Wtt/I+8CDx/UGb3zw4NECQkJCYLfbkZWVhT59+rDt5eXlqKurY8Jkhw4dQnV1NbZt24YxY8aw/XJzc5udsyMKnxEREbDb7UhLS0NCQkKrbQSAzMxMhIeHs+1msxm5ubmYOHFiu6/HPeelS5dACHFob2Zm5jWP7cjva2//dgQ//vgjxo0bh08//dRhe11dHTw9PTt8voiICFy6dKnDx/HgwePa4MMuPHi0gGnTpgFAM6nst956CwAwffp0AH+tYLmrVrPZjA8++KDZOVUqVbvd/3PmzIFQKMT69eubrdrptSZOnAipVIp3333X4fqffvopdDoda2NHMG3aNJSUlODHH39k2/R6PTZv3nzNY5VKJQA0S/Nt7TrAtfu3IxCJRM28Bz/88AOKi4s7fC4AmD9/Pi5cuNAs8wbgvRQ8eHQVvOeDB48W0K9fPyxbtgybN29moZXTp0/jiy++wJw5czBu3DgAwIgRI6DVarFs2TKsXr0aAoEAX331VYuT08CBA/Hdd99hzZo1GDx4MNRqNWbOnNni9SMjI/H000/jhRdewOjRozFv3jzIZDKcOXMG/v7+eOWVV+Dl5YWnnnoK69atw9SpUzFr1ixkZmbigw8+wODBgx3Ipe3FP/7xD7z33ntYunQpzp49Cz8/P3z11VfMsGgLCoUCMTEx+O6779CrVy+4u7sjLi6uRd5Ee/u3I5gxYwbWr1+Pu+66CyNGjEBKSgq++eYbB69QR7B27Vr8+OOPWLhwIVasWIGBAweipqYGv/76Kz766CP069evU+flwYMH+FRbHn8vtDfVlhBCLBYLWbduHQkLCyMSiYQEBQWRp556yiF9lhBCjh07RoYNG0YUCgXx9/cnTzzxBNm9e3ez1NTGxkZy++23Ezc3NwKgXWm3n332Genfvz+RyWREq9WSxMREsnfvXod93nvvPdK7d28ikUiIj48Puf/++0ltba3DPomJiSQ2NrbZ+Z3TZQkhJD8/n8yaNYsolUri6elJHn74YbJr165rptoSQsjx48fJwIEDiVQqdUi77Ur/hoSEkOnTpzdre2JiokN6qtFoJI899hjx8/MjCoWCjBw5kpw4caLZfu1NtSWEkOrqavLggw+SgIAAIpVKSWBgIFm2bBmpqqpi+6CNVNszZ844bKf9UFlZ6bB92bJlRKVSXbM9PHj8r0BACO8/5MGDBw8ePHhcP/CcDx48ePDgwYPHdQVvfPDgwYMHDx48rit444MHDx48ePDgcV3BGx88ePDgwYMHj+sK3vjgwYMHDx48eFxX8MYHDx48ePDgweO6okPGx5YtWyAQCJCXl9fhC40dO7bLRZqcERoaiuXLl3frOXnw4MGDBw8ePQve83EN1NXV4Z577oGXlxdUKhXGjRvXofLc6enpmDp1KtRqNdzd3XHnnXeisrKy2X52ux2vv/46wsLCIJfL0bdvX3z77bddbv+nn36KPn36QC6XIyoqChs3bmzXcYcOHYJAIGjx7+TJk832P378OEaNGgWlUglfX1+sXr0ajY2NnW736dOnsWrVKgwcOBASiaRDdUM62iaTyYQnn3wS/v7+UCgUGDp0KPbu3dvptgPASy+9hFmzZsHHxwcCgQDPP/98u4+9kX1vt9uxZcsWzJo1C0FBQVCpVIiLi8OLL74Io9HY7vPcqL7PyMjAE088gYSEBLi4uMDPzw/Tp09HUlJSu46/0c/9xx9/jMTERPj4+EAmkyEsLAx33XVXhxZ8N6rvS0pKsGTJEkRHR8PFxQVubm4YMmQIvvjii3bJ0d/ovufCYrEgJiYGAoEAGzZsaPdxv/76KwYMGAC5XI7g4GA899xzsFqtzfbr6rxyLbz00ksQCATtXvA///zzLfa7XC5vcf/Ozitc8PLqbcBut2P69Om4cOEC1q5dC09PT3zwwQcYO3Yszp49i6ioqDaPLyoqwpgxY6DRaPDyyy+jsbERGzZsQEpKCk6fPg2pVMr2ffrpp/Hqq6/iH//4BwYPHozt27fj9ttvh0AgwKJFizrV/k2bNuG+++7D/PnzsWbNGhw5cgSrV6+GXq/Hk08+2a5zrF69GoMHD3bY5lwG/fz585gwYQL69OmDt956C0VFRdiwYQOysrLwxx9/dKrtO3fuxCeffIK+ffsiPDwcly9f7tDxHWnT8uXL8eOPP+KRRx5BVFQUtmzZgmnTpuHgwYMYNWpUp9r/zDPPwNfXF/3798fu3bs7dY4b0fd6vR533XUXhg0bhvvuuw/e3t44ceIEnnvuOezfvx8HDhy4piF4I/v+k08+waeffor58+dj1apV0Ol02LRpE4YNG4Zdu3a1u9jejXruk5OTERYWhlmzZkGr1SI3Nxcff/wxfv/9d1y4cAH+/v5tHn8j+76qqgpFRUVYsGABgoODYbFYsHfvXixfvhyZmZl4+eWX23WeG9X3XGzcuBEFBQUdOuaPP/7AnDlzMHbsWGzcuBEpKSl48cUXUVFRgQ8//JDt19V55VooKirCyy+/DJVK1eFjP/zwQ6jVava5perL3TGvAOiYvDqVDM7Nze2wlGpr8s5dQUhICFm2bFm3npOL7777rpkUd0VFBXFzcyOLFy++5vH3338/USgUJD8/n23bu3cvAUA2bdrEthUVFRGJROIg0Wy328no0aNJYGAgsVqtHW67Xq8nHh4ezWSp77jjDqJSqUhNTU2bx7cmQ94SbrnlFuLn50d0Oh3b9vHHHxMAZPfu3R1uOyGElJWVEb1eTwgh5IEHHmgmzd1dbTp16hQBQN544w22zWAwkIiICDJ8+PBOtZ0Qwt6RyspKB5nx9uBG9r3JZCLHjh1rtn3dunUEQDNp9660qSf6PikpiTQ0NDhsq6qqIl5eXmTkyJHXPP5GP/ctISkpiQAgr7zySre1qaee+5YwY8YMolKprjmO3Sx9X15eTjQaDVm/fn2zPmoLMTExpF+/fsRisbBtTz/9NBEIBCQ9PZ1t6+q8ci3cdtttZPz48R2ac1uT/XdGV+cVLrpsfPzyyy9k2rRpxM/Pj0ilUhIeHk7Wr1/f7EGjHZGUlESGDx9O5HI5CQ0NJR9++GGz6xiNRvLss8+SiIgIVk9h7dq1LdZ84BofZrOZPP/88yQyMpLIZDLi7u5ORo4cSfbs2eOwT3p6OikpKbnm7124cCHx8fEhNpvNYfs999xDlEpls/Y4w9vbmyxcuLDZ9l69epEJEyawz++//z4BQFJTUx3227p1KwFAjhw5cs22OmPHjh0EANmxY4fD9uPHjxMA5KuvvmrzeO5AUF9f7/BCcaHT6YhYLCZr16512G4ymYharSYrV67scNud0VHjoyNtWrt2LRGJRA6DGCGEvPzyywQAKSgo6FLbu2p83Oi+p7h48SIBQN59990297uZ+p6LefPmEXd392vudzP2fVVVFQFAnnzyyTb3u1n7/sEHHyQCgYAtJlrDzdL3d911FxkyZAjJyclpt/GRmppKAJD333/fYXtxcTEBQF544QW2ravzSlv4888/iUgkIhcvXuyU8VFRUUF0Oh2x2+0t7tfVeYWLLnM+tmzZArVajTVr1uA///kPBg4ciGeffRb//Oc/m+1bW1uLadOmYeDAgXj99dcRGBiI+++/H5999hnbx263Y9asWdiwYQNmzpyJjRs3Ys6cOXj77bdx2223tdmW559/HuvWrcO4cePw3nvv4emnn0ZwcLBDLK24uBh9+vTBU089dc3flpycjAEDBkAodOymIUOGQK/XtxkKKC4uRkVFBQYNGtTsuyFDhiA5OdnhOiqVCn369Gm2H/2+o6DHOF9/4MCBEAqF7T7nXXfdBVdXV8jlcowbN65Z7DwlJQVWq7XZdaRSKRISEjrV9q6iI21KTk5Gr1694Orq6rAv7fvz58/3eHtbw83U92VlZQAAT0/PNve7Wfu+rKzsmm3n4kb3fXV1NSoqKpCUlIS77roLADBhwoQ2j7lZ+t5gMKCqqgp5eXn44osv8Pnnn2P48OFQKBTtOv5G9j2trPzOO+90iGfW2njr7++PwMDAZn3f2XmlLdhsNjz00EO4++67ER8f36lzhIeHQ6PRwMXFBUuWLEF5ebnD9901rwDdwPnYunWrw0N133334b777sMHH3yAF198ETKZjH1XUlKCN998E2vWrAEA3HvvvRg6dCieeuop3HnnnZBIJNi6dSv27duHP//80yHuGBcXh/vuuw/Hjx/HiBEjWmzLjh07MG3aNGzevLmrPwsAUFpaijFjxjTb7ufnx35Paze5tLTUYV/n42tqamAymSCTyVBaWsqIia1dpzNtF4lE8Pb2dtgulUrh4eFxzXNKpVLMnz8f06ZNg6enJ9LS0rBhwwaMHj0ax48fR//+/dv1O48cOdLhtncVHWlTaWlpq/sBnev7ruJm7PvXX38drq6uuOWWW9rc72bs+yNHjuDEiRN45plnrrnvzdL3AQEBMJlMAAAPDw+8++67mDRpUpvH3Cx9/5///MdhcTdhwgR8/vnn1zzuRvc9IQQPPfQQbrvtNgwfPrxDJN9rtYnbn12ZV9rCRx99hPz8fOzbt6/Dx2q1Wjz44IMYPnw4ZDIZjhw5gvfffx+nT59GUlISM1K7Oq9w0WXjg2t4NDQ0wGQyYfTo0di0aRMyMjLQr1+/vy4mFuPee+91aPC9996L+++/H2fPnsWwYcPwww8/oE+fPujduzeqqqrYvuPHjwcAHDx4sFXjw83NDampqcjKymqVtBMaGtou5jVw1YLnGk8UlAFsMBjaPBbANY+XyWRduk5b1+cSWp3Pe61zjhgxwqGfZ82ahQULFqBv37546qmnsGvXLoe2tdb+zrS9q+hIm3qi77uKm63vX375Zezbtw8ffPAB3Nzc2tz3Zuv7iooK3H777QgLC8MTTzxxzf1vlr7/448/YDQakZ6ejq+//hpNTU3XPOZm6fvFixdj0KBBqKysxO+//47y8vJ2ne9G9/2WLVuQkpKCH3/8scPHXqtN9fX1Dvt2d99XV1fj2Wefxb///W94eXl1+PiHH37Y4fP8+fMxZMgQ3HHHHfjggw9YJKOr8woXXQ67pKamYu7cudBoNHB1dYWXlxeWLFkCANDpdA77+vv7N2Pg9urVCwCYlZmVlYXU1FR4eXk5/NH9KioqWm3L+vXrUVdXh169eiE+Ph5r167FxYsXO/3bFAoFW31wQVMO23Ij0u/ac3xXrtPW9c1mc4vfGY3GTp0zMjISs2fPxsGDB2Gz2Rza1lr7O3OdrqIjbeqJvu8J3Ki+/+677/DMM89g5cqVuP/++6+5/83U901NTZgxYwYaGhqwfft2BxZ/R3Aj+n7cuHG45ZZbsGbNGvzwww9Yt24d3nvvvTaPuVn6PiQkBBMnTsTixYvxzTffIDw8HBMnTuzUpHq9+r6+vh5PPfUU1q5di6CgoA4ff6P7/plnnoG7uzseeuihDh/bGm6//Xb4+vo6eFK6c17pkvFRV1eHxMREXLhwAevXr8dvv/2GvXv34rXXXgNwlb/RUdjtdsTHx2Pv3r0t/q1atarVY8eMGYPs7Gx89tlniIuLwyeffIIBAwbgk08+6dTv8/PzY+40Lui2ttLeqAuttePd3d2Z9evn54eysrJmHpn2XKet69tstmbGmtlsRnV1dafOCQBBQUEwm81sJXat39nZ63QFHWlTV+7x9cb17vu9e/di6dKlmD59Oj766KN2HXOz9L3ZbMa8efNw8eJFbN++vcsChzfyuY+IiED//v3xzTfftLnfzdL3zliwYAEKCwtx+PDhTh1/Pfp+w4YNMJvNuO2225CXl4e8vDwUFRUBuMpVzMvLa3XS7Wiburvvs7KysHnzZqxevRolJSWs/UajERaLBXl5eaipqenQOSmCgoIcju3OeaVLxsehQ4dQXV2NLVu24OGHH8aMGTMwceJEaLXaFvcvKSlp5j6k5JrQ0FAAV1+0mpoaTJgwARMnTmz2Fx0d3Wab3N3dcdddd+Hbb79FYWEh+vbt2yGBJy4SEhJw7ty5ZkbUqVOnoFQqmTemJQQEBMDLy6tFcaPTp08jISHB4Tp6vR7p6enNrkO/70zbATS7flJSEux2e6fOCQA5OTmQy+VsFRkXFwexWNzsOmazGefPn+/0dbqCjrQpISEBly9fdnCLAl3r+57C9ez7U6dOYe7cuRg0aBC+//57iMXti9DeDH1vt9uxdOlS7N+/H1u3bkViYmKnzsPFjX7uDQZDM0+yM26Gvm8J1ONxrfa3huvR9wUFBaitrUVsbCzCwsIQFhaG0aNHA7gadgwLC0NaWlqrx7c23paUlKCoqKhZ33d2XmkJxcXFsNvtWL16NWt7WFgYTp06hcuXLyMsLAzr16/v0DmBqxyYvLw8hzBOt84r7c6LIc1TbX/99VcCgBw6dIjtYzKZSEJCAgFADh48yLYnJiYSAOTNN99stq+Xlxcxm82EEEK2bNnSTAeDQq/Xk8bGRvbZOdW2qqqq2TELFy4knp6e7HNHUm3/+9//NsvHrqysJG5ubuS2225z2PfKlSvkypUrDtvuu+8+olAoHNLW9u3bRwA4pBgXFha2qvMREBDQaZ0Pd3d3MmPGDIftS5YsIUqlklRXVzv8pvT0dNLU1MS2VVRUNDvn+fPniUQiIbNmzXLYPnXqVOLn50fq6+vZtk8++YQAIH/88UeH2+6Ma6XapqenO2ipdKRNJ0+ebJZOZzQaSWRkJBk6dGiX236tVNubse/T0tKIh4cHiY2NvWbe/s3Y96tWrWp1DOHiZut7i8XSYn+fOnWKiEQicueddzpsv9n6vqW+I4SQmTNnEoFAQLKysti2m63vz549S37++WeHv02bNhEAZPny5eTnn38mdXV1hJDW55DevXuTfv36OYzXzzzzDBEIBCQtLY1t68i80h5UVlY2a/vPP/9MYmNjSXBwMPn555/JxYsX2f75+fkOuiOEtNz3VALirbfeYts6Mq9cC10yPqqqqohWqyUhISHkzTffJG+99Rbp378/6devX4vGh7+/P/H29iYPPfQQ2bhxIxk1ahQBQDZv3sz2s9lsZNq0aUQgEJBFixaRjRs3knfeeYfcd999xN3dnZw5c4bt62x8eHt7k1tvvZW89tpr5OOPPyb33nsvEQgE5KGHHmL75ObmEgDtEiezWq1k2LBhRK1Wk3Xr1pH333+fxMbGEhcXF5KRkeGwb0hICAkJCXHYVlBQQDw8PEhERAR59913ycsvv0y0Wi2Jj49vlsu9du1aAoDcc8895OOPPybTp08nAMg333zT4j34/PPPr9l++vAsWLCAfPzxx2Tp0qUEAHnppZcc9qM53tz7NW7cODJt2jTy4osvks2bN5NHHnmEKJVKotFoHF4kQq6+uDKZjPTv3598+OGH5OmnnyZyuZxMnjy5WZsAkMTExGu2PS8vj7zwwgvkhRdeIEOHDmW58i+88AL58ssvr3nOjrRp4cKFTDdg06ZNZMSIEUQsFpM///zzmv3UGr788kvywgsvkKeeeooAIOPGjWPtz8vLa/OcN7Lv6+vrSVBQEBEKheTVV18lX331lcPf8ePHr3nOG9n3b7/9NgFAhg8f3qztX331lcPi5Wbr+9raWqJSqciKFSvIm2++ST766CPywAMPEKVSSdzd3cnly5evec4b2fcPP/wwGTRoEHnmmWfI5s2byauvvkoGDx5MADiMwa2d80aPOc6gc4Wzzkdrc8hvv/1GBAIBGT9+PNm8eTNZvXo1EQqF5B//+IfDfh2ZV5YtW9btwp7UEcCFQqEgy5cvJ2+++SZ5//33yeLFi4lAICAJCQkOBiIh7Z9XroUui4wdO3aMDBs2jCgUCuLv70+eeOIJsnv37haND2eRsZCQEPLee+81u47ZbCavvfYaiY2NJTKZjGi1WjJw4ECybt06B1EcZ+PjxRdfJEOGDCFubm5EoVCQ3r17k5deeol5VQjpmPFBCCE1NTVk5cqVxMPDgyiVSpKYmOhgAHHb4mx8EELIpUuXyOTJk4lSqSRubm7kjjvuIGVlZc32s9ls5OWXXyYhISFEKpWS2NhY8vXXXzfbb+PGjQQA2bVrV7vav3nzZhIdHU2kUimJiIggb7/9djMBmZYGgv/85z9kyJAhxN3dnYjFYuLn50eWLFnisHrh4siRI2TEiBFELpcTLy8v8sADDzisSgghpKGhgQAgixYtuma7qeBQS3/OA0lrg0t72kTIVWXHxx9/nPj6+hKZTEYGDx7cYv8+9thjzdQKWwN9wVv64/bzzdb39P1o7c/5vbnZ+p4O1q39cceum63vTSYTefjhh0nfvn2Jq6srkUgkJCQkhKxcubLFyedm6/s9e/aQGTNmEH9/fyKRSIiLiwsZOXIk+fzzz/9fjDnO6KjxQQghP//8M0lISCAymYwEBgaSZ555xmH+oWjvvDJ//nyiUChIbW1th9vfEePj7rvvJjExMcTFxYVIJBISGRlJnnzyyRafG0LaN69cCx3TrOZxw7Fw4UIyePDgG92MTmHHjh1EIBA4uAD/P2Hw4MFkwYIFN7oZnQLf9zcOfN/fOPx/73tvb2/y+OOP3+hm9Aj4wnL/j0AIwaFDh/D111/f6KZ0CgcPHsSiRYs6rb53I1FfX48LFy7giy++uNFN6RT4vr9x4Pv+xuH/c9+npqbCYDB0rFjb/yMICGmn4hYPHjx48ODBg0c3oMsiYzx48ODBgwcPHh0Bb3y0gffffx+hoaGQy+UYOnQoTp8+faObxIMHDx48ePy/B298tILvvvsOa9aswXPPPYdz586hX79+mDJlSpvy7jx48ODBgwePa4PnfLSCoUOHYvDgwayegt1uR1BQEB566CFWZIcHDx48ePDg0XHw2S4twGw24+zZsw5loYVCISZOnIgTJ060eIzJZHIoFmS321FTUwMPDw8IBIIebzMPHjx48OheEELQ0NAAf39/CIV8oKA7wRsfLaCqqgo2mw0+Pj4O2318fJCRkdHiMa+88grWrVt3PZrHgwcPHjyuIwoLCxEYGHijm/E/Bd746CY89dRTWLNmDfus0+kQHBzc6v4CgaBZFduOojPn8PLyQmNjIwghkMlksNlsrPCTRCKBQCCA3W5nf0KhEAKBAAKBAEKhECKRCGazGTKZDBKJBA0NDbBYLFCr1ZBIJKivr4dYLGaFyAwGAzQajcM5JRIJzGYzrFYrrFZrp6of8/gL9P6IRCKQq8KBAACbzQaJRAK73Q6bzQahUAi73c72J4Q088rR+9/Sc8U9HkCXn9+eglQqdWijQCBgfaFUKgFcfT+tVitEIhHUajV7Du12O8RiMUwmE0QiERQKBTw8PODm5ga5XA6TyYTk5GSIRCLW30aj0eFdpNemVatb+57CeTu3X1s6zvl77u90Rmv3qDvGn55AT7arK+d2cXHp5tbw4I2PFuDp6QmRSITy8nKH7eXl5fD19W3xGJlMxgYbZ7Q0wAuFQthsti63tTMhHTrAajQa2Gw2WCwWByOAe06VSgWbzcb+6EBqtVohFAqhUqnQ0NCApqYmCIVCZtBYrVYAVycClUoFg8EAs9kMgUAAo9HIBvrWBk0e7YdIJGITJgBm/JlMJsjlclitVhiNRkgkElgsFmag0ONsNhszKugz6XxPhEIhpFIpjEYj23az3jer1QqpVApCCOx2O9zd3WEwGJjx3NTU5PD7pVIp9Ho9M7bpvlarFRKJBAsWLIC7uzvCwsLQ2NiIu+++GwKBADKZDAKBgPU7NerEYnGLzze3v9oyRpz3c/6/87HO79C1DJKWzn2zoKU2daex29Hf3No94tF18EGsFiCVSjFw4EDs37+fbbPb7di/fz+GDx/e5fMTQrrF8AAAhULR7nLnwNWBmRACk8mEyspK1NXVsYmHTkpisZitcukEplAoIJPJ4OrqChcXF2g0GqhUKtTX10MgELCS11KpFEqlEkKhkJ2roqICTU1NMJvNaGpqgkqlYi+zQqHoln74O8LNzY3de+7AbLPZYDabQQhBY2MjMxjMZjNEIhGLXdtsNphMJmZ4tvZMikQiZjT+fwAhBBKJBBKJBDabDZWVlWhsbITZbAYAZmjY7XZYLBZUV1czA8xut8PDwwNKpRLe3t6Ij4/HqlWr8Mgjj0Cn0+Hrr7+Gl5cXrFYrdDodGhoa4OrqCrlcDqlUCpFIBIvFAqFQCLFYDJFIBAAd5gtQQ4b7uaPH/H9ESwYG15vH438HvOejFaxZswbLli3DoEGDMGTIELzzzjtoamrCXXfddd3aQA2C+fPnY+zYsdiyZQtSUlLYIApcJbp25MU0m81soiGEQKPRsMmHutzpJKVSqRjhiq4ShUIhLBYLTCYT7HY71Go15HI5pk2bhtDQULz22muQyWSQy+Ww2+1oamqCXC5nxgzXpU8Hfx7tg0gkcug/amDQfqXgDtbUCOSu4KKjozF48GAsX74cALB//37s3bu3VR2b7jKUrxdcXFxYWE8kErEwn9lsRl1dHYCrIUZCiIOXhL4TjY2NDiEXpVKJ6upqDB48GEKhEE8++SREIhHkcnkzTwo1vql3j17L+TlvKXTivL2t97q9hsm1Qjk8eNwo8MZHK7jttttQWVmJZ599FmVlZUhISMCuXbuakVB7ChKJBBEREfD19cXEiRMxbtw41NfXo7Kykg1yeXl5Dhk27QEdYClHgOsalkgk7Hx0UuOGUKiLnnI1gKsD2dy5czFhwgR4enri0qVLOHTokIMbn8bbRSIRTCYTG4ipQdIZiMVi5nHp3bs3QkNDUVBQgOzsbJjNZjQ0NFz3AVYsFiMiIgJhYWFITk7G0KFDUVFRgZycnB7Rh6GGZFvuddrHQqEQPj4+CAsLw+DBgzFmzBiMHTsWwFWCdXp6OjM+6Crd+d5Q/g/w1/NxI0Gf2YEDB8JoNEKn06GsrAx2u50Z1FwPHA0xAmAeCaD5cygQCDBhwgSEh4ejV69ekEgk2LVrFxoaGlBYWMgMC67hR59Hei+4xrZzm1szPFr63Nq2ts4J/GVstOZJ6E6oVCrI5XIYDAYMGzYMWq0WEokEjY2NkMlkqK2tZQZdRUUFysvL0djY2G3X542p/5/gjY828OCDD+LBBx+87tcVi8XQarW45ZZbMHr0aMTGxiIwMBArVqzAmTNn4OnpCRcXF/z444+oqqpiXoiOgBowBoOBGQcymQwmk4nFrCkRlU46hBCYzWZYLBZmvIhEIvzrX/+Cu7s7dDod1q5dizNnzkCn07GB2Gg0Qi6XQywWgxDC3NICgaDDng+BQAB3d3colUpIJBJotVrcddddmDlzJnbv3o3vv/8eOp0O2dnZ7LcJBAL2W7oLQqEQLi4uDiEvlUqFmTNnYs6cOXj11Vfx0ksv4cyZM/jhhx9w6tQpFuLqLJyJoFwDsLUBmHIQ5HI5+vfvj9mzZ2P48OGIiYlhk7RYLGbhL3pfBQKBg4eNnoeSLGmY4nqBPq9yuRwWi4V9VqlUWLRoEaqrq5GZmYk///wT5eXl7NmjIUalUgmRSMQ4S9RAEIvFsFgsDkacQqHAI488gvj4eKjVauh0Onz22We4fPky6urqoNfrAVwlklIeiUKhgMViYaEskUjEDG+ucchtlzOceRz0/1zQdlP+jVwuZ55Fg8HAwmjXQlcnbIFAABcXF4hEIvj5+cHDwwM1NTV47LHHEBMTA7VajcLCQmg0Gpw/f579f//+/Th69Gi3GR/0eaX3QalUoqGhgX3X0cUZj+sH3vi4CTFw4EDMnDkTixcvhlarRWlpKfbu3Ytz585h48aNUCgUqKysRHh4OJKTk3H06FFcvny5Xed2cXFh8e+mpiYoFApGSqyrqwMhBK6urgCuGkF6vR4SiYQRZE0mEwvHuLq6YuHChWhoaIBYLEZhYSGefPJJJCQkIDc3F+Xl5VCr1SgrK0NdXR0L5SiVSnYtrVaL6urqdveNj48PsrKyWGYO8NeAvGzZMixduhRmsxlpaWk4efIkMjMzoVKp8P7776OpqanjN6MFCIVC+Pr6Yvv27UhISHD4jk5sv/zyCwQCAWJiYrBkyRLo9XrExcWhqKio09dtzbgArhomdDXP9UrY7XYEBwcjLi4OEyZMwPz58+Hm5gabzYbq6mqkp6fjm2++wbZt29ixXM8UDdlQw/NGoV+/fpg4cSIefPBB7NmzB/369UNAQAAaGhqwatUqqFQq1NbWoqysDAqFgnGbaB/o9XrI5XK4u7vDZrOhsbGRhUgaGxvZMy4SiRASEgKr1QqbzYaamho899xzzHNHDQ8ALAxpMplgs9mY90Ov17PngMul6g5otVoEBwdjwoQJ+Oyzz3DnnXfirrvuQlRUFNatW4cdO3YgNTW12XHOxk9XjQ9vb298/vnniI2NRWFhIcrLy5GYmAhXV1f2HGq1WggEAhw+fBj19fVYtWoV9u3b121Ee/qb+vXrh8DAQERHR+Oll17CggULYLPZoFQqsX37dt4AuUnBGx83Iby8vBAbGwsPDw98+eWXOHPmDHJycqBUKrFgwQIoFAr4+flhzpw5GDduHNzd3fHbb78hMzPzmueuq6uDzWZjq8bGxka2klQqlWhqamJeAhozp1wQu90OpVIJs9nMsgTc3Nzg4+ODvXv3Ytu2bcjJyYHRaGTncHNzAwC2ajYYDLBarcx70l7Ph1AoxPTp0/HQQw9BoVA4tIlOvHQwksvliIqKgr+/P7Kzs/HGG2+0azXYXhBCUF9fzwa2ESNGAAC2bt2KlJQUNDU14ZVXXkFVVRUjI2ZkZDBPUWcHX3osHXidPSGU20AnGLFYjMmTJ2Pq1KmYOHEiNBoNXFxcIBAIoNPp8OWXX+L7779Hbm5uixMR7Vd6HTqptJaK251wdXVFZGQk7r//frz++utITEzElClT4OrqipycHMhkMqSlpWHr1q1ISkpyyNRRqVSMu9TU1MS8NWazGTabDZ6enuz72tpaAH8ZEgKBAHl5eSy1UigU4p///CemTZuGqqoqdg+EQiH7k0qlAMDOLxKJWOYb9S5RDwhw7SwUChr+EgqFUKvVePrppxEdHQ1vb2/4+vritttug1arhaenJ2QyGRYvXszak5yc3OI5uyNzZMaMGbjjjjsgFAqxYcMGtkA5evQoli9fjpSUFJw5cwZFRUV4+OGHERgYiLCwMIhEIjz++OOoq6tDYWFhp68PXO0TjUaDu+++GxMnToSPjw9cXFwgFArx8ssvM8PRYDDg2LFjTBKAx80D3vi4yUAIcUjrO3/+PM6dO4eioiK4ubkhOTkZBoMBPj4+8PT0hEajwahRo2CxWCAWi5GRkdHm5MYd9IRCIYvVcrMdrFarwwTHjV/bbDbIZDKmjzB8+HCoVCoYjUbU1dXBYrEwr4ZUKmUhHbrSouduy/3cElxcXBAZGYkhQ4ZAIBDg7NmzsFqtkMvlMBqNCAwMhEAgQENDA1JSUtiAFxYWhvDwcIcYf1dBXfkHDx5EVVUVG+j379+P3NxcGI1Gdt3Y2FgEBQXBzc0NQ4cOBQDk5+d3+rr035YmL2oUUI5DQEAAJk+ejNGjR6NXr14O+4rFYvj6+iIvLw+1tbUdCgX0tOHRt29fxMTEoH///hg9ejTefPNNiMVi1NfX46uvvsKJEyeQk5MDk8mE06dPQ6fTORxPQ4cU9Dmk/UMNYBoWkclksNvtiIiIQFxcHCQSCXx8fGAwGFBcXIy0tDTU19czA5ZrhAFg+h/AX1wk+t7Q/upIn3HJwkqlEhqNBsHBwRg9ejQiIiJYVplUKkVFRQXq6urQv39/hIWFISoqCqmpqeyZdDY2uiMbhmb27Nu3D3/++SesVitkMhl7t3Nzc5GRkYGqqip4e3vDw8MDkZGR7Dn09PSEVCrttCdNIBDA19cXCQkJmD59OmJjY6FWq5mh3KtXLxBCoNPpsHDhQuj1eqSmpqKsrKxT1+L5JD0D3vi4SSASieDu7g6hUIiQkBAEBQUhOzsbV65cQVlZGXQ6HXQ6Hfbs2YPS0lL06dMHw4cPh1QqxbBhw+Dn5wepVIqcnJw2+Q10sqYrQaVSycIpNB5OXchisZgNKHRVaLfb4eXlBblcjoiICEyePJlpKQQFBbEVPp0gqfFBCYDcQbAjA2FERARCQkKgVqtRW1uL7du3w2g0QqvVoq6uDkOGDAEAFBcXY8uWLZg6dSpmzZqFmJgYTJo0CV999ZWDy7yrsFgsOHbsGI4dO9bi908++ST++c9/ws/PD5GRkYiKikJiYiJKS0s7bXxwORbOmiw0XEL7VywWY+DAgbjlllsQGhrK9qEGWn19Pfr27csEubieA2dSKdcQ7Qy4mSWtQaFQQKlUQiwWY+bMmRg7diz69OkDo9HIiJ5Hjx7F5s2bWUy/NTQ2NkIul7PPcrmckXPtdjt0Oh0LKVGtGp1Oh9jYWNx3333w8fGBn58f8vLycOnSJVbLiXo9qDFD+0smk6GhoQFSqZSFZ+rq6phHxHkx0NpzzzXK1Wo1ZDIZ/P39ERERgb59+yIsLAxarRY2mw1VVVW4ePEiLl26BKvVin79+sHFxQW+vr7NtIi6e/IsLS3F0aNH8dVXX6Gurs7hvqakpDjs+/HHH8Pf3x/jxo3DkiVLIJfLoVKpoFAoOm18iEQiREZGYvbs2Rg1ahSAvww8k8mE+vp6yGQyqNVq3H777SgvL2eht/r6+s7/cB7dCt74uAlASVvff/89oqOjIZPJYDAYUFZWhitXrjhwIr755hsAQFRUFDZv3owBAwbAzc0Nrq6uCAoKwpdfftkmAdVut8PFxQUWiwX19fWor69nhDVKImtqamLCY3RVp1Kp4O3tDXd3dyQmJmLGjBkYM2YM9Ho9zGYzoqOjkZiYiK1bt0IqlTqsEvV6fbPwACWr0VTe1kCPe++99zBkyBDU1tbivvvuw5UrV1BSUoLKysoWjzMajYiKikJ8fDxiY2M7pIXSHbBarejVqxe8vb3Ztg8//BBZWVmdPifN2KCTJgAHAigXGo0G7777LhPMA/6a9DZu3IhXX32Vkf6ocUFXr85hla5wFoRCIQYOHAidTofMzMwWn0uBQIB58+Zh+fLliI+Ph1gsRm5uLnbs2IHNmzejvLwc//3vf9t9TSpqR8hfKr4004WGrbj6KNw20Ywl6k0bNmwYjEYjC6dQoifV16E6IgAY2VOlUgEAm1yd053bynYBALVajYceegheXl7o378/Bg8ezIwpvV6PrKwsPPjggxCJRKzuyJ133snCMSEhIe3qp86u6qnR3Z7jrVYrvLy8EBAQAIPBwMa2rhDAPTw8EBcXhzFjxrBtlFyalJSEJUuWYPTo0VixYgWGDx+OZcuWYfTo0Th69Cgef/zxTl+XR/eCNz5uAsycORNr1qxBREQExGIxsrOzcfLkSWzYsKHVybWyshIfffQR+vfvj/79+yMyMhIeHh747LPPkJycjNOnT+PXX39tdpxQKERjYyOTOZfJZA6kQuqGpm5pStALCwvDwIEDMXv2bIjFYuzcuROvvfYaXnzxRYSGhiI3N5fJTnNXuvX19VCr1SxLhg70NNRzrdU0nQyUSiUuXryInTt34uLFiygtLW1zAPPz82MKrllZWd3K+WgvDh06BB8fHyiVSrz99tsoKirqEmnTWSOF+y8FNUaA5itegUCADz/8EAcPHoTJZGJy41OnTkVwcDA2bNjQ6mRCvV908m7p/C1BLBbj4YcfhlqtxtmzZ7F9+3aIRCLEx8djwIABIIQgISEBAQEBrAijSCTC8ePH8fXXXyMtLa3D944SPqnRRY1f2l4qBEZ/l8Viwauvvorhw4cjMjISdrsdJ06cwNGjR3HkyBGYTCZMnz4deXl5aGhowOLFi/Hll1+y8CL1EAJgZFZnOIfKWgqdccMtPj4+mDp1Knx9fZkH5ZVXXsGlS5eQn5+PixcvQiAQYOLEiZg5cyY8PT1hsVhw4MABRh7mnrMldMbw8PDwgMlkYiUa2oPa2lokJSVh/fr1WLZsGSQSCTw8PFBaWtrh6wPA9OnTMXnyZGZkvfXWW0hNTUVxcTFLaz969ChsNhtGjBgBjUYDmUwGFxcXzJgxA3v37uVJqDcBeOPjBmPixIkYM2YMAgIC4OLigoaGBhQUFOD8+fPIyclplb+h1+tx5swZFBcXQ6/Xw2KxIDw8HP369YPJZEJJSQlLneWCii8Bfw3C1KXO1f6goJkdCQkJGDFiBGQyGS5fvoz09HRcunQJR48ehZeXFzIzM3HixAlYrVbmeaHno6EbWmeEhgi4cfHWIBAI4OPjg927d8NkMiElJQXl5eVMpbI1xMTEwNvbG2azGVeuXLmuQlmurq5MoM7f3x8GgwEpKSks3NVZcENWNEW0pX2ioqIwduxYqFQq5tGifXfo0CHk5OQweXwfHx8EBgYiODgY4eHhyMvLcxCc4563o5wPmUyGO+64A76+vpBIJAgODoZIJIKvry8EAgEqKysxZMgQ6PV6XLhwAUajEUqlEpmZmdi/fz+ysrI6tUKmzxQ1mLgTPf1dcrmc/Y6goCBmiKtUKpSXl+PEiRMsg2zq1Km49dZbUVtbi5qaGnh6erKMmJqaGqbzQb1S3JCYUCiERCJh9749oUaxWIyEhARmPJeVleHMmTNISkpCeno6SkpKmIFVUFCArKwsiMVi1NTUIC8vD3l5ea1yPTrD/aDqxUKhEMOGDWPjU3vh7u6OiIgIxMfHw8XFBQEBAQgICOi08REWFoaAgAAIhUKkpqbi8OHDSE1NRXV1NQup0TAwzWDy9vZGREQEvL29O6Q2y/M9eg688XEDIZPJMG/ePPTr14/V3iguLmYTe1sTptlsRk5ODnJyciCRSABcNSZGjhwJHx8feHt7Q6FQNDM+uCs+6ungTjTcLArqvQgLC8OAAQOQkJCA06dPY8+ePcjPz4dIJMLFixcxdOhQXLp0CcnJyYzdTz0gUqmUxb+pq5urEXGtQZCGA7799lsAVyeW9sRtY2Nj4e3tzVjvPaVJoVAooFarYbfboVAoIBKJEBgYiPXr10OtVqOurg4pKSkoKyvrsgHEXRlT48PZ9W2329G7d28sWrSIZWxQzZYDBw4gOTkZZWVlLMTWt29f+Pn5wdXVFQMGDEBlZSXT/qB8kPr6+k5pycjlcqxcuRI6nQ6lpaVscvD390dubi5SU1MRFhaGs2fPIjc3FzU1NQgKCsLvv//eJX4ON+zHDU8BYCJ5tC6LSCRCQkICdDodGhsbIRQKkZ2djUuXLkEoFGLQoEEYPHgwpkyZAoVCgZqaGuzevRuBgYGoqqpiBepoujo3q4VelytA1h4tDzp5UhHBqqoqbN68GcXFxaiqqkJDQwPjqpSXlyM9PR2EEFRUVDACancSTN3d3REVFQWVSoVJkybh6NGj7TY+3Nzc0KdPH4wdOxazZs1iqcwBAQFISkrqcFvEYjHTObJYLLhw4QJSU1ORn5/P3i+RSISoqCiMGjWKeQJ9fHxgs9lYthePGw/e+LhBEIvFGDJkCDw8PODh4QE/Pz/Y7Xa8+eabOHLkCAoKCq55DpqFcvDgQVRUVGD8+PGw2+0YNGgQjEYj3nzzzWbHqNVqNpFQrklpaSmbyLhkPEIIysvLkZCQgN69e0MqleLixYs4deoUBAIBevfujSVLluCzzz5Deno6vL29UVNTA5PJxDJiamtrWRojt7CXXC6HQHBt8S+LxYJ9+/bB1dUVVqu13ZMSje9rtVosWbIE7777breqKlKMGjUKd955J+rr6zFp0iT4+Piw2jUCgQCbNm3Cyy+/3C1kVzqp0krEEomErbhpOEcqlaK+vh5ZWVkYM2YMGhsbmaGSmZmJ6upqGI1GuLu747777sNjjz0GkUiE0tJSGI1GVFVVQa/Xw8/PD/PmzYNYLMaHH36II0eOOLSlLe8LhdVqxenTp1FbW4sTJ05g7969AODAezl16pTDMSdOnOhyP1EvGzWubTYb5HI5eyYrKytRW1sLV1dXBAcHY968eRg1ahS0Wi2amppw+vRp9OnTB3FxcRgwYAACAwNRXl6O6upqVmju888/h0qlQlhYGHJycljqJwCW1kmNd+c+amvyEwgEqKqqQt++fVs8hus9mThxIubNm4dx48YxL0h9fX23r9aHDh2Kxx9/HMOGDcOhQ4daleFvCQ899BAmT56MuLg4JmNPa0V1FEKhEMHBwVCr1Wwho1arHci/AoEAWq0WLi4uLFxFPawqlQpDhgzBli1b2rwOn+FyfcAbHzcI1OXdp08f+Pv7Q6/X47vvvsPJkyebuSNbyzbgfm5sbERSUhLi4uJgtVoREBCAxx9/HC+99JIDz8BsNjPjwmQysaJa9IWjRgHlY2g0GkycOBEpKSlYu3YtampqUF5ejujoaMTFxTHhrPz8fFRUVDhwOiiouiRlnHO1ElQqVbvEv9obY/bx8cFTTz2FhQsXwsXFBZcuXcKtt96Kmpqaax7bGdDw0eLFi6FSqdgqFwDeffdd7Nmzp9vUVemERl353BAa9YYoFAp4e3sjLCwMwFXPzIkTJ/DLL7/gl19+QX19PUaOHIlZs2Zh+fLlbCUYGhoKb29v+Pv7o6mpCS4uLhg5ciQAoKKiAj4+PmhoaMC+ffvY77uWboJer8dLL70EiUTSovHl7e2NDz/8EA8++GCnXfCtXZeGnKiaLs1Q0el0LOQyb948/Otf/4JarYa7uzsOHjyI3377DUFBQVi6dCm8vLzQ0NCA1157DYWFhQgMDIRSqcTu3bvx2muvobq6GikpKdi+fTsuXbrEJjmqKEs1Rtzc3JpVyOaiPV6KlgjAixcvxuDBg+Hl5QW73Y709HRUVVW1mTJNr9PRCZZ6EGkYNioqqlXydFhYGEJCQuDh4YE777wTfn5+rNbTfffdh5MnT7ZrcdXSb2hsbERERAQCAwMhFAoxYsQIxMTEoKmpCdXV1RAIBHjmmWcwatQoKBQKLFiwAPPmzcOwYcMgEonwzTffXJPvwRse1we88XED4ObmhoiICMydOxceHh5obGxEbm4ufv/9d1RWVrZZhKo1GI1GJvClUCjg5uaGAQMGNNO3oGm09LzcWDRdqSmVSqbTcdttt6G4uBjnz59HWloaK5Kl1+vR0NAAiUSCfv36oa6uDo2NjcyrQbNlgKsGDzVoqMubm8LZHlzL5T9s2DA0NDRALpdj4sSJ8PDwYAZWbm5uu67RGdTU1ODy5ctMPp4adsDVSbCjhf/aApdz4ezeB67e25CQEPTu3RuRkZHM+3P58mXs27cPdXV16NevH0aPHo0RI0bA09OTHUvTRBMSEmA2myGVSpnSbVxcHAghqKysxMGDB9sdPqJhF1qTqKioCCdPnsSyZcuY18TNzQ1hYWEwGo1M8Kur4Aq5OfeTUCiE1WrF2LFjMXLkSAQFBaG+vh4GgwGFhYVISUlhv516SY4fP46ysjKkpaVBKpWipKQE/v7+CAwMhLu7O2QyGQICAnD58mWUlpYyET4AzFvnbDx0BvQ4qVSK4OBgaLVaKJVK2O12FBQU4NChQyguLm71uM4iNzcXP//8M3799VcsWLAAkyZNgoeHB37++WdcuXKFKRwPGTIEFy5cwIgRIzBp0iS4ubnB39+fSc9XVVUx8vm10qVbglQqxeTJk5GVlQUXFxfExMRAo9Hg1ltvhVqtRnJyMpYuXYqxY8ciJycHR44cQXp6On777Td4eHggNjYW7u7uTJCQNzJuLHjj4wZAq9WiX79+mDFjBgDgypUrOH36NI4cOdJqaOBaL4rZbEZJSYlD4SyuBDkXNNZNyaA0JCIQCBw+q9VqJCYmIiUlBampqWhsbIRSqWQTLRUdGzFiBIqLi5GXlwej0cjcq9R7QvVD6O+gpc67ksJJIRaLERQUhBkzZqCyshJGoxG9e/dmfULFtLheme5ERUUFzp8/j4KCAgQFBTHPEXBVqTY0NBTl5eXIy8vr1us6GwDUIImIiEDv3r0RHBwMo9EIs9mM6upqFBYWQiqVYsKECRgzZgyio6Md+t5ms6G2tpapcxJCUFxcDI1GA4VCAXd3d+bBae89UygUWLt2LfLy8nDlyhWcPXsWp06dQmJiInx8fBhpODo6GjU1Nd1mfNCQC33+uIXjxGIxDAYDRo0ahdjYWBbCokYi5e9Q1df09HSkp6ejrq6O1Wyhq24vLy+m8CuTyWA0GlFdXc2MPuCq8dHWRNvS+3ktT4hUKkVERAR71pqamnD8+HEcP36cVe1tS0uEe432ICcnBzU1NaioqMCYMWPQv39/9OnTBwaDATt27EBdXR3c3Nwwf/58SKVSTJo0CQsXLmTeDr1ej+rqaly4cIFlnnQGIpEIcXFxOH78OPR6PTw8PODu7s64JC4uLnjooYdgMpnw9ddf48MPP4Rarcbp06cxadIkDB48GIMGDcLOnTtZKjaPGwfe+OhhtDQIyOVyJokMXBXm+eCDD7o0+NrtdjQ2NrJY6uXLl/Haa68xxj0dfLVaLYC/XLdVVVUQi8WQyWSQy+WorKxkk7Zer8fHH38MDw8PNDQ0QCC4Wrdi2LBhmDJlCsaPHw+z2YyoqCiIxWJUVFRALpdDp9NBoVA46C1IpVIIhULmaaEDZ1clj318fLB9+3ZERESwGC+FzWaDl5cXXnzxRaxZs6ZHBIbKyspw6NAhvP3221i1ahXCw8OZzsOIESMwceJEVFRUYNiwYd1yPSpT71xnhK7koqKiEBAQAIFAwAjHffr0wcKFC3Hq1Ck8+OCDCAwMdPCi0MyTDz/8kBEvaeXWO++8E9u2bcPBgwc77EGinjVK9qupqQEhBCtWrMCqVavwzDPPQKvVIisrC/n5+cjIyOiWPgKuGj6UaOvq6uqgakrJtNSNT6uvzps3D0uXLkVxcTFmz57NvAh0QqdCaAaDgb0LNpsNwcHBqK+vh7u7O0JCQlBTU8M4VLRmDA2ZOU94XA5HW98Bf4VL6P2PiIiAu7s7Ll26hEcffbSZ0mtLmS7tzbjhor6+Hk1NTfDz88Mdd9yB5cuX4/HHH8fdd98Nu92OqKgojBw5EqGhoVi1apXDsU1NTThz5gwOHTqELVu2oLS0tNOLAL1ej3/+85/w8PDAuXPncPHiRTz55JPw9fXFHXfcgdmzZ+Pnn39GaWkpTp8+Db1eD71ejyFDhsDV1RUeHh6499578dFHH6GpqYlPt73B4I2PHkZLL3uvXr2wZMkS2Gw2/Pjjj9i+fbvDwK7VaqHRaNq9WlYqlYiMjMTKlSsZuz82NhYbN27EsGHDHF72qqoqAGAGB/V2UPewSqViKo12ux3Hjh2Dq6src8VLJBJoNBoEBgYiKCgIOTk5eOmll5CamgqFQgGtVsuyI8xmM0QiEcxmM/N+UJ0RNzc3RgJ0HjQ7Arvdjvr6egfCGZe/4uPjg+HDh+OBBx7A77//3kyBsTtgMBiwdetWnDp1CnPmzMGiRYvg7e2N8PBwiMVieHt749SpU5g1a1absf/2gN6r1jQiTp8+zZj+wNW03wkTJmDEiBEwmUzNUg3peWiV3k8++YRxSurr61mYhQ7U1GtFCadtDeA6nQ5Dhw7FggULQAhxqD305ZdfMs2PxsbGblWfNRqNzJNBCGFGD3dy79evH/z9/aHT6RAWFgaTyQShUIjq6mq888470Ol0TBXV3d2d1USidYumTp2K0NBQxMXFYf78+bj77rvx008/wWw2o6amhvEhqKHj3E9tuf3b+q5Xr14YOXIkHnnkEbi5uTFOy4ABA3D48OFWdWScwz6tGSByuRxTp07FsmXLsGjRIlYryGazMaXQvXv3wmKx4J133sGjjz7KOC4AWBhGJBKhb9++OHLkCD799FMcPHgQTU1N3eJtqK2tZRlkUVFRWLx4MbZv3463334bdrsdNTU1DjwyOv5kZ2djw4YNXdbb4dE94I2P64zevXsjPj4e/v7+qK+vx5EjR5hEskgkgkajwciRIzF8+HAcOnQIR48ebXNgvvvuu1nsPDo6GgqFghVuOnnyZDPPgjPfg5a5BxzlnS0WCyNT0lLwQqEQAQEBmD9/PoYMGQIXFxdYrVZcuXKFrQ7r6+sZx4O6v53TDAkhTBm1Izn3LcFgMGDXrl0IDQ2FTCaDxWJBeno6YmJiIJPJIJVK4e/vz0JcSqWyWYZFV0FX0FeuXMFvv/2GsrIyTJgwAXa7HbGxsejTpw/69OmDhIQEpKSkoKqqqsuDH7dfKWga8vHjx2G323H33Xez+iBKpRLAX8RBKpE9c+ZM1NTU4MKFC9ixYweqq6tZVpLJZGpGTuRyKK4l/mW321FcXIy9e/dCKBQ6ePaox4EiKCgInp6eSEtLw4IFC5CSkoKLFy92qm+oKi+3b7hS51arFTk5OfD29oafnx/7TVeuXMGZM2ewf/9+FhLihrcoZ4kQguzsbFapWaFQQCaTYdiwYczjcuXKFYeqt1x0xPPgbCi4ubkhJCQE/v7+EIvFOHv2LPbv34/8/Px2exTaur6vry+Cg4MRFBSE3r174/LlyyzcZrFYWA0Vi8XCFiJ2ux1NTU1ISUlBXl4eVCoV/Pz8AIClUXdlgeEMu90Ok8mEyspK/PTTT8jMzER6ejqTHeCGVAQCAasno1Qq0a9fP/zwww/tNoJ4bkjPgTc+rjMiIiIQFhYGpVKJyspKlJeXo7GxESqVChqNBjExMZgyZQomTpwIs9mM8+fPw9XVFS4uLsjKykKvXr0YYVOn07E0TyrQZDAYUFpaigsXLuCHH35oNkGIRCKmVGkymRzKj9PwDHVPU3IoJczR2D8tnV1UVITs7GzU1tayeDh3hUyJf1zhMjqZmUymLrk9aeqtxWLB2bNnUVJSwoya06dPIzg4mKUUa7Valn5sMpm63figaGpqwrlz53D58mUYjUbU19dj5syZCAgIgEajwdixY6HRaJCdnY28vDy2Iu8uCARX67acOXMG2dnZWLlyJYCrg7XFYmGGxZUrV5CUlIQffvgBw4YNY4Tiw4cPNzsntygbPRfQMc5AWlraNfdxcXGBn58f8vPzMWfOHMjlchQVFXUqS4lqbtC2Uk8O8NdkcuHCBQQEBCAyMpIJ42VkZGDnzp3IyMhgRE76RzkktBij2WxGZWUliouLWV2ksLAwCAQCJCcnMwNOKBQyY5xrfNO2tPW5JVBjhIYtMzMzcfjwYeTl5Tl4/1rjjbTFBQkNDWXCeOXl5XB3d2eLFYlEgl69ekEqlbICdgCQnZ2NpqYm1NbWYvfu3bBarejTpw88PT1x4cIFJCUloaKioiO3r12giyfn+kotkfVdXV2hUCig0WiQmJgIpVKJhoaGdhlrvOHRc+CNj+sMSuwkhMDT0xOzZ8+Gp6cn0tPTMXToUDzwwAPw9vZmq0RXV1fcfvvtGD9+PMaPH48tW7agV69e0Ov12LZtG2JjY6FQKJiWAl2Fp6en4/Tp082IidRIofoQABwGarlczoilHh4eMBqNbDsVzaqvr8eBAwfw7bffMv0HOki7uLgw9zTV+6DF6wCwLAeu1khnpM8TExNRVVWF/Px8BAcH4+DBg4x8l5eXh6FDh6KiogJ6vR5z5syBWCxGfHy8Q52cnkJjYyO++OILAFf7xdXVFXPnzsUTTzwBi8WCvLw8bNiwAd98802X0nBbynah7n66oqe6KkVFRfjiiy8QGhqKXbt2YefOnXB1dYVUKkVISAiioqIY0Zgre0/DbdcKsXQVaWlpuHLlCsLDw+Hj44MxY8bAarWyfuwI6HPF9VzQf+kzevr0aYSHh2PixIkQCoUoKytDeno6Tp06BZlMBrPZzMJL3HdWIpEgPDwcVVVVqK2tRWlpKbZt24aVK1eioqICly9fRkFBAQi5WrhRJpPBw8MDFRUVnVpFO3M+MjIyoFAo8K9//YsZ/NTjR9FWZk1LHjPg6vv96quvIjExEefOncOGDRtw6NAhtp+7uzt27tyJU6dOITQ0FAMGDIDFYsH999/PsuxKS0sxZ84cJCQkoLGxEbfcckuzTJ8bgV27dmHw4MEYN24coqKiWDHK7kqB59E58MbHdcaePXvg4uKCxMRE+Pn5YcGCBZg9ezasVisUCgWLnXp7e+Phhx/G8uXLIZPJmKy5l5cXK3C1ePFipKWl4YsvvkBubi7uvvturF27Fo2NjSxs4gyJRMJc0txVHP1MjRNaOdPNzQ3u7u4YPnw4Zs6ciUmTJmHXrl3Ys2cPUlNTQQhh3BHgLyOEEu0o14O6vZuamtikSFej7YVAIICXlxf++9//MoKp2WxGRkYG/vWvfzGNg8rKSvz++++YOHEiEhMTcejQIYwcORLvv/8+Pv/88y7ewY4hKSkJIpEIQ4YMYTLjWq0W/fv3x/fff9+hAVAgELDwCS1i1tp+1dXVCA4OdtBsocJklAT6xhtvIDg4GMeOHcP58+eZYUgnC2qIXK/4OM24OX36NIKCgjBw4EB8+eWXHZ68TCaTQ3iIppBT74VCoYCHhwdUKhXj0Bw/fhwXL15EfX09vLy8HIiRtbW12LRpE1JTU3Hu3DkmAS8WixEVFYUVK1bA19cXtbW1MJvNOHToEHu2rVZrq/WZOvq7EhMTMWvWLEydOhUAUF5ejpMnT+LAgQOtHtPe7BZKPrdarSz1nxCC6OhoBAcHIzY2Fn5+fpgxYwaSk5OxceNGCIVCpKWlobKykp3//vvvZ6n3Y8aMwf79+284v6Jv377w9vaG3W6HVCrFe++9h7feegs7duy44YbR3xm88XGdQSsvvvPOO/j3v/+NnTt3soJVAQEBCAkJgVarhUKhQGlpKYKDg+Hl5cXEowwGAzIyMlBZWYmYmBgkJyejoKAAOTk5+PTTT1FeXt6mJ4EOwkDLZe2VSiVb7VHOhsFgQHV1NcrKyqBSqXDkyBFkZmYyTgiV46bkUq62iEAgYMQ9AKwkOdX5oAbEteDi4oLhw4djzpw56Nu3L1QqFUQiEaqrq/H9998jPDwcvr6+qKmpQUFBAQwGA06ePImSkhK4u7ujf//+0Ov1PaJy2hZqamqQlJSEZ555Bv/+97/h7+8PuVyOPn36dLjSLl1NUyErSgQE/nK10+0Wi6VFciv1dAwdOhQjR46EXC6HwWBAfX09u480zHKtgZmbRdUdoOThkydPwtPTE4MGDcL69evx2muvdei+cRUvqQeErvjFYjF0Oh10Oh0sFgvjaGRnZ6OyspLVHxKJRPDy8kJ4eDhGjx6NMWPGID4+HmPGjGFVnqurqxEaGgo3NzdUVlbil19+wf79+9n16TMul8ubZSYBLXsluN87g44BgYGBsNlsqKioQE1NDfNO0mPboynSUsjH1dUVYrEY0dHRuPfee1FTU4OAgAD4+fkhMDAQBoMBtbW1OHPmDKsyXFdXB6vVCnd3d9xxxx1wc3NDVlYWUlNTkZGRcV1rKrUGblkHoVCIgwcPorCwkOdz3GDwxscNQG5uLn766SeMGzcOP/74I1JTU1FXV4ewsDDExMTA19cXrq6uKCgowODBg1mFVirOk5SUhKKiIlRUVODEiRMoKytDbW0t9u/ff81rO6fbWSwWJrpD0/i4A5LZbIZGo2Hpo/X19aiurnZgrlNPBp0M6bm5EtzcVShl/xNCmomgtYaYmBhMnToVt99+Owvt0FW5TqfDmDFjYLFYkJubi/T0dOh0OuTn56OkpAQBAQGMlOvl5dVjaqctwWAwoKCgAN988w1Wr14NX19fZhx0ZuDjKnYCcOjrlsi9zrLcEokEMTExmDRpEoKDgwFcvadUB4UqtLbEG+C2tyMCce0FNXQvXryIgQMHYsCAAZg9ezY+/PBDVta+PX3GNTzEYjFLGxaLxSyF3NPTk5El5XI5U+6khnFERASCgoIQGxuLuXPnwt/fHyqVik3QR48eZeHKCxcuoLi4GL/++ivOnDnD+ofb5y2hLa+E8zaBQACVSgW1Wg25XA6j0Yi0tLQW9WtamlSvda8oObi+vh5+fn6YP38+TCYTXFxc4OLiAplMhqSkJOTl5eH48eM4f/4885gCVz2qEREREAgESElJwd69e7ss7tddxgFVAqZGaHJyMmpqapgXmMeNAW983ABYLBaUlJRg3rx5Dttra2tx7tw5Flbx9PREQUEBjEYjysvLHVIVgavpis7g1mVpCXRlRw2N+vp6aDQaxr2or6+HVquFxWJhq81FixZh8uTJGDBgAPLz8zFq1CjYbDZW44GutqlXxWAwsEwTWm6cTmo0pZG6wNvj9RAKhVi9ejXGjBkDpVLJCLFmsxlKpRLfffcdAKC6uhrp6enIzs7GoUOHWA2T+fPnQy6Xo3///igoKGjWj92FltJfuRO5p6cnVCoVcnNz8cknn3Q65kyF24C/CqfRCagtdVyRSASVSoXhw4dj4cKF7PusrCx2L6nniitA19Lz1NYz1lVcvnwZhw8fZkqeXl5ezPBuz2RBDQr6/FG1XS7x9P7770dsbCwKCwsRFRWFW265BbNmzYJGo0Fubi5GjRrFQlx2ux2FhYX46aefcPHiRcyaNQtbt25lIZzt27ez1HK6utZoNDAajSyMwfUStWUYtNWv4eHh8PDwgNVqRXl5Ob744gtcunSpU/fB+RiTyYRnnnkGXl5emDBhAkJDQ9mzZbVaUVpaiqeffhqpqakArnJAysvL2XkqKirwz3/+E7t27UJSUhJ+/vnnDrepJXSHAVJZWclSb+12O8tyogYXjxsD3vi4CUFVF4uLi1FWVsYm6vbgWvtxK9YCVyvrNjQ0OLzgVAiMGg5Lly5FdHQ0SktL8eKLLyI1NZUVz+KKLtFBVC6XM3VVbphHJBIxjolKpWJu9ragVqvx/vvvY8KECfD09GTeGKFQiKNHj+LIkSN49NFH4e7uDnd3dwwaNAhvvvkmnnjiCURGRmL06NGYNGkSGhoasHfvXvz222/t6seOQi6XY9KkSYiNjYWvry9OnjyJ2tpaljZdXV0NDw8PAFfTJefOnYs9e/Y4uMw7g46kV9LsIKFQyFRML126hPz8fAcVTuq9ol6plgZ/aiD3FGlv3759rMDbd999h4aGBhw+fBiPPfZYu44n5Kq0Pvd3cd+jtWvXIioqCv369cOsWbOY7DZN4Tx79iyCgoIAAC+++CKsVisyMzORk5ODn3/+GU1NTZBKpbBYLDAajdBqtYxbQ8OPMpkMYrGYCfR1FgLB1QrEixcvRnR0NIqLi7Fo0SKkp6d3a/9brVY89thjrOz9rl27WF0mX19fvPPOOygtLWUS9Vu3bsWOHTsYQX3EiBFYuHBht4r5dYag63xMU1MTGhsbmeDcv//9b3z++efYvn07b3zcQPDGx00MbtZBd4Ey9+n56eqmJZc6Xf0eOHAAZrMZrq6uqK6uRmNjI9M3oIYSNw2RDvKUo0Cl2OnEx1U6pQZOW+319vbG9u3boVAo4Onpierqahw/fhwZGRkoLS1FdnY2ZDIZBgwYgGHDhqFv375Ys2YNNBoNfHx8IJfL8dVXX+Hs2bPdnu1CRcTWrVvHFCeVSiUGDhyIqqoq+Pn5ISgoCHa7HTKZDPv27cO+fftw6tSpTk0cXFc9t4bJtUDv74QJExAdHc20GZqampi3hHsv6D2k8XJnDkh3EFElEgmio6OxaNEinD17FidOnEBwcDDS0tJY4cKIiAj4+vqy0F57QEMn3DZTThI1rEpLS9HY2IiCggKkpKSwUJ7JZIJer4erqyurY5SVlcXqFtEsLqrYSw15rlufZnvR7zrLjaFGR1BQEFasWIHAwED23dChQ3H58uVWz9sZGXXgLzVTvV6Pr776Cvn5+QgPD8fQoUNhs9mwa9cuREdHY8CAASgtLWXPn8lkQlpaGmpqarqN59EdHh0AKC0txbFjx+Dh4YGFCxdCo9HA1dWVebZ43BjwxsffDNSooAMl1xgBwPgfwF8vckpKCgICAtCrVy/odDq2uqPn4U5aNLuCcjJsNhsj9XE5CdzPbcFqteLSpUs4fPgwRCIR/Pz8UFVVhb179zJhMyrLnZOTg8bGRri6uiIuLg61tbXIz89Hamoqdu3ahStXrnR7jJeSZmNiYqBUKqHVauHp6YmIiAgmQkVDUBUVFTh79iz27NmD8+fPd8u12+uWpvuFhYWxsFpTUxPOnz+PsrKyFjkcrXFH6L9dnWTkcjmGDBmCBQsWICgoCC4uLoiIiGDG29ChQ+Hn58fqFrV3lUpFsOjzTQ01+mxS4S+TyYSqqipcuXKFKbdSbRuZTMZqvri7u6O2tpZpd3D7nV6Dkq+Bv7xR1EPH1bnh4loGAs0k8/f3x/z58+Hi4sLq9HALGLZ0rs56WqjRVl9fj19//RUZGRno1asXamtroVAocOjQIaYXU1hYyAxXq9V603oR6uvrkZOTg8uXL7N0/KamJj7V9gaDNz7+ZuBO/s4pr3a7HSqVinks6MpWr9ejtrYWZWVlKC4uZpoPBoOBhVJozJu6o+n5ALBUXO6qkFbOvZaLVq/XY+3ate36bUlJScjOzkZaWhoWLVqEAwcOYPfu3cjJyemUlkh7YLFYWDhKIpFgzJgxmDFjBkJDQxlJF7g6Ee3ZswdXrlzpUgybe6zzb2pJ8ZRrKJrNZlRVVaGqqgp1dXVoamrCCy+8wMrZt2RMcI1KKk7X0ueOQiAQQK1WY/r06XB3d8dtt92G22+/HYQQjBs3Dl5eXvDz84NMJkNycjL27t3bZkopF1xOE/BXn1GDl3pz6G+gxgP15tFJiYYMabYWNU64gnk0hEU9HRTUy0LTO50LKbYl9uVsVEgkEhYCSk1NxU8//YRNmza1eZ6uwmKxYO/evQCAwsJCBzJ7amoqy3b5/wDnPr98+TLOnz/fLu4XnxHTcxAQvmd7BJTICfTcANEZuLm5sZUYHVRpkS2LxcJi1VT/QKvVorGxkQ2C1NNB9xUIBKyYnc1mYymF1KtBU2nVajWT/6acEDo5dFc1U+Avz45EImG/4Xo84nRFTDMsWrrnlCjLVQztCFpz31Pvlc1mg1wuh81ma7Vgn0QigUwmg0Qigdlshl6vZ/eCTrpSqZTxH7jXo/eaZg90FTQNVa1WY8KECRg1ahRqa2uxdOlS1NXVIT09HTt27EBYWBgjMra335yJuFRYD7jKAaD9xOXcUEOE/jbK2aD6KNxS7Hq9nmVzubq6gpCr4n7UYOeGLp09Iy15mLh9wv1MU33feecdGAwG/Pnnn/j999+xdevWFn93Rzwff6eh39XVFUOHDsWuXbtw4MABvP322/jjjz/a1QeEEOh0Ori6ul6Hlv59wBsfPYSb1fiQSCQs1klXa7S6LlUeVSgUbDLjqieKRCK4urpCp9M5iDYBVwd3iUSChoYGlkprtVohkUiYJ4S6oOvr6xk/RKPRoKio6G81EHYHuJMr1wvhrP/REujESPelf/QYbijO+TzckF13QSQSwcfHB56enjCbzQgPD2cp1CUlJVCr1SgvL2dhtmuBPs/0eaNGH7efuOJr9BiuVgrX8KLaNJQ3Qghh4nncd5vuT/uIehRpqm97woxcEEKgVqvh5eWFhIQEWCwWVFZWorS0FIWFhe0+z7Wu8XeAWCyGh4cHRo8ejYqKCmRlZTGP37XAGx89Az7s8jcDVT5tiXvRUtyYFpDikuno8XQg58a+6UqPwnnlJ5VKHUIwndW74OEI2oftCYM4h2a4kzPXoHQmeNIJmx7fXSJjNpsNJSUlKCkpAfAXh6cr4BJNqZeP65niaobQ55Y+x2KxmHkw6GcadqFGG5e0zSVS02efK8neEWIwt+0AGPmzoKCgxVTda/FGWtNoaeuY/0VQUbZt27YBaP9v/zv10fUGb3z8DUGr2VIeADUkKDeAGgR04FQoFDAajSxlDXB0SdMMF1oFVa/XM10FqVQKo9HIBnPKK6FGUFlZ2Y3siv+3cM5U4hJB2wNuJhI3FZo7KTuHXOgkTL0tN6tIE20TNXypl04ikTDyM33GqQYN1QKh/Ur7hno8aGq5WCxmpexb4tfQkA0N+9H3h2vMOOt6OH/mgntvW8K17ndL3/8dJ1Tu+3EzeaL/zuDDLj0EGnahuhYA4OHhwWqb0MGKsuwtFgs0Gg10Oh2btLmucLqKopLn9P/UAKADLnW901Wrs3HBVSW8Ufg7rrz+V0G9YlwyJ7eom7NHra0sDW42FP2OGkBcTwL3eO6+3HNw+RVcL4hMJkNTU1OzlHPuuehvoqDGFve3OHtOuF5AahTSd7A1/g2P5lAqlaw2T0fQmoeHqsE6jzV0THQOvzmDHseHXbofvOfjOoCWv6aZHXSFREl9dMBsaGhgGSgCgQBGo5Edyw2RcBU+uS8PNVqo4WIwGBxWtjdDnQWANzr+l9DSJE9X/848FLq/8wThHO7hGgbc57ulzAPuKpaei/ucO690uaqtrZ2TcpWoAcX9fS2FpJz34/5O6jHqqWyr/zV0xvCgcL6X1BvL5TbRc9P/89ksNw688dHDoAMQzS7gbuNa23Rg48aN6QrSmQDIfVm4Az3NUqGDKn3p2iIQ8uDRVXA9AIAjCZbrkXD2fLTkyXA+57U4C60ZI87ZLs5ta839Ttstl8sRGRmJsLAwCIVCNDU1ISMjA3l5eS0aXFzeVEdDYDz+gvP45OwJ4/7feQxtCdzwZEtwfhbaeu54dC9avys8ugU0vkzTFOmDTnP/xWKxQwhGJpOxl4W6ILnxZbFYzNITqfQxrXLq4uICi8UCg8EAi8UClUrlQJKjktrXA3xc9e8BrgHRUh0YbgiGG76gRjaXxEpDgwCaTTLOYQ96DmclU27ohKbWctvD9Uhwr8eFXC6HVqvFkiVL8M033+Cbb77BG2+8gbFjxzq8r1xDH3AMDXHBG/ydh3PRSwrnz1yvFBeU80O9xVzQRSGX78a9bnsVdXl0Drzno4dBxYuonoBMJmOS5DSbhAp1AWCCXZTYSV8MmUwGT09PPPnkk6iursaFCxfw+++/M4+K2WxGTU2Ng7gRDeFQcuf1eJlaWtny+N9FS6tG+v+W+BpA89AEDRPSCZ3yoJzDJ1QwjRvioJkn3HCI2WxmBQypzgzlWTnzQbjZKfS3yGQy9O7dG76+vux7gUDAJjGZTOYQLqV1jGi7nHVeuGEZHh0DN1zF/X9rPA0qiU/Rmros8FfopS3OB4+eA2989DCo5U7rmdDVGDU4DAYDY+O7urrCZDIxPY36+no2kPn6+mLTpk0IDw9Hamoqq7FCSX70peOS/qgYlHMaYE9AIBDAy8sL8+fPR3BwMP7880+cPXsWlZWVPXZNHt0HV1dXjB49GkKhEOnp6SgoKGhX7Rbq1uZyKLiCa1zvAF2FOhvB3O+B5oXtuK5xbgiRyyOh+9CJx/kz3Z9egyusR89BjxOJRFi5ciUGDx4Mi8WCiooK7NixAzk5OZBIJIxETq9BSdy0jS0RbXl0D6jXiXp7nZ9RZ26N82fKv3EOkTmDNxZ7Hrzx0cNwZtXTFZhEIoFEInFgYtOVlVgsZkYHIVdLscfGxiI+Pp7VNwkLC4NSqWRiR9yYM/3snFnQk9a9VCqFp6cnRo4cCYlEgqSkpL/9CxwSEoLQ0FB4eHggJyeHhcqMRiMOHz58o5vnADc3N8ybNw9CoZBVKm1PGnRraaKt8SFaCs1wQxfO53VWBXUOr3D/pf9vSwittXeATmaurq4YPnw4+vbtC09PT+j1eqSnpyM5OZmVkHf2yLTGQ2iNV/L/GWKxGBEREYiIiEBJSQmsVis0Gg08PDzg5uaGqqoqlJWVoaysjOm2dBdaIpRS0MWV8313fgZa+9za88Wj58AbHz0MbmyaDkzU+KDf0/iiwWBggxldIVqtVgQGBqJfv36ora2FRCKBh4cHYmNjERISguLiYqarQeOXdDVA3cNAz7p+BQIBK8MdHx+P48ePo6KiAjqdrkeuJxKJGJ+F/lbu6tuZlNvTEAgEUCqVTK4euNrfY8aMwZw5c9CvXz98//33CAoKgp+fHyoqKm4640Oj0WDu3LlwcXFBQ0MDioqKOmx8OBNIW5oEqO4Ld2KmXgiu1456PYxGI/MSUnEwqsHBvef0HaAiYi2llHPb5uxqF4lEUCqVCAgIwIoVK+Dj4wNCCGpqanDkyBFcunQJVVVVsFqt0Ov1LT5fXM+iM5flfwUeHh645ZZbsGjRIuzfvx86nQ7R0dFISEhAnz59cPHiRRw8eBAHDx7sVuPD2bBr6f5JpVKHsg/0ntLvuc8LvTeEEFY+wjlTikfPgjc+rgOoMUHzxM1mMxoaGgCAxYu5FjiNQ9JV8okTJ3DlyhUIBAKsWLECWq0WNpsNt912G7799luH6pLclLL6+noH4h13su5OuLu7Y9iwYZgyZQpiY2OxY8eOHqsYKRaL0bt3b7z++uvIzMzE9u3boVKp4O3tjZqaGhQVFeHKlSuor6+/bgaIi4sLnnvuOezevRtVVVUwGo2orKzEPffcg9jYWMjlcsyYMYMRjNsrE349UVBQgBUrVuDTTz/F+PHjYbVacfLkyWse5+xxozwjAMzLRwd9i8Xi8D1w9XmfM2cOzGYz6urqoNFo4Obmht69e0OpVOLrr7/G9OnTMXXqVMTExMBkMmHLli0YP348/Pz8cOHCBVitVrz++us4fvx4i6EXyrOikw41/CmoyJhOp0NDQwOmTJmCpqYm5OTk4NSpU9i0aRN7nij3g6u3w+WgtJSB8b/CJ5DJZHj55ZcxZswYBAUFQa1WY+fOnbDbr1bBLSsrQ0JCAvLy8nDq1KluuSZX+I6bVeXsPXPmtbm6uqJPnz54+eWXYTAYEBkZiaCgIJjNZuTk5KC8vBxlZWXIysrCW2+95VDjh8f1AW989DBohonVamXEN7pdJpM5ZAJwU2XtdjsMBgPuuOMOSKVSqFQq3HrrrVCpVGwAzM3NhU6ng1KphFwuR21tLRsgadhGpVLBYDCwia8nUF9fj5iYGEydOtUh7NOdg65UKsWoUaMwZ84ciMVi9O3bFwkJCZg8eTLzJBUVFSE7OxtZWVn44IMPrlkxt6tQq9Xw9/dH3759sWjRItxyyy1sEKScia1btyI5ORmZmZmYMmUKRo8ejV69euGRRx7B5s2bWSG+7oZYLEZUVBR69+6N3NxcnD9/vtV9tVot4uLi8MADD0CpVOL8+fP4888/230trjeBu8rnVtWlK1FKAI2IiMCwYcNw1113QSQSQafTwWw2Izo6GjKZjMnwjx07FlqtFm5ublAoFJDJZFi8eDE0Gg0kEgkGDx6M7du3o6mpiV2fG+cXCASstD19Nun33Mlr4cKFGDNmDAsb7ty5E0ajETqdDjqdrtmKuKVzcDUkCCEORlhPgpJex48fDy8vLzQ0NOCXX37p1msIhUK4u7sjPj4eAQEBsNvtqKurw/fff4/q6mq4uLggIiICK1euREREBFatWgWxWIzff/+9SxN7S33HHVdkMpmDpzcoKAh6vR5z5szBokWLEBMTA5vNBqVSCalUColEgsjISAQGBqK6urpZxlN3lQzgcW3wxkcPg1tVla6SqHHAdf3Rct02mw0JCQmIjY3Ftm3bMHHiREZMbWhogKurKxtk+/fvj0uXLqGsrKzZSp8aAJRwCvTcIDh37lyMGDECvr6+AIDQ0FBW6bO7YLfbERAQgPHjx4MQAnd3d8jlcnZN4CpvwdvbG2FhYcjMzERSUlK3FeBqCb169cKQIUMwatQomM1mnD17lhUhy87ORlVVFaqrq1FSUoLk5GSoVCr4+fmhf//+CAkJ6bHsI2p0zp8/H15eXiCEtGl8JCQkYMaMGYiPj2du6/YOwNTYdQ6xOPOPuCmy0dHRGDx4MMaPH49hw4ahqakJ9fX1MJvNCAoKcvBMBAQEgBCC1NRUFBYWQiQSYdSoUSgqKkJpaSmqq6tx+PBhRmxu7Zlz9i4GBQWxd2revHmYNm0aBgwYgNDQUCQnJ2Pfvn0wGAwOmTL0/M6rbu533Gt1JutLq9UiKCgI8fHxyMrKYguRc+fONdvXxcUF/fv3R1RUFKxWKxITEwFcLRnf3ZMoIYSFwCorK5GdnY3t27fjypUrqKurg0gkQkVFBdRqNfr164fg4GAsWLAAWVlZ0Ol0MBqNrYbxaKZfR40UrpeJ8nWGDRsGPz8/jBo1CiEhIcjIyICnpycKCwthMBig0WiQlJSEXr16wd/fH7Gxsejfvz/S09NRU1PT4vPMo2fAGx89DEoI5WabUK8AXZHRuLBSqYTNZsPkyZNxzz33IDMzE8OGDYNMJkN+fj7279+P4cOHw9PTEyqVCrNnz0ZaWhoOHDiAoqIiAHBQ86OxcJVKBQAs1NPdePjhh9GnTx/m3qYu2e4Czf7x9fVFSEgIGhsbmfCT0WiEq6srampqoFAoEBUVhdDQUFRWVsJoNKKkpKTHjK7o6GiMGzcOEyZMwP79+/H888/DaDTCw8MD2dnZsFgsbJBramrC2bNn0atXL2g0GjQ0NPTIAEfrlwQFBWHlypXIzs5u0/AQiUQYPXo07rjjDnh5eaGkpARCobDd968lg5c7eHPJnzQsM3ToUIwfPx4jR450qHhMJyh3d3dWiFCr1cJsNmPv3r3Ys2cPZDIZfHx8cOzYMZw5cwZZWVm4fPkyS013nnCpB4JLwg4ICMDo0aNRVVWFoqIi/Pvf/0ZgYCBkMhnq6+uxf/9+HDx4EFVVVezZoYYilzTODQM49wX1ZtLv23OvRSIRwsPDMW3aNCxbtgy//fYby1grLCyEXq9nfWm32xEZGYk777wTs2fPRl1dHTOcCgsLW8wE6QoIIaitrUVhYSHKyspw8uRJbNy4kf1Gm82GsrIyfPXVVzhz5gwmTJiAt956CydPnkRhYSFKSkpaND7UajXc3d1hs9lQXFzs8F17jACLxQKZTAYXFxcEBgZi2rRp6N+/P2QyGcrLy/H9998jPj4ehYWFqKioQGhoKN577z0sWrQI8+fPR1xcHGbPng29Xo/a2lrmqWuNsMyj+8AbHz0MbolzOtBSDQM6oHl6eqJ379549tlnkZGRgZiYGAQEBODgwYM4fPgwRCIRqqqqsHbtWnh5eWHVqlVYvHgx3NzcMGbMGGRlZSE7O5vJtXNBr9kTrkTqwcnKyoKvry+USiVKS0vx/PPP48KFC91yDaFQiMDAQHz44YeIi4tDXl4e5s2bh61bt+LcuXP45Zdf8Morr2Du3LlYvHgxnnjiCbi4uEChUMDX1xcBAQEoKCjolrY449tvv0VFRQUqKirw/fffo7S0FHq93mEQvXTpEi5dugTg6n1OSkrCmTNnkJqaiqampm5vU//+/TF8+HAkJibCbrfj1VdfRXJycqv7BwcHQ6FQsPDPlStX8MMPP2DHjh3tvmZbXgEADl4Ps9kMuVwOHx8fhISEQCAQ4MiRIxCJRNDr9XjhhRfw1FNP4ccff0RaWhrr1yNHjmDv3r0QiUT47bffHLJnnGux0NRzLs+Ews3NDRkZGQ5VbKVSqUNKsKurK9PgoeEVZ94BLRxHPZbcsI4z2vvuBQUFYfbs2XjyySchFovx4IMPwmq1wmg0Yu7cufjggw9QVVUFk8mE8vJyvP322wgICGAZKADw1VdfYfPmzT3C7QKA1atX45577sHixYvxySefoKKioplxbzKZUFdXh4KCAjz66KP4/vvv8euvvzY7l0gkwsMPPwy5XI6MjAx88803Dt+39BxxvWj0+8TERMTExCA+Ph7z5s3DnDlzYLdfLWBJq9g6n+e7775DXl4eHnvsMdx7771ITk5m3iWedHp9wBsfPQxnCXVaflulUqGxsRFffvkl+vTpAwDw9fVFaGgo9uzZg08++QQvvfQSXn/9dZSXl7NBsKamhq0ifH19MXnyZCgUCvTq1QtffPGFw7XMZjO7Xk9ApVJh/PjxGD16NPz9/VFaWop169bh7Nmz3ca3cHFxwTfffIPAwEAIhUIYDAYUFBTg9ttvh8FggE6nw6233ori4mLs3r0bIpEIzz//PMaMGYOLFy/i6NGj3dKO1nDq1Cmkp6dDp9O1SrL19PTEqlWrMGvWLDQ2NuLs2bM4ffp0t66sBAIBPD09MXToUIwbNw6DBg3CsWPHkJub2ybB9f3330ffvn2h1WphsViQlZWF2traDl3beXLlhvmsVitWrlyJqKgoFhbr27cvvLy8YLfbUVNTg4SEBPz666/473//i5SUFKxZswZ1dXUwGo1sIikvL2e1YrjCXzS7i+t+p0YO7V+6berUqXjyySdZdk1jYyOKiorwzjvvoLi4GHPmzMGtt94KQq7WBOGWLnD+jVRTh06EXGIkd5HRkXtcXl7OQhhNTU146KGHIJVKkZCQgICAACxbtgy//vor9u/fjxkzZuDpp5+G2WxG79698dFHHwG46o0bMGBAu8jCncHYsWPRt29f+Pv747XXXsPatWtRXl7usE9xcTF27tyJlJQULFiwAAMHDoSPjw+OHDnC9lEoFAgJCcGECRPw/vvv49ChQw7noPfWOa2Z+69Go8Err7yCPn36wMfHBxaLBfPmzcPJkycZ+bSle0cIQV1dHa5cuYI///wTvXr1gkqlgouLC9NO4tHz4I2PHgZ3MDQajQ66HzQNMywsjLlz//zzT5w8eRInTpzAe++9h4yMDNTW1jow6rOysrBnzx4UFhZi9uzZcHd3h0ajaSZhTTNpWmLgdxVCoRAajQbTpk2Dl5cXu5aLi0uXikO1dJ2goCCcPn0a+fn5yM3NhclkQlZWFtuHhpMMBgPq6+vZ6nX06NEwGAzYtm0bLl++3CMrmsbGRubybwuEEKSlpaGkpAQXLlzo9vshlUoxe/ZsjBs3DnK5nHnNampqWvzdMpkM0dHR8PT0hFKpZCt5f3//DoXMuNwObnqpQHC1ouj48eMxdOhQREdHw9fXF66urnB3d4dAIEBtbS1+/PFHGAwGJCcno6CgAEajEfn5+WwCyMzMdPCcUHAnIme+CTeVksu/MBqNqK2tRVFRETw8PJiRcfDgQdTV1WHgwIGwWq2oqakB4Gh0tJRh4Vwvhl6fGi0d5Q6YTCZcvHgRX375JWQyGU6ePAmbzYa8vDx4eXkhODiY9dOZM2dw8eJF9O7dG0FBQSCEoLCwEIWFhaiqqmr3NTsKrvy9m5tbi7wli8UCqVSKcePGIS4uDsHBwQ79EB4ejqCgIAQGBkKtVsNsNjcjXrfkQePCzc2NGVp+fn6McH7y5EnodLpm+jAUAoEAHh4eSEhIwIABAxAXF4fy8nLYbDYoFAoW0uVJpz0P3vjoYVDjgxL5KGPfw8MD9913H7RaLSOQNjU14ccff8SZM2dQXFyMV199FS4uLg71YUQiETIyMlBZWYnTp09jwoQJDgRWavHTGjBAx1dg7YFUKoW3tzcmTZoEuVyOxsZGNDQ0IDAwsFuJlDabDZcvX8YPP/yAM2fOIDc3t9V9FQqFQ9nrwYMHQ6vVIj09HTk5OTfMnWo2m5Gbm4sjR44gNzcXpaWl3Xp+ytG49dZbERcXh8OHD2PLli3Iyspq1TBSqVSYMGECjEYjDAYDVCoV7HY7oqOj4efnB4VC0a50aW6NFsBRVl2pVGLp0qUIDQ1FYGAg/P39AfxV76ihoQH79+9Hbm4uLBYLxGIxvL29mbFNjQeuQe1M5uSqm9LPzt5GaogUFxfjyJEjcHd3h0wmYxwTSpQUCoVobGxEQUEBM95peNTFxYUtIKiOBNcg4Ro6VCiQ2972wG634+zZs8yrWVxcjMbGRly5cqXZvkVFRXBzc8OgQYNwyy23wGq14vTp00hKSmpx/+6C0WiEyWSCyWRCZWVlM6l7uVwOFxcX9OvXD08//TQ0Gg3Ky8tRXV0N4OrzMmjQIAwYMABSqRTV1dWw2WyQSCTNnrfWDACRSISAgAAMHjwYPj4+sFqtKC8vR0pKCrsOhTMnSSqVIjAwEFOnTsWUKVMQERGBI0eOoKmpiYXiuCE5Hj0H3vjoYVDhMJqBQAjByJEjsXr1aiQmJoIQgoaGBpSVlTESXUFBAeNu0BoSABing2pJUPfxsGHDIBaLsXHjRpZNQ6vcNjQ0MPJedyIwMBADBw5EQEAARCIR/vjjD/z3v//Fzp07HSStu4r6+npMmjSpXftSlUqKc+fOYe/evTh//vwNLWlOJ6GzZ8/2iFtXo9EgKioKYrEY6enpOH/+PNLT09sUedJoNFi2bBl69+7NJKfNZjMMBgNiY2MxevRo7Nmz55rX5k7udrud9T993gYPHgx/f38WigD+mgRCQ0Pxww8/AAB27NiB/fv3Izo6Gi+++CIT9KLPM53kuPoa9Prc83IJ3ICj4a1SqRAUFITY2FiUlJRgy5Yt2LhxI2bPno1//OMfUCqVOHXqFA4cOMCIzEqlkqW55+bm4sKFC0hLS2MhJXotajxRzRDndN/23vO6ujrodDrGE2oLt912GyZMmICgoCCUlpbiiSeeYMTznkJERAT8/f0hFApRVFTEfrdCoUBgYCDGjx+P6dOnY8SIEXBxcQEAHDp0iN1nNzc3zJw5EyNGjMDevXvxzjvv4Ny5cyxM60xQbqnf/P39kZCQgLFjxyIoKAgffPABfvnlFxw4cKBVXghw9dnx8/ODr68vevXqhbCwMFRVVaG4uBj5+flsUXAjx4q/E3jjo4dBB0tae8VqtTJxrPHjx8Nut6OyshLHjx/Hs88+i4aGBhbDVqlUDoXhpFIpy2u32+3w9PSEzWaDxWKBXC5Hv379cOrUKTbgGgwGphZps9makVE7i169emHWrFmYO3cuJBIJmpqaUFNTg6qqqm41PDqCe+65B5MnT8bQoUNht9uxZMkSVFVVQa/Xo7Cw8IaSyBoaGpgWRU+spkJDQzFv3jwMHjwYd955J44fP95sBciFWq2Gh4cHGhoa2EBfWFiIdevWYf369Zg/fz78/PzaZXxQcMXEKOrr6zFt2jR89913iI+Ph81mQ0NDAz799FNcuXIFRqMR48ePh6enJwICArBmzRoQQpCZmYnq6mpUVlZiz549Di50Llm7La8I5YZQw8rb2xv9+vXD5MmToVKpcOjQIVy4cAFarRavvfYa3NzcYDAYIBQKMWbMGNx1110snCgUCuHi4oKmpiZUVFQgJSUFCoUC/v7+KCwsxD333MNqNHGL2VGDqyPkz46suGnItqysDHPmzEFRUVGPT5wff/wxcnJyMHPmTMyaNQseHh4QiUTw9PREXFwc3NzcoFarWXp3Y2MjduzYgYMHDwK4GnLRaDSoqKhgpHGux8OZ49GSAVJTUwONRoMRI0Y4LM4AMJ6I8zG+vr4YMGAA/v3vf8PPzw8ajQZpaWm47777UFpairq6Oj7F9jqDNz56GPRh5oqHSSQS5sa9fPkyTp8+jX379qGqqoqRpOjgSg0Nuo0S6TQaDaZPn87ilKWlpSgqKmL7cleLXFZ/d7Dg+/bty/QF6G8rKytDXl5el8/dWdTW1kIkEsHb25uJU+3ZswcZGRnX1SBycXGBp6cnwsPDUVtby7wJOTk5PTaweXt7Y/DgwUxkyd3dHRUVFa3u7+vri/j4eEbiLS4uxrlz53D06FFs374dQ4cObTfvg8sB4BaIo5+zs7ORk5MDX19fSCQSfP3119i1axdKSkpgsVhQU1MDuVyO+Ph4xMfHQyKRYOLEibBaraioqIBAIMDRo0dhNBrZ+8M1MpwzbZxj/LTPqdCeVCrFpUuXmEQ6IVcl3WUyGQQCAby9vTF79mzEx8eDEIKmpiZIpVKIRCJoNBqo1WpoNBrI5XKoVCqo1WokJiaivr4eWVlZDum5Pc0bCAkJgbu7O0pLSx1CID2JyspK5Ofno6ioCFOmTGF9o1AooFarcfr0aQBXeR8XL15EZmYmzp49yzK7aKE+sVgMrVYLo9Ho0O6WNGOcMXfuXCQmJsJqteKll17CuXPnkJOTA8CxFpBCoUDfvn1RVFSE4cOHY9KkSejVqxekUikOHz6MPXv2MEI2b3Rcf/DGRw+DrsC4gmIqlQoBAQEwm81ITU3FsWPHcPToUTaQc1nalOtBP9P6FRqNBvHx8ZDJZCgrK0NBQQFyc3OZp4MaH3QVKBKJHNQAu4KgoCAEBQUx0l5FRQUKCgqa5en3NKRSKVN3pWJQ1O2/cOFCZGZmYvfu3de1TUqlEsHBwbj11luZNkNNTQ3Ljqirq+t2vRW1Wo2AgADU1tYiICAAPj4+yMjIAACH+LVcLofVakV4eDiGDx+O4OBgVFRU4Ny5czh06BDy8vJw/PhxBAUFtZu3w+U9cMMuwF8GQXJyMsRiMVQqFbZs2YLs7GwmKFVcXAyLxYKMjAxkZGTAy8sLK1asgK+vL/MeNDU1ITMzE1VVVczgoJOFczExLjmVu62pqQl1dXWorq7GxYsXmdfHarWitrYWWq0WIpEIarUagwYNQlNTE8sqUygUEIvFkEqlUCgUrOCcWCyGRqPBnDlzUFlZySTiuem5PQGJRIKQkBAEBwdDLBajqakJcrm8R1K3naFSqVidHSqFT8m8WVlZ+OGHH5iBmJmZiTNnzjgY/7W1tbh06RJ0Oh00Gk2z8ztnuDhDqVTitttuw4ABA1BdXY0NGzawdwsAG1/d3NwQFBSEmTNnIiUlBZMmTcLYsWNZ2Pr333/HL7/84iACyeP6gjc+ehjU+KAEPqpLoFAoWJy9sbGRkeyooUC9HK6urg5EN5VKBVdXV1gsFjzzzDP47rvvWJ0CyimhwkR0FUDPRz0iXX3ZkpKSMHDgQIwYMQIGgwEffPABW/FcT0RFRWH48OEYNGgQ5s6dC61Wy37flStXWNbC9YROp0N9fT3uvvtutq2xsRF//vknZDIZNm/ejJ9++qlbr1lTU4Nz586htrYWH330kYMHiqbQWq1WxMbGoqKiAuPHj8fixYsBAB999BF+++03nDt3DgKBAKtWrUJ8fDwyMzNZuK4tUE8cNZC5mR7077XXXnPwWtB9AbDQ4KVLl5CRkYHQ0FA0NTVh0aJFGDduHJYuXYo77rgDDz74IDZv3szOzYVzZgO33YQQKBQKpsy5f/9+SCQS7NmzB5cvX4ZEIoGPjw/EYjGTUz9w4ACSkpJQUlKC6upqGI1GFBYWoqGhAWq1GnPnzsX27dvx5JNPYunSpfjHP/6BnJwcprhaUlLiEA7obnd+SEgI/vzzT3h7e+Ps2bPYs2dPj2a4cDFlyhQsWLAAs2bNAvCXfEBJSQk2bNiAbdu2tVkyoKCgAO+8806r3zs/b9x7KRaLMXjwYKZtUl9fz8ZR2r9SqRRjxozB7bffjlmzZrGihJSU+uOPP6KyshKnTp3qduI3j46BNz56GC4uLrDZbNDr9ZDJZBCJRGyV4OrqiqFDh6KqqgpXrlxBRkYGkyWnL5TJZIJWq0VwcDAmTZqEP/74A3369MGIESMwYcIE+Pj44KOPPsKWLVtYiIa+cACYR4BOEl0ZBLVaLf75z39i4sSJCA4ORmlpKdauXYs///zzuk/0jz/+OMaMGYO4uDhotVrGj6GIi4tDZGQkoqOjERcXh++///66FI9ydXWFm5sbdu7ciXfffRe9e/fG5MmTMXbsWIhEIpw5cwZJSUnIz8/vluuNGDECM2bMwKhRozBz5kxUVFRAq9UiJCQEkyZNwsyZM1kdjujoaEagNJlMOHnyJCIjI+Ht7c3OFxwcDFdXV6Yqa7VaGZ+hJXA1N2jGA3126XPMNUToypZOKFwvht1uR1FREZNapwbLa6+9hqSkJObFodfgqogCf4V+qOgYzVih/KezZ8/i8uXLEAgE7BpUfp4Qgh07duCjjz5CRkYGq5JLvTk0PGCz2fDrr79Cp9Ph/PnzCAsLwy233AJ/f39MmDABBoOB6e3Q+jSUnNod8Pb2RmRkJDNuaGbb9UJQUBB8fHxYmOqll15CY2MjTCYTdu/e3e3vGNcYkcvlWLFiBQICAnDhwgV88sknaGhogIeHB5YsWYJbb70VmzZtwuTJk5GQkACBQIC0tDRIJBKkpKTg+PHj+P7772Gz2Xqs8CWP9oM3PnoYVquVDWI064QSUGtqaphGBx2oTSaTg5fCx8cHvXr1Qu/eveHt7Y0VK1YgKCgIISEhCAwMxHvvvYfDhw9Dp9NBJBIxYisVF6PpuV3V+qBxXUq0U6lULIRAB/LrARcXF6xduxaJiYkIDQ2Ft7c30xgBgKqqKmzevBmrVq3C5MmT4e/vD5PJhJqaGpw/f77HswEaGxuRnZ2NTZs2ITk5GdXV1RAIBIiIiEB4eDgmTZoErVaLjIwMfPrpp91SWI7Gz++66y7k5eVBrVYjJCQEMTExiI6OZpOvSqXC0aNHmZt869atsFgsyMzMBHB18v7Pf/6DOXPmICAgAOvXr8cXX3yB7OzsVoXHuKRArmeDTorcTCvnlFS6DQB7dt3c3DB9+nRERkay4w4fPsxq9DgLjHHbQP/PJRxyQyBGo5GFMalRJBQKodfroVAo2PkrKysdvBbc9tJq0YQQXL58GefPn8eMGTMgEAiQkJCAhoYGHD16FNnZ2Q5VfbsLCoUC7u7u0Gq1EAqFyMvL6zY14fYgNzcXlZWV0Ov1+OOPP7B3717odDoIhUJotVpoNBpUVVV1unJzW14ikUiEkJAQAEB1dTXKysrQu3dvREZGIj4+HuHh4Vi4cCHCwsLg5eUFg8GAM2fO4Ny5c8jPz0dhYSFqamocrtGSd48nnl4f8MZHD4O7eqKfaVpadXU1/Pz8oFaroVQqmQsR+GuQpUWm4uPjIZfLkZiYCLVazQyKL774Avn5+YxoSleSdJVGGfdd9Xq4uroiICCASZfTmDhdFV+vl1WlUuH+++9nwljU20EnudLSUnzwwQcYMWIEevXqhdDQUGRnZzPOwZkzZxg5rSeg1+tRUFDAJN1pPLp3794QCATME3PlyhWcOnUKmZmZ0Ol0nb6e0WhEQ0MDDAYDli1bxjJ7JBIJM2TlcjlkMhmysrLw888/M49CS5VPP/vsM3h4eGDx4sW49957kZaWhtra2lZJec7GB3A1jZeGYOhE78zLEIvFLBtFq9WyUGR0dDQmTZoEd3d3B7Io7Udn4S9uG4C/aq/Q7c4Ti3PlXUIISkpK4OLiAplMxgo3Ui8LPS/3GHrOoqIiXLp0Cfn5+QgKCoKbmxsCAwMRFhaG3Nxc9ru5hfK6Al9fX4SFhSE8PByurq7IycnBuXPn2qzd092gi6mmpiYcOnQIqampqK2thUQiQUxMDMLCwpCVlQWTydQp70JbEz99xmg9l4CAAPTt2xfR0dGIjIxkla+p8VtRUYGjR4/it99+azHTrCUV1fa0g0f3gDc+ehiUda1QKCAQCNDY2IjIyEjMnTsX+fn5MBgM8Pf3x6RJk6BUKpGVlYW6ujro9XqIRCL06tULsbGx6Nu3L4KDg6HRaGC321n9hOrqaofVM30xZTIZTCYTkwymhkhnPBQCgQBxcXFYuHAh7rjjDohEIuzevRv//e9/ceDAge7srmuCruJdXFwcwiwVFRVoaGhAVlYWSkpKsHLlStx2222YM2cOBg8ejIEDB2LOnDk4evQo5s2bd93aq9PpkJycjNWrV+PWW2/F0qVLMWHCBPTu3RvvvvsuXnnlFWzfvr3T5zebzcjJycG+ffswf/589OnTB3/++Se++OIL/PDDD/j5558RExOD2tparF27FsePH2/T29LY2IiLFy8iIiICgYGBWL58OfLy8lo12GgIBPiL/JmQkMAK6Xl5ebEJi9ZZEQgEUCqV0Gg08Pb2xqJFiyCRSCCTybBkyRI2WdtsNjQ2NuJf//oXNm7ciD179rBQC/UOAo6qoq15GbgZOFyDqaGhATt37kRYWBiMRiPLEuLqTVAjglugzmq1oqGhAefOncODDz6IL7/8EseOHUNSUhI8PDzYdSkHqztw9913Y8iQIejVqxfsdjseeeQRJCUlNZM37ykIBAI8+uijiIuLg16vZ4RzOh5dvHgRDzzwANLS0iCVSnH27NkOX6Mt76zFYsH+/fsRFhaGCRMmYMSIEVAqlRCJROwZo8JwdrsdtbW1+Pbbb5udh+t1aykTjoazAF7zoyfBGx89DMr3MBgMbPL/6aefcPLkSTzxxBNwc3NDTEwMwsPD4evri8DAQOzYsQMHDhzAvn37cO7cOQQGBiIiIgIqlQo7duxAdXU1CgsL8cUXX6CsrIyRWCUSCXMJA1djpJRVTghpU/uhNVDDo1+/fggPD4dIJEJOTg7Onj3bqcGlq7BarcjLy2OrZZPJhPPnz+PYsWM4cOAATpw4AQAoLS1lBdW+++47/Otf/4JKpULv3r2xevVqbNq0qdt0T9rb7m3btuHkyZMYOXIktmzZgszMzC5zZTIyMpCdnY1t27bh4Ycfxvjx41FRUYHTp09Dr9dj0aJFrLhhe8NjycnJ0Gq1mDVrFvOYtbYKpCJTNJX7s88+Y3Vc5HI56uvrsXv3bhQUFKC2thbl5eWYMmUKoqKiEBAQALVaDS8vLxYilMlkAK5OQoWFhXj++eexf/9+6HQ6xp+gEwzV1eDKm7cErtHATYPlip0JBFcl+Xv16sXExgwGA9zc3DB37lz07t0be/bswfHjx6HVajFv3jwMGzYM0dHR8Pb2RkNDA06dOoU9e/YgJyeHrb4BMO9PZ0H7hRACDw8PhIaGwmAwYNGiRazib0/D09MTu3btQnR0NLZt24b//Oc/yMzMZIash4cH7r//fowdO5ZlA3X3+GA0GrFx40ZMnz4dLi4u0Ol0SElJwTPPPIPExEQ89NBDEIlEKCkpwaeffootW7Y4HE85QO15B/jicj2Pv6Xx8fzzz2PdunUO26Kjo1l6otFoxGOPPYb//ve/MJlMmDJlCj744AP4+Ph06nrUMDAajVAqlbDb7cjPz8e3334LT09PREdHQ61WY9SoUXBxcYGLiwtGjRrFhHFkMhn0ej22bduG5ORklJeXs9x+Sq6jgzLXzU0lnik5raOuRBrH7d+/P4YMGcKEooqLi5GXl9fj/ImW0NTUhA0bNuCdd96Bh4cHKioqUFVVhV27diE1NZXFms1mM0vpoxWDb731VvTp0wfDhw/HZ599dl2ND+CvEIlOp4PFYukWrgxd8VEX99GjR2EymZisekeLxAF/pXq3J6TGDYMQQpCeno74+Hj4+flBLpfD3d0dU6ZMQX19PUwmE/R6PUJDQ6HRaKBUKiGTyRgxk57DaDRi+/bt2LFjB1JSUqDT6RyKx3HT1lsKxTh7KZwNKOpZoYRuWnHV398fd955JyoqKjBz5kxmUFGjJCoqCgsWLIBcLkdUVBR8fX3h5uYGpVLJSrLn5+dDr9c79ElXoVarcfvtt6N///7w9vaG3W7H5cuXWUG16wGxWAwvLy+UlZUhNzcXBQUFDqm9IpEI7u7ucHV1hZ+fHwIDAzt9LW7NHOfPDQ0NeOONNxAREcF0RcaMGYPRo0dDpVKhvLwc33zzDY4cOYKamppmzyfvybh58Lc0PgAgNjYW+/btY5+5jPFHH30UO3bswA8//ACNRoMHH3wQ8+bNw7Fjxzp8HRpXpIMhLeCl1+tx9OhR9O/fH9XV1fDy8kL//v3h6uoKHx8fDB06FBaLBWq1Gk1NTcjPz8dPP/2EyspKVFVVMZ4AfbmoZoHztekAe63VYWttVygUGDhwIPr16wc/Pz+Ulpbi3LlzuHLlSpe4Cp2F0WjEr7/+in/84x9Qq9XIyclBUVERzp8/7+DZsdvtKC4uRkNDA7RaLY4ePYp+/fph0KBBiI2NRXR0NLKysrqt+m57QbVJbDYbmpqaul0AjRIzuwJXV1dWc8i5JL0zuDobdrsdR48eRXh4OBobG6HVaqFQKODn5wc3NzfodDpWN4Y+m0KhELW1taipqYFer4evry/S0tLw008/Yfv27dBqtQ5uci5xmqvpwf0/bRfdl8s3oftwdXSOHDmCsLAwBAYGYtiwYSwlntZLKiwshL+/PxNBo22prKxEaWkp40AUFRWhrq6uxSJ0nQVVV508eTJiYmJgMplw6tQpJCUlITIy8rpoe8hkMmg0GkilUpw8eZJlAwFXyywolUp4enrCZDIxblVHihM6w3mc4n4mhOCXX35hXuLU1FTcddddSEhIgFQqRVVVFfbu3cuymlpLy+Zx4/G3NT7EYjF8fX2bbdfpdPj000+xdetWjB8/HgDw+eefo0+fPjh58iSGDRvWoesIBFeLytGUWYPBwFa7JpMJ//nPfyCTyeDj44MXX/w/9s47PK7qWvu/6U29995dZFmyZVs27g0wGExPIBACSUjgEnLh3oTkJqTBveEmECCF5AaS0E0JLrjh3mTcq2xLVrN679KMNDPfH/724czRqFqyHZj3efxYM3PKPmXvvfZa73rXL1iwYAFms1nK0CgoKKC0tJTTp0+zfft2rFarNHiKgm6CeNnZ2SnVdBEryvr6eqkdI+14wnBZuHAh6enptLW18fHHH/P8889TU1MzomONNf785z9TU1PD0aNHB53A29ra2LBhA3DJcNFoNKSmpvLTn/6U559/np07d16pJgOX3NORkZHodDpaW1uvuPdlOIiKiiI9PR1/f3/a2tqGNJDEyrSvr4/t27ezbds24uPjmTlzJhkZGeTm5nL27Fl27drFo48+SnJyspQa3dfXx65du1i7di2nTp3iW9/6Fj/84Q+lVav8/PK0XHkGl5wYKgwlucEk+Bvi/Rf3XBgozc3NhIaGSoXOIiIiXIyW5ORkKbVX8AH6+vrYsGED27Ztk3Qjurq6XArtie0vp0qq8B4FBQURHR3NK6+8wvPPPy95kq4EQkJCmDJlCiEhIfzlL3+RQnpqtZoHHnhAIsOvW7dO8sINp9KzO4j7JsJWynRquDQuCc9vWloaNpuNzs5OTCYTLS0tkhEoh1L12YOrjy+t8VFYWEhERARGo5GZM2fy7LPPEhMTw+HDh+nt7WXRokXStmlpacTExLB///4BjQ9R6VFArKiFaJjRaKS5uVlKszWZTJIb0G63U19fz/e+9z2XqrTClS4GWaFuKjqkSqWSSlI7HA7JSyLOKySkYeA6CYMhKCiIXbt2ERsbS3t7OyUlJeTn50vqkFcTGzZscMlsGA5+8pOf8MEHH/Af//EftLW1XfGBSMTD9Xo9zc3NREVFuVThvVYgQjkqlYqnn3560OwgeZaLnOx58eJFamtrWbNmjfTO2u12duzYga+vL9nZ2UydOpWysjLWrFlDS0sLDoeD73//+1LxPflEJA+xyMmjwqsoF9UDXIwRYajI3395WzUaDb/4xS/IyclhxowZNDU18fWvf534+Hh8fX3p7OzkJz/5CWVlZYSFhfHSSy/x7LPPsnfvXs6fPy9Jm8uzeeQZbpfj3Vq1ahXf//73SU9Pp7CwkNbWVnx8fKRFxZWAvJ/pdDq0Wi3h4eG89957REdH4+3tjV6vZ9asWTz88MOcOHFi1IsT8a7I+Tny+yqI9OL9MJvNZGVlodFopEJ1gkclD+XJ3w2z2SwJMXpw9fClND5yc3N5/fXXSU1Npbq6mmeeeYY5c+Zw6tQpampq0Ov1+Pn5uewTGho6aId69tln+/FI4JKb3eFwSN4OkcIn1/MwGo0YjUa6u7tpb2+XBlkxqAqFUgExmAp1SLFCk5PpRGezWCySQNJIjA9BxouOjkan07Fjxw7efPNN9u7de00I9IxmQG9ra+Ps2bO8/vrr3HfffQQEBODl5TXqVdpwIMqM+/v7881vfpPQ0FApXfnjjz8e1/Lno0VSUhITJ06ks7NTqoo8EMQkIE9bFO+ZO40Poejb09PD2bNn6ejokCrYAlKIUFmkDj4PIyrDKUopdficUKrVaiW9DbkHRO4tgUscIUEA7uzspL6+HrPZLHktROVVg8HAgw8+KGm4dHR09Ls/Su/LaNM2g4ODCQ4OxtvbG4fDQVFRkaSzcSXR3NzM8ePH+etf/8qqVauYMWMG7e3tpKWlSfeoo6OD3bt3c/z4cSorK0ftlVHK5YswtXh/+vr6JK9ucHAw//Zv/0ZAQAAXLlzgzJkznDt3ThprB7rnymJ0cgxH1deDscGX0vhYvny59PfkyZPJzc0lNjaW9957TxIbGil+8IMf8MQTT0if29raXGpkCNEvcC3CJa+9IVy6wrNhMBikFZ0yri235uUxdzEwywfc0SogOp1OSfr97NmzY6rMeTXgdF6qrbJ3715uvfVWycgbLyQlJeHj44Ovry8JCQnk5uai1+tpbW1l7969HDx4cFSE0PFGUFAQQUFBVFZWSsq4A0HcQ6V3QvymhFDbra6uprKyst8zkK9WxWf5d0ry6EDcCrlRpDQ03LVNpVLR1NREU1OTJMUt0oOFt0X0y7KyMqmvKvuk8thKj8tI4OPjg4+PDyqVir1797J3716KiorGvDbQUBDaNR999BG333476enpaLVavLy8pPtWVFTEunXrqKmpuSyVU3fPRSnyJjzHoaGhLFy4EKPRKJG529rahvTKDse4UL6HHow9vpTGhxJ+fn6kpKRQVFTE4sWLpQJRcu9HbW2tW46IgOBZuIPwcIgBTPAy4JJR0tPTQ0tLC1qtFm9vb4kjIspzCze4SKkVJEBBXBSWvvJ3vV4vqTfKi68NB06nk66uLnbv3k1DQwO1tbUkJydLGUH/qrDb7bS2tvLZZ59RXFw8roTThx9+WJIvnzZtGufPn2ffvn3s2bOHP/7xj+N23stFb28v9fX10mp/KPe0Uj/DXYxe7skTE4oyBVVM6PI6MCKNV871ULZHvlpWGgFyL4rS/S6+k7dD6bWRn1t4d0Q4SN6n9Xq9tI8y42a0IUqDwSAVvPvWt75FWVnZFa3QLIeQTz9+/DjXX389d955p8Q72bdvHxs2bODvf//7ZU/Wyuuz2WyS51eEY7q7u/H19cXf3x8vLy/6+vowm82EhIRIHmR3RgwMbUwoQz0ejB88xgefS2Lfe++9ZGdno9Pp2Lp1K6tWrQLg3LlzlJeXM3PmzBEfW4iFGQwGycUvyqyLwUykHDY1NdHe3u4SrxZpusLIEBkzwtVpNBql7AFRqA4uuftFXQsxmI504GppaeHee++VBu8vQow0NjaW733ve5hMJg4cODCu59q0aRN6vR5vb29uvfVWiouLqa+vvypZQiPBc889x/PPP4/dbh/Sfa7MOFGu8sV3grOk1+sl/ocwNuTePmEMiDRxm80meUbExK/X6916QcTvSrgrViaMG3c6IYIkrtPp0Ov1dHd3S31JziGRV5wWoQH5/RAh09FWnL3++uuZMmUKPj4+PPLII/zqV7+6YgXk3MFut1NVVcXrr7/OG2+8IXlthebKWE3YylRbYdDJBe1MJhP+/v6Ulpbi4+NDQUEB+/fvZ/ny5WzatInOzs5BDT/xDAca0zyej/HHl9L4+Pd//3dWrFhBbGwsVVVV/OQnP0Gj0XD33Xfj6+vLgw8+yBNPPCHlrT/66KPMnDlzxJkugKS9IQYroWkg0tKEa1doCogBS6vVYrVapU4tX4WJzi4vsCWHXq+XVoyimu5oDAexyhjL1MGrjbq6Ol5//XVUKhUlJSXjeq7jx49TX1+Pj48P586do7Oz81+C6Gaz2UakP6IMi8gncrkaqXwykOtwiGPI02TF8YTHRP7uK6Xa5d4N+WQj+pGyf8g9JcKYkFeTFl5G0X5lMTzRThFSVRJd5W1SqVSjDkNUVFRw+PBhqqqq+Pjjj69IWu1QGO1CZiRw5zlT3uP6+np2794taR3V1NRQUVEhFQGUj1fCcJS/N3KStNJY/qKMddc6vpTGR0VFBXfffbekrzF79mzy8/MJDg4G4Le//S1qtZpVq1a5iIyNBuJlFqtI4bWQqx+KVaHggIi6F2JFJu98YtUmh3wV6S4+Ls4z2tjz1c5sGUt0dnZy5MiRK3KuhoaGq7pSvRJwx9EQUL6D8Pm7JCeGyvdXhm7cHU++nfxvEQYRHgl5qGYgvoiyv8jbIp+slIaHHPJrd2d8jbb/FBYWYrPZsFgsHD9+/JpMy75SUI5bQjVa8IaUWi5yKLOclHwg+XYeXDmonB4Tb1zQ1tYmFdiS32KDwSAZHsoKtj09PXh7e0uDb3d3N0ajUfKOwKWy9jabjZ6eHmw2GwaDwaXehTB0RHhGfA+fp1B64MFYQYQExYAuj80PNhmAe3Kh/Ht3ZFNAEv8SEB4SUR9GGdYymUySt9CdlwI+z45RGj7uPru7Nrl3cLRGvgfDhzx7yZ1nS/mMhHEq3k+l+rPc2ybfT/wtUpw9GDt4jI9xgjA+wL1in/BSyDuOMvYsj03LY8jyFZw717V8IlCuCoQLcrygXPkNB1eLRDcUxlqpcjQrYGE4DkUUHs6ENxaTojz10QMPxhuCyCv3Yom+pPRGiW3CwsLo7u52qXMlPM6CyC83ZOXGqfAuKQvLeYyPsceXMuxyJeHOvSe8E/LP7v6Wryjl38mhdPmK79y5kd3tM9b4IrkulSnOI51w5fu5MzwGMwaUYYmhMJy2jYXB4DE8PLiSECE0eX+QE5NNJhM9PT0u/aS5uVkaJwUvTv67/G9R6kK5yPBofYw/xk/kwAMJ7gZrd/HwgfYbaruBJkh3+3kmjpFhIANOrpo5nP2hfzbGcPcfi2c2Vkah5/3xYDyh1N0RhH357+7CcsLTq9FoJKI+uBKblWRn+LzYnJyAKic+DySf4MHlw2N8jDOuxGAtT3NUTm7u2jPQ9gPtM5LfR7rdeGCsz+1usNPr9S76Le7aoHz2gkgsP+5A78dYMu5FvNuDkUGkd+r1ekwmE2azedQihB4MDyI8ApfeW4vFIvFuhPCi6HMijAJIz0lprCgXZoILp+wPGo1GkjUQBogQUvNgfOAJu1yjkFvfymwBeWdSijLJjYuhXP2jmaTH2pgay+OJgUWU/h5r16m8rUNJzLu7Lnn6qlipXU42xHChDPNdLpQ6DF9UxMfHk56eTnR0NLNmzSI4OJiqqiq+/vWvX+2mfWEhz+hxOp39FIBFNV1Aqp8j0qnlsgACwoiQezdE6rMYL0T6u9PpxGg0YrVaMRqNqFQql0rZHowtPMbHOEPpYRjIIIDPWfvK77Ozs0lMTGTLli08+eST5Ofns2vXLpqbm12Y+MrUQcAti1veFuUKwF0GwnANBNF+d7Uz3F2rvH2jhV6vJyMjg76+Pq6//nquv/56dDodXV1dlJWVceTIkVGnSSvbPZRhB5ek+2+//XZ6enpITEykpaWF0tJS8vPz2bJlC52dndKzkBcju5JYtGgRmZmZvPTSSyPS8xD4ohsdcOl5z549m/vvv5/w8HD+8Ic/0Nra6pmMFPjpT39KYmIi3t7eGI1Gdu3aRUlJCcXFxaMS8ROGhHx8cJeJJDKblBoq7t5N+bF0Op1UGVylUklkd6PRiFqtlhYVQtDRU+tl/OAxPq4g3KXhuZug/fz8CAkJwd/fH7vdzsyZM5k8eTJ+fn4sWrQIu91OZWUlJ06ccDt5jIR8ONrJT95ug8GAj48PISEhZGZm8v777w8orHS5k61wxSYnJ0vHuvHGGzEYDFx33XXMmTNHmtjLy8sxm81s2bKF4uLiMRlEBsvmmTdvHsuXL2f+/PnY7Xaio6Npb2+nsrKSsLAwOjs7OXXqFFVVVdKxrjRyc3NZvHgxWVlZnDx5kl27dl1WLY4vKuLi4pg4cSKZmZl4e3sTFxfHjh07OHHixNVu2jUBtVpNQEAAc+fOJTU1VVJZ9vLyorCwkMOHD49aQVi5GJOnUot3VXA45DoxKpVr1VtAEmEcKDNQXn1YSUodDifLg9HDY3xcIchTY915E+SdIj4+njlz5pCWlkZnZyfx8fEkJSWxaNEivLy8yMzMpLa2lqKiIpcVtLvc9sFIp4MVAHNHYJV3RPm1BAQEkJ6ezowZM3jwwQfZtGmTtLoYaoId6QSsVqsJCgrizjvvBC6Jhj300EOEhoZKMWCHwyFVvUxLS2P27NlUVFRcVjVeZehLCZVKxWOPPUZOTg4BAQGSpoC/vz9+fn6kpqai0+l477332LZt27jWlBkM999/P3PnziUkJISvfe1rHD58+Jo1PoTLXK51I6qaipCj0Wgc8+J8er2euXPnMnHiRLy8vGhoaGDx4sUcPXr0X7qw4lhAeAMsFgtZWVlER0djMBikjJGpU6cSFRWFTqfj5ZdfHvHxhdKsGNfk6rOigBy4ahbJi3SK2lhiTJRnZzmdTsmjIedqieOKchbKfTwYH3iMj3GGmKSFRLMy+0GZKjtp0iTuvvtu7r//fsxmM7t27WLHjh289tprTJw4kcWLFzNlyhSioqJ45513CA8Pp6WlRSoLr9T2UFruwwmHyA2lgY4h32/OnDksXboUf39/brjhBpqamvrtN1C66mg6t0ql4qabbiIlJUUaUNRqNcXFxRQUFFBSUsJNN91EaGgoXl5eVFRUjLvr1Ol0kpCQQHh4OG1tbbz33nvcddddWCwWHA4HOp2O22+/neuvv56DBw+ydOnSKxq+EKvCzMxM1Go1hw4dYs2aNZdlkI03vLy8mDVrFo888gh79uxh9+7dnDp1ipUrV2Kz2YiPj+fb3/42EyZMGDPpcYvFwo033shPfvITIiMjKSkp4brrrsPPz++Kl7K/FhEUFERCQgLTp0/n17/+NWvXruUf//gHJ0+e5O2336awsBC1Wj2qcB58nn0Cl95Zb29vWltbsdls9Pb2SpwMoQTd09ODVqvFYrFgNBqpra1Fr9dLxzKbzVKoU34N3d3d9Pb24ufnR1dXlzQWC+FGeWjUg/GBx/i4QpCnhMkndeUEdMcdd5CbmyvJsU+YMIFt27axZ88ejh8/zsWLFzGbzWg0Gr72ta8xb948du7cyc6dOzl06NCAMsPKjAc572OwUNBgnBGLxUJeXh7f+c53CA0NpaioyCW8oUz7dZdZM1K3plarJSMjQ6peWVdXx65du3j77bepra2lu7ubnp4eDh8+zKpVq8jNzeWXv/wl999/P6WlpS6EtbFGY2MjR44c4cSJE/zzn//k008/ZdasWeTm5mK1Wpk5cyYWiwU/Pz8MBsOYTPwj4eTodDr8/PwICgqiurqaLVu2jFiyWyiajqXhFB8fT0JCAikpKeTm5rJz505KSkowGo3853/+JxMmTCAzM5P77ruPrq4uAgICcDgc9Pb2UlVVNWarU5GCWVBQgNPp5Ny5c+zatQuLxUJFRcVV8RAZjUapv9900010dnZSXFws9XUldDqdRGQerQHgDiqVCrPZzO23386cOXOIjY3l3nvv5dSpU1RXV9PV1cWDDz6Iw+GQOCChoaHU19f3a2dOTg65ubnMnz+fr371q4OGaFtaWoDPF2pKgqi/vz/t7e10dHRgtVoJDQ3llltuobS0lOPHj9Pa2srUqVNpamqirq6Ozs5OF09Za2urFHYRkN+3LwO/6WrBY3yMM5Q55mLClRfMkr/gnZ2dEgmqrq6OvXv3cvLkSZqbm2lvb+fIkSNSyll2djbR0dEkJydTUlLC4cOHh/QsKD0QA6XaDjWga7VafH19mTZtGvHx8Vy8eJEjR47Q1dU1oFExFl4Ph8NBY2MjJ06cQKvVcuHCBbZu3crevXtdVr979+5lwoQJpKWlYTQa3abXjTU++OAD1Go1paWlnDlzht7eXlpaWigpKcFqtWK328nIyMDb25usrCwOHjx42equw7mH0dHRpKenM2nSJPz8/GhoaKCwsJCmpqYRG39jmQKs0WgICwtj1apVpKSkEBMTQ3p6OoGBgVRXV6PVapk0aRK+vr5SZWhvb2/eeustScuhpaVlzEoGhIWFkZ6ezqxZs/Dy8uLixYuUlpbS3t5Od3f3uExEiYmJ5Obm0traKk2EXl5e+Pj4SIRwo9FIWFgYs2bNoqenh6qqKqZNmyY9i/r6et5//33g89V+cnIyhw8fHrN7o9PpmDZtGgsXLkSr1bJ792527dpFQ0ODtNg4ffo0cKkatq+vLzabzWWc0Wq1LFy4kJycHJKSkqQim0ooNTjkHmIRLhF8j76+PlasWIFKpaKzs5NJkyYxd+5c6urqmDp1Ko2NjdjtdoqLi3E6nXR1dbkVHJNXV5a3ebTKxB4MDY/xMc5w5+EQ8UlRQVPOnSgrK6OxsRGVSsWZM2f4zW9+Q3FxsdR5a2pqpL8PHjxIU1MT/v7+xMXFSVVxlcxw0Znl8VR5Z3ZniAzEFxHw9fUlPj6eadOmodVqOXz4MBs2bHDhgsiPJxfxEfdlNOjr6+PUqVOsWbOGrq4uCgoKOH78eL/tqqqqqKuro66ujsrKSrq6usbNhSrulTyrRlx/Y2Mje/bswem8VGHYZDKRkJDAggULOH78+BWRlk9OTubOO+/k/vvvp7KykkOHDrFz505g5M9hrCYzrVaLj48POTk5fOtb3yIiIkIqTb906VKpsq7VaqW+vp4LFy7Q0tJCZGQkTz75JG1tbZjNZsLDw8fsHiYnJ3PHHXfw9a9/HbvdTmtrK5WVleMabsnMzOQHP/gB1dXVlJaWYjKZiIiIIDo6mt7eXskzlZqaSnd3t5TlIWqTdHZ28tlnn0nGh+DETJ8+nWPHjo3J89LpdAQGBrJy5UqmT5/O+++/z//+7/9SV1fndvvq6mqqq6tdvtNqtQQFBfHII48QFRVFa2srmzZtctsnlWUNlOOYMECcTiednZ08+uijmM1mKisrmTdvHp2dnVJl79raWjZv3kxfXx9tbW2UlZX1S70VZSuEpLqAx/gYX3iMjysMucUOnyvqBQUF8cEHHxAfH4+3tzeNjY385Cc/4fz589hsNkwmE1lZWdIKNjw8nIqKCqxWq0T8ys/PJz8/X6qF4C5NTXha3BFflaRYdxDfr1y5km9+85skJCTQ2NhIZWUlVVVV/VQ8lfsN9/uB4HQ66ejo4K9//eug22VmZjJt2jSSk5M5cOAANTU148ZvGGgCdzovlR/XarUEBwcTFhaGxWJBrVbj7e19xYS/zp07x4YNG7j//vu56aabOHPmzJi65EeDlJQU5s2bx3333UdERASNjY2UlZVRVlbGtGnTOHjwIDt27ODTTz9Fp9NRV1cnueAFOjs7KSoqGrM2paenc+ONNwLQ1NTEgQMH2Lhx45gd3x1aW1spLy9n2bJlLt+L90alUtHV1cUnn3zC22+/TWZmJkuXLiUnJweAzZs38+6777rsW11dzSuvvDJmk+akSZO45ZZb+Pa3v822bduorKwkIiJiQONDCa1WS3R0NPfddx9z586lvLycuro6l6wUAaPRiM1mGzBlVhQN1Ov1mM1mdDodFouFCRMmMGXKFHQ6HXfddRdRUVFkZGSwevVq0tPTKSkpoaKiwoWEqlKp0Ov1WK1WiSAvJ5y6K1rnwdjBY3xcZTgcDvz8/EhKSiItLU1S2fP19eXuu+/m+eefx2AwMHXqVJ599lkpBizSzrq7u/H19aW5ublfNU95pVs550JuICiL2cHQhoJKpaKhoYGSkhKSkpL41re+xenTp2lqanLZTn7OsSScDga9Xk9iYiJpaWkEBATQ09NzxTwMABEREURGRnLx4kVycnKIiYkhISGBZcuWERQUhLe3NwBLly7FbDbz1ltvsX//fml/5b273Ptz/fXXk52dTXZ2tnRcOUwmE9OnTyc0NJT33nvvss41EsyePZunnnqKgIAA9Ho9TU1NHDx4kN/+9reYTCa6u7vp6OiQiNRXohqz2WwmICAAlUpFR0cHra2t456VdPHiRdauXUt5eTlBQUGcOXOGXbt24XA4CA0NpbOzk7q6Ompra2lubmbfvn3s3r2bN954g4CAAObNm4e3tzd79uyhtrZWmrTHcrWenp7OHXfcgcPh4P3332fv3r2UlpYOa9/U1FRuvfVWFixYQGpqKr/+9a8pLCykrKyMoqKifs9VXmVW8DvcjRkLFizgq1/9Knv27GHDhg289tprlJeXExYWxpkzZzh27BgbN26ko6ODmJgYOjo6aG9vBy4RmUVVcJvNRkREBK2trXR1dblkusgTBTwYe3iMjysAdy+xfJJJSUnhlltuwWKxSGQ+4XIWHUGr1eLt7U1wcDAOh4PW1lZOnz7N0aNHWbBgAd7e3qSlpXH+/HmpQyvTb5Wpssrv5L8NxtlQqVSSK3zRokXk5OTQ0NAghYQG2udKwOFw0NXVxfz580lISKCvr4/W1tYrljInvBwrVqwgOTmZoKAgQkJCSE9P5/Tp05w9exaVSsXEiRPJyspi69atLq7dsW7n3LlzmT59OnFxccAljkF9fb2kNRIbG0taWhqxsbG0trayffv2cfeKhIeHExISgsViwWAwSGRGb29vysvLx/XcA+Hmm29m2rRpABQXF7N582bOnj077kZPfX09+/bt48KFC3h5eVFZWSkRXn19fbFarbS3t0uTsHiX//73v/Pggw/i6+tLREQEgYGBbsmdYwHRBlFOwG63D0m+1el0hIaGkpmZSU5ODhMnTkSn07Fjxw4uXrxIa2trP08W4MK7GOha5s2bR0pKCg0NDTQ1NXH27Fnq6+tpbm7GYrHQ3NxMT08PFouFJUuWsHz5csrLy4mIiGDdunX09vZKiy6hCyL4NSrVpUrjXxYV36sJj/FxBSCPHbrT4UhNTeWWW26RJui+vj7a29td3ON1dXUcO3aMCRMm0NPTQ3l5Oe+//z67d+8mPDyc6667jpSUlH5hD2XnUfJP3BVqcpdqq5wUW1tbpUyDO++8k4qKCo4fPz7s1F7572MFk8mEl5cXJpOJxYsXo9frOXHiBG1tbZc1iIzEA6HRaAgKCuJ73/secEkOuqenh8bGRrZs2SJNMlOnTiUiIoLw8HACAgJoaGgYdfsGglqtZsKECUycOJGAgAAAYmJiOHfunGR8JCYmkpSUREpKCsHBwezfv3/cjY/ExET8/Pxob2/Hy8sLp9NJQEAAsbGx6PV6vLy86O7uvqJpwLfeeivTp0/HbrdTVlbGBx98wKlTp8b9vM3NzQPqlAivjxKNjY289NJL3HzzzVgsFrRaLWazedwM/JqaGg4dOsTkyZMJDQ3F19d3wG01Gg1+fn4EBweTkJBAbm4uoaGhdHd3U1hYKPXHgaDT6aTQtNJbKcbQW265hd7eXrZu3Sp5UZxOJ3q9noaGBun99fX15YEHHmDu3Lk0NDSQnJzM7t27aWtrw+l0SiRm4TEWSQDyhaHH+Bg/eIyPKwBl/Q75y61Wq+no6KCyspLQ0FBpsrbZbGzatImuri46Ojo4cOAADzzwAJGRkXR2dtLS0kJ7ezu33XYbMTExtLS08M9//lOy4t1BGX4ZDO4MGHnYJiQkhISEBJxOJ2+99ZZb5Ud3nhbx/Vh7RFQqFXPnzuXOO+/kvvvuQ6VS8eSTT/Kb3/zmsg0cdxlDAx0zPj6evLw8KisrOX/+PB999BF79uxh0aJFvPPOO7S2thIfH8+iRYuYM2cO9957LwEBAfzyl790e97hZh8pITQSPv30U0wmE/PmzcPhcLBu3ToXnoSXlxeTJk1i+vTp7Ny584rwUNLS0pgwYQKxsbGSN9BkMhEaGsrkyZP56le/yieffMLmzZvHvS0Ce/bsISQkhJiYGHJzcykrKxs2p+FKo6+vj4sXL3Ls2DFMJhNWq9VtCGOsUFBQwDvvvMONN97oko3nDiEhIfzoRz/itttuY/fu3SQmJvLZZ5/x0ksv9eOmuMNABqfBYMBsNtPc3ExmZiZFRUUUFBTQ3NyMzWZz643R6XTExMRgt9sJDw9n7ty5fPOb3+T3v/89HR0dEqlYDrvdjo+PD52dnVck1Pdlhsf4uAJQZp/IJxK1Wo2vry/R0dHApTS1jz76iNdff5329nZpW7vdTltbG52dnS7eicjISEwmk0tHUU76g7kQlYXqxP/u+BoCb775pqTYeeLECbZv3+7WXT6Q12QgTZHRQKVSScJDU6ZMYeXKlQCUlZXR2to6JrwJJQY7Xn5+PqdPn8ZisdDb20tbWxtdXV289dZbdHR0YDabiYqKYtq0aeh0Ok6fPk1+fr7L9cjPMdq2m81mvvrVr/KNb3yD6upqnn76aT744APKy8sJDw/H39+fM2fOkJSUREBAAF1dXW5Tf4VmxFjcQ6PRyJIlS7jvvvtIT0+Xvv/4449paWlBrVbz85//nMOHD+Pv78+kSZM4efLkZZ93MGi1WpKTk7nrrrvIzMyks7OT9evXj5lo2XgiPz+fqKgoUlNTefHFF/nhD39IbW3tmHuumpubKS4uxtvbm6eeeor777+fwsJC/vKXv2AymSSS5pkzZ/jhD3/IjBkz6Ovrk0T/Pv30U44cOTLs8+l0OgAXPRkhMgbwyiuvsHDhQv70pz+xdOlSl3FGqK9arVaqq6t58MEHeeyxx8jNzcVisRAYGOi2oq2QWRecrCsVJv4yw2N8XGU4HA7Onj3Lhx9+yCOPPMLWrVvZsWMH586d65eVYrfbsdvtLtkoWVlZhISE4HA4WLFiBUVFRfT09PQLobiD0sBwZyQoM19UKhXV1dXExcURHBxMT08PDQ0NklHk7hyD4XInNcEX+Na3vsWyZcswmUwUFRXx5ptvcuzYsSvG9RDo6uqShMzk91SssHx8fAgNDcVoNOJ0Opk4cSKzZs1i69atwNBhquFCpVLh7+9PQEAATqeTkJAQCgsLueeee2hubqakpIS4uDj8/f2lVWV2djZ5eXmcOHGCmpoagDEzPESbfH198ff3p6Ojg5KSEs6dO0d5eTkXLlygsbFRIseKrIfxNj40Gg2xsbGEhIRgNpvp6Ojgs88+67eKjo2NJTU1ldDQUKqqqmhtbaW0tHRcwmXDhTAc9Xo9MTExA+pmXC4cDgfNzc385je/YerUqcTHxzNjxgypjIEIh1RVVTFr1ixsNhufffYZGzdupKenhwsXLkhkz+GeD/ov0rRaLb29vTQ0NNDV1SUR7+XcOMGXE5kqBQUFHDlyhJiYGCkjxmw2S3ofYowVmUWioq0H4w+P8XEFMNjg7XQ6OXv2LB9//DGPPvooO3bs4NixY/0mMPlEJvdMJCUl4efnh9PpZOnSpbz88sv09PQM22XvzkBxl4IrjqXX6ykqKiIxMZGoqCgpPm+z2frlySv3H8oLMlL4+voSEhJCZGQk3/ve94iMjKS9vZ3jx4/zj3/8g8rKylEff7D8/sG8Kcq0ZiWMRqMkue5wOEhPT+9XKXUsDSa73Y7FYiEiIgKLxcL999/P9u3bKSgoIDg4mK6uLqxWK15eXsyZM4fTp09TV1cnGR/j4TUSac+nTp3i008/JSwsjFOnTnH+/HlKS0u5++670el0VFVVSYTA8YJWqyUxMRGTyYRaraa3t1dKbxdetdjYWKZOncr8+fNJSUmhoKCACxcusHfvXkno7GogIiICLy8v4FL4bDyF9Do6Ovjf//1fVqxYwc0338ySJUuYMWMGwcHBLnw2p9NJfn4+e/fuZdu2bSM+j3w8UmadiIq3AQEBknGakpJCVVUV7e3t0rgnFl+i3aWlpTQ1NaHT6Zg4caJktAjiqfCYOJ2XdEMMBsOY3jsP3MNjfFwhiPCHO0+Et7c3ERERaLVaOjo6XFZdA2lywKVV24ULF6RVW2VlpcuEOdDEIY450EA1kAaIVqslJCSEO++8k+joaFpaWti/fz+9vb3SsUbLURgNbrnlFp566ilSU1MllnpbWxt79+51IZ6NBsKQGqxEtzsYjUZMJpOUdqxEfX095eXl0n06deqUS6rtWEEYQM3NzRw8eJD333+fWbNmSRlRer2egwcPUlxcTEBAAFOmTMFisUiT2HjA6bykMPnss8/S3t5OS0sLhYWFLtscP36cPXv24OXlRWRkpDTZj1f8XRSR8/HxkcjawhAxmUxMmTKF3bt3S54rjUbDjBkz2LdvH0lJSRw6dIg///nP49K2ofB///d/2Gw2li1bRmZmJuHh4dTV1Y0LUdfpvKSv889//lPiV6xZs4Zf/vKXmEwm2tvb0el0tLW1cfLkyX7PdbgwGAwYDAb6+vro7OyUDI7e3l5pnPn6179OXl4eZrOZ119/nffee4/t27dz4MABaZyS8+z8/PyksgB6vR6dTucyvgmPssB4ChJ68Dk8xsc4Qwxo8s6g5IB4e3sTGRmJ3W7n4sWLLivhwSZzp9PJf/7nf/LLX/6SrKws/v73v7tMuO44F8LKlx9T7plQkkvlCAkJ4f333ycyMhKNRiPVVhmMES5vv7uQwmjdxBMnTqSjo4M1a9bw5JNPApdiwS+++CINDQ0DZgoMFwMx7QX0er0k5ibHPffcw5133smSJUtISUnhuuuuY9q0aXR2dhIQEEB8fLyU1XHixAn+9Kc/sWbNmstqqxzCqDSZTEybNo3IyEhiY2NZvnw5KpWK999/n/Xr11NRUQFcMpbE+6DX63njjTc4d+7cmLVHDqvVysaNG6W+oHxvzGYzM2bMYNq0aVLhMFEheLzQ2dnJ7373OyZNmoS3tzdWq5Wenh4MBgMTJkxg+fLlAKxdu5YdO3ZgtVp5+eWXmTZtGkVFRVy8eHHc2jYURNaIyWS6Yufs6emhqKiIHTt2sGvXLhYtWgR8vqB58MEHmT59OlFRUXz88ccjPr4Q/BLQ6/UYDAZsNpvEw/nZz35GYmIiGRkZ/Pu//ztPPPEEK1eu5MyZMxQUFPDnP/+Zzs5Oybtx8OBB5s6di9lsllKVRWaL3W6XDBx56OZKh2u/jPAYH+MMd+EM5YttsVgICwvDbreTnp5OfX09JSUl0v7yCVruYTCZTMydO5egoCAaGxspKioa1GIXhpC77A3luQbapr29HZVKRWtrK4WFhWzdutVlsHDXaQczoEZrfNjtdqKjo8nLywPgjTfeYMuWLVy8eHFEq2RRO0NZcE5pbCjbLh+gNBoNoaGhUm2QyMhIsrKySE5OZubMmcyZM0dSqfXz88NoNHLx4kXWr1/PqVOn+jHuB2rncNL+hHvaZDIREhKCwWDg2LFj7N+/nxkzZvDJJ59w8uRJ6ZktWbKE+Ph4aVU4c+ZM2tvbR71yBXjooYfw8fHh4sWLTJ48mU2bNlFYWEhNTc2Ahf0mTJjAtGnTyMvLIywsjNOnT3PkyBGKi4vHNetArVYTHh7uUlzM6XSyZMkScnNzmTFjBiUlJTQ1NREYGIhKpZKyl0wm01V10ZeXl9PU1CRpVDQ0NIx7enJMTAw+Pj709vaSnp7OoUOHXM5ZW1vL7t27Ry1JLw+1CJExeWjEbrdz/vx5mpqaqK+vJykpiezsbEJDQ6VF3Pnz5ykpKaG7u5vY2FgSEhKIioqio6ODLVu20NHR4SKvLgjrYsEhhMaE0NnVKCj4ZYDH+BhnDEb2lP8tOsP06dOpqqqSjA8lhPFhNBpJSkpi1apV+Pr6UlhYSH19/bAyS0ab5mq326muriYlJYWKigr27dvHgQMHJGniga5TTmodq+wTHx8f0tLSJOPj8OHDlJWVDTsvPzAwUKq14uPjQ2VlJc3NzdKkPNS9EUaet7c3ISEhpKamMnnyZNLS0jCbzSxfvpzw8HAmT55MUlKStF9jYyMXLlygoKBAMpaGgpL0OxSEAWI0Guno6GD//v28+uqrNDQ0kJ+f76IrERkZKbnLg4KCuO666zhz5sywjI+BnuUtt9xCfHw8586dY9GiRVJxsN7eXvz9/amvr8dgMGCxWKTCcNnZ2dxxxx1MmjQJo9FIXV0dhYWF4+5Z0Ol0TJ06FZPJhEp1SW5b6FOkpaURFhZGZWUl3t7eJCcno9FoqKmpweFw4OPjI+mnXA3U1dXR0dGBzWajubmZxsbGcZ8os7Ky8PX1pa+vj5CQkH48L4fDweHDhy9bI0W8w93d3dL7I4yPtrY2rFYrHR0dvP3228Alo8hiseDv78+8efMkbpqoliyq3wrVU7mnQ6mNJM4j2uDB+MBzZ68gBpp0z507x0cffcTjjz/OsmXLKCkpYcuWLS7biAmor68PrVZLZGQkP/jBD7juuuv45JNPWLt2rUtqrjsoM2UGauNAvwsBIZVKxdatW3nhhRf6VbEdaaroaER8dDod9913H3PmzJGO//DDD0skxqGgUqlYtWoVEydOJCoqCn9/fzZt2sQHH3wgTbpKD9JA2iTTp0/nvvvuIzQ0lGnTpkncgZ///Of99oNLaaWrV6+moqKCoqKiIXkp4lzDjUHb7XasVitdXV1SvZTjx49TWFjIf//3f/fb/he/+AXl5eXcd999zJ8/X/LMXA66u7sJDQ0lOTkZlUrFkiVL8PX1JTk5mXvuuYeXX36ZpKQkZsyYwfvvv09dXR3z5s1j0aJFaDQaSktLMRgMxMTEXFY7hgOj0cj111+Pn58fGo2G4OBgfvOb39Da2srx48c5efIky5YtIyYmhsOHD9PQ0MADDzwAXDLcEhMTx72NA8FgMGAymaRU7qH6/1jgoYceoq6ujg8//JC1a9f2+z0+Pp66uroxMYLk1yIP0wkl6NraWtauXSuFWGw2G7GxsXz729+muLiYNWvWSLyimJgYdDod27Ztk8I3om+1tbW5LIxCQkJoamqiu7v7ipVl+DLCY3yMM5SrfXchiDvuuINf/epXdHd309zcTGhoKPPmzZNqPFgsFsLDw1m2bBn/+Mc/CA4OZurUqURFRaHT6cjLy6O3t5cPPvhgyPbI3ffujIyBvtNqtXR1dfE///M/PP/880yYMIGVK1fy1ltvDXn9cgwUzhkujEYjy5YtY9GiRcTHx7t8P3HiRBYsWOCWZZ+WlkZGRgahoaFYrVa+853vYLVaOXbsGP/1X/9FaWnpoC5rd3oo4eHhhIWFERAQwOzZsyWpcFE9WMBut1NfX8+TTz7JuXPnqKuro7q6eljhhNFMJg6Hg/r6er7zne/Q3Nw8JP+ltbWV2tpaAEpLS4cVBhoMv/rVr/j1r3+Nw+Fg7969TJ06lUmTJtHX1yc9J+HWnjlzphQmqq+v5+c//zkTJkxg06ZNbN++/bLaMRx0d3fz7rvv8pWvfIWoqChMJhMOhwOTyUROTg7Z2dlSRsnChQtdjOXVq1cPWeBwPKBWq/Hy8uIPf/gDM2bMoKWlhQ8++GBcvR5C4yMuLo6GhoYBz1VQUEB2djYTJkzg2WefHfF5xPgkND78/Pzo6+uT6rDA50X3vLy8aG9v5+TJk/T29tLZ2cn+/fvZt28f7e3tqNVq6uvrWbFihdRP77vvPl566aV+Oi6CqGqxWKipqfEQTq8APMbHOEMYH/LaLspQyKFDh/if//kf8vLySE9PZ9asWQQFBZGTk0NHR4ekvJicnEx6ejpeXl6EhoYSFRXFxYsXyc/PH3CgHozjIZ/4h5rkQkNDmTBhAnfffTd/+ctfKCsro6Kiop/Xw9253BWvGw18fX1JTEzkrrvuIjg4GK1W6+I6TUtLY9WqVUyZMoW2tjaOHz9OUVERBoOB2bNnk5mZSVxcHL6+voSHh7N//35OnjzJxYsX+03QShKau3uUmppKYmIi3t7eLmmO4v8XXniB9PR0pkyZws6dOzl06BB1dXXYbLZ+onBjvWIVKpjuKocqIXQ+4BLhb7gD70DHFQqqer2e48ePs379ery9vcnJySE3Nxd/f3+cTqfEVVCr1Xz66aesX79e8jaUlJRcEaGvnp4e1q1bR1hYGLNnz2bixImoVCqJ8Cr+BlyKNL7wwgucP38ef3//K66Eqlar8fPzIyMjg+DgYOrr68nIyODo0aPjtlLXarWkp6ejVqupqqqioKDA7Xbl5eWkpaURGRk5qvMo+1t3d3c/cnJvb6/kxVWr1XR1ddHb24vNZkOr1VJdXS09p+7ubry9vaUMGlH/ZiAemtPpdKnt4jFCxg8e42OcIcIYwvhwN2CfOXOGmpoaMjIyJA5BdHQ0mZmZtLW1ERISQlhYGDqdjqysLGnSFWW/N2/ezGeffeZyzKE4GANlnwwEEVZYsWIFq1ev5uTJk9TV1Q1peCg/X84k6+fnR2pqKtdddx0Wi8XlmnQ6nUQsmzlzJs3NzURGRnLixAmMRiPz588nOTmZyMhIwsLC+Oyzzzh06BAnTpxwO8kN5754eXlhs9m4cOEC3t7eJCYmolKp6O3txdvbm/fff5/JkyfT2trK5s2bqaysHNGEern3ayQrYXG9wcHBl509ITwnZrOZTZs28frrr0uTtKgLIq6tvb2dsLAwdu7cyTvvvINer7+iK8++vj5OnDjBtm3bpHs9ceLEfp4r0Vd6e3uprKzknXfekUi6VxqieGFQUBC1tbWcPn1aSh8dL6jVaoKDg/tl7oWHh9PT00NHR4c02be0tIz6vVXup9R4kXtGACmjRXwWQmHiWH19fQQEBGAymSTBM/m28gw/h8MhLQrEmC24Sh6MPTzGxzhDrPCGqrdisVi48847JavcaDQSFBQkSf+Kf6Jzdnd3SyXI3a3cBVvcarX2k1cfzcAQFhZGZmYmOp2O//7v/+all17iT3/6k9vrcUdsHWhgHMmA6efnR2JiIqGhodLxhaiQj48PgYGBLoPw3LlzpXPIr7m3t5dHHnmE8vJyifmuxHAGnGPHjpGfn097ezvTp0/nV7/6FSqVipqaGubMmUNtbS1/+tOf3N4nOQZ6HvIKn+OJxsZGKfX2lltuYfv27ezYseOyj9vV1cXTTz8NQElJCWfPnqWkpERKz+7t7WXfvn18//vf5+jRo6POkBgLbNq0ib1795Kamsq2bdtc3mEhxGYwGGhoaODFF1+ktLRUIsteaej1epKTk9Fqtfz+97/nN7/5zbgXQFOpLikJGwwGsrOz+cpXvsJvf/tb7rrrLi5cuMDBgwex2+3ExcVx9OhRysrKxqUder1eIucLz5mo+Avu+21GRgaBgYFUVVVx4sQJKUVerVZjMBikDCxRERuQQqc+Pj5XVcX2iwyP8THOkHM+5P9rNBpp4BKVNBMTE3n11VfJysrC399f2l8eAy0rK+Nvf/sb69evR61Wc+HCBRe9CZ1OJxk88hXAQG0b7sS2f/9+Ojs7WbJkCY2NjSPS0VB6WuTnHcmgmZqayqpVqwDYunUrAQEBeHt7c/fdd9PS0kJsbCxTpkzh7rvvxmQycfz4cerq6li2bBnvvPMORqORzs5O1q1bx5kzZ6SUutGipqZGctMeOHCAO++8k76+Prq6utBqtS7VO8UKbSS4UnoDn332GSqVim9/+9ucPHmS1tZWjEbjmHMIurq6+Oijj/o981deeeWqF/Hq7u6WyrA3NDSwa9cumpqaaGpqIj8/n4MHD0ppnz09PS4T3pWGt7c3t99+O2azmaVLl9Ld3c0rr7wyrufs6+uTyLfTp08nNTWVvLw8Zs6cKanQ1tXVceutt46rR8jdO2k0Gunr6+vXv7RaLb6+vvj6+krekRtvvJHVq1fT3d2N3W6XjA1RzVYs/sTny9UL8mBgeIyPcYY7zoCYsOTfC5Lg3//+d3bt2oXFYuH8+fPce++9VFRUUFxcTHZ2Nps2beLgwYPSSlUpdKVcKSvJru5Ex+SeCXcDqtPpxM/Pj9jYWBwOB62trf0GgeGEcdydYySeD5vNRktLC+fOneOvf/0rra2t6HQ6SQ67paWFiooKCgoK0Gq1Uurh9u3buXDhgmTwlZeXj4krVT5h2mw26urq+j1bAfl3wzX6rlQ573nz5nH77bcDl+Sox5Pl7y6751rRUXA6ndTX1/Poo49SU1MjCV7V1dVJXIGrjaCgIEkTpbGxkf37918xYu7777/PZ599xuzZs5kzZw7p6emoVCpOnjzJ4cOH2bdvn8S3GG2KqsFgcAlzGQwGyXCw2+0YjUZpMSaUT0V4RGwrnpPBYGDixImEhoZiNpsxGo3ExMS4bZt8jBQeFfBwPsYTHuPjCmMwopPT6WTfvn2cPn0arVbLyZMnCQwMpKysjMLCQurq6tiyZQvNzc309PS47RjDHSBHsmpzOp34+voSERFBfX09paWlLloR7raXGzryjn052S7V1dXs3bsXs9nMzp07qa6udvldrFSVGhVHjx4d9jkGw1BGw2Crd3fXfbVWzkqkpaUxe/Zs4FLad319/Zd20O3s7BxW1tjVgl6vx8fHh8jISMrLyykrK+PMmTPjft7e3l4OHDjA4cOHpVo2opr20aNH2bdvH/v27btsD5bwuInjuNPgAFx4GqIirdKo0Gq1xMXFYbFYMBqNqNVqyRs5mCSAWAzK+SAejD08xsc4Q7jvxGCu1+txOp1uV4AqlYrGxkYaGhokYZ0//OEP6PV6NBoNr732msTAF51nsJLn7lQ6lYbAQPVmlDAYDOj1enbv3s2GDRv6TfCDCYiNhNg6GA4cOMCBAwcu+zijxeUYC8psJ8HnuBYgBnir1cqf//zncZNX9+Dy0dLSQlVVFQBRUVH4+PhckfM6HA6p7MM777zDO++8My7nEcRQ0TeU1XDtdruLOqlAX19fP8NH6LY4HA40Gg1Wq5WPP/6Ynp4eKXNJ3ieVHmTxvQfjA4/xMc4QKWHwORNbxBTlk49w8/X19UlMa2EciDx3+DxkIzrFQBOYPMVXdFRxDqXmyHBw8OBBjh07JpW1HmyF4y7LZSBcq517rD0T4jmJiV6k8w3H8Btv/Pa3v+Xll19GpVJJpcY9uDbxta99jcceewy4JFg3UMrrvyqE3oxQNFWG/0SITq1Wo9fr+xWFk6Ovr4+amhra2towGo34+Phw44038tprr0lcD+UCTaPRoNfrsdls18zi4IsKj/FxFSDcenLIPytTwMQ+YjulbshQ51BWnB3of3fHEL8LwqsYDOTZN2IV4S6rZaDPozGAriQuxyAYzHCRawwMVrF4pMe9nDbKBZw8uHah0+kICgoiOjoawK0H8l8dSlK+OxKpGIv6+vrQ6XQunl/hGRbe5fz8fB577DGMRiM2m43CwkKpKKT82HIPtXzRdrUXBl9keIyPKwh35NORbjeSEIYyw2akHcldXFT8Cw4OJjg4GKfTyfnz50cV671WDY/xgPz+uyP8Xu4xPfhyoLW1lcrKSqKiojh37twXNg1UvngSukbCWygvE+Hu/Reh6N7eXi5evMiFCxeAz8cbi8Uy6IJrMAVoD8YOHuNjnKEMdQwX7iYq0dlG4hZXHkcunjQaEqSIuWZlZXHDDTcA8F//9V8SAXWwrJmB2vavCHeEWoGB+DcDeaqGex+U213O6uxf+d5/WSFIn/7+/nzlK1+hqanpC+exEt5AOS9OSN53dnZKIWdBMFVmSglviDiW0DkS/dRgMLjwSMRYKu+bVzvt+8sCldMzCo0L2traXNQcrxUIRrgwYrRarcQz0Wq1bgczo9EohVa6urowGAwuk65YlYjUOKfT6ZLyJrb5V4fQUBGDk3D5Krk7gqfjDkrBt4GgTJEWAyi4hqxGmrU01u/itfxc5dc6VCq5u32Un5XbycNnw2nLWHBpRDhChCQMBgMajWZYehRKfoMHQ0M889bW1itG7v2ywOP5+JJBuVIWKwkxqYoBSs4rkf8Tx5BzPuQDuzA6xDHFccREabfbJTfqv1pMVWlQ9PX1uRDUABdXsTsDZLDBX55WqDTu5CtCcJ1MlRPhQLotwzE8xsNAuRpQGg2DXddAITF3n93dW6UHyl2o053hIn8XBnpf3LVTntlhs9kkg3YoDFbTxAMPrjQ8xseXDINlV4iUNKCf8SEfuN1l6cgJse7IpGLlLq+rMBRp9lrEQJO5u4lGmc0i/zzYKlRpuEH/rKbBJsmBVvdy78lA3yn3+Vc0RAbyVri7ztFcn0qlQq/XM3nyZOLi4gBYs2aNVMRvIENmMIyWlyUWASPd18MX8uBqw2N8XKNQqVRYLBZpghYDjFj1XI77dCTZFWKFJqp8Colp8bucJS4nggmIsIR8VS+8HyNpy9WAfJUo996IZ6HVanE4HFI1TfnKVc7El2u89PX1SdevDHEpn6lIJ5QbbQJKj4e7NotjjIR/80VaGSuNp8FCLkMZIXJjUKvVEh4ezmOPPcZdd91FX18fCQkJkjib3MB2d153CwB5HxnMKB3ou5E8539Vw9+DLxY8xsc1isjISHbs2EFYWBgnT57kzJkzREVFsWXLFj799FOOHTs2JucRE6sY+MQEKiZVATGoikFOo9FIRZ3kA5/c7S84IFarVUprExN4b2/vNb+qFsQ2o9FIR0eHdM2i3TabTTLARAqguA9eXl50dna6TAhycpzS8BD3RaQKivBVd3d3vzYp93EHJRlWTGrueBCjxbVqoAx2T8TvA4WlBuJxCPluo9GIwWBg165dhIWF0dvbS21tLf7+/rS1tdHV1eXWIBzOvVKeU34cEdobzGvpDkqOkfBsegwPD642PMbHNYi5c+dy5513EhERgV6vJy0tjcjISMxmM3v37sXHxwd/f/9BJc4HgrvYspiY3Ll+dTqdS5lpOTvcx8eH22+/nb1797JixQqmTZvGpk2beOONN+jq6pKMDLEvDD/deCD4+/vzzDPPsG3bNkJDQ0lLS6OsrIyUlBScTietra2cPXuWW2+9lY0bN7J+/XouXrw44vMI2O12yQAQnh3RbkHClWsOCCNNaTQMVFhOLjomzgHuJyz5Z3chlIG+H4h4OZgh4s5jMNpJ9UpjKO/NYGmW7u6LWq0mMDCQm266icWLFxMZGUlQUBDbtm3j7Nmz+Pn5UV1dTXd394BGgNI4HQ7k2wrDQxjAw629I+dvDVZdeyxhMpnQarX91Ek98EAOj/FxDSI2NpbZs2djMBjYvXs37e3tmEwm5s6dS1ZWFn19fXh5eXHkyBGpPPlw4S6OP5jr2d2Eo1KpCA8PZ/Lkydxwww34+vqyaNEiEhMTWbduXT+38lh4ONRqNbGxscyYMYOlS5fi5+dHYGAg8fHxVFVVERcXh9PppL29ncTERObPn093dzdVVVWXZXwoeSruJnxhPAQFBUlFqebPn49er6esrIyamhrS0tIwmUy0t7dTU1PDiRMnpPvkLitosHsm92oMxDtxdwzx2dvbG6PRSH19vVsD51rxSKnVaiwWC9dffz0qlYrm5mZOnjxJc3PzsBQoh3Mdg4VltFoter0ei8XCqlWrWLZsGbm5uQQFBVFXV0dbWxu1tbXs27ePjo4OFyNdieF6rAaCOz7RSOo4KY3Osc580Wq1REREMGHCBFQqFa2trRw/fryf988DDwQ8xsc1BpVKhZ+fH1FRUQC8+uqrlJaWEhYWxuTJk7nxxhtJT08nIyMDp9PJtm3bsFqtwz6+WL3L3a9iwnRXb0Q+6ImVl0ajISsri9tuu42FCxcyYcIEvLy8uHjxotv2KEMAo7knJpOJvLw8/u3f/o2kpCSio6OlYwYHB0scjLCwMKKiojAYDKSmpjJ79mzWrFkzqvO6a4fc+yPum/AmJScno9Fo8Pb25uWXX0an0/HJJ5+wb98+Vq1aRXp6OuXl5ezfv5/f/va3dHR00NbW5raqq7t75S7dVtk+OR9HPsmJzxqNhpiYGMLDw9m5c6f0/JXHG84EOR6TilarlVKaDQYDSUlJvPjii2i1Wk6dOsXvfvc7Tp8+TVNTk1SBd7D2Kb0gg3k9xG/ify8vLwIDA4mOjubHP/4xISEh9PX10djYyOHDh6U2vvvuu0Nelzui9XA8NMrfxLMSHkmVSoVOp8NsNuN0OqUQp9IzojQ0hBDXWEClUuHl5cX06dP53ve+R1NTE0eOHKGiokLygF5JWCwWiWtlNpul6reiOq4H1wY8xsc1hpCQEDo7Ozl27Bh5eXmUlZVx9uxZzpw5w/Lly1m7di3x8fH4+vqi1+vZv3//iIwP+HwAE2ED8Z08LiwnVooOLFabSUlJTJkyhaysLIxGI8HBwRw6dIgtW7ZQUVGB3W5Hp9OhUqlcatIIDJbFoYRKpSIgIICsrCyuu+46pk6dikql4s0336SzsxObzcZzzz2H0WgkNzeX3NxcfH19ycnJYfv27axfv35E90ZAuMkF6VPpUpevHFUqFVFRUTz99NOkpaVhNpvRaDS88sor+Pn5MXv2bP7xj3/wxBNPkJCQQFpaGvfeey+//OUvWb9+/Yiqkg7k2RATlbusGwGLxUJWVhZf+cpXmDZtGo8//rhUqEwoZQ40OQ9F3BwLmEwmcnJyyM3Npa2tDS8vL370ox/h5eUFwIwZM5g6dSonTpygpqaGgwcP8r//+79uU1TdGVNDQX7/zGYzCxYs4LbbbuP2229HpbpU9+bQoUNcf/316HQ6bDab2/DHYORduSdtNMadMCJFv4qPj+e6667jxRdfpL6+no8//pgNGzawdevWQY87lkJaQUFBJCYmMm3aNJKTk2lvb6e5uZny8vKr4vV47rnnKC0tpbi4mKeffpri4mJ27NjBnj17OHHixBVvjwfu4TE+rjGsXLmS66+/nrS0NDZv3kxFRQWtra2oVCpKSkp47733WLhwIREREZKS30igJJgKyDNXwFX5r6+vTxpEtFot2dnZZGdnk5iYCMAbb7zBiRMnOHPmjMR9UGZoyIlvwrhxxzFRQqVS4e/vz2OPPcb06dOlY6xbt46CggK6u7tpbW2lvb2dHTt2cOjQITQaDW+99Rbe3t54e3uP+B6J+ySuQRQDFPdOXnNCGHJhYWFERETg7+9PR0cHu3btYsqUKWzZsoXf/e53NDU10djYSGRkJKmpqdx///3Mnj2bkydPcv78eZesJsBlZasMzcjvp3Jik2flyO9haGgof/3rX4mMjCQkJASAG264gYSEBN544w0+/vjjftcv31/5TNxtdzlYtGgRK1asIDs7m7CwMOCSEezl5YXNZuPw4cO0trayZMkSJk2aREpKChkZGUyePJkHH3zQrfdItG8gcqk7aDQawsPDmT17NitWrGDRokWoVCrOnj3Lzp072bZtm2R0yNNc5cccjRdJo9EQEBCAw+Ggp6eHnp4eTCYTixcv5uabb0atVvPMM89I79BPf/pTjh07RkxMDBMmTMBisaDX66mtreXkyZPDuOOjR2ZmJllZWZw/f54jR46Qk5PDbbfdxqJFi6Q6QfKFzZWCVqslJiZGenY9PT1ERkYSFxeHwWBArVZTWlpKe3u7JxR0DcBjfFwj0Gq1JCUlMXfuXCZOnIivry9ms1lKzYRL5aU3bdpEXFwcQUFBnDt3btRuRHexY/mKWR5aUE5w8hV/Z2cn5eXlnDt3juLi4n5GjTvIJ0i5YeMO8lBBX18fO3bs4PTp05w8eZKLFy9KRoDdbqe5uVki4TY1NdHS0jJq0pv8GuUaJeL6xX1LSEiQVuuhoaEYDAZsNht6vR61Wk1DQwOFhYU4HA4+++wzsrKyiImJwel0kpKSQmxsLEFBQbS2tkr3Qk4AlmO0fAyDwUBwcDBTpkwhMDAQlUpFfX09DoeD06dPU1dX57JtVlYWiYmJaDQa3n33XRfP2lhyQvR6PZmZmZhMJhYtWsTChQuJiYnBZDK5VHlet24d+fn5GAwGli9fjpeXF01NTVy8eJHTp09LXgjlezzSNotn7eXlxeLFi5k6dSp+fn6Sd+j48eMcOnTIbX8R+4v/hzO5KY2VmJgYIiMj8fb2pqSkBJPJxOzZs5k/fz4qlYqysjLa2toICgpizpw5hIWF4e/vT0hIiNSn0tPTmTZtWj+P31hxPGbOnElSUhKhoaH4+fnR29tLcnIy0dHRBAcHs3r1aioqKq54wTt/f3/i4uJYtWoV0dHRBAQE0NvbS1VVFZGRkUycOJG2tjbWr18vybR7cHXhMT6uEej1eubOnUteXh6RkZH09fUREREh6WHApdoOp06doq6uju7ubo4fP47JZMJqtQ67xoOSrCj3QrgbvJWDqN1up6amhqamJrq7u+np6cHpdNLc3ExVVZU0UYtjK1VQAYmxr/SOuIPT6ZSY/ufOneP111/nH//4x5DXefHiRRoaGkYcklJet1qtlrwQcuXW8PBw4FJm0kMPPURubq5Uf6Krq4vQ0FCOHz8uTfIqlYra2lr0ej0REREAREVFSYN2R0eHy/0XbnF3ng1wVasUcOfx8PPzw8/Pj8jISHQ6HV1dXVitVqqrqzlz5gzr16+ntbVV2j40NJQ77riD5cuX09HRIYlnKe/N5RogFouFyMhIbr/9doKCgsjKyiItLU26zyJG39XVxZ///GfKy8tJT0+nr6+PtrY2Dhw4wKZNm/jb3/6Gl5fXgJPrQBk97gwGuORxioyMZNGiRYSEhNDW1kZJSQkXLlzg/PnzlJaW9jue3AhRHk/++0BtE/0gJSWFBQsWkJWVxZ49e9DpdGRlZREVFYXT6eTxxx+X+rrT6SQ5OdnlnDU1NUyePJnu7m4X40PwoeRjxEhX/sIDeffdd6PVaqmtrWXSpEnYbDbCw8OljK81a9Zw4MABKioqRnT8y4G/vz8ZGRnMnz+fH/zgB/T29mKz2ejq6uLYsWMEBwcTHx9PX18fMTExdHR00Nra+oWri/OvBo/xcY1Ar9dz3XXX4e3tLbHFn332WZqamly227hxI4mJiXR2dnLTTTcxZcoUPvjgAz777LNhnUeQ1eBz7Q7lhOWOIConyrW1teFwOPDx8cHPz4+ZM2dy6tQpjh07hsPhkISx5JOBXJhLGBSAlJ46EBwOByUlJVitVoqLi9mwYcOwrnPPnj2sXLmSxYsXs2zZsmHtI4cwONylzfr6+nLgwAGCgoJoa2ujvr4egOrqat577z3effddsrKyePfdd6WJHSAwMBAfHx/MZjMqlYqmpibKysooLy/vdw/cTabKUMtARoD8uz/84Q8AVFZW4u/vz+9+9ztKS0upqKjgww8/dNlHpVLxy1/+klmzZlFdXc3111/fr2bIWHk9HnjgAX784x+j0Wjw9fVFpVLR3d3NyZMnMRgMVFRUUF5eTlVVFQEBAdxzzz1kZWWxf/9+fvWrX0mGHVyqo3Q5kHuagoKC2LRpEwBHjhxh//79nD59mrfeemtY9VOGCu3I+5Hy+cbFxZGamsqkSZPIysoCPk/1tlqt5Ofns2XLFvbt24dGoyEzMxObzUZISAi/+MUv+I//+A/27dvXb+KX97fh1hZSwt/fn9dee41p06ZhMpmkif3UqVO0tLQQEBDAzJkzefjhh7Hb7VfU+PjDH/7ArFmzpAXBiRMnpAy0U6dOMW/ePAB8fHy44YYbePDBB/nb3/42KC/Gg/GHx/i4RtDV1cWrr75KTk6ONKn/5Cc/YdeuXS6hg1tvvZXHHnuMFStWEBAQQE9PD97e3m4zVQaCfFWt0Wj6KXGK74WCp7z+C1yamNvb26msrCQmJob8/HyXdFbR8cXx5BoH4n952GUoCKXXyZMnc//99/P8888Puc+3v/1tAgMDR00wGygcNGfOHB555BGCgoLQarWSsXju3Dnq6+spKiri9OnTlJaW0tHRwcKFC5k1axanT59mwoQJ5OTkMGnSJIxGI3//+985deoUdrudnp4eF8+Fw+HAbDZjtVpdnquS9OqOX6DRaPD39+c73/kOaWlpBAYGSjyc2tpaDh482I/k6uPjw9y5c5k0aRIBAQHodDqefvppnnnmGbq6ukZ1DwfCrbfeyuzZs/H19UWtVnPixAmsVitVVVX853/+JyqVSlq99vX1YbVa2b9/PyaTCbvdLnn+hoOhuCviuyVLljB//nzmz58PQG1tLR0dHXR2dvL+++9L9+Byja/BvH3/93//R2FhIYsWLWLnzp185StfobCwkM2bN1NVVUVbWxvt7e10dXWh0Wi4//77SUtLIzw8HJVKxeLFi6msrBx04peHE4fr/UhISGDOnDlMmzaNF154AZPJRGRkJB9//DF1dXXMnj2bOXPmoNPpSE1NJTAwcOQ3ZhRQqVQYjUbCw8Px8/Oju7ubDRs2UFNTQ35+PsePHycgIIBvfOMb+Pr6EhAQwL333stNN93E2bNnr0gbPRgYHuPjGoDZbCYoKIjw8HDJKyHIU/fffz/r16/n4MGDAJw7d459+/YRGRnJhAkTCAoKIjk5mXPnzlFdXT3iWKYwNJTFsdwNksLtn5eXR0pKCkajEYApU6Zw5MgRaaKXr+oGShdU1j0ZDH19fVy8eJH29vZhZ4asXbuW6667DoPBMKztlRioXSEhIeTk5EhKpCdPnmTLli34+PhQUFDA4cOH6evrk8IrU6ZMYfHixUyaNInIyEjCwsIwmUwcPnyY4uJiSbPCXWhKOdENhzA5ceJE9Ho9JpOJ5cuXEx4ejpeXFyqVivLyck6ePElpaamLR0aka4aGhhIYGIjJZKKhoYHi4uIxjY2r1WoCAgLIzMwkNjYWp9NJaWkpJ06c4MKFC5w9e5aioiK3+8rbO1ZwOi8pymZkZLBw4UJmz57NxIkT6enpobm5mRMnTrBjx45+3kclBprI5aGd4bzndXV1HDx4kNbWVgoKCgAkTZi2tjaXzBqtVktFRQWTJk0iMDCQQ4cOceDAAWpra0dyC4YFkapqNps5f/48jY2NeHl5cerUKWw2G0VFRRw9epSkpCTMZvOoiPAjRXR0tOQhio2NRavVUldXx+rVq2lvb6esrIyWlhays7Ol0LVOpyMkJIS8vDza2to4d+7cuLfTg4HhMT6uAfj5+ZGRkcHixYulss2i/sejjz5Ke3u7ZHwAHDt2jKCgIG688UZUKhVTpkyhuLgYlUpFZWXlkC5VeZqrPPtEma4pF02SZ7tMmjSJ5ORk/P39AZg0aRKhoaHS8eXeDCV5Uv55uCsvq9XKoUOHKCkp4ZNPPhnWPi+//DJ+fn7MmjULs9k8qtW7u+wFo9GIv78/ZWVleHt7s337dn7xi1+Ql5dHfn4+drud4OBgpk6ditFoJCsriylTpqDX69HpdHR3d3Px4kXWrVtHVVUV7e3t/dKR5a55JTdBDvlv4vf58+fj4+NDb28v2dnZkpZIS0sLhw4d4ujRo9TU1Lgcz2QyERAQQHBwsOTJqaur45NPPhm2kuZwoFariYyMJC0tjdDQUBwOB2VlZRw8eJDdu3ePaZbGcDwUQpNlwYIFLFiwgPj4ePR6PQ0NDRQVFbFr1y42bdrk0i8ExpJ4K9rrdDopKyujrKwMgHfffVfqJ3q93mV7tVpNeXk5nZ2d9PX18dlnn/HRRx8NW/V4uH1PeKFEyKmnp4eioiKp3IDZbKa8vJwDBw5wxx130NXVNabvzECIj49n1apV3H///ahUKskTu2bNGnp7e/Hz8yMlJYWlS5diNBpdrveOO+6guLjYY3xcZXiMj2sAiYmJ3Hrrrdx///0Sp6K7u5uwsDB8fX0xmUwu258+fRqNRkNHR4ck7hMcHIzT6eT+++8fMjYtVrPytFG5zofgZSjDLXCJ9PrEE0/wH//xHzzxxBP09fVx9913U1hY6DbTRZluK9z/vb29kidlOPHnZ599dsht5MjLy5Nk6RcvXszGjRtHTD4VA768pobNZqO8vJyFCxdyzz33UFZWRnd3N59++ilwKQ1x6dKlPPTQQwQEBEgpflarFY1Gw5EjR9i8eTOvvfYa1dXVbsWfxIAvBnGNRoNerx+0/SrVpUqrd999Nzk5OZJB8v7773Po0CFOnDjBgQMH+hU9A1iwYAE333wzixYtwmw2U1VVxfnz56mqqhpTFUy1Wo2fnx9TpkwhJiYGlUrFnDlz+M53vsP58+fH7DwDQek5Cg4OZtKkSdx+++2kp6ej1+vp6Ojg3LlzPPLII1RWVrrsJzfMlccTx1TypcR3Iizqbh+tVivVSVISjOXvnYCoM/PAAw9Inq5JkyZJhv1AGE3Gizj27bffjsFgIDs7m4iICCksGxMTQ3Z2NpMmTaKhoYF169ZdkWfZ19fnkl5dVlbGvn37pPsUFxfHwoULufvuu6X+JPhoa9eupbi4eNzb6MHg8Bgf1wAqKyvZv38/d9xxBydOnMDX1xdvb2++//3vU1dX57aInNVq5cKFC0ycOJGqqiqJOwCDu3nl/IuBaj24K/omBhvl4KrVavnVr37Fn/70J9atW4dWq6W3t1faVm58iHPKB+GxrjWh1WoJDg7mW9/6FtnZ2TQ1NbFr165RMdvF5C+/l5s2beLIkSO0trby5ptv0tfXJ6nF3nrrrSxfvpwFCxYQEBAgTSZ6vR69Xo/dbqe0tNStLL5QSXXnERKZBPIsJflzSEtL4/rrr+ehhx4iOjpaIm9++OGHvPDCC1y8eLGfHLk4x/Tp0/H396ezs5Pw8HDJQFTW9FHuN9JVf1BQEBMnTuSVV14hIiICp9NJXV0djzzyCIGBgdx7770EBgby8ssvj6kA1kD9wMfHB5VKRVtbG5mZmRgMBmprazl8+DCPPPKIS/hioGtV3hd3JG3xm/KajEajNCH29vZK3siB2i7eD7Fg6OvrIyoqCh8fHy5cuMDTTz/dLzSlNDZEuFP8PRzYbDb2799PTU0NUVFR3HvvvRJJvL6+nsjISCwWC+3t7fzlL3/h3Xffpbq6eljHHi2+/e1vs2zZMubMmQPATTfdxMmTJ128m3PnzuXb3/42ALfffjvFxcXExcXx/vvvk5WVRX5+/ri20YOh8YU0Pnbt2sWvf/1rDh8+THV1NR999BErV66Ufnc6nfzkJz/hz3/+My0tLeTl5fGHP/yB5ORkaZumpiYeffRR1q5di1qtZtWqVbz44ouS2uJYQVRMPXfunETkbG5uxmq1snnzZjo6Oty6Up3OS1LKbW1tREdH43A4uHDhgvTbQJC7i9257aG/todYjdvtdjQaDVOnTiUqKgq73U5XVxf19fV0d3dL2yjDB/KBTshKj4TwNhIIZn9CQgJeXl5UVFSMejIT90p+De3t7VJabEtLi8vvfn5+tLa2snfvXpqbm4mPj6enpwe73c60adNob28nNDSUefPmsW/fPtrb2yWDwOFwSARf5X0ZiH8j0NraSklJCaGhoVKmkdVqpbS0FIfDQUhICF5eXtTW1mK1WjEYDJJqa05ODpmZmUyYMEEqBnbo0CH27t3rcj7l8xpp2CEmJoaFCxeSkJAgGaZms5nly5ej0+kICAigvb1dmpTFxDxaDJbeajAYCAkJYerUqSxcuBCj0cipU6fYt28fn376aT/C5nDSZkcKeer2cCCyxWbNmkVeXh5Go5GAgAC6u7ultGnl/RqMhzJcOJ2X6iVVVVXR1NSE1WolMjKSqKgozGazRAbv7Oxk48aNVFRUjDq9fbiIiIggMjISLy8vSkpKsNlsdHZ2Siq9cXFxkgjjsWPHpHTb9PR0AIKDgzGbzePaRg+GxhfS+Ojs7CQzM5Ovf/3r3Hrrrf1+/5//+R9+97vf8be//Y34+Hh+/OMfs3TpUs6cOSORKL/yla9QXV3Nli1b6O3t5YEHHuDhhx/mrbfeGtO2enl54eXlJZXq7ujooLi4mJKSkkHJlTabjdLSUmw2GykpKURERAyr0w9mfAxkECgrYk6dOpXo6Gh6eno4duwYO3fupKKiArVa3U+fQuwrzikm2fGAiEFHRUURHBxMa2srRUVFkmdipJBfA7hqpCjF2ZzOS1onR48epaWlhQsXLjB//nwaGhpoa2vDarXS2dnJ5MmTWbBgAevWraOkpITGxka6urokl/BAk6581apEXV0d+fn5nDt3jvj4eEkOX6/XM2XKFLy8vAgKCuL8+fN0dHRgsVgwm820tbWRl5fH1KlTSUhIAKCwsJBt27axbdu2AVNFld6X4SAiIoIZM2ag1+ul41osFm655RYpXFBeXs7EiROpra2VardcLuFV+a5rtVoSEhKYOHEiK1as4J577gHgs88+Y926dXz66af9PEtiX5EZZrFY6OjocPushssLGaiytPjbnfcrPj6eG264gQceeACz2SwpdhYUFNDc3CwtEgYKCw303VAQxmxxcTF1dXVkZGSg1+sJCwuTPJk2m43GxsZ+oanxgJwgX1tbS0BAAEFBQRLfZMaMGcTGxtLR0cGBAwdob29n4cKFXH/99cCl1GyPxsc1AOcXHIDzo48+kj47HA5nWFiY89e//rX0XUtLi9NgMDjffvttp9PpdJ45c8YJOA8ePChts2HDBqdKpXJWVlYO67ytra1OwAk4VSrVgP/S0tKczz33nLO3t9fpcDic//Vf/+WcNm3aoPvI/yUnJzvffvttZ2trq3P79u1OHx+fYe8r/qnVaqdarXb5TqPROPV6vctnnU7n1Gq1zl/84hfOw4cPS/cJcGo0GqdWq3VqNJp+x1f+ptVq+51vLP6FhoY6b775ZukZ/PjHP3b6+vqO2fENBoNTp9M51Wq108/Pz6nVavttYzQa3T4Dg8HgzMzMdP77v/+7c+3atc6SkhLnK6+84pw1a5bLNspj6nQ6p06nk+6juG/imYl/er3euXDhQuerr77qPH78uNNutzsdDsew/vX19Tl7e3uddrvdedtttzmjo6Ndji1/TzQajdSOkTzDVatWOfPz813O29zc7PzFL37hfO6555y7d++W2vw///M/ziVLljhDQkLG/B3x8/Nzbty40dnS0uLSX7/+9a87Z82a5Zw8ebJTr9c7vb29nUaj0eXa/f39nVOmTHE+/fTTzhkzZjiDg4Pd3qPxeLdVKpUzPz/f2dzc7Ozo6HD29PQ4Dx8+7HzqqaecGRkZIz6Wu346nH+BgYHO7Oxs57e//W1nS0uLs62tzVlTU+MsLCx05ufnOydMmOA0m83jcv3i33e/+13nli1bnA6Hw2m3252TJ092JiQkOBcuXOhMTEx0nj9/3tnX1+esrq52Pvroo87Jkyc7f/nLXzqLioqcdrvdmZaW5jQYDMM6lxjfWltbRzH7eDAYvpCej8FQUlJCTU0NixYtkr7z9fUlNzeX/fv3c9ddd7F//378/PzIycmRtlm0aBFqtZoDBw5wyy239Duu1Wp18TwMV/joq1/9qlT+/ezZsyxZsoT6+noOHTo0rP1XrVpFSkoKZrOZyZMnY7FY6OzsHNBlbTQaXaSowf1qSLiERShAfOdwOKSS7CqVSlJYdf7/FY9QUhTVb1X/f0UnT78V4Rvx91jh5ptv5rvf/a70+eGHHyYtLY2vfvWrIz6Wyg15UMDpdLpdlavVailkILgTojaOzWajsLCQqqoq9u/fzzPPPCPVdikuLqa2ttbtakzOsxnsXvX19bF//34uXrzIkiVLWLZsGS+++CJOp1NaraempmIymaRwT15eHkFBQSQkJEgCTXfeeSctLS0S2VLcC/m1jwZ79+6lpqaG1NRUoqKiSE1NJSgoiH/+85/U1tbyl7/8hYkTJ/Lhhx/y8MMPExgYSEJCAllZWTz11FOXLSQm0NvbS35+vlTCQEAU2bPb7cTHx6NSqaiurqa+vp7AwEBsNhtmsxkfHx9CQkK455572LJlC59++mm/DCynzKMooFINTgYdDrZv3y5J0qtUKry9vZk/f75UVfob3/gGLS0tLvuoVP0ztmD0XKuWlhYmT57MI488gtFo5Kc//Sl9fX2EhYWRlJTEpEmT6O3tpbS0dNyyXnbs2CERSlUqFRs2bJDGqr6+PkkxuLCwkL/97W+8//77UkoyXBrvRRkED64evnTGR01NDYBLaqj4LH6rqamRim8JaLVaAgICpG2UePbZZ3nmmWdG3J6Ghgba29vRaDR0dXWxYcMGjh49OuR+Op2OsLAwGhoapIlQSB13dnaOqqaJStU/ri+XRxcDmei8vb29GAwGyfhQuo0Fv0NJbB1oUh8N1Gq1lHZ8ww03EB8fL/0mSLKjgdP5uZS5aKcyhVguHw9IhpooCKdUsezp6ZF0Ed5++21+9KMfoVarB81Okt9D5fNRoqenh8rKSnbs2EF5eblEVBaVeYuKiqSsGYfDQUFBATfccAP+/v4SCTQqKmpIXpP8fRjuM2xubqagoICamhp8fHzYv38/FouFkpISlzTOX/ziFzz66KPk5eVJ77dqgNDFSCEK1Yl0ZIDu7m42b95Mc3MzWq2WwMBAKRPH39+frq4uSdxMq9VK5GGj0YjRaJTKC8jvjbu/3UEplT/Q9sLIDw0NlYzHkpISHA4H/v7+UvFEZVjOneEhMtJGa/RPnz6dzMxMAgICKCsro6enh/Pnz3PixAm8vLy46aabSE5O5tChQ2zcuHFU5xgKfX19tLS0cObMGd588038/f0lo3Dp0qWsXr2ac+fOcfbsWdrb2wkKCsLHxweHw0FFRQWNjY3jzkvxYGh86YyP8cIPfvADnnjiCemzIIIOhfr6etra2tBoNBiNRrZu3SoJDA0GvV5PXFycS+pqZ2cnZrN50Al3sEHH3QAonzxF3YuQkBBMJpMUhz59+rSUOismS2GMDDSoXu4qUEwEPj4+zJw5k6997WukpaW5TJwtLS0DGotDwd2EJzeuxO/y61MqjsqNFRGjttvttLa2kp+fj06nw9/fX8o2cdcGuSaKu0q2SnR3d3PmzBmJLyS/DuHNEG0+ffo08fHxTJo0yeUaxfmUk5fSAzISo0BUOx1Mh6KmpoZXXnmFlStXkpSURFBQEGvWrBn2OYaCyWQiKiqKvLw8SdvGarWyb98+qqqqCAwMZMKECdL2g1VFNplM6HS6QTNhhjJE5O/LcIyP+Ph47HY7x44dY//+/YSEhEj9XU5elu83kET/aDFp0iQSEhLQ6XQ0NjbS3d1NWVkZNTU1ZGZm8sgjj0i8o/E0PsrLy9myZQsvvvgiYWFhBAUFER8fT0BAAG+++SbHjx+Xsm5qamqIjIzEZDJRWloqCft5cHXxpTM+RLnu2tpaydUsPk+ZMkXaRl7pEy698E1NTdL+ShgMhlGpaYrqkGq1WhLuMhgMQ4piGY1GUlJS+NnPfobFYqG7uxubzcapU6cGVYMUrlCV6nMhK/HZ3UAq91J4e3vzzDPPMHnyZHx9fdHr9Tz55JM89thjNDY2SvuIiVL8U55zLLweQUFBksbAyy+/7LbtpaWlnDx5ckDX82AQLlzon7IojD1wzeiR6w7odDrJIBOTR1dXF06nE4vFwrRp0wC46667CAsL47HHHuvXBiF7D7gUABQYjufB3e/y70TtC/Hdtm3bJJEr+cQoP9do7udwYLfbaWpqYv369SxfvpzExESSkpJGTRiWQ6VSERcXx7Jly1yMY4fDQXh4OB9//DGhoaEuHs+hri87O5uGhga2bt06YKhFeQzhMevr63MxTgczxlWqSwq0MTExbNiwgRdffJGioqIhn7+7Y15umFOEbI1GI/Hx8WzZsoWSkhL0ej0bNmzgoYceIjQ0lLi4uMs6z2C4cOECFy5ckApMlpSUUFJSwsGDB3nvvff6bf/nP/8Zp9PJjBkzqKys9FS0vUbwpTM+4uPjCQsLY+vWrZKxIapkirzwmTNn0tLSwuHDh8nOzgYuDcoOh4Pc3Nwxbc+6desICQlh3rx5+Pn58cADD0i1Q/75z3+SnZ3N4cOHKSgo4L777sPPz4+2tjbUajXz58/H19eXpqYm9u7dy8MPPzxkbFy+epZ3QqUxIqDX6130KuLj4/Hz88NkMtHT09NPKEuEHty55cU55dLh7s45HLS0tPCVr3yFH/3oRwOuPhcsWMCsWbP42c9+Rl1dHefPn6ekpISqqipSU1N57733OHDggIvRICAX+NLpdFJoSX6/hDHgbgJQVhAVhgdcysbas2cP3d3dREREkJqaiq+vL21tbVI2iAjRCAEquTAc4BIOE+dwV+tlKKxYsUKqJltXV8ff//53Ll682M/AkHt9lPdgLCFqudjtdlpaWli9erXb5zNSOJ1O6uvrOXLkCGfPniU+Pl4KnSQnJ/Pzn/+cuLg40tPTpWs8deoUBw8e5Pjx45w6dcolS0ir1XLhwoVB66gMZPgNlfotN1D8/f2ZMGEC//d//0dAQIAUMlMef7jPYrTPS/X/U6PT09Pp7e3lo48+4rnnnpOuX9TccTgcrF27ljfeeGNU5xlPqP5/mvVYhfE8uDx8IY2Pjo4OlxoRJSUlHDt2jICAAGJiYnj88cf5xS9+QXJyspRqGxERIWmBpKens2zZMh566CH++Mc/0tvby3e/+13uuusuqRz6WKGtrY3KykqKiopISkpi5syZ6PV6zGYzRqOR0NBQEhMTaWxslNQMxcTo5eVFeXk5n3zyCRs3bpTy3AeD0+mUVtHKEImAvNCc/PuOjg7+/ve/k5SUhNFopK2tjfXr12O1Wl2OI3fbi4FUfg5lDZmRQKPREBkZyT333MPy5ctdSINKCG+Uj48Pvr6+BAYGkpGRQUdHBwEBAURHR3Po0CE+/PBDtzoJoq1C3ElubAjRMHGdA00o7oyw3t5eamtr6evrQ6vVugyIgi+ifC7ydGX5seVQ3nd3BoMSW7ZsITExkfDwcHbu3ElTU5NLrRl5eEmJsTQ8VCoVISEhPP7448ydO5eoqCjUajXp6eljlprd2tpKcXGxpE0Bl4zryZMnSwbiiRMnKCsrIy8vj6NHj7Ju3ToKCgpoaGhAp9Oh1WoltVqhRDycEJTyHVASmuW/y597QkICCxcuJDIykgsXLlBWVjasfj4e0Ov1JCcnExcXR0VFBaWlpf28N+3t7RI/5VqBEGOzWq2cO3duTEXsPBg9vpDGx6FDh6TqlIDExfja177G66+/zlNPPUVnZycPP/wwLS0tzJ49m40bN0oaHwBvvvkm3/3ud1m4cKEkMva73/1uzNsqaiXs2LEDf39/QkJCpDx2kW0TGRkpDVC9vb00NjZKhaZ27NjBxx9/zJ49e4Z1PqV7WL7ClU9W8lCD+CyEz5588kmCgoKkct8pKSlUVlZSX1/vMoDKwy/yAVY+CI+U+6FSqfDz82Pu3LmkpqZK33d2dkpGwNmzZ6UwkdBRqa6uxmg04uPjg4+PDxERESQnJxMeHs727dsHnDzESlXurRHXJffwiN+FOqjT6XQhkqpUKkmWWmQFCY+GMG4AlzCYu/szGC9gpMaA8LAIb8PZs2elUNFwMJbGh5eXF8nJyXz961/Hz8+PxsZGysrKLtvwkD+znp4eampqOH36NHa7XfLgRUVFSVlHFy5c4ODBgxIX5ODBg1RVVUnHcHfswc492D2St025rXjufn5+xMXFodfrOX78OIWFhaPK/HFn/Iz0+TmdTsLCwggMDKS+vt7FG6hSXaow29XVRVhYGFOnTuXs2bOUlpZetTCHWq3Gx8eH5ORkAgIC6Ovro7GxccxVlT0YHb6Qxoc8hu0OKpWKn/3sZ/zsZz8bcJuAgIAxFxRzh9bWVjZu3MiBAwfw9fUlIyMDLy8vDAYDwcHBLqtPm81GS0sL7777Lnv37mXq1Kk899xzQ9ZyUUIpuSxi6uJ7m82GWq1Gq9VK/4Ssc2dnJ1arlb6+PkJCQvjNb36DzWbj97//PatXr5bqocjrxcjPJw/7jGbycjoviXnl5+fj7e1NYGAgTqeToqIitFot9fX13HbbbTgcDnJycpgxYwZZWVm89NJLJCQkEBMTg91u56mnnsJsNtPe3s7Ro0fdDpDyEIfdbpeMCofDQXd3t0uYw8/PD61WS0hICKGhodhsNo4ePSqtjOFSWrWvry9arRY/Pz98fHxobW2lqakJi8VCS0vLsDxCg2WaKCc0+X1zN1m++uqrxMfH09DQgMlkcsv9Ua7QRwo5ydHdc9doNEyYMIElS5bg7++PRqNh3bp1vPvuuzQ0NFxWUUDl5/b2dm688UaeeuopZsyYQXJyMmlpaXzjG9/AZrMRHx/P/v37+eCDD9y+EwPxogZrh7trHixkJ/ZTq9WSYJ1Go+Htt9/m8OHD0jZDEZDFueVhHPF85YKAw4HT6aSlpQWNRkNrayuFhYVSxpsQDoyMjMThcJCenk5ycjKxsbE88cQTY5YmPVKYTCZyc3PJy8sjMjKSnp4eqYSAB1cfX0jj418RLS0tfOMb3+jHh8jIyCA3N5fU1FTOnDnDnj17KC8vp7m5mQ0bNtDd3T2i8xiNRux2u8vAKl9tC20KUXOit7fXRXnTaDRy5MgR9Ho9UVFRJCQk8Oijj0q1EuS1KkQxLXEtKtXnKX5yDZCRrETsdjuVlZWsX7+e/fv3A5c8XWJgdTgckjG2Y8cO9uzZg1arpaenh/3792MwGAgICMBisTBz5kwaGhrw9vams7Oz3yAuDDORTizX7xD3Q6VS4evry+OPPy5pZsTExFBVVYVer6epqYnS0lI++eQTbr31VsLDw13IyR999BEffPDBsKoRD2QEiHYrJ6PBDBBxnI8//phly5aRmJjI9ddfzwsvvDDsNO2hVs9qtZq4uDh+/vOfk5CQICniPv/88y46Ilu3biUjIwOLxYJGo6G9vZ2oqCgyMjL4/e9/P2YrZ3lbX3rpJf74xz9iNBrJzs6msLCQrq4uzp0759b7MxoDbCDjUHi8lIsA5b5Ci+X73/8+vb295OTkUFdXR319vcs+cuNCeQx5OE98pwyzusNAzzY/P5/s7Gzy8vJ47LHHuPfee1m9ejUff/wx99xzDwkJCRw5coT9+/dTVlZ2VbNK/P39efTRRyV9m5qaGj766CNPmu01Ao/xcY1A6aYXOHXqFHV1dezatYuWlhZqa2vp6uqir69vVCI+YmCVDyzySUsUMJNDXtTMarXS3NzMxo0bcTgcPPzwwxQXF9Pc3CwZHILTIQY4d8Ws5CGLkcLx/+vYlJeX43A4aGpqcrudMqNA3LPe3l7eeusttm7dSk9Pj4vHwd255MdQEnWdTifd3d1s376d7373u8TGxhIUFIS3t7dEyk1OTiY1NZW4uDhJFtvpdFJbW0tHR4dU52MouFs9w8DZJ8p7K/fUqNVqLBYL58+fx+m8lIGjLM7l7pjK4w/2u9ls5kc/+hEzZszAz88Pu91OcHAwBQUFWK1WvLy8yM/PJzAwUPL29fX18fzzz3Ps2DEuXLgwJoaHuzb29PTQ0wn1boYAAQAASURBVNNDZ2cnR44ckfqUfMIeimMz2LmU77Y7PsdQWLBgAVlZWej1ek6ePMm+ffsoLy93e86B7tNoQ2MD7afT6fDx8SEyMpLbb7+dsLAwSTY/Ojoag8FAfHy85D0di0yl0cLhcEip3YLrFhMTw/Hjx8dNAM2D4cNjfFzjaGlp6adaeDmQezmUdVcGGhiVRsPZs2epqamhubmZjIwMampqXDIShAdCcCPEseUDs3LiHCkG04sYDCJkcuLEiWFt787YUA7MIsRSWloqaS/09PRIRkhAQACRkZHSql54WU6dOkVpaSmtra1DhlGG853yWQ4VDtBoNJw7d04qvnf+/PlBM0tG+qx0Oh1z584lMDAQo9GIVqvFx8eHJUuWoNVq8fX1JSAgAG9vb8lQ7O3tlcqyjybcIuDu/VKSOuHS+yDS6pW/DXW9Q03sAxmFw9lP8JrS0tJwOp20tbVRVFTkktLu7rrcfR7oHKMxTIqLiyVD2tfXF5VKRWJiImazWRKEMxqNmEwmWltbryq/QrRFPAez2cyMGTPYuHHjmGRQeXB5UDnHkjXmgYS2tjYpE+NaS+0ShFaVSiWtUGB45E+RCio8AsrXR05UVavVGAwGl9CQPPtlqLj31YQ8Xj7cdODw8HBJabWgoIC7774bHx8f7HY7bW1tqFQqjhw5wvnz57FYLKxdu5ZTp05RW1vrkhEkvx+CbwO43G9h2A1074YTHnCXLTNSDLaPr68v69evJzw8HD8/P7y9vaXwgGif0FOpr6+noaEBu93ODTfcMGpxuIEw0LUOdg8u1/gYSdvkxzIYDMydO1fKyNPpdFRXV7N48WJKS0td9h0onDkYn2Mk77Q7PPzww3znO99hzZo13HPPPfj5+dHc3Mybb77Jvffey8mTJ9mwYQN//OMfR3X8sUJycjJ79+7F398fuNR/Ojs7ycjI6KfjNBDEc2ltbZVUcT0YG3iMj3HCtWp8CDeonLQoUkYFlMaI0n1sMBhcJkq5N0W4zsUxlQJdynPIz3MtQqvVSvVw5KJhYtKU3ze9Xi9NBsLIAtdMABFiEROE0tgwGAyo1ep+XJ6BvB2X033H2/iAS6vNnJwcYmNjiY+P59577+Wb3/wmcElP52c/+xm33XYbTqcTLy8vPvzwQxeS7lhhPPrgcNvo7jkJQrcyrAeXhAePHDkiCflVV1czb948Ll68OCyS6OUaF0NBZHT19fVJKq9O5yXhPZPJJNUyutqhjcDAQB5++GGefPJJ/vnPf/L+++/T0NDA0aNHh902j/ExfvAYH+OEa9X4cLdaVhoewmgQ6qRiQhUGh1ardQnRCJ6Hw+FwmXzh89okcq6B3W6Xjq9Sqa76IOUOcuIv9Jc6h4E5FkpipzieMMSU4Sf59qKQnDtS3Ejeo4Fc/oMdb6RhBHFPhoK/vz9msxkvLy9iY2OloomBgYFMmjSJvXv3ApeuXU5EHS1Gcp8GCnWNNizoLgQC7g1suXaM3Bg3Go0sXLhQeme6u7vZtm2bRHJ2d57htGOkoZnRYLyOOxrodDri4uJIS0ujoqKCiooKrFYr7e3tw26jx/gYP3iMj3HCtWp8iNXWQJOGmCAFWay3t1dawQuDQykaJgS3hKEhVl6AJKQl54CI7ZTy69cSRFaQSLMVE4Eg5crl14cLoVkhD0sp/5bft7HgxowXBptUrzYGyvARv40m1DecEIzcm6jcZ6j7JDc+5GEU5TZKY3U41+Fu22vJSLiW4TE+xg8ewumXDCI3f6AMC7miplzGWTnoyQmrYpIW4Qj5Cg0+HzTFtuKYynDPtQSRTivaKwwQuHTtJpOJzs7OAScVdwO+0liRe6EEF0J+PHmqsvj7Wr1f1xIG8uwNx4CTv99KL9dwJmx5P5Gfd6Dwo4C7AnDK70QfE78NtZAQx3F3fM975MHVhsfzMU5Qej4GG7iEB2C0k4t8gBEDkvjeIyXswZcNXl5eEm9Eq9X205oQfAXBy5FzJERIUC7IJQ8vyonacq0aUZJA7ilT8nmG8lYoPYpfRshVpsG9Vg0MHOKUE8UH+l15LOXx5J/tdjs2m83j+RgHeDwfVwhyzgN8biiI78VAJTqfMBrEQDlQaEIQPJ1Op0vdl2vNTe/BFx9iRW4ymaQQ03AFy8YS3d3dUn9yZ3zLdWvEhCRXr3U6nS4ZWQJKzo/cMyj6nbI/yzHUwkIethyPNaFS2fNfwchRjmNDfR6Ih6X8e7jeMI8a6vjBY3xcJYgBT4Qo5J1GSWh0Z+3D52l24jvlMf4VBhcPvljQaDTMnj2bnp4ejh492u/3kU6so5mIlZP4YMcQ38sVR5X9SKW6VJcnNDRUEkTbvHmzS6ViZV8b7XUqV+djiX8FJ7e75zVUmvRYXZe75+7B+MFjfFxByF24QqbbZrO5DFxK8Rt5yqXwlMh5AHLjpbe316XjDuZm9MCDsYbD4cBisfDYY49x4cIFdu/e3W+bkaaAjsb4EGFM0SYlgVOZdeSOTyMvC+Dl5cXs2bOZP38+2dnZREZGkpeXR0VFxYAeSb1eL/Xt4VzDlSCA/qv0/8HaOdzsrdEQtT0k3CsLj/FxBSFebK1Wi16vp62tDZ1OB1wa7AwGg1TOHPqn/AnjQxgg8hCLGHDd1XfQ6XTSb1erwuSXHUMRDr8IUKvVREREuPCOlBjpPRDZVe7CGIPtoyTuymG329Hr9VJYRmQvCW+JvPZRdHQ0b7zxBj09PcTGxtLW1sbMmTOpqqoakE+lVqtdFhHu2q1U/pW3113oYCwmxX+1yXUgw8Fd6OVf6bo8uASP8XEFIVZYovgauKpWCsNDEOHUarVElnM6nZL2w0DMdXeGhVzI6Ep10HvuuYfExETa2tp4+eWXv3QGj0qlwtvbm5tvvplp06YRGxtLYWEhGRkZHD16lF27drFp06ar3cwxh8PhoKKigqeeeqqfNPpohK/EpDLS90dp6DmdThetGnDlfYBr2QGj0Uh3dzcrVqzgrrvuIjk5GavVSmtrK5WVlUyfPp3169dLpFS9Xi/1TbEIGMrIkkvhDwV3q/jRGCj/ChO0uzDycPRohuKCDLX9YOf3YHzgMT6uApQDozuSmXw1JBQFbTYbt9xyCyaTCbvdTk9PD+vXr6enp2dErPrxgF6vx9vbm+joaG688UZCQ0MpKiq6Yue/FjF16lTmzJlDUlISCQkJJCYmEhoaipeXFzU1NZw+ffqazEby9/cnIiKCqVOn8sEHH4xIcbS7u5uTJ0+6/W207+OcOXMoLi4etgCZXJfGXeqrMEbE38q+Z7fbiY+PZ+rUqeTm5uLr68vhw4c5deoUBQUFkgw8DExoVMKdcTDe/XMsPAIxMTH4+/vj5+dHZGQkLS0tFBUVcf78+VEfMzU1VSqWN1wMZHC448qJ39xBpMnbbLZrsu99meAxPq4g5Cs4pQ6GVquV3L3y1Z5OpyMwMBBfX186Ozv5zW9+Q0hICFarlYaGBs6cOUNpaakLN0QMvnKXsruS22MJb29vkpKSuOWWW7jxxhtpbm6mvLz8ing9dDodXl5e0n3TarVXtaiV0+mkp6eH4OBgjEYjDoeDlJQUtFotmZmZhISEUFdXR1FR0TU3AKrVauLj41myZAn/9V//JVWXvZwibzDylaTJZEKn09HT08O3vvUt3n77bWpra6V6QfB5GqTyHooUWHl/Up5bp9O56NPIf9fpdMybN48pU6YQGBiIXq9n3bp17Nq1i7Nnz9Lc3OzCp1K+40NNlMMxCoTIn+i7gtul0WikxUhnZ6fk0bFarZLwndIwuhwDJDc3lylTppCRkcG8efM4c+YMr7322qiND39/f2644QYsFgunTp0aFodjuBksA8FkMkljgclkIiIigsbGRtra2qQQmfIZXo0F3JcNHuPjCsNisUiVVQXkMWahrCnCMrNnz2bOnDnMnDmTyZMnS6XJtVotYWFhHD58mMcff5y//OUvLjVD5LgSE1xgYCBTp07le9/7HlqtluLiYmpra8f9vAaDgaysLF5//XXa29spLy9n6tSpLFmyhPLy8n6CZ1cKNpuNH//4x0RERJCSksJDDz0klUfv7e2ltLT0mgxHRUdHM3v2bObOnYvBYODQoUN8/etf58033xz1MQcbyOUhCnkI4zvf+Q6LFy/mt7/9LXFxcSQnJ1NXV0dkZCT33XcfVquV4uJi1q1bx4EDB1zuZU9Pj5Tqq2yHmNRFmEQu5AaXJscf/ehHrFy5ktDQUIxGI06nk7feeouamhppshcp8EoxPsHNEnohwqspQjQD3Qd5G0XfzszMZPLkycTHx7Nv3z7Ky8vJyMhgxowZzJgxgx/96EeEh4fj4+PD22+/zdSpUzl8+LBkGFzue282m5k7dy4LFiwgNTUVuOTZcif9PxxoNBpOnjxJSEgIO3fulAQJ5RjJZD9QWEb5+YknnqCyspKOjg6++c1vMnHiRNavX8+xY8eIiIjglVdeoaGhYdTX5cHo4DE+xhliEBQDnLJgmFxYSHA8nE4nAQEB/PCHPyQhIYH4+HiJyCdCLGq1GpPJhNVqldzkFRUV0sAHl0IhGo3GrWU/lpg1axZ33nkny5Ytk653586dfPTRR+NyPpVKRWxsLCtXrmTFihUcOHCAwMBAIiMjiY+Px2w285Of/IS3336bbdu29bvnVwpVVVXU19dTVlaG1Wrlu9/9LsnJyXh7ezN//nzWrl17zZX2rq6uxmKxEB0dDVx6f5OSkkhLS+Ps2bOjOuZgE4rD4UCv1xMeHk5KSgo33ngjsbGxJCQk4O/vz9NPP82BAwfo7e1l1qxZ3HbbbURFRWG32wkJCaGyspKDBw/2e7/lBrfSwJAXCIT+BpBOp8NsNlNUVMTRo0fZvn07jY2NLloe4hgCchVfOU/L3f8DYfbs2XR2dlJfX8+vf/1r0tLS8Pf3x2AwMH/+fKxWKyaTCW9vb7y8vHjmmWfQ6XRoNBpuvvlmNm3aRE1NDXV1dbS0tAx6rqGg1WqZOnUqWq2WhoYGDAYDcXFxZGdnU15eTnFxsVSTZzjw9/dn9uzZeHl5odFoyMnJ4dNPP2X58uWj9qoNZHQ4nU7i4+OJioqiubmZm2++WVr0hYSEYDabWbJkCbNnz0aj0fDf//3f5OTkYLFY2Lx586ja4sHI4TE+xhkitiwGP3dkUaU71um8JBiWm5tLREQEPj4+kqHR19dHWVkZLS0tpKSk4Ofnx+TJk7l48SLr1q3rpz0gSrKPJFtgpAgODiYuLo74+HgACgoKOHHiBIWFheNyPo1Gw6xZs5g7dy4zZszAaDRiNpsxmUyYzWacTiezZs2iqamJ3t7eqzagWK1W6d/Bgwc5e/Yser0eHx8fvL29r4iAUWBgIE6nU1LkbG9vH3RFbLPZMBqN+Pj4SIN5UFAQISEhozY+BoJGoyE0NJTZs2cTHx9PXFwcs2bNIjw8XMo+EUXBvL29MZvN+Pr6cuzYMbRaLVVVVRQWFg57hS8nvSpTcbVaLVqtFj8/PzIyMmhoaKC4uJgzZ86wffv2IXlV8j7mztgYLNSiUqkICgoiLy8Pb29vbDYbs2bNIjQ0VMqGCwkJAS4tXrq6uqipqSE4OBiDwYBOpyMiIoKWlha6u7tRq9Vs3bp1JI+iH5xOJ83NzezcuZPTp08TGBjIokWLyMzMJC4ujkmTJnHixIlBSwwI+Pj4kJKSwh133IHBYKCtrY3y8nKOHDkyrEWR8l4PpMEhyMKiknJeXp6UpdTb20tTUxPnz5+no6ODsLAwQkND8fHx4Wtf+xodHR1UVVWN4k55MFp4jI9xhrsqsnLZZmVKoJeXFzqdjvDwcEJDQzGZTHR1ddHS0oLT6aS7u5u9e/dSXFzMLbfcwoQJE8jNzUWn03H48GGXCd9ms0mu3/HgfAjyVnBwMBaLRRrQt2/fzqlTp2hqahrT8wmo1WqWLVtGZmYmOp2OxMRE+vr6sFqtaDQabDYbMTExzJ8/n76+PrZs2XLVYrd6vR6DwUB9fb00iXp5eVFdXX1Fwi4TJkxwMTpOnz49bPeyWOFrtdp+stdjAYPBwMSJE3n00UeJi4uTJiYRehT8heTkZMmAOn36NO+99x5ms5mmpqZhG5ZishL/y7PAVCoVBoOBoKAgMjIyyM7OZtu2bRKfqry8vN/xRPqvO66AOxLkYOnCWq2W9PR05s+fT2ZmJgEBAcClBYvVasVut2OxWLDb7VRVVVFWVkZ1dTUpKSkEBARgNpuBSx5Is9k8JsaH3W7n9OnTnD59GkAylhMTEwkLC2PKlCns3r2bwsLCfvL14nq9vb2x2+0kJSVx3XXXcc8992C326mpqWH79u38+7//+4iznwSUhp3wVkVFRREeHs6SJUtYuXKlxP8RC6KSkhKqq6vJzc2V+CzPPfccv/3tbzl27Njob5gHI4bH+BhnuBvoRdxZ3mm1Wi0hISE88cQTzJs3j4kTJ2Kz2fiP//gPjhw5QkNDA7GxsezZs4eenh7i4uKYOXMmhYWF5OXlMXHiRNLS0igpKZHSdDs7OyW3viDqjWVc09fXl9tuu41nn30Wf39/4NKgsGXLFsrKysbsPHKIwT0zM5PIyEhKSkq45ZZbuPvuu5k1axaxsbHk5+dz8803s2/fPlavXn1VdQBmzJhBXl4e3d3d3HHHHVRXV7Nz505++tOfXpHzP//882RmZtLT08O6dev4/ve/T01NzaD7bN26FbPZzBNPPMGhQ4f46KOPxtR7pNPp0Gq1BAQEMGfOHIKCgjAajZSWljJnzhw+++wzzGYzlZWV5Ofn8/bbb9PR0UFXV9ewVqfKVFeheCoMGFFcUV5E0cvLi4ceeojHH3+cQ4cOsWHDBvbu3UtBQYEkGCZHb2+vdB3CIwlIhr74W5Cg5ZOs8n00Go089NBDTJ06FbPZTENDA/X19VRWVnLy5EkqKyt5/PHHKS0t5bXXXuPtt9/GbreTmZkpeaiqq6vZs2cPtbW1Ut+Tk2ovFxaLhe9+97t4e3sTEhJCWFgY7e3t/Pd//zcNDQ39to+KiuLnP/85JSUlLFu2jJycHADKyso4ceIEBQUFAxoeIxUGA8jIyGD58uX853/+p+Q1a29vZ/PmzRgMBt58803WrVsnGYDHjx+nuLiYKVOmAODn50dAQMCoxMk8GB08xsc4QzkQioFJxI+FIWKxWJg2bRqLFi0iNDSUiooKzp49y969eykpKaG7u5vq6mqJ1d7Q0MAPfvADXnjhBfz8/DCbzXzrW99i27ZtdHR0SMaGWN3JY9FjdV1ms5mJEyei1+tdOuvTTz/Nr371Kz7++OMxO5+AcGtXV1djNpspLy/nwoUL/P73v+ejjz4iLCyMkJAQli5dSnNzMzU1NeNmeOTk5DBx4kRiYmJ4++23JV6At7c3d955J15eXkyePJmJEydiNpsJDg6mtrb2inBQ1Go1ISEhGAwGySM1HBd5VFQUmZmZTJo0CXBfo+Ry0dfXx+LFi7n33nvJzc2ltbWV1atXs2XLFqxWK7fddhtqtZre3l66urpobm6W2j0cA1pkhQgOhuBBKfV0tFotBoMBi8XCM888w+zZs+nu7ubYsWNs3bqVyspKSYhMbjAIDon4Xs7rEsbGYJ4Odym3nZ2d/PCHP0Sn0xEQEMDq1avp7e2lu7ub3t5etmzZIoUOxL04f/48Wq0WHx8fsrOz6e3tJSsrS+I3vPvuuy6GF4w+i6OxsZFly5bxxhtvkJSUhNFoJC8vD5PJ1G/bxYsXc8MNNzBt2jQWLlyIWq2mpKSEc+fO8eabb3L69GkuXrw4ovMr2y8fb66//npmzpzJzJkz0el0tLW18cEHH7B69WpKS0tRqVTSO+R0Olm6dCn+/v4EBwfjcDh46aWX2LRpE6dOnRpRmzy4PHiMj3GG0vCQaw/ApU4l3L233347wcHBnDx5ks2bN1NRUUF5eTkdHR1SWqE4Zk9PD2VlZaxZswY/Pz+ys7NJTEzsV75+oDz4y8WECRMkzoUwPoSbvrKyks7OzjE7lxw6nY4pU6ZQXV3NhQsXOHToEFarlZqaGvz8/AgMDGT+/PkYjUaSk5OZPn06JSUlY9oGtVpNQkIC06dPZ+rUqURHR7N7927MZjOJiYnk5OQwc+ZMjEYjoaGhhISEYDQaUalU+Pr6EhgY2I8EOdbQaDTEx8dL2Rrd3d2UlZUNGXpbtGgReXl5JCUlYbVaOXfuHK2trWPSJrVajcViIT09neuuu44pU6Zw5swZWlpaOHjwIIcOHcLpdA6Yxin3KgwGuRIwuK97JP4XhfAyMjLo6Ohg3759bNy4kbq6OpdyBfJFhLwCtdwgkRNYlb8N9aw7Ojro6enh4sWLHDp0qN89aGxslO6BQHd3NyqVCrPZTEJCgpRyHhMTQ0pKiovRcbkKu319fZw/f55jx45JHtXVq1f3Kxy4aNEili5dysyZMwkLC8NisXDo0CEOHTrEvn37OHDgALW1tQOSTIdKSZbzPUR21NSpU8nOziYhIYGuri7Wr1/Pli1bpLZGRUWRkpKCyWSipaWFZcuWERAQQFhYGE6nk/3791NUVERra6vH43EF4TE+xhlKVr07pdGQkBByc3O57bbbqKioYPPmzfzmN78ZcKKQc0Vee+01kpKSSE5OxtfX12VlM54ptlOmTOHOO+9k2rRp0nc2m43y8nLWrl1LcXHxuJxXq9UyYcIEzp49y8GDB9m2bRtw6XojIyOZM2cO9957L3BJ5Ku9vZ133313zNswadIkZsyYQUZGBhaLhcDAQPz8/Ljpppuk80N/921QUBBJSUkkJibS09NDU1MT7e3tYzroCQ5DamoqRqMRq9VKXV0dJ0+eHNJrMGfOHHJycggPD6e8vJx9+/ZRV1c3Ju3S6XSkp6ezYsUKZs2ahY+PD5988gl2u50TJ04MuRoe7jut0+mwWq1SPxto4hfei6CgIIKCgjh79ixr1qxh48aNLkRteSaM/H8BkakGn9dsEuHOoZRdxQR78eJFvLy8KC4u5uDBg4PeAyX3QafTSZOr0WjEZDJJWihi+7EgnatUKnbs2EFRURHd3d389re/lX7TaDT4+/vzla98hezsbKKjozGZTNTV1bF7927WrFkzouyY4UCj0RAdHc2UKVNIS0sjODiY5uZm9uzZw4ULF6TfZ82aRWpqKgEBAZSXl7N48WJCQ0PR6/U0Nzdz5swZGhoaBqzT48H4wGN8XEG4e7nNZrM0UKjVal544QW2bt3q4joWpNGBOsenn36KyWTikUce6Tcw6vV6ACn8MlZoaGigpKSEWbNmSd+VlJRwzz33cOrUqXEzfLq7u/nb3/7m9jedTudCjPT39ycsLGzM2yBCGpMnT8ZkMnH+/HkqKirIzs4mKChImozcGRTh4eHcfPPN3HzzzdTV1fHkk0/yj3/8Y0zbJ8iTEyZMwGg0cu7cOdatW8eaNWuG3Hfr1q0kJCTQ3d3N9773PQ4ePDhmXixfX1/efvttfHx8aG9vp6CggKamJtatW0dHR8eYnAM+T2dXTvwixCnvR2azmYcffpiQkBBMJhN33XUX69atk0TKhOEhtHWEkJcSIgQj+FYCwhs4EETI5cUXX3RLTh9oH3F9TqcTb29vFi1aJL37jY2NfPjhhy4pv5fbH0X2y+9//3u3v4eEhPDLX/6SVatWYbFY6Onp4fz58/zsZz/jwIEDww6zCGPJXRagcjtvb29efvllsrOzJdKtn58fL7zwAps3b+bIkSPcc889xMbGutV9uXjxIq+++iqVlZXXXMr7lwEe4+MKwZ0yI8DMmTNZuXIlN998Mzt37pRCFnIXqdJdKlZlIn2yrq6O8vJyNBoN//Zv/8bq1asllnpvb6+L2NHlhl60Wi1TpkxhxYoV3HTTTdL3W7Zs4Z///CcFBQXjLmrm7hqioqKYNm0ac+bMwel0UlFRwcaNG/nkk0/G/PxWq5V33nmHBx54QEpDfeONN7BYLDQ2NnLgwAFmzpyJ1WqVJkAx+Mk9U4GBgTz44INERUXx6quvSsqZl4u+vj7UajUPPPAAPj4+XLhwYcjJXYSpVq5cSUJCAhqNhuXLl7N///4xe54dHR0899xz/OAHP5CUQ7/3ve+xZMkSOjo6qK6u5oUXXuiX1joaKNVHxbvf19eHwWAgJSWFjo4OrFYrK1eupKmpSdLMESGrlStXct1113HkyBFUKhVJSUlERUXR29vL6dOnqa2tpaioiLVr19LZ2SkZGu7u13BCL/J+ruyrA30OCwsjNTUVk8mE0+mkoKCAHTt2cPjw4SumnhsZGUlubi433XQTZrMZlUpFW1sbn3zyCbt27RqXrLeMjAyWLl1KTk6OFNJ0Op1oNBo0Gg3z5s1j5syZeHt7SyFouQHyu9/9jo8//pienh63XLirRVD/MsFjfIwz5PFfMRjIyXMZGRkkJCRgNBqpra2lvLyc5uZmad+B4rRicPX29mb69OnMnTsXQErVle+v5JmMFr6+vjz00EOkp6eTk5ODt7e39Ju3tzcBAQFXXCVQhBiWLFlCTk4OwcHBAKxevZqdO3eOS/qc0+mktbWVV199FV9fX7q6ukhISJBqkJw8eZKOjg6am5sJCQkhOjpaKi4XHBxMcHCwRFRMS0ujtbWVdevW0draetk8kJUrV0oCS/7+/rS0tHDmzBn27ds36H4Oh4Ouri5SUlIkI2qsJeptNhufffYZx48fR6VS0dDQwM0334y/vz/d3d3U19fT3NzM+fPnKSoqorKyclT3Q15ETngOxd8qlQo/Pz9yc3MJDQ3F19cXh8PB2rVraWpqwm63c/fddzNlyhSmT59OamoqwcHBqNVqgoOD8ff3p7e3l+DgYGpqaoiMjKSjo4NNmza5iJC5w0iMf3crfSUCAgKYNm0aCxYswMfHR7pWtVrdrx+OV8bX5MmTmTNnDgsXLsTPzw+VSsX+/fvZsWMHGzZsoLm5eUy8LspQU09PDy0tLZhMJum3jo4OVq9eTXV1NSqVisDAQJYtW8batWuZMmUKU6dOxWQy8eGHH7J9+3ZOnz49aAVmD8YXHuPjCkEZNhGrq8zMTCwWC2fOnKGkpITy8nKJ4Ce8FeA6+AiinEqlIj4+nvnz5zNv3jx6enqor6/HarVKLuaxylZQq9UEBgby6KOPEhYW1s+NGRoaKomMXSmITAVfX18WL17MxIkT0Wq1lJaW8t5773H27Fna2trG7fx//etfAaSJqbW1lYqKCo4ePUpDQwO1tbUkJiaSmZlJR0cHBQUFJCUlSUZhYGAgISEhpKWlkZmZyfnz5y/b+Lj99tuZPXu2JErV3NzM2bNnyc/Pd7u90GMQqYYRERHY7XYqKirGPHxmt9u5cOGCpBhaXV3NjBkzCA0Nxc/PD19fXx544AF27tzJ+vXrqa2tHbXxAa4CYOI4ggeQl5fHtGnTiIiI4MCBA6xfv56GhgZCQ0N56qmnJA6PWq0mNTVVyhqy2WzU1dURHh6Ov78/AQEBaDQatm/fLvVv5USvbM9YISEhgdmzZzN//ny8vLywWq3YbDZsNtuQnpOxQlxcHAsWLGDlypU4nU4aGxvZt28fH3zwAUeOHBnVMd2FW5QGSFNTE6dPn5aIuU6nk/r6ev74xz9SUFAgaZLEx8fz7rvvolarycjIwPH/2Dvv+Laqu/+/tWVb8t7xjEec4Th7OYPskEVCGIFCmGmBAr+ySulTSuEp0JZZaBkdlFGgEAiZZJE9SeJMx44dO957ykuy1v39kederhXZsWM7oaDP66WXLenqnKure875nO/4fJ1OvvrqKzIzM7ucGzy1XfofHvLRzxDlo729vWltbZUmc29vb55//nmuueYa1qxZw9NPP43FYumQWeBwONBoNB0yScTXnU4nGo2G++67j+HDh9Pa2kp5eTlbt26lpqZGMkW6ykBfLvz8/IiKinKryikIAi0tLb2WdO4pkpOTmTBhAgEBAcTFxWEwGCgrK+Omm24iKyvrivlxnU4nVVVVvPDCC9Jr7ip2PvPMM1RWVrJjxw5aW1t54oknMBgMxMXF8cILL7Bx48Zep0NHR0cTHh4uWb9Ek3Nnu7uAgABuuOEGlixZwpgxY/D392f//v1s3ryZ1atXd7vf7gjZiffJG2+8AVxYlKdMmcLvf/97IiIiMBgMDB06lNTUVI4cOXLZQbhizI1oAZGfk1arZeHChcyYMYOAgADy8/O54YYbpKDtESNGkJqayvLlywkODmbSpElMnTqV6OholEolZ8+e5Y477uCll15i3LhxDB8+nLi4OJ588kkpNkY+3tRqNV5eXhdlhUDH0gpduWXcEQm9Xs/ixYuZNWsWQ4YMAS7UtFmzZg2fffbZRb+3PFNH/ry32Lp1K+PHj5ee//3vf8dsNjNu3LjLJh9yuCNNCoUCk8nE0aNHmTBhgiQl4Epa6uvrOXXqFOnp6QwdOhSNRsORI0c6rSfTmYiZB/0DD/m4ArDZbDQ1NUk3tGg1eP7550lISGDatGm88MIL3H333RdNCqLCpJhiKFozRHz66aeEhITg7e3N6tWrKSkpwWQydZhwe8viExMTCQoKIiYmhrCwsA6S8SaTiTVr1rB27do+j2bvCitWrGDSpEmMGjVKquei0Wjw8vLiT3/6E7fccstVq+nSGV5//XXJBaBUKrn//vvx8fGRdtNjx47lxIkT1NTUXHYfzz77LLfeeit33XUXAH/84x/ZtWtXh2OSkpIYOXIk06ZNY/fu3UyePJnx48djMBhQKBRERUWRmJjYo347C2rsasftdDppamri6aeflrRuJkyYwJ/+9CduvPFGVCoV//nPf3p0HmK78F2AqavAl8FgwGw24+vry4ABA/jLX/7Cc889x6ZNm9i5cydffPEFBQUFOJ1Otm/fjl6vl1Jp7XY7dXV1kgpra2srZrO5wwLmWjCtMxIlP6+uLDzy6xcVFUVISAilpaXceOONxMfHS+PwP//5D7t27aKwsPCivsU2+trF4OPjIwW1Axw4cIDMzEwpNbg3uNR8JQiCWzevIAhMnDiRuXPnMnfuXMLDw1EqlZSVlbF37172798vbfI8JOPqwUM++hmi2p7IzOUiY+KjurqanJyci8SRRIj/i/5JUS9i6tSpjBs3DqvVyr59+9i5cyfNzc1u03l7g6amJiZNmsTy5cul829paaGwsJC3336bs2fPkpubK8WqXAmcOnWK1NRUBg4cKPnti4uLyc3N5dixYx00GvoSycnJjB8/nt27d1NZWdkjS4XcqqVUKvnkk0+YP38+CQkJREZGsmjRIurr63tFPpqammhpacFut6NSqVi0aBFJSUnk5eVx9OhRRo0axbBhwxg8eDDx8fHEx8eTkJCAj4+P9NuWlZWRn59/2ecgx6Wuv8PhkAIS29raMJlMUnmB2NjYy+7Xtc6KCLvdzsmTJ0lKSkKtVmMwGNizZw+NjY20tbVhNpux2+20tbVJ405+X4sBxGKAaVtbG3v27OkwXuV9ipo8fQGFQkF7ezs6nY6nnnqKiIgIVCqVpPy6YcMGcnJypAXZlfT05XjQ6/VMmTKF2bNnS/Fm8F0xxcstFifH5Vq+xBpPBoOB6OhoHA4HWVlZHDlyhK1bt9LU1NQp2fOQkSsHD/noZ8h3X3KxIqfTSXJyMjqdrkOFSNGy4Uo+xHx+u90uVR2dO3cukyZNIi8vj1OnTnHq1KkuAz57OvmIKaURERGMHTuWuXPnShNCY2MjmZmZvP3221LbVxLiwh8QECCRterqas6ePcv58+cxGAzodDqpLklhYWGfxC+EhoaSnp6O3W7n4MGD1NTUSJLdYlG/rnQdRCiVSr7++mtSUlIYPHgw4eHhpKSk4Ofn16vza29vx2KxYLPZUKlULF68mIkTJ5KXl0dQUBDz588nKSlJEljy9/fvoISrUqkoLS0lLy+vV+fRU4iBw/Hx8ZKVobeF9wRBcJvtcuLECcaMGcOAAQPQ6/UcP368g5VM1AgRY65cs1C8vLwkt05zczO7d+/uoIIq/+37UllYq9USEBBAcnIyK1euxMvLC6vVSn19Pd9++y2HDh1yKwjX1wuqWq2W7qUVK1bg7+8v9WGxWPo1y8bV/SSHQqGQSLTRaCQoKAg/Pz+JeG/evPkiV1BX89bVLMvwY4CHfPQzxElJjN0QYzCMRiP/8z//w8CBAzl48KAUIyAfDHJZaEEQpEksMTFR8mMmJCTQ3NyMt7e3WzeD3E3jag6+FHx8fLj//vu5++67CQsLA74L/CovL+fMmTNXTRHwpz/9KTNnzuxwTiEhIYwdO5b58+fj4+ODXq8nKiqKoUOHctttt1FdXd1rs3Nubi5r1qzhww8/5JVXXmH//v0UFhaSnJzM4cOHcTgc6HQ6TCZThyA51zgAo9EoTdQiedq4caPbImY9QXZ2tiTHL6Z2iyJaEyZMkI4Tz+ejjz4iKSmJtLQ0/Pz88PX1pa2trVeBumKsRXeDnUVtjIiICH7zm99gMBg4c+YMe/fuldrrbbaW3O1QXFxMW1ublIa+ePFiysvLpRRfm82Gt7c3NpvtIuKg0+lISEhg5MiR+Pr6UlxczP79+zuImsmvg9hnT9BZnENwcDAPPPAADz30kPR6a2srp06d4qc//al0XGfXvrP7sacICgoiNTWVhQsX4uPj0yGrKDIykurq6l65XdzpfHQHer2esWPHcuTIEVJTU7nxxhux2+1UVFRw+PBh9u3bd9FnXMmMa9yHh3z0Hzzko5/hdDol94rrjS5qCsh3S3LLhd1ul1wtarWauLg4Bg4cyE9+8hPmzZuHSqVCrVazatUq/vnPf0qf02g0koVFTjZ6quBnsVjYvHkzy5cvv2gX2tzc7Lag1JWCr68varWa1tZWKbd/wIABREREoNVqeeaZZyRF2YKCgg6FxHqDwMBAhgwZgs1m44knnuDxxx/HZrNRV1fHwYMHaW5uxsvLi5kzZ1JWVsbRo0fJy8tj8uTJvPvuu+Tk5NDQ0IBSqeS9994jNjaWtrY2zp07x+eff94rlwtc+I0/+OAD1q1bR0JCAg888ACZmZns37+fZ555Bj8/P2pqamhubmb06NH861//oqGhgREjRrB+/XrKy8s5fvx4r1KU5YqgPj4+jBgxAqPRSHt7Ozt37rzoeIVCwcSJE5k/fz5wgZyVlJRw6tSpDu1B53oZ7hZVuaiYfFFpamqSKkUHBgZy++23k5mZyeHDhyktLUUQBMmtIv8eY8aMITo6mqNHj+Lj40NLSwt1dXVSiql4rDj2RDdWdxcxdyRLoVAQGRnJp59+Snx8PH5+ftL7zz77LIcPHyYnJ0c6/lJ9Xe5iqlQqCQ4Opr6+nnHjxrFy5UpiY2NRqVSsX7+eo0eP8uyzzzJt2jQaGxsvm3z0ZjPj4+PDsmXLeOONNwgLC6O2tpY333yT//znP70eVx70PTzk4wrANU0MLmgerFmzhmXLljF06FBWrlzJ119/TXFxMVOmTGHRokVYrVbOnTtHWVkZVquVJUuWEB4eztChQ2lvb+e9996jvr6enTt30tra2sHs2xcpthqNhrS0NEk4SMRLL73Et99+S1ZWVq/a7w1Wr15NQUEBI0eOJC0tDYPBgFKppLGxkc8++4zbbrtNciF89tlnfeKDBqiqquLAgQPccMMNUqplaGgoRqMRvV6P1WpFrVYTGxsrpdI2NjYyYMAAmpubpfiGAQMGEB0dzYEDBzh79ix+fn5SvE5vYTabsVgsmM1m3n33XWpraykvL+fll1+W3ENWq5Xw8HBKSkok95RCoWD9+vWcOnXqsi0fruRAo9Fwww03EBoaSlFREYcOHbpIRMzX15eEhASGDx+ORqPBZDJJMRjQ0RLQGYHs7F6Xk2bxHhatTJWVlUyePJnFixdzyy23MGvWLBoaGti4cSODBg2iqKiI3NxcLBYLd999N4MHDyYkJIT58+ej0+k4cuQI27dvJz8/H4fDcZHFp6fCfu6Iw6xZs/jJT35CYmIiwcHBqFQqzGYzZ86coampierqaioqKi66Tu7QGzeCWFJg2rRpNDU18dVXX6FSqUhOTiYiIoIZM2ZIx/XWXSaeK3x3Tdxl/Lj+L8ahREdH09LSwrlz5zh27JgkP+DB9wse8nEF4CrzDBfIx/r160lJSSEmJoabbroJu91OdnY2Cxcu5J577sFqtZKRkcH58+cxm80sWbIEvV6PzWYjOzub//znP5SWll40Scsf4uvQs12PWF1z6tSp+Pj4SK/b7Xa++OILMjMzr2o2yYEDBygrK6OoqIiamhqMRqOk9vqPf/yD0NBQVCoVBQUFrF27ts8mn4aGBk6dOsX+/fuJi4sjOjpaslCFhoZKZdbFWhfyMt2zZs0CLqRZR0ZG4nQ6OXz4MNu2bSMlJaVPa0sIwgU5bHmmy8aNG90eazQaJXnq0tJS6uvrLztOwXXBVSguFD6LjY0lIiKCtLQ0zp49i7e3NwEBARQXFzN69GhGjhxJXFwcgiCQk5NDVVWVWyLWk3tYbkZ3XRCPHTsmiajNnz+fCRMmSBkscKFicVZWFkePHqW1tZWbbrqJsLAwvLy8JOvRiRMn2L9/v7T4y8XN5GOuO4u+u2MiIyOZNm0ay5cvl1RrRTG4zMxMqquraW5uviILq1arJT09nZtuuokvv/ySjz/+GLVazahRoxgwYABRUVHAhaDq3gTYduVq6cwqEhISQlBQECkpKSQmJkr1Wg4ePMj58+c73Eedtd+T/jzoIwge9AtMJpMACAqFQlCr1YJOpxMUCsVFj+XLlwtffPGFYLfbBYvFIjQ1NQn19fVCbW2t0NjYKDQ0NAhNTU1Ca2ur0NzcLJSVlQnffPON8Lvf/a7TNnU6naDX66XnGo1G0Gg0bo/t7BERESEsXrxYcDqdgtPplM6vqqpKSElJEVQqVY/a66+HUqmUHvLn/d2vl5eXsHLlSuH5558XXn/9deHDDz8U9u/fL5w7d06or68XbDab4HA4BKfTKf2VP+x2u2AymYSVK1cKarX6ql7DkJAQ4brrrhOcTqdw4MAB4brrruuzto1Go6BWq4WVK1cKFRUVwp49e4SZM2cKv/zlL4WdO3cKU6ZMETIzM4WmpibBZDIJZ86cEVasWCEkJib2ql+VSiVotVrBx8dHUKlUgl6vF7RaraBUKjtc75CQEGHfvn1CQUGB0NjYKN3ndrtdMJvNQlNTk9DU1CS93tzcLJhMJmHz5s3CokWLBK1WK/Wn0WiktsW+lEplt8ae6z2rVCqFJ554QtixY4dgNpsFp9MpCIIgNDc3C9nZ2cLTTz8t+Pn5XbF7JDw8XCgrKxNycnKExx57rMN7YWFh0lyxYMECISws7LL70ev10sPLy+uSDx8fH2HlypXCpk2bpLG1Zs0a4dZbbxUCAwMvOr6rtt31rdfrBUAwmUxXeUX54cFj+ehnCP/nBnE4HJJZXvF/WgB2u51jx46Rn5/PO++8w6RJk5g4cSIKhYK2tjYCAwMpKyvjzJkzFBQUEBwczIgRI6SS0aKYkms0fl8Iiy1evJiXXnoJQIpH+OijjzCZTNTV1X1vJIldv2dvv3d3YbFY+OijjzrUzRGzNDQaDZGRkbz44otS2uayZctQqVSSfPi//vUvfvazn9Hc3NxrVdPeYvny5dx7770IgsBf/vIXjh8/3mdtizVl9uzZw7PPPsuzzz7Lxx9/jE6nQ6fTsWrVKgIDA7FarZSUlPDuu+9KUvOdoTvKvWLGmGhNklsHRBeJUqmkpaWFRYsWkZaWRmJiImFhYZw6dQq9Xk9KSgqjRo1i6tSpvPvuu2zfvp2SkhJmzZrFp59+SnV1tdS+2J9Yw8k1dutSkH8XHx8f7r33Xm699Vbi4+PR6XTSLry9vZ3i4mJeffVVzGZzhwBTRT9mZzgcDsrLy9FoNB3u16SkJIYPH87kyZMB+N3vfserr756Wfos0DPXkNFo5NFHH2XMmDEkJSXhdDppaGhg27ZtnDlzpkvLrNCFhcWDKwMP+bgCUPyf20UMelT8n1iR0+mU6lkolUoqKyullFubzSb5500mE62trRiNRo4ePUpxcbFbNUV3z6FrAaPOIJImuBBkGRMTQ1xcnFRx1wM6NXcrFArMZjMvvfSSlN4pVkq1Wq2YTCZycnIoLS29qnEzIkJDQ4mLi8Nut5OXl9drpVqFGzdfeXk527Zto6GhgWXLluF0OmltbWXZsmW0t7dTX19PXl4emzdvprm5uct7rKfxTHJ5c+H/tHbkyq/t7e2cPn2aoqIivLy8qK+vR6VSkZWVxZ49e/jPf/5Dfn4+1dXVmM1m1q9f71bjRfzeruPN3Qahq/NXqVREREQQEhIiuTwdDgdNTU2cPn2avXv3dohhEtvqT+It/J+mSVJSEtOmTcNmszFw4EDi4uIkt0dDQwNlZWVu1Vx7AvH6dPZ9FAoFCQkJTJ48meuuu47AwEDUajV1dXWcO3eOEydOSK4wd5/tDgQ3cXoe9C085OMKQiQe8N0E1dLSIg226upqsrKyLgqsEndper2+Q3VSOXsXdz+dRcyL73dnglIoFJSUlLBt2zaCgoKwWq1UVlZepK7qgXsI/5ctIY+3cKf+KleivJooLy/n9OnTBAQESAtsb+BucW1paaGlpYXz5893CHBdtmwZhw8fpqSkhKysLM6dO3fJ9i93kZUvJvI2BOGCFHd9fX2Hcy8vL+/weTGWp76+vsuCj32xaIlS9Xa7HZvNRlZWFiaTiYMHD3Lw4MFet99T2Gw2jhw5QkJCAnFxcUyZMoVx48YRFRUlaY0cO3aM/fv3U1ZW1q/n4uPjQ0pKCvPmzWPQoEE4HA4aGhooLS1lz549FBUVuSVArnNiZ+95cGXgIR9XAML/6TiIJEK0Koi7YvmE5ToIRK0PcRKC73QRxJ2X/LlOp8NqtXbYfen1eqnSZXeCGgVBYPPmzWzevLmvLoEH32P885//5Ouvv+b666+npqam1xk3lyKoH330EVFRUUycOBGVSsXjjz9OdnZ2jwInOxsvIsQ0V3ldG3GciWNDHI9yl4kYGO6uXZEMdHY+4kOr1XYYZ67X41ILncPhoKqqiry8POn8n3rqKVQqFXl5eZL6bFcWFPFcXDcil6s90tTUxBNPPMGgQYPw8fHBbrdLhezOnz/Pt99+yxdffMGePXt6reh6KZdIXFwckyZNYt68ecAFYltWVkZGRgavvfaaZBW+nD481o4rB4XgoXz9gqamJvz8/Dq9mcVJQD75AR3quIiTsRhX4HA4Op1UPPCgNxDjkPoy4+ZS/alUKvR6fQcp876AuDja7faL6rqIFkAR4jgUx5RrKQNBENDpdFJb4pjz8/PDbrdjtVqlayaOXYVCgcVi6bDQi2Pa1fro7pzEuCFRv0ahUEhzgRg/drm4FGm7FLy8vKTPi+cmj6/pbfySXq+X2u9s7hwzZgxLly7ltttuw9vbm7Vr17Ju3Tq2bt3aJfFx951dr4c7i4hY8NPX1/eyvpMH7uEhH/0EkXxA12xanORcd2fQsUCW3F0jWjrEonPipOn5KT24GujtgnYpuI4Rd3Bd6EVyLi5i7lyUoktTJPXyKrjiZ0QiII4xeakD8f+uxq58s+DuGokk7FLfrzP05Nr39+/UFxDJR1cIDAwkMjKSmJgYVCoVZWVllJeXU1lZ2S/nZDabPeSjH+Bxu1xByAWY3E2I4m5CHuwpz6aQH98TIZ//hknHg/9e9GeWhdh+T+DO2iESCdHtKY+lkhehcx0rcnIhh2vVWvnxrtdCVNrtDFdqXMotLP39m10uunNODQ0NNDQ0cObMmX7t2+OC6V/0XorOg25DjL0QdzsiVCoVGo0G6FiiWqlUotFoJLl0+aQqDhRXc7A7iOZbDzzoD/S31a070vjuLAdyq4L4XF4ZWixPIHeJdCZs1tk4k49l13HWVfCpnBTJ41LkEMlRV+iu+9V186JWfz/3na7fx93/4m8ttzzJCeTlPlz797i2+xcet0s/QXS7yF0m7tDdHUhXx3XmH3V93TOYPPDg6qCz2IKuxmNfWizdtSWvPSP+dTePdHUert+nsyBXuTtK3p5rn9+3bDrxe3jcLn2P7yf9/RGhuxNLd4hHV0FTHnjgwdWD6xjszpjsy3F7KZIjCMJFdXBciYLosuqsDRFyXRVXMiI/ztUy5Bp468EPGx7y0c+4FCGQD+5L+Ri7u2vqzGzpgQceuIevr68UrDpz5kwsFgs5OTlSWusPDa6Wiq6O6ey47sREdIf0dLctD35Y8JCPKwxXYtDbQfd9DRz7vkChUODl5SVlCQF9VuHWgx8OYmJicDqd+Pn58f7771NQUMCbb775gyUfIrpa/OXWD1dLiDt9jK7iNeRWDs985QF4yEe/oyuC0VPi0VXKXlf+2s4+82NAfHw8r732GkeOHGH69OnY7XauvfZaj3nXgw5QKpXceeed3H777eTm5rJ8+XIKCgqu9mn1G8RATZEUuG5iXAMvXeGqSyJCnubcmZvGNebD9X8PfhzwkI9+hmvAp7tB7vr/okWLWLBgAe+//z6PPPIIu3btYtWqVdTW1l7UvviZzga66+7jxzTAV6xYwa233sro0aNJTU0lICCA3NxcoqOjKSkp6TUBiYyMZOzYsaSnp1NVVcXOnTspKiqirq6uj76BB/2NwMBAXnvtNdrb2wkODubIkSM8++yzlJaWXvWCf1cS8owgEe6sG67/yzN25AGk7o51F2AqP0ahUPyorvmPHR7y0c/oqalxwoQJpKenM3bsWJqampg2bRqVlZUEBgZK5MOVxHRlWekrsqHRaAgICGD+/PlUV1dLcu3btm3rk/b7GlOmTGHmzJmMHTtW0nQ4deoUhYWFLF++nDfeeKPXNUzsdjtRUVHMnTuX0tJSGhsbCQkJwWw2Exoail6vl8zVZrOZqqoqiouLqaqquqgo2ZVCQEAAXl5eBAQEMHbsWKqqqsjKyqKoqKjDcUajkdTUVA4fPtxrufXewmg0EhcXx4ABAwgJCeHEiROEhobi6+uLIAicPXuW0tLSDnWPuoPBgwcze/ZsZs6cSV1dHWfPnmXPnj1kZGT8KC1jl7LQuptLoqKipN9FEARyc3Mxm82SXH1FRUUHYtJZ2x7y8eODh3z0M+REwV3OvlwASavVcscdd5Camoq3tzc/+9nPUKvV+Pv7ExMTQ1FRkaQJ4G5y7E+fql6vJzExkb/97W9kZGSg1Wqpqalhx44d36sJQ6VSYTQaefDBBxk3bhxarZbS0lKOHj3K+vXrAfj3v//NF198QUlJSa9IQHNzM1qtlqSkJAIDAyktLWXYsGH4+/szceJEwsLCUCguVLgtKyvj2LFjbN++nSNHjlBbW0tzc/MVt0QlJSURFRXF4MGD+c1vfsO3337Lm2++eRH5CA8P52c/+xlnz56lsbHxii7GKpUKLy8vNBoNZrOZgQMHsnTpUmbNmsXo0aN57rnnmDBhAomJiZjNZt566y2++eabHpEPrVbL3Llzeemll6Q+t2zZwpo1a340xKMrK0dnx8tVl319fZkwYQKzZ89mwoQJOJ1O/vznP1NRUYHVasVoNLJz505aW1svKg3hrv/+CDp11VMS478sFstVJ9U/dnjIxxWCOHDFnHfXRUev13PTTTcxdOhQEhISCAwMpK2tDbvdzqJFixg9ejSvvvoqmZmZFBYWUl1dfck++3JhEytXnjx5kpSUFPR6PYWFhSQmJpKfn/+9GMg6nY5BgwbxySefkJiYKElgh4eH88QTT1BZWcmkSZNQqVRs2rSJJ554grVr1152fzfddBPDhw+noKCAmJgY/P39KS4u5sSJE5SVlTF16lQKCgo4ePAgW7du5ZZbbuGhhx5i0KBBnDx5khtvvJGGhoY+vALdO+fZs2cTGxvL5s2bsdlsFxV0UygUBAcHs3TpUvbt28c333xzReMfhg8fziOPPMKUKVP485//zPLlyxk4cCD+/v7Y7Xa8vb1RKBQUFRWxevVqPv744x4VpQO4/vrrmThxIjabDZVKxQsvvMChQ4d6bD35b4a7xd618JxrCq04d0VERLBx40Z8fHykui4KhYIDBw5QW1tLaGgoEyZMoL6+ntzcXKqqqi7qSy7w5Sq82BfQ6XQkJyfjcDhQKpXExcXxzDPPcOrUKT744AP27NnTp/150DN4yEc/w5XRy1m/OPD8/f2JjY0lKSmJsLAwVCoVDQ0N6HQ6tmzZQnx8PDExMaSnp3Prrbeyfv16MjIymDZtGv/4xz9oaGi4SO5Z3ldfwGq1YjKZKCwsJCYmBi8vLyIjI3n11Ve58847qamp6bO+LheTJk3i+uuvJz4+HpVKxa5du8jMzCQmJkYqOCX6pz/99NNeZzJs3LiRvXv3YjAY0Gq1NDY20tbWhtVqRa/X88knn2CxWGhpacFkMnH27FnGjx9Pe3s7p06duqKETaPRkJyczLRp04iLi6OhoYH333+f3NxcKioqOhzr7+9PWFgYXl5ePPDAA5SVlfUr+bj11luZNGkSwcHBvPrqqzzwwAOMHTuW4OBgHnzwQQoKCmhra6OpqYnXX3+dDRs2oNVqUSgU1NfXX5b1ymg0YjAYsFgsvPjii2zcuJGqqqoek5irAZVKhb+/P7/97W/RaDRUVlayf/9+VqxYQUBAAKWlpbz55pvo9XocDgdNTU0UFha6bcvVCuGuAq/rY8mSJdx7772Eh4ezatUq8vLyKC0tJS8vj+LiYumzycnJTJ8+nffff5+vv/5aItryzZdc7r4voFQqGT9+PDqdjuDgYJ544gnpXtHpdERFRXHs2DFCQkKIi4vr9Lp40P/4QZKPPXv28NJLL5GRkUFFRQVfffUVS5Yskd6/8847+eCDDzp8Zu7cuR1KyNfX1/PQQw+xfv16lEoly5Yt489//jMGg+Gyz6uzGIzg4GBGjBghuQlKSkrIz8+nrKyMiIgIdDodGo2GxMREUlJSKC0tRalUMmPGDEwmEzt37qSgoIDg4GBKS0v7xWwsCAKtra3s27ePQYMGodPpsFqtHD169KrFL7giODiYhIQE9Ho9mzZtYt++feTk5ODt7Y3FYkGn00lVOTMzM6mvr+9Vf7W1tW6DgF2hVqsJCwtj5MiR+Pj4UFxczP79+6/odTMYDNx2223ExsbS1tbG2bNnOX78OGVlZRe5zURriFiTpL9cQ0ajkdtuu40ZM2YwdOhQFAoFer2eoUOHEhQUJFWNPXjwIBkZGTQ3N/PNN99QXFzc63s8PDycgIAArFYr586do7a2tlul2JVKJXq9Hj8/P0wmU7+nbavVary8vIiOjqa5uZnQ0FBiYmKIjY1l1qxZaDQa6uvriYmJYfr06RgMBsmlp9FosNlslJaWsm3bNnJzcztct8vR4DAYDAwcOJBRo0Zht9s5d+4cx48fp6CggPLycgCp2u2AAQOIjIwkNTWVxsZGamtrOXbsWIeNUl8Rj4iICAYOHEh8fLxEPnx9fUlLS6O1tRW9Xo9Op0OhUDBkyBBMJhN2u91DPq4ifpDko7W1lbS0NO6++26uv/56t8fMmzePf/3rX9JznU7X4f2f/OQnVFRUsG3bNmw2G3fddRc//elP+eSTT3p0Lq7ZJq6vK5VKIiIimDBhAlOmTKGgoICMjAy2bt3K9u3bWbt2LUajkdraWtRqNc3NzRiNRgYOHMiAAQO49957MZvN2Gw2Ro0axa5du2hpacFqtWK32/uUiLS1tbFhwwYmT56Mr68v7e3tvP322zQ3N/dZH72BWq1Gq9Vis9n48MMPycvLo66uTopn8Pf3x2g0olAoqKiouCJ6H1qtFn9/f1JTU7nhhhuwWq0cPnyYnTt3XlHy4evry0MPPYRer+fEiRMcPXq0wy5VDvku9/Tp070mae6g1WqJi4vjjTfewG63Y7fbKSgooLW1FavVSkNDA83NzRw6dIi1a9eSn59PY2Njn/StUCiIjY0lKCgIi8VCW1tbl+NErAej1+sxGAxSRdVz585RVlYG0OfxO+J97O/vT3x8PFOnTqWsrIwRI0aQnp7O4MGD8fPzk1wV48aNkz7r7+/P448/jiAIWK1Wzp49i8ViIT8/v9PvealgU4VCgY+PDwMHDiQ6OhovLy+ys7MpKiqiqKhIIh5iCq8gCPj6+lJSUsLAgQMJDAykrKyM06dPuyUfvQmONxgMjBgxgsWLFzNr1iyp2q3D4aClpYXc3FzCwsIkq/KkSZPw9vbGZrOxbt26H1UG4PcJP0jyce2113Lttdd2eYxOpyM8PNzte9nZ2WzevJkjR44wZswYAN58803mz5/Pyy+/TGRk5GWdl6sUuiiAFRUVRWpqKgBfffUVX3/9NadOnWLevHmEhISwadMmPvjgA7799lspc8PPz48tW7ZwzTXXMG3aNG6++WaGDx/O+fPn+eabbzh48CBHjhyhrq6uz3Q+7HY7+fn5/Pvf/0alUjFv3jy2bNnC3Llz+62cdU/Q1tZGZWUlp06dIjU1VZoYRYg7aUEQCAgIuIhw9gcmTpzIjBkzCAwMxMvLi5KSEs6dO9cvC3pXcDqdNDU1odVqaWlp6TJm6IEHHmDFihXABdIiFj3sS0yZMoXbbrsNuHBfFhUVkZGRQXt7O9dcc43kkurrhUGhUGAwGEhISMDHx4f8/Hy2bt3a6fE6nY6kpCRMJhNz5sxh0aJFLFq0iKamJvbt20dubi4qlYpf//rXfUZmtVot48aN49ixY9x555388Y9/vKx2RFeD6NbtKnXWFa6uFm9vb+6++27uv/9+QkNDqaio4Be/+AUnT56UrGTyzzY0NPDVV1/xn//8h8cee4xx48axa9euDkJllzqH7uLhhx9mwYIFTJgwQXqtra2NwsJCXnzxRU6fPs2yZcu49tprUalUpKamdph/PaKDVwc/SPLRHezatYvQ0FACAgKYMWMGv//97wkKCgLg4MGD+Pv7S8QDYNasWSiVSr799luWLl16UXvt7e0d/MVNTU3S/+7y3MXX/Pz8iI2NJSUlhdraWsrLy2lsbMTLy4vbbrsNpVJJTU2NtLiLO4umpib27NnD0aNHCQsLIzw8nPj4eH71q19x++23c+ONN9LS0sK0adP6fHA9+OCDjBo1ivLyclasWPG90bXYuXMnx48flxZY+W8QHh7OTTfdxNy5c6WFrr/Pe82aNQwaNEhKud2/fz9r1qxh586d/dqvHAqFgltuuYWHH36YoKAgtm7dypo1azq4GOUYOHAggwYNIjg4mMzMTJ555pk+N00nJSWRkpJCeHg42dnZvPjii+Tk5FBTU0NNTU2HnXFfQ3Qfnjx5El9fX+Li4njuuef461//6jYocsCAAXz++edUVVXR0tJCY2Mjf/jDHxg1ahSVlZV4eXkxefJk/P39JWtjbzBlyhQWL15MVlYWzzzzDIMHD+5ygT506BAlJSXMmTOHl19+Gb1ez6BBg7jhhhukYxoaGtizZ4/brLSuNDjEisAKxYUquEajEQCLxUJdXR2ZmZlSFotrML1KpSImJoZXX32VIUOGUFVVxaZNm6TYK1dcjvtFrVaTnJzMjBkzSE5OBi64DF955RVsNhs2m42vv/4ai8XC22+/zX/+8x/8/PwYNWqUlD116NAhNm3a1K/3nAfu8aMkH/PmzZMCE/Pz8/n1r3/Ntddey8GDB1GpVFRWVhIaGtrhM2q1msDAwE53+C+++CLPPvtst/oXB2dCQgLXXnstkyZNQhAETp48SVZWFtXV1TidTurr68nJyaGwsPCinbLdbqepqQmTyURzczNVVVUUFRUxaNAgZs6cSXBwMIWFhf1iUgwMDMTb25v6+npaW1tRq9WdlgW/kmhqaupAOORYtGgRs2fPJjg4mL/97W/U19f3ecCnGE/R3NzMyJEjSU1NZcCAATidThwOBzExMYwYMQKFQoHNZmPjxo39FuCoUCjw9vZGp9MRExPDoEGDUKvVNDQ0UFlZ6XahBRgyZAiRkZE0NTXx7rvvkpeX1+fnKAZXR0ZGcv78eY4dO0ZhYeEVC/Z0Op1otVq8vLzw9vYmLCzsohLzer1eCuwcNGgQGRkZnDlzhoKCAoqLi8nKysJisRAdHc2NN97I9ddfz+bNm8nLy+vVufn4+BAdHU1CQgJjxozBz89P2nCIWSMmkwmNRkNNTQ0ZGRmUlpaSlZXF5s2b0ev11NbWsmTJEin2Qgw6vZQIoQh5MLz4v91uJzc3l8LCQuLj49FqtRdlxIh/ExMTGTNmDMnJyVRWVkoWos7cZpc7R2m1WtLT04mJicFoNGK1WsnOzmbHjh1S1pLYp8VioaamBm9vb8ly7efnh8Fg8NSVuUr4UZKP5cuXS/+npqYyfPhwEhIS2LVrFzNnzrysNp966ikeffRR6XlTUxPR0dHAxaxeDKybPn06K1euxGg0cvbsWbZv387p06epqanBaDSyb98+AgMDyc3NpampqVNlwNbWVlpaWqioqODtt98mKCiIoUOHcujQoQ4LbF+JjpWVlREZGYlWqyU5ORmTyYTD4ej3GAaFQoFGo8HX1xe9Xo/FYsFsNktEqDO9EYVCwcKFCxk9ejSFhYW89dZbne7ALgdi3M6kSZOor6+nsrKSZcuWSZoC4kQeERHB3LlzmTRpEjabjePHj1NVVSXt0voKWq0Wg8FAXFwc/v7+REVFoVAoaGhokIIRXftTKpX4+PgwduxYIiIiaGxs5IsvvuiX39TX15fw8HDCwsLYunUrdXV1VzzLJCwsjMDAQNRqteSKgwvXISgoiJCQEPR6PfHx8VRVVbF27VoOHz5MSUkJgiBw8OBBtFqtZOq/5ZZbOHfu3GWTD5VKhVqtRqPR4OPjw/z581EoFFitViwWC01NTdL8UFpaipeXF2fPnpUspWvWrAEu/PYajUaqZSSmwXZ1v8sDS+VzjNxFYrVaOXLkCIMHD0av1xMaGoq/v79kPVQqlSiVSrRaLaNHj2b+/PmEhYXx1Vdfcfr0acl65hrI2ht5da1Wy9SpUwkKCkKtVmMymThw4ACnTp1ym33ndDppaWkhLCwMHx8fVCoVfn5+HvJxlfCjJB+uGDhwIMHBweTl5TFz5kzCw8Mv8onb7Xbq6+s7jRPR6XRuYwhc015FP2N8fDyvvPIKWq2Wt956i0ceeaTDcc3NzfzjH/8gJCQEi8VykXy6K5EQJ46Kigq2bNmC0+lkxYoVvPTSS1it1j4dYL/61a/4f//v/7F06VLS09MpLi6mvb2938mHr68v8fHxPPjgg0yePJn9+/ezZcsWli5dyiOPPNKpVUoQBA4cOMCAAQPw8vKSdDb6ShwtKCiIr7/+mpCQEAwGg5TiqFQqqaurk9Kmb7jhBm688UZuu+02QkJCePjhh9m/fz+nT58mJyenT84FYNiwYSxevJhbb72V6OhotFotDQ0NvPrqq/z97393m6Hj7+/PkiVLWLFiBeHh4bS0tPDWW29x11139bn2xZdffklMTAwTJkzg0KFDfUoEuwtx8TSbzRgMBilmISgoiDfffJNBgwYRGhpKc3Mz99xzD01NTRdl/litVsrKylizZg2RkZGXbUlTKBRS6uesWbMk4gFw7tw59u7dy9dffy0Jdl0KIglQKBSYTCZKS0s5ceJEp327kgDxdRGi5aOwsJDf/va3PPbYY/ziF79g+PDh7N+/n7a2NimFPT09nXHjxhEaGsqqVavYu3cvJSUlmEymLr+/3NrSXahUKgYMGCCJ0ZWXl7Nt27Yu3cwKhYI777yTlJQUvL29ee655/j000//K1Ksf2jwkA+gtLSUuro6IiIigAtBgo2NjWRkZDB69GgAduzYgdPpZPz48T1q250vc8KECfy///f/gAukJjExkaVLl7J69Wqg48BvbGy8aEB2NUBbW1tpbm7GarUSGBjI0KFDycnJ6dQdcTn47W9/y8SJEzGbzRw6dIiioqJuTYq9wYwZMxgxYgQjR45k4cKF0u5r7ty5GI1GAgMDWb16NRs2bJAyEOBCYbk//elPTJo0iV27drFp0ybOnj3bp6qs7e3tbNmyBZVKRWZmJufPn+epp56iubmZM2fOcPz4cU6dOkV5eTlvvvkmW7du5Y477mDJkiXExMSQlpZGe3s7L7/8cq8WYoPBgE6nY+LEidx1112EhYXR0tLCe++9x9///neKi4sxmUxu7x8/Pz8WLFhASEgIarWa/Px8Hn744T79XZVKJaGhoSxcuJBp06YhCAIajYYPP/yQffv2sWbNGs6fP99n/XWFzz//nJaWFsaMGSO5D4xGIwkJCVxzzTUoFAqam5slyXWn0+mWXFutVqqqqliyZAkPPPAAsbGxvPfeez06F29vb/7nf/6HqVOnSlYqeft1dXXs3LnzkovqLbfcgiAIxMXFSW3k5eWRlZXV6WfgYu2hzrJPBEHAaDTi7e2NwWBg+fLlnDp1ira2Nvz9/Vm4cCHXX389ra2tHD16lJMnT3L+/Hkpm0iMDelJ4GtXaGxs5Kc//SmrV69m0KBBREREMH36dEJCQoALrjOn08nIkSPZs2cPBw4cwG638+mnn7J8+XIGDRrEkSNHvlcKzT8m/CDJR0tLSwfzZ0FBASdOnCAwMJDAwECeffZZli1bRnh4OPn5+fzyl78kMTGRuXPnAhdqPsybN4+VK1fyzjvvYLPZePDBB1m+fHmPM13ciYzV1NRw/PhxZs6cyb59+/j22287CD3JjxfN9vLXOyMf4s5B1J/QarUd0m37Kv4jISGBkJAQKisrqa2tpb29vd/iPby8vHjooYcYPnw40dHRREZG4uvrC3yXxgowcuRIHA4HERER5ObmsmbNGuLi4pgyZQpDhw7F29ubxsZGysvLe13TxRUWi4UNGzYAF1xSNTU1/POf/8RisVBVVUVZWZlEiKqrq7FaraxZswa73Y5KpSIqKgp/f39GjBhBTk7OZameqtVqhgwZwqxZs7jmmmsICwuTBKhaW1vR6XRdZti0tLSwd+9eZs6cyZEjR1i/fv1F4mO9hV6vZ8GCBVx33XWkpKRgNBpZtmwZY8eOlXau4eHhV0Q7RkzphQsL9HXXXYefnx/R0dHk5eWRl5fH+fPnOXPmTJcErKmpiV27dvHAAw8wYMAABgwY0KPzCAwMJCkpCYfDIQXAi1aE/Px8SWG2OyQwKSmJgQMHEhcXhyAI7Nixg23btrF///5unYur4qiciIhzj5i+ajKZiI6OlmJldDodI0eORKPRUFVVxZkzZ8jMzJTqvLizavQ2C8/hcFBYWMjevXtRq9XEx8czZcoUBg8ejFKpRK1WIwgC0dHR1NbWUlNTQ3JyMlOmTJHUiD/77DOP1eMq4QdJPo4ePcr06dOl52Isxh133MHbb78tyes2NjYSGRnJnDlz+N///d8ObpOPP/6YBx98kJkzZ0oiY2+88Uavz02r1dLU1MSpU6eAC2JXR48eJTs72+0OoKuAsM6ObW5uxmQyoVQqaWtr60Bg+gJ6vV4a2BaLpV/z5HU6HStWrCAuLg6dTofT6aSmpgaLxYKPjw9Go5GamhpCQkKYMmUKw4YNkxaOsWPHMmfOHPz8/CgvL6eystKtJam3sFqtF0k1r1q1yu2xTqeTxsZGduzYgclkYsqUKYwaNYqEhASmTp1KY2Njj8mHRqPB39+fqVOn8tOf/pSYmBjpvZaWFkJDQ0lPT6e0tBSz2Sy5DzQajSRi5evrS05ODna7nQMHDkhkqq+gVqvx8/Njzpw5TJgwAV9fX6xWK0OGDKGxsZGAgAAmT55McXExp0+f7nfy0d7eLu14c3NzWbhwIcnJyRiNRr744gsOHTrE2bNnO9VCEdHS0kJGRgZWqxWDwYCfn1+PzkN0JcpjgwRBoK2tjX379rF582Z2797d6efFDBOHwyGR7ZiYGMxmM2vXru1xEOylxoYoWpaVlcWAAQOkuIm4uDiGDh1KTU0N+fn5ZGdnd7BiyTNiXPvqjSKz3W5n+/bt+Pr6EhwcjMFgwGg04uXlhY+PDwaDgaqqKoKDg0lNTZVScouKijh48CBr1671ZLpcJfwgycc111zT5Y28ZcuWS7YRGBjYY0ExdxDNjOIAGzhwIAsWLODee+8FYPHixdTW1rJp0ybg0iZId8FarggPDycqKgq4YNLt65oJRUVFhIaGSgGg/RmwZTabee211/j1r39NREQEVVVVvPXWWxw7dox58+axaNEinnnmGV544QWpwmZ4eDibN29Go9Gg0WgQBIF3332XtWvXSqTvakIMfDt06BDDhw8nJCSEIUOGcPvtt5OVlcXZs2d71F5UVBTTp0/n8ccfl3bOIsaOHcvgwYNJT09n4sSJHD16VLL+xMXFER4ezqRJk0hLS5PUX0U3Vl8iJCSE4cOHo9FoJAJYXV3NlClTaGxs5LHHHuPee+9l/fr1fX6/usO+fftISUlh8uTJVFVV8dRTTxEUFERoaGiPUqHFgotKpZKwsLAeWz6qqqo4deoUH330ESqVSoqvyM/P549//OMliYMo7V9bW8ucOXMIDw+nra2Nc+fOsWHDBkn8yx3cpf7LIZ6P/KFWq9m8eTP5+fns2bMHrVbL9ddfz8qVK0lJSeGLL74gOztbijFx135fk/9t27Zht9spLi7mjTfeQKfTkZ6ezuzZs5k7dy6PP/44Q4YMYdGiRUyePBlBEHjttdd45513+vQ8POgZfpDk4/sE14E3cOBAqQrq119/zXvvved2QVSpVAQGBuJwOGhra+uWVofcNCqa9B9++GHeeOMNjh071mffaceOHfj5+REeHk5TU1O/pthqNBomTJiAwWCQRMTy8/M5efIkGRkZvP7661gsFiZPnkxdXR3Nzc386U9/kmTwRZIWGxvLjBkzGDNmDAkJCXh5efHpp59SUVHBtddey/vvv3/Fd0Dt7e2cOXOGjIwMJkyYwO9+9zsyMjJ63I6fnx/Jycn4+vqiUqnYs2cPn332GeXl5Tz33HMkJCQQExNDeHg406dPl3b8arUalUolkTQRohhbX6KxsZGioiJ8fX05efIk33zzDWvXrpViUEpKSjh//jy33nore/fulUhSf6GxsZGmpiZ8fHz485//zJ///GeOHj3KgQMHetSOzWajqqoKlUrVYdHtDu655x5mz57N5MmTJYvA+fPn2bNnD7/97W87TYcWoVQqWbx4MTfeeCPDhw8nNDSUw4cPc/jwYfbt20dlZWWXv6Pc4iBaJUTiJ3/N9fhp06axbNkydu7cydq1a9FoNBQXFzNp0iSqqqpobW1FEDpW8XZNy+1LAtLS0sK2bdvYs2ePlBW4du1atm7dytNPP01AQIBU4iA9PZ3a2lqmT5+O1WrtcXyOB30HD/noZ7juKJqbm7FYLKjVaurq6igoKOiQFhYUFERiYiLJyckYDAaOHTtGQUHBRXEKrmqp8sE8fPhwxo0bh1KpZMKECXz88cd9+p1MJpPky21oaOhX8qFWqxk3bhze3t58++23fPTRR5w4cYKmpiasViuNjY2o1Wo+//xztFotQUFBnDlzhuTkZLRardTO+PHjSUpKwmazERgYSGZmJgEBAVK2Q3cRGBhIdHQ0CoUCf39/oqOjCQ4O5rXXXrus7+ft7Y3RaEQQBLKzsy9LQry6uppDhw6xYMECzpw5w549e9i+fTvNzc289NJLJCQkkJCQwLx589i7dy8FBQVUV1ejVqtZunQpcXFxBAYGIggCJ06c4OzZs32qWDt//nySk5OJiYlBEATWrl17UZzTsWPHsFqtJCUloVQq+1191mw28+233/LPf/6TFStWUF1dfVFhOTFNedq0aTQ0NBAWFobT6eTDDz/E4XAQFBREUlISixYtQqfTYbfbexS8ePbsWdLS0jrEkVksFklssLMFWixnL9aEGjNmDOHh4VitVvLy8jh06BCHDx/uNoGUb5BcA07l5yD+X1xczNGjR7nnnnsIDg6mra0NlUpFenq6VExRqVReFFzqmp0n/nWXYdMTCIKA2WzuMEeKBR69vb1xOBwMHDiQsWPHAhdqMp0+fbpHRNGDvoeHfPQzXLNdGhsbaW5ulmTS9Xo9QUFBeHl5YTQa8fX1JT09nWuuuUaqKdHS0nLJXZAcYuBbY2MjGo2mz83YdXV1NDU10d7e3uc1LVwhirFpNBqys7NZtWrVRVYgMU5hyJAhJCYmUltbS0REhJRuqNVqGTRoEPX19dL1Ly4uxmq1olKpurXga7VajEYjgwcPZuLEiZKZfciQIURHR7N27VoqKip6HHzr6+tLUFAQgiDg5eV1kdhVd1BTU8OhQ4fYsWMHO3fu5PTp01LF3o8//piIiAiGDRuG0Wjk888/lwitTqcjNDRUkuBWKpUcPHiQrKysPqlSLNYDmTdvnlS1duPGjWzfvv0iq8a5c+coLCwkNDRUki9vaWnpt2rJ4kK9c+dOVq5ciY+PDwEBAVJ6alhYGPHx8YwYMYI777yTiooKBg4cKIl92e12oqKiGDJkCDNmzCAvL4+CgoIeqeYWFRV1IGBtbW2YTKYu45K0Wi0+Pj5EREQwbtw4hg8fTlhYGFarlfLycrKzszl16lSHsgKdwR0ZcFU6lbuNxcBRMXU3Pj5eKhXQ2trKvHnz2L9/PyUlJbS2tuJ0Ons09/Sl+1av1xMYGEhqaio6nY7Ro0dLKfanT59m7969fWoN9qDn8JCPK4z29nYsFgsOh4PBgwezYMECNBoNgwcPZs6cOWzZsoXo6GjGjBmDSqWSFsfTp0+7HZzyyUGcTI4dO4aXlxdBQUFs376ds2fP9pnAGMDhw4cZMWIEAQEB0oTUXxAEgfb2dulvZ+4nPz8/rrnmGu644w5GjhzJwYMHMZvNksKnr68vn332GV9++aUUwKdSqfD29qatra1LjQaFQkFkZCTz5s1j9uzZXHvttR12iDabjddee43nnnuO3NzcHhXa0+l06PV6BEHgySef5I033mDfvn09ukY2m43KykopfdsVFRUVUpFEOdra2tixYwcRERFERUXh7e3Npk2bOHfuXJ+4oNRqNePHj2fEiBGEhIRQWlrKz3/+806P12g0pKSk8Jvf/IacnBzWr1/P66+/3uvz6AwJCQnMmTOH2tpa/vGPf3DgwAHWrFnDtm3beOyxx0hLSyMmJoaQkBCGDh0qBXd++eWXaLVayVr1xBNPSFarnpQyGDduHMOGDZPGT1ZWFkePHu0yLikyMpLExEQiIiJ46aWXCAoKor29nZKSElavXs3WrVs5c+ZMj66Dq8iY6HIRi7OJ74sxIL6+vlJxuaeffprS0lJCQ0P5f//v/3HXXXexYcMG9u3b18GFA1wUbOoac9KX5CMxMZHx48czc+ZMFi1ahLe3NydOnGDixInfmyrcP3Z4yMcVRn5+PhUVFRgMBqKjo3nggQfQarVS9siMGTPQaDS0t7dTVlbG6tWryczM7DQTxt3re/fuxWKxcPfdd/PVV1/1WTVQETfeeCPe3t7s3LkTtVrdp8TGFTabjV27djFt2jTuuusuJkyYIO2MHQ4H3t7ezJ07l0cffZSkpCR8fHzIzc1l3bp17N27l5ycHElm2mw2dzCri2mD58+f7/L8vby8eP311xkyZAgnT57k5ptvZujQocCFxWDIkCHMnj2bqqoqVq9e3WndFFeMHDmSadOmMW7cONRqNS0tLVc87mTq1KkMHjwYg8FAU1MTJ06c6DNrg4+PD2+++SZRUVGUlJRw/Phxt8eNGTNGcntUVVXR3NxMS0tLn6dEu+LQoUMUFBSgUqkYM2YMw4cPZ8KECfz2t78lPz+fnJwc9u/fz6RJk9i3bx/l5eXYbDYSExM5fvw4y5cvx9fXlyNHjtDQ0NDjrLK4uDjCwsJobW0lJyeHX/ziF5w5c6bT1E+dTofBYCAxMZEXXnhBSjkvKSnh/vvv59ixYz2uMC1PwxfJBXyXneJqEUlOTmbkyJFMnToVuFD9e9WqVeTm5hIQEMCCBQvIycnpQKDlVhTx+aWEzXqKsLAwBg0axOLFizEYDNhsNry9vbnuuuvQ6/W89dZbvP/++xiNRurr6/t1w+RB9+AhH1cYdrudffv28cgjjxAREcHSpUsJCAigtbWVwMBAKXDt2LFj1NbWsnfvXkpLSzu04U7dVP68rq6OY8eO0d7eLi3S7o67XOTk5EgmZz8/P8xmc78J9TgcDnJzc5kwYQKhoaEMGTKEV155RbKGaDQaYmNjGTJkCEVFRWRlZUmprPn5+ZdMWxU1FTpDUFAQw4YNAy74ujMzMzly5IiURjhhwgQSExPR6XRSEb/29naKioooKSnpkkyI9U3a29ulXWtfa2t0BjFTSaVSoVQqMZlMfPnllzQ3N/dpDI+Yim00GjvENkRERJCcnMz48eOxWCwEBATg7++P0+nEz8+P3NzcbutTXC5sNhvV1dV88MEH+Pv7o1arpQJqpaWlHDx4kJMnT7J//37KyspoaWnB6XSSkZFBdXU1tbW16PV6TCbTZamb7tixg7KyMsk6mZ2d3aUSqCggd+utt0r6Nl9++SXr1q2Tajz19DxE5eRLqYuKc8f111/PmDFjCA4O5rnnnuP06dNkZ2dTX1/PBx98wMSJEyWXmmt7rvEffRV8umTJEoKCgtDr9RiNRiZOnIharZa0Purq6jh//jznzp3rIKXvwdWFh3xcAbgGVeXk5JCfn09qaioBAQGEhITgdDoZOnQo7e3t7Nu3j02bNtHW1kZubq7bHWBXOweLxUJxcfElNQouF5WVlej1epKTk/Hz86O6urpfyUdmZqZkwQgNDeXOO+/s8H5jYyMqlYozZ86wbt06bDYbZ86c6ZOdsxjrcfz4cex2O8ePH6eyslIKyPT396ewsFAKcIuLi+Paa6/l3LlzbNmyBUEQ8PHxQa1WU15ejl6vx8fHBx8fH8aNG0dAQACVlZWsX7+egwcP9luMgytUKhVBQUEEBgai1+tpaWlh9+7dfWqSFvUqRHVQi8VCWloatbW1DB06lBkzZrBw4ULOnDlDZGQk0dHRNDQ0kJubS0ZGBtnZ2X12Lp3BarWyf/9+xo8fj0qlQqvVotVqsdlslJeXd5l9VFJS0qu+T5w4QV5eHoGBgVLNGHdQqVQEBwczbNgwrrnmGildtLKykq1bt7Jq1SpJWKwnkAuJwcXBpu4QGBhIbGwsfn5+rF+/nsLCQsm9WVJSgkqloqysrFN9IrGf3kKhUEj1cObPn09QUBAtLS1SpeL29nbq6uo4e/YseXl5Un0sD74/8JCPKwB3OwCHw8GJEyd46KGH0Gq1+Pn5MXXqVFpaWigoKHCb399dy0VnZsy+Yvzx8fFERUURGBhIQEAAKpWq39wFVquVjRs3UldXx0033cSKFSs6pPGZzWZ27dpFSEgIBw8eZMuWLX06yVRUVLBhw4ZORbeOHz+OyWRi/PjxPPnkk6Snp3P//fdjNBp58sknCQsLY+TIkQQEBPDKK68wcOBARo0axbBhw4iPj6e8vJx9+/axbds2qqqqrtiuTK/XM3r0aGbMmEF4eDiFhYXU1dX1qdVDDMrV6/UcPnyYv//977z33nt89tlnDBs2jPnz5+Pj40NcXBw5OTlkZGQQEhLCTTfddFFtpf7Gq6++Sl1dHUlJSajVaiZNmsThw4f7vd+WlpYua+eIQbvXXXcdzz77LGFhYVJMxueff86ZM2ewWCw91oZxhWgB6Uz6XLwvfv/732MymbjnnnuIjY2lqKgIp9NJcHAwv/nNb/jjH/8oVeV2F+Mh9iW+JvbRU5eL6IIKDAxkypQpDBo0SGrP6XSyZcsW1q5di9ls5uuvv+53F54HPYeHfFwhdEYcFAqFVLRu48aN0sTSFS53gRLT33qLsrIyKisriYiIICMjg5/85CccP368X6LHBUHAZDKxfft22tvbqampYffu3bz88ssS8XjmmWdQKC5UAL3SwWRtbW1kZ2czffp0SU1W3H099NBDGAwGWlpa+OKLL3j++eex2WycOnWKxYsXs3HjRrZt28aaNWuuKPGAC3EsU6ZMwWg00tDQQFZWFrt27epTEikIgpQSfd111zFv3jw0Gg233347R48e5YknnmD79u3cf//9HDlyhK1bt6JQKPq8kF138emnn7JmzRppnFyNgndyeHt7Ex0dzdixY3nllVckEbjKykp+97vf8fXXX7stEtgduKa6ymM/XN0j8vtSlApwOBycOXNGyhhra2vjvffe4/jx4zQ2NkptyAtiyuNKXK22rv93hfj4eKZNm8aSJUuYOnUqRqOxw/vTp0+XLJ+d1eTx4OrDQz6uEMRB3ZkfVBAEaZB0lgLnmn8vn0BcPyfv193/vUF+fj7ffvstvr6+vP7664SGhkqqij0NeOsOBEHAZrORmZlJfX09FRUVPPnkkzgcDsrLy6/aYiXC4XBI1pYzZ87Q2NiIwWCQirRZrVYKCgrIyMjA4XBQV1dHeXk5v/rVrygrK6O4uPiK+6GtVquUMireU31tvbLZbOzZs4d3332XoKAg0tLSGD16NP/4xz84ceIEhYWFVFRU8Omnn1JbW3vVf8erQV67wh133MGoUaMYPHgw3t7eKBQKysvLOXr0KNu3b6e2tvayz7erIM/O0mzhgkiin58fra2teHt7S8fZ7Xaam5t58MEHMZlMnDt3jvXr1180/8g3Pz0NNPX29ubJJ58kKSmJ2NhY4uLi8PPzkz4vqpxWVFRgMpn6VX/Ig97DQz6uIi4VOAoXk4fuDtTu1om5HNTV1Um1HZYvX45GoyEpKYno6OhOK2j2BWpqaqSYiPXr1/dbP71BdXV1py6DkydPdnh+Nb+D6DMvKiqira2tX6rJ2mw2du/eza5duwgMDKSwsFCy8BUVFUlk5/sgef99g1KpZObMmUyaNImwsDBsNht2u10isYWFhX2yuLoSANeNjeuxI0eOJDY2FkEQCAgIICEhgZqaGqxWKzabjXnz5kkBp5fK0HP929X3UavV+Pv7c/PNNxMVFYVer+/g1mltbaW+vp68vDzJ4uHB9xse8nEF4M5acSkicCmLh5yoiANNPhjF1+X+1b5MiS0sLGTnzp1oNBpuvfVWhg8fTnl5eb+SDw/6DgaDgQULFvDll19y6tSpXscMuINYvRcuiOudP3+eTz/9tM/7+SFCq9WSnJxMeHg4DoeDhoYG6uvrJTG5viIerqRDHpfhbr644YYbGD9+PHAhzfymm25iz5497N27F6fTSVBQEIWFhRcp5Ipk1x25ceeCcYXRaCQhIYG4uDipFIBocVEoFJw/f55jx45JQn8efP+hEDx5R/2CpqYm/Pz83A5ieZR5Z5YPV/Ih/u96nPxYEe7aEJ/31Y5AVGgVa4M4HA4cDoenQuR/CRQKBXq9HqfTKf12nqng+wGVSsWAAQPYvHkzKSkp1NfX88orr/Dhhx9SV1eH3W6/rNReOVyDPOVzkru5By64F4cOHcrs2bNZuHAhI0aMQKfTSenqFouFl19+mcjISJRKJY8//rhbK4ooTOhq+RD7cIdZs2bx4IMP0tjYyPz581EqlWRnZ3PPPffg5+dHU1MTVVVVtLW1YbPZ+uxeFtsxmUySrooHfQMP+egnXIp89BY9JR/dMW164IEHVx8KhQKj0cjevXuJiIjgzJkz/OxnP6OwsLDPYlJES0RnVlO4eN4QNVjCw8OJjIwkKCiowxwjBqF6e3ujVCo5ffr0RTEectVT1w2YGHzvDmFhYSQmJmI2m4mIiEChUNDU1MThw4el1OieljboDjzko//gcbv0MzrzqYq4XCLS1ef6Mp/eAw88uLIQ9VH27NmDwWAgJyeH3NzcK9Y3uJ9DFAoFbW1tFBQUUFBQ0MFd4i6Q3tWKIv69lJaIO4jqt+5wtbOSPLg8eCwf/QTR8uEuh70ngaN9gZ7EmnjggQdXH6JlAi6twnu57cutHe5csmK2i1KplFJm5YqoYkyZOw0PV5eO+D1ca0G5zoP9JVZ4ufBYPvoPHstHP6Ozxf5KkwCxP29vb2w2Wwdzqzjx2O12vLy8OkwATqdTqjsjml7Fei5wIb1NnIDktRvk308skAdI8sZyUtZb//WPBa6m8a6yEvrKtecaGOjOf+9B30MQhH4dF64EojMNIDmxcHc+rp9Rq9U4HA7sdrtUmO5S6MzK4vpad+HZaP13wEM+fmQQAwvlpk95AJjdbu9AIuACYXD1/bqSDfhOxMzhcEikRuxTXqQKvpsYelJy24NLo6sJ151p3N1rHvw4II5fcTyLxMH1nuhJ5Wox2FO03FyKfLhaTkT0hkB7SMd/Bzzk40cK+YCXp9nJH/L0OOiYj+8uYEx+jPy9zlKEPegZ3F23S1nWurre3WnvUs9/LFCpVKSmphIWFsahQ4doamr6QV0L11Rbd++7QqPRSNlt8rF+Of12t08Pfji4OMTZgx805Nk34i7HdQKQkxLRJCum1SqVSulzcnOtaN2QWzw62zGJn/MQkf6H5/r2Dfz9/bnnnnt45ZVXiIuL+0Fa7HoSb6FQKPDy8nKbJQPddxt57s8fLzzk40cIOUGQB4i5TiQisRBNo2Kan0aj6VCzQa1WS5Ox0+lEq9VKr4kPuYtHTmg8k0/34S54uT/a6e4O9sfy2ykUCt544w0WLlyIj48PI0aMkISufkjojEiI0Gg0aDQayRra1NTUoSaMvJ1L1ZGSB9R68OOEx+3yX4LIyEj+9Kc/8dRTT2E2m6Xc9p5WIpVbPOTkQoT4vzy41G63Szn6ril0gKQyqFBcqNYrf18kI2J7YjCaa5DqfyMSExOJiooiKiqK+Ph4GhsbKSsro7CwkIKCgn6pL9HdBb+roDuj0cjAgQN58MEHWbt2LSdPnqS4uPiiz7r2+WOMBxkwYACvvfYakydPxtfXl9zcXLZt2/aDVNEUx3pn96xoyXB1s8rHenfcL+Lm5/uW2eLBlYWHfPwXYPDgwUybNo0ZM2awePFiaXAfPHgQg8GA0+mkvb39Ikljd3CX5SKfMOTFpDqL13A6nXh7e+Pn50diYiKCIFBQUEBpaalEaOQLlTwwVR5g5i5m5L8BWq2WJUuWEB0dTVRUFNHR0QwYMIDm5maqq6spKyujoKCAzZs3ExQUREBAAN98802v+3Wd9Lu6bjqdjmuvvZbTp08TGBhISEgIGzduBC7EL/j7+3PNNddIwlFHjhwhJyen1+fYn/D19WXkyJEcP35ccvP1V6l0cYcfGBjIjBkzyMzMpLKyUvr730yaO8OlAku1Wi1Wq5X4+HgGDx6M0WgkLy+PqqoqrFYro0eP5syZMwQGBhIeHk5ISAjHjh2jqqqK5ubmDoStL8e8QqHAx8cHPz8//P39JSKt1WrR6XRUVVVJmyJX/LfNPT8keMjH9xwqlYo5c+bw8MMPExQUxAMPPIC/vz/Nzc00NzejVqtxOp1Sqfm2trYu27Pb7VKqrGj9gO9M7fL3RSIhJx+ilcPf35+0tDRuv/12FAoFH330EaWlpWi12g5Kg+JuSi6lrFKppF2UWPW1L6+Xn58fVquV9vZ2BEHAYDAASMWvLlcCXqPRoFarCQ4O5rXXXsNms6HRaNDr9dIuTq/Xo9FoqKiooKqqiokTJ5KWlsa3336LRqOhra2t30WRNBoN4eHhvPDCC/zlL39hyJAhDB8+nK+//rpDtpJOp2PZsmVERUURGBhIbm5un2Yd9AZ6vR6dTodKpaK1tRWVSkViYiIPP/wwf/jDH7BarbS2tpKXl9cv/QcFBUkl7QMCAvjwww/ZvXs3+fn5/dJfdyCOdXfEp7tprV3BXYyGr6+vZPH09/enpaWFmTNncvfddxMbG8unn37KwYMHaWxs5Omnn+avf/0rQ4cOZfLkyYwbN47//d//Ze/eveTk5FBfX98hzf9yoVAo0Gq1aLVazGYzPj4+xMXFkZKSQlJSEps2bQIuWPgUCgX19fU9ytjx4MrAQz6+5wgICJB22DU1NXzyySfo9XpiYmJ44oknGDhwIBUVFeTn5zN+/Hj++Mc/drkbVCgU0uKrVl/4+cVAUtEt4grRx+twONBoNDidTkJCQhg+fDiLFi3i5MmT+Pr6Su+JpEY0rcqDVMX2xAWtr2vBJCQkcPjwYdasWcOqVauorKzkvffew+FwsG3bNr755hu2bdt2WW3PmjWLUaNGkZaWRkhICHl5eWzcuJGPP/6YnJwcHA4Hd999N7fddhu/+MUvCAsLY8CAAYwePZr333+fqVOn8txzz/Hmm29KbV6uCbqziVShUDB58mRWrFhBaGgor7zyCtnZ2WzZskV6v62tjaysLO677z7++c9/MmrUKCwWC3/5y1++N6m3K1asYMWKFSQlJfH444+TkpLCxIkTmTZtGosXL6a5uZlt27Zx880390v/9913H9deey0jR46kra2NwMBAvLy8+qWv7mLixInSWJe7wry8vEhKSuLMmTM90gbpLLVWjtWrVzN48GCamppQKpUYDAZpPjCbzdx9992sXLlSCkh/9913aWlpwWaz4XA4ePzxxwkJCeGbb77BbDazf/9+aVPQU4gbIJ1Ox4IFC7j55pt57bXXuP/++xk7diyJiYkAPPPMMwDk5uYyduzYPt3ceNB38JCP7yFUKhU6nQ6DwcDf//53Ghsbefzxxzl06BDl5eUS8/fx8SEqKoqVK1eSnp6Ov78/mzZtIicnh8bGxi7bFy0booaH3DIhxoGIk4y4U1GpVNKEVVNTw7lz51Cr1dTX119kVoWOsQIi0XH1Cff1bqStrY3du3czffp0xo8fj81mY+DAgQiCQFBQEEOHDkUQBMrKyigrK6OpqanbbQcGBjJ48GAmTZrE6tWrOXz4MEePHiU3NxeLxYIgCKxevZo9e/ZQVFREWFgYa9euZdeuXSxdupT6+npmzJhBQkICiYmJ/O1vfyMtLY3g4GC2bdvGli1bLpuMyf3uJpOJsrIyfHx8UKvVeHl54e/vL11rkegkJCSgVqsxGAzExsaSnJzMuXPnJBN1d3RB+hIKhQJvb2+efvpprrnmGgYPHoyXlxe//e1v8fLykixYAGvXruWrr77q83NQqVQEBwczatQooqKiaGlpYdWqVaxdu5bS0tI+788dtFot48aNo7CwEIvFglqtJjY2lueeew4/P78Oi7c4jnU6Hf/4xz84f/48DQ0NAPzyl7/knXfeYfv27W5JSVfEQ61WExISgq+vL97e3litVsxmM2q1Gq1WKxER0Vra2tpKVVUVkZGRaLVavLy80Ol0WK1WlixZwuDBg3n33Xd7ZYFQKBRERERgNBoZOnQo06dPJyUlhbCwMAwGg3R/btmyhZaWFqxWK48++ijr1q0jJiaG4cOHM3r0aNatW4fFYqG2tpbt27df1rl40Ht4yMf3EAqFAj8/P+6++26am5s5cuQI33zzDbm5uReZLCsrK7nhhhukIMJ58+bR0tLSJfmQZ7vIAxNFi4U73Q7xGHHhSk5OZsqUKdhsNk6fPk1lZSWCIEhqqK6SymIEvLyt/ljIWlpa2LRpE0ajkaioKAICAjCbzWRnZ2M0GomIiGD58uV89NFH1NTUdLtdtVrN8OHDSUpKkkrFnzt3jtLS0g6ururqaqqrqwE6FALTarVERkYyaNAgpk+fTmxsLA0NDcTExKBUKsnPz79ktkFXi79CocBgMJCamsq4ceNITU2VCF9tbW2HeA5BELBYLOTl5dHe3i75ytPS0igsLLwqFW7DwsIYOHAgkyZNYu7cuRgMBkpKSiguLqasrIzAwEBCQ0OJjIxk//797Nu3r0OQbF/Bx8eHW265heTkZNRqNSUlJWzfvp2ysrI+jy8JDw/H19cXHx8fdDod2dnZ6PV6EhMT+clPfkJlZSVWqxWVSkVYWBhpaWn4+/u7bUsQBBYvXkxFRQUtLS0ATJkyhSNHjlBQUOC2Nozc7eo6r4jjtqysjKCgICmDra6uDvguEy4vL4+Kigpqamqor6/n+uuvJzIyEj8/P8mS6u/vT1hYWK+yW7y8vAgODmbChAkMGTKEyZMnExgYSGBgIADNzc3U1tZit9vZtm0bDQ0N6HQ6oqKisFgsBAcHM3z4cKZOnYparaapqYmzZ8/2yhLjQe/gIR/fM/j7++Pj48PAgQN5/PHHufvuuzl8+DBlZWVuj7dYLLS2tmKz2QgODmbBggUcPnyYM2fOuD3eNTpdjO9wdZfIjxcnGlGCXavVMnr0aJYtW4bFYuHo0aOSRcZVeEieAeNq7egPk35LSwvr169HqVSSmppKTEwMOp2Ozz//nPj4eNLS0li+fDl79+6ltLQUk8nULWuDl5cXI0aMIDIyktzcXNauXStZOzrDmTNnJNL1zjvvMHjwYH7xi1+QmJiITqfjpptuwmw2U1paSlhY2CXJR1dQKpXExsZy2223kZ6ezuDBgwEk4rVr164Ox7e1tbFz505aW1txOp34+PgwefJkNm3aJMWkuGbM9McErdPpABg6dCiLFy/mvvvuA+DYsWMcPHiQHTt2cPDgQZKSkkhLS2PChAm88MILaLXaPpcf1+l0REdH8+ijjxIWFkZZWRmZmZns2bOnz+N0lEolKSkpJCcnExMTg6+vL5999hkBAQHMmDGDlStX9ii1WqFQMGvWLOm5+FuNGTOG0tLSTgvTyVPk5RDngsLCQsLCwoiNjUWtVlNWVobJZJJizrZu3crp06cpLCxEEARCQkKYMGECiYmJUiyU3W6nvb0drVZ7OZcKuBCDM3r0aJYuXcrs2bMJCgqS3mtsbKSgoEAi01u2bKGurg6DwcDo0aOpra2V4qCCgoJYtGgRtbW1GAwGvL29f5CZS/8VEDzoF5hMJgEQAEGhUHT78cknnwjFxcVCbW2t8MgjjwgjRowQAgMDu/zMY489Jhw/flxwOBzCRx99JEydOlXQarVuj1UqldJDrVYLXl5egk6nEzQajaBWqwWtVivodDpBr9dLD5VKJWg0GkGv1wtqtVpQq9XCoEGDhHvvvVdobGwUHn30UWHYsGFSH1qtVlCpVIJCoRDUarWgUqkEpVIpKBQKQaVSSf3Ij7sSj6CgIGHmzJnCtm3bhPb2duHll18Wxo0bd8nPqVQqYfDgwcITTzwh/Otf/xJWrVolfZ9LPSIjI4W0tDQhJiZGKCkpEZxOp+B0OgWbzSbU1NQILS0tQlVVlfDll18KRqOxy7bkv53rw9fXV3j33XeFqqoqqQ9BEIQPP/xQWLx4sfQbKJVK6Tfw8fERsrKyhPb2dsFmswlVVVVCeHh4h+Pkn3N99Pb38PLyEmbPni3MmTNH+Oijj4TW1lbhwIEDwoEDB4Sf/exnQnBw8BW7NxQKhbBgwQLhiy++EFpaWgS73S6sWbNGuOGGG/q8H6VSKQQHBwu//vWvhd27d0u/l7vH5cLpdAoOh0Noa2sT1q1b1+NzNBqNwj/+8Q+hpKREaGhoEIqLi4Xdu3cL5eXlwl/+8hchOTlZmhtcP/vyyy8LDodDaG9vFyorK4Wamhrh3Llzwttvvy34+PhI91Z3z0WlUglLly4VTpw44fa63HfffUJKSoqg0Wjc3pc33XST8OWXXwoNDQ3SZ5qamoQtW7YIISEhXd7L4hxuMpku+7fwwD08lo/vCTQaDSNHjmTo0KEEBwdTW1vL8ePHKSgooLW1tcvPfvjhhxw6dIjrr7+eW265hcjISLZu3cqf/vSni46VB5nJVUkFWZqtPFVWHvsh7jSVSiWRkZEMGTIElUpFUlISGRkZUh+ijoc8Al8hEzGTR+1fyZRFMRaisLCQyZMnExcXR1JSEkeOHOnyc06nk4KCAj744AMpA0O4REpiWloaxcXFLF++nBUrVqDRaLBarfzhD3/g0KFDzJkzBx8fH/bu3cvp06exWCy9MutbrVb27NnDzJkzCQ0NlX5Pg8GAXq+/6HjF/8XheHt7S64yjUbD2LFjycjI6LR8eV8iJCSEt956C6VSSVZWFi+88AJr166lvb2d+vp6TCZTv5+DHDU1NeTm5rJ06VK++uorvvrqK/bs2dPn/SiVStLS0rj22msZMWJEp9YNp9PJqlWr+OCDD/Dz8yMpKYlp06YRGxvLb37zG2w2G97e3hiNRgICAnjyyScxGo3SZx9++GHOnDnTqXtKoehcC0alUjFkyBC0Wi0ajQYfHx+OHj3KCy+8wLlz5ygrK5PquIhtifdQVlYW27dvZ9y4cSiVSux2OzqdjsmTJzNq1CiysrKor6/v9vXSarWEhISQnJzc4bxNJhPPP/88mzdvprKystOgbV9fX/z9/aVrAxcsmV5eXrS1tXlcLlcJHvLxPYC3tzdhYWHMmjWLkJAQzp8/z44dO8jPz6etre2SmRC1tbUEBwczaNAggoKCpBx7dxBcNDsUio4psOL/4nuuA1N0z/j7+xMdHY1KpcJqtUrn6E61VCQeCpl7R57Ce6UGv8FgICIigsGDB5Obm8uJEyc4d+5ctz7b3t7eaYyIUqkkNDSUAQMGYDAYCAgIYPbs2TQ0NDB+/HhCQ0NZv349paWl7Ny5k5ycHFpbW/Hy8iI7O1vSR+mpvLXrdRPlruWvi3En0dHR0iKkUqk6qFWKbjVXktLXv4uXlxfLli1DpVLh4+NDdHQ08fHxtLa2YrFYOH/+PDk5OVelynFUVBSpqamMGjUKuLAZaG9vl4I3+xKCIEiaPKIAX1NTE4WFhVJw8JYtW6ipqWH//v0cOnQIb29vzp07R2FhIcHBwezduxeHw4FOpyMwMJDx48dfROQbGxs5f/58l4Gynf3GSqWS4OBgvLy8JNdpWFgY48ePx+FwUFlZiV6vZ8KECVRWVlJeXk50dDReXl4MHDgQPz8/aQMithcZGYlOp+vgXuzO+B8/fjwjRoy4KNvI6XRSWVmJyWSSXCfyuU3EyJEjGTBgQIeYEzEurq+z7TzoPjzk43sAg8HAwIEDmT9/Pl5eXpw+fZrVq1e7nTQ6qwLp7e0tWSJsNlun6WVy8gF00O5wt6OXi47JyYOfnx8DBgyQFk3xONHaId8Rucqri8eL3+dKKR3GxcUxfvx4JkyYwHvvvce2bdsuafXoDjQaDcOHD2fSpEmEh4cTFhbGvHnzaG1txWq1kpeXx/PPP09jYyMWiwWbzcaOHTv64Bt9B5VKRXx8vBRDAReufW1tLf7+/kycOJH29nZ0Oh06nQ69Xo9er5eCUpVKJXq9Hh8fH2m36+3tja+vLw0NDbS0tPSajBgMBh599FE0Gg3BwcEEBwdLmUfV1dW0tLRcFeIBF5RMx40bx4wZM2htbUWj0Uhjo6/hdDrJysri7NmzBAcHYzQayc/PZ+/evQQEBBATE8Mrr7zCuXPnpFiThoYGysrKOlgY4bsdfGxsrLS4Wq1WqqurJatWZ5D/nq4LtiAINDc3ExERIVlJ09LSmDNnDpGRkVJA52233UZmZiYZGRlMmDABHx8fxowZQ1xcHBqNpsMGR6lU0tbW1mHB7w75mDVrFhMmTHAbK+YuTkq09imVSqqrq5k4cSLR0dEdjmloaOjSWuJB/8NDPr4H0Gq1BAYGMnHiRLKyshAEgWHDhrF79+6Ljg0ICKCtre0iE31GRgZJSUmSubyzAS13ebgOPIfDgbe3tzThioPcVZhKrVYTERFBbGwsdrudO+64g8LCQo4ePdohONXVyiIv4S2235nJuT+wcuVKfvaznwGwZs0aCgsL+6Rdg8HAr371K8aMGYOPj4/0+osvvkhhYSFVVVWUlJT0SV8iXBcKlUpFQkLCReTj97//PXAhwPTrr79m9uzZ6PV6nE6ntKuV48MPP+SXv/wlW7du5cYbb+SRRx7hqaee4tNPP+1RWrIrFP+XHp6SkoJWq5WIrM1mY9OmTXz77bdXVcCroKCA2tpabDYb+/btY+XKlZSXl0vn3h/WuZ/+9KfExsaSmprKxo0bL6uPa665hhtuuIE777xT+i3Pnj3LT3/6U2pra6mtre1WO659Nzc3s2LFCv72t78xfPhwAgMDCQgIQBAE7rjjDlasWEFTUxN6vZ6lS5d20A+qrq6msrKSgIAAaSPS2NjI4cOHycnJobm5WeqnO27XhIQEIiMjJQFEEXa7XXJZyr/H/PnzmTdvHmFhYSxdupSgoKCLrCatra0datN4cOXhIR9XGWPHjuX666/n9ttvB+D555/n6NGjnU4aDQ0Nbiep6Oho7r33Xim/3p2fH76bZNylvoqLgdyF4ro4ORwOli5dysSJEwkJCcHhcPCb3/yGPXv2SMcr/k8ISKFQSGlscteLw+GQzP29IR8DBgwgPDz8ot2gOzzwwAOMHDlSsrT0JrPEFRaLhS+//JKXXnqJuro6dDodL730El988QWlpaV9unvubCG0WCy89dZbWCwWhgwZQkhIiJSiKeouzJs3D29v74tcbnKo1WqeeuopHn74YYxGI0qlkptvvhk/Pz+3MUTdQWpqKosWLeK2226T3Azi/aBWq1mxYgU+Pj7U1NRQUVGByWS6Yq44b29vVqxYwR133CFlaKSnpxMREcFtt93GXXfdBVwYH01NTdKO+emnn6aqqqrXZvuysjJqa2sv+/uKv634W5rNZmprazl9+jR2u/2y7z2Hw0FeXh733HMPU6ZMYeHChcyYMQOdTidtXIxGI1qtFofDIemAGI1G/P398fLyorW1FZPJhMFgICQkhGuuuabDJqS7+MMf/sA///lPQkND+eijjzrEqrS3tzN//nz8/f3x8/NjzJgxjBkzhuDgYLRaLSdPniQiIuKie70r67AHVwYe8nGVUVtbi9PpJDIyEkBKT+tMp6OzgWswGBg5ciRqtRq9Xt+pGqNc5Mc1x9811sO16BxcMO83NjbS3t6OUqnEZrMxatQocnNzyc3N7WBZkVs25JOrGODY0wk3PDycmJgY6uvrSU9PJzk5GW9vb7Kzs2lvb3drQtVoNERERDB37lwiIiKwWCwolUpKSkouGcjbXbS3t7Nnzx4qKytpaWlBrVbz1ltvUVJS0mGX1xdwd81EK0JBQQHl5eVSeuOAAQOora0lLi6OoUOHdojpcW1L/luJAauCIGCz2aiuru6VwJbVaqWiooJvv/2WXbt2MX36dEksSqyfMmnSJLy9vSktLeVPf/rTFQk2TUpKIj09nWuuuYZBgwbh6+uLIFyQ47/vvvuIiYnB29ub4uJiSktL8fX1JTg4mKSkJIYMGSK5N3qD3hAEHx8fkpKSSE1NlV7bvHkzq1ev7hNNEvGecjgc1NXVcfToUcLCwhg+fDhpaWkXpWCLREQUPVOr1VKcUWtrKydOnHCbsizel525QM6fP4/ZbMbPz4+CggKioqLQ6XT4+Pjw85//nNDQUAwGAz4+PsTExBAWFia5fCIiItzqi7S3t1+yFIUH/QsP+bhKUCqVREdHSztRMYjL398fX1/fHrUlCvDEx8dTW1tLZWVll4Fy4mQhThRyX6pIPMSHvPaLeN5ms1myaNjtdiZOnMi+ffskYiP6iF3dKmIb8kq53UV0dDSjRo1i1KhRZGdnc+uttxIVFUVDQwMGg0Gqxin/LgaDgbCwMMaNG8eYMWNQq9VSgFphYWGfkQ/R/CvHhx9+2CdtdwdqtRqdTkd7eztms5mcnByys7MZNmwY+/fvZ+TIkbS3txMYGIjBYMDPzw8/P78OBFW8bgUFBVJ9GpvNhk6nIy8vr1c1VOrr6zl8+DD5+fmSvsLYsWMlsaeAgACGDh3K0KFDsVgsrFq1itzc3H5fHOLi4pg7dy6jRo3Cy8tL2tFrtVrmzZtHWVkZBw8e5MiRI2RmZpKamsrkyZMZM2YMkydPxmw2Y7VauxT06y+IMT7Dhw+XVHutViubN2/m448/7rM+xJilvLw8Nm3aRGxsLEuXLsXf319yZ4gxXTqdrkP8mEajobGxkebmZvLz83n77bfdko9LWT9FtVKtVkt2drYkeubl5cV9992H1WqVrKhVVVVYLBYaGhpobGykurqakJAQwsPDCQgIkNqsra2V3GoeXB14yMdVgtFo5N///jfDhw/HYDDQ2NjIE088QXZ2dqeCYp1h1KhRLFiwgMGDB/Pkk0+yYcOGTkWFoGPQqtPpvGjnIV/ERUuGSCja2tq45557SE9PRxAEWltbWbduHefOnZNcGqJpVm6lkbte5CJk3YFCoeAvf/kLkydPxsvLix07dtDS0sK//vUvduzYIQVFysmMVqtlzpw5LFu2jJtvvhmTyURBQQG7d+/m0Ucf7dH1/b4jODiYxMRE7HY7QUFBnDp1ii1btrB3715aWlo4cOAAH3/8MTfffDObNm1i/vz5rFixgpEjR3bYFdpsNq6//npSU1NJSUmhqqqKuLg49Ho9I0aM4PDhw5d1fjU1NR0yhf7+979TXl5Oeno6H3/8MQ8++CAxMTGSHPzPf/5zPv7444uE0foaxcXF7N+/n5tuugm48P1FEb2nn36ajIwMysrKqK+vl4J3dTodixYt4n/+538YN24ca9eu5e233+7X83SFSqUiICCAxx9/nEmTJkmvFxQU9CkRchXfslgs5Obm8s4777Bjxw7effddUlJSsNvtUoE3UVJdDCqfOHEidrsdo9FIXV3dRerH4L6gnSuKioqoqakhJSWFkSNHYjAYJKIoipfV1NTw2GOPsXDhQg4ePMjGjRspKSnB39+f//3f/+WBBx6Q+v3mm2/49NNP++xaedBzeMjHVYK4M1epVFJp8Pr6eoqKinoU2PfOO++g0+nw9/dHqVRy++23c/bs2U7Jh5h3D0h9y60fYsVZ0WohmvBFXQiNRsPu3bsJCgpCpVLx6quvsnHjRqqqqjpod8jJi/h9gQ7xFt1xvahUKoYNG0ZMTAy5ubls3LiRY8eOkZmZKWWPiMqrCxcuZOHChZILKjAwEJVKxalTp3j33Xc5cuQI58+f7/a17Qvo9XoSEhJ47bXX+PnPf47NZiMuLo7rr7+emJgYwsPDqa+v589//jM7duzocQyBIAgYjUZGjhzJL3/5SwwGAyaTieXLl3P//ffT3t6O1WrFZDLx8ccfYzab2bJlC1VVVdx1112kp6fj4+OD3W6nvLycQYMGkZGRIVXAFX+/vkxJPHz4MKdPn0an09Ha2srKlSsBpN3t4MGDO00V70skJSWxaNEiGhsb8fX1Ra1WS2SsubmZhoYGyf0jCAKnT59GqVTy4IMPEhwczNatW/vMytATREVF8cknnzBkyBC8vb2l1728vNBoNN1uRwwO785x4sbiL3/5CyNGjCAkJERym4n1XlQqFX/4wx8YNWqUlJIran8MHTqUv/3tb5SXl7N69WpOnDjR41R7s9nMa6+9xpdffsnUqVNJT0/n+eefl5SLo6OjOXXqFHv27KGlpUVyPUVGRkoaH4Ig8MILL3Dw4EGPvsdVhod8XCVYrVbWrVvH3XffTWBgICaTSdJ/6M6EEB4ezn333Ud6ejpqtZq2tja2bdvGmjVrurR6wHcxAg6Ho0P8hTzmQy4uJpIFMYBx4sSJxMXFSa6ihoYGiQQAHWq5uAaY9STWIyIighEjRnDLLbfgdDrJyMhgy5YtlJeXU1VVJZEorVbLkCFDmDhxItOnT0er1RIQEEBFRQU5OTls3bqVXbt2UVZW1ucxGF0hICCAa665hvnz55OWlsavfvUrnE4n/v7+DB06FD8/P3x8fKQFOCUlhc2bN3eow9IdiNczPDycL7/8UipG1tjY2EFQrqmpSTJNnzhxgnXr1jFmzBiJBPv4+FBYWEhFRUW/Xqf29vYOu+rXXnuNUaNGMXz4cKZPn87AgQM7mMj7C2fPnuX9999ny5YtXH/99SQkJEikZ9CgQRdpZNhsNhoaGvj222+ZM2cOY8aMobCwkNWrV/f7ucohZpuJliKHw4HZbOaNN97g2LFj3W7nUuNQoVAwdOhQUlNTiY+P5+233yY6OpoBAwZgNBolS+i+ffvYv38/DoeDnTt3cvjwYXbt2sXIkSOZNm0aWq0WX19fxo8fz5EjR/Dx8ZGIT08IgCAImEwm8vLysNlskjuotraWkpISacw3NzdLc5DBYGD48OGEhYVJ7Yjz0tVK6/bgAjzk4yrBarWyZcsWli1bhl6vp6KigqKiom59NiAggLS0NB566CHJzHn+/HnWrFnDv/71r27XKpCTBTn5EImD/Ln4vq+vL2PHjpXiLcLDw92Kksl1QdzVjZAf0xlCQ0OZPHkyt956q6QEmpmZiV6vJyoqCr1eL5lcp02bxrhx44iPj8dkMtHY2EhOTg579+7liy++kAJ7rySSkpKYN28eN910E1qtlmnTpkk+b6PRiNlslibIBQsWkJiYSEtLC62trT0K8BQn0oqKCnbu3InJZMLX19dt1ojoKhMFz8SqxkqlUjKNizvGK7Uz/Pe//825c+dobW1l2rRpUpXS/kZeXh7nz5+XqrcqFAqJfAwYMOCiIm4GgwFfX1/q6upob28nNjaWoUOHXlHyIeqAiOnKcGH8trS08O9//7tHxRK7Qz5CQkKYPHky8+bN48iRIwQGBkoxWzabTaoi/fbbb9Pe3i5ZyPbs2cPs2bNJT0+XNjFiRlNvg2HFuCax0GZVVZVbRV6xQvGECRMYMGCA9Hp4eLgU4+PB1YOHfFwliIPGZrNJgW3dxbXXXstPfvITaXI8fPgwGzdu7BbxkIt7idkMcmuHuGMQ024BqficIAjU1tZKKbRqtZrf/e53rFu3jubmZkngTJzUROuKa0qtq9BZZ5OAVqvFz88PuLBLFXU55s2bx+LFixk2bBjh4eFkZmYyduxYtFotjY2NkmZCdXU1tbW1vc5IuBwoFApWrFjB6NGjaW9vp7m5maeeeors7GxJi+D8+fPMnj2bqVOnkpiYSGpqKr/61a8YMWIEDz30ULf70el0aLVa3nnnHQICAjh//jz/+c9/Ov2MGJyYn58vWaxUKhU6nY7hw4djsViorKy8ouqzlZWVZGdn09zcjI+PzxXrV61Wk5yczIcffohSqWTs2LGoVCoqKiok96d4HYYPH87ChQu58847KS8vZ9WqVXz++edX5DxFzJ8/n3vvvVfKjgMkhdTeXjNXN4zT6WT37t0kJSVx880388knn+Dl5YXVaqW5uZn6+nra2tokwirPVmlsbOSLL77g97//PUFBQTQ3N/PNN9/whz/8QbLI9QbdsaCKFtGbb76ZkJAQ6fi4uDjJTe0RGbt68JCPqwSVSkVKSgpeXl5kZWWxdevWbn1uwIABpKenM3XqVBobGzl16hT/+te/2LJlS7ctHnJLhUgsHA4HDocDjUbj1hLicDiw2Wy0tLSg0Wjw9/fHarVSWFgoxRWI7YkTmCh+Jf4v799VeMwdysrK2LlzJytXriQtLY3Y2Fgee+wxxowZI6XyqVQqJk6cyK9//WuJ+Hz00Uc8+eSTTJ8+nWnTprF582ZqamquyE5HoVAQHR3N119/TWZmJp9//jkZGRmcOnWK5uZmydRbWFiI3W6nrKyM8vJyfvOb3wAX/PlxcXE96jM3N5eioiLpunYnPkO8FllZWfj4+EgWrMWLF5OcnEx7eztpaWk8/PDDfZIVpFKp0Gq1+Pv7U1NTc5HJu7a2loyMDN544w3uuOOOK1Zp1Gq1cujQIUJDQ9m7dy8KhYJf//rXPP7441x33XWUl5czbNgwXn/9ddLS0pg8eTIAX375JYcOHZJk0q8EVCoVoaGhJCQkdHhdTIfu7f0tT6339vbmzTffZMKECYSFheHt7S0FkpaWlnLu3DkEQWDNmjUcPnz4okVcFJWDCwGlLS0tFBYWdlA/7m+oVKoO9VzgwjwUGxsrBax6cPXgIR9XCfKF38fHp4NPEi6U905LS6OmpoaxY8cyfvx44EKRJJ1Ox5dffklpaSlHjhzh9OnTPapB4UouXF0jrlYKeWxFZGSklENvsVgoLi7uEMHubgJ0Z/oX++lq99HY2EhmZibbt2+nublZEjL66quvmDZtGjqdTnJj7N69m5aWFuBCwamNGzeSmJjI6NGjmTp1KuvXr+/zsujukJqayrXXXsvAgQOprKykvr6ekydPXiQaJ17T/Px8srOzcTqdvPvuuxQWFpKdnd1p+/JrJ29Lfg17Mrlv3bqVgIAAwsPDAZg8eTIpKSlUV1dLarudobuWkalTpxIUFIRGoyEyMpIvvviCxMREJk6cyMmTJykpKcFmsxEZGcns2bPZuHEjWVlZ3f4OvYXNZqOxsZHc3FysVisqlYrbb7+duLg4BgwYQHBwMJMnT6asrIwvv/xSiq3Jz8+/oqb7J598krlz5xIYGCi9dvr0aQ4fPsz69ev7hCTKtTuampowGo0YDAacTqekrGw2m9Hr9dLvlZCQQF1dHYMGDaKhoUEqonj48GF8fX2ljYv4/5W0akVFRV0UhPvXv/6V48ePX5Fz8KBzeMjHVYC4KwgPD0ej0Uh1NVJSUvD19aW+vh6z2cysWbOorKxk7ty5zJkzh7q6OhwOB19//TXffPMNJSUlZGVl9ShwSm6ulGt6yJ+L/4sQd0SiIJS4u25paZH6dydM5u4114mnq5iPtrY2SkpKWL9+PTqdThJfE33booqiQqEgNze3Q5BkRkYGxcXFjBo1Cn9//ysm4x4TE8P48eOxWCyUlpZSWlraqVptamoqRqORwMBAmpub2bNnDwcOHOg01bqrxf5yJ/Rvv/2W9PR06bnRaJQ0QzIyMvokKG/w4MGkpKQQFBREZGQk1dXVjB49mvnz57Nnzx5J0yMkJIQJEybwzjvv9Jn0fXfR2toq7dCrqqqYPn06UVFR2Gw2jhw5glqtJjc3l2PHjuHn58eRI0euCJmVY9q0aVKGi/h7Z2VlsX79etatW3dZbbqmvcpdpsXFxWRnZ2O32wkLC5M2KTqdjuDgYKKiovD29iYlJQWHw8GYMWMoKytDq9ViNpsJCQnBx8eHvLw8MjMzJfn6zu7VvnTziSUrhg4dKtXpsdls1NfX880333Ra6deDKwcP+bgK0Ol0hIaGsmTJEgICAigtLeX06dO89NJLpKens3HjRr766it+9rOf4evri16vp7W1lZ07d1JfX8+GDRvYu3fvZfUtz0QRA0JFyWv5QiO3joiuFFEYTNwB1dXVsWbNGmnRF9038J00u2jZcI3zcBUx6wxtbW1udRS++OKLLj9nsVgwmUycP3+eTz755IosFOL1bG5uJiMjg//5n/+5iEiI31+hUPDuu+8yePBgFAoFmZmZpKSkkJWV1aXOi7uqwb1Bfn6+RGoFQWDDhg20t7dTVFTEV1991Sd9WSwWoqKimDVrFl5eXkyePFm6DgMHDpRiTsTAxNra2quiPilm4dTV1UkBjSdPnuTNN99kxowZ5Ofn90psrbfYvXs3vr6+BAUFARcsXmfPnu1RvJgrOvt9HQ4HRUVFvPTSS8ydO5eVK1cSEBBAaGgo7e3tWCwWqURCbGysFH8mbhK8vb254447cDqd/P3vf+eDDz7A6XR2Og5FYbK+ykAJDw9n3Lhx3HTTTVK9o6amJjZv3iwp/3oUTq8uPOTjKsBisVBTU0N+fj6RkZHMmzePJUuW4OXlhVqt5oYbbmD+/Pm0trYyc+ZM/P39iYmJ4auvvup1TQJ5+qs42O12uzT5y6XRxdfE/kJDQ/nd735HeHg4gnCh6uWZM2ckUiLXChHbEYmOq5S7OHGpVKo+kYJ2h5dffpnXX3+9z5RML4Xf/OY3zJ07l7S0NBobGyWftxzXXXcdEydOJDc3l0GDBmG1WikpKeH48eP89a9/vaSsuHyxkLu7LnV8Z8cNHDiQjRs3snXrVsrLyykuLsZqtbpdBC53Z/rpp59KIlF33XVXBwImFzmrr6/n/fffJyMjo9sF0foLP//5zwEkl8GOHTuueozA8uXLSUlJkZ6/9dZbbNu2rc+vlbhxWLduHUajkZSUFJqamjAYDFLatjiHiNlBZrMZQRAIDAzEbrfT1NTE8ePHUSqVVFZWXnKh7+vU16VLl/Loo492qHHV3NzMtm3b2L9//xWbEzzoHB7ycZVgNpv54IMPyM/PJykpiQEDBmC329m7dy+NjY3YbDYsFgvnzp1Dq9WSn5/fJxHtwEUuEHk2CyDtQF2rzzocDs6fP8+wYcOkHb446XSWPit3u7haOdyl4fYl+ovUdIbBgwcTExODUqkkLy8Po9HI8OHDCQgIICcnh0mTJjFz5kxGjhzJlClT+Oyzz/Dx8aGxsZGPPvoIk8nU5QLnLp35UujsGPH14uJiysvLEQRB8ueLi0tnsTqdPe8MVquVs2fPsmHDBmbOnEl0dHSHYMTTp09LqcdffPEFJpPpqqdBui5OfSmy1lMolUqpWJv4O4nXraqqqs9jKMQsOKfTidVq5fTp0/zzn/9EqVRy5513EhAQIFlDRZ2g6upq3n33XaZMmUJdXR35+fl8++23KBSKKxq/I6Kqqorc3Fyio6OBC+7FY8eOkZCQcMlAdw+uDDzk4yrBbrdz5MgR2trayMnJITw8HLvdzubNmyUzuBx1dXV90q+46Ij1QESBM4vFIlk4xJQ7eaosXDBLHzp0SCqtfe7cOWm3ItcCkZMW+V/5Tl1c3H5Ik0B5eTkFBQW0tbXhdDpJT0/Hz8+P4OBgYmJimDVrFgMHDiQ0NJTAwEBeeeUV9Ho9FouFo0ePXpVz7uy+6s6C1hNLSG1traRK6+/vT2trK5WVlbS2tnLw4EH8/PxwOp2cPHnSU23UBTqdjjFjxqDX6zGZTJSXl0uByv1RV0ZOPO12O/n5+VJMTHR0NKGhoZJ8uhh8XllZyVdffYXJZKK2tpa8vDxOnjx5yb76K51bVIsWYTabaWpquqIBrx50DYXg+SX6BU1NTZJGxZUKduwONBoNDocDg8FATEwMS5YsYcOGDRQWFko7KpVKJaXeyq0Voplcntlis9kkwSPRJOtwOCS3iiu5kKf5ivihKA36+/szatQo5syZw8MPP+xWRK2kpERKz7zrrrsoKSnpUYp0f+FyF4GefCY4OJgNGzbgdDrZsmULq1atory8nKamph8UCe1rhIeH8/HHHzN+/HiOHz/O2rVrefnll/ulL3ndp+4eDz1TLpZ/VnT99vUyNG3aNJYtW8aDDz4obaTOnj3LihUrOHPmjFtLlrsxID4Xhfs86Dt4yEc/4ftKPkQ5Zrgw+H19fWlpacFut19U4dad60XupxffF02vYpCq3HIiD2oVSY3NZusQ8PpDWnjEWhed1diQT9Kiy6q76O191BXBuBLkQ6FQSJV0xVijH9Jv318ICgri+eef5+abb+bf//43f/7zn69q4Ot/A6Kjo5k8eTL//ve/2b9/P5s3b2bnzp0cOXKk082Oh3xcWXjcLj9CyGu7tLS0SIRB/Ctf5OTuFPFzYmotfOcfFtsV/8rbkddSEK0p4kOlUl0xQakrAdHy01/fyR0B6a6LxPV5Z2nP7mJK+mKPImZKedAziK4Pm83GsGHDmD9/Pu+++26/jxt5fSZx3PYHWXStqt0XqKurY9++fdx8883U1dVRUVFBVVXVVQ8a9uA7eMjHjwxyYiDPSJG/73p8V23J9QHcZV/IiY08tVZOTDzoPi6XBFxO8KjHKPr9gNVq5dSpU2zevJmWlpYrEvwq30h8H++DS52X2WyWdHbk809Xn/k+fs8fMjxul37C99XtIoqaQUc1Urm4kPw1MapdfpuIoj2A5K4RA9DgYvEyeXVcsTaEw+GQXDhXWqzphwZ3hO9Sx7s7pjNrSGfHdqcvD/oe/U0I5FbO/kRvvseVIkUet0v/wWP56GcYjUbJ3eBwONDr9ZILwtfXl/b2dsn3rVQqUavVHSwTNptNWtjF98WB197ejpeXl9S+6MIQS223t7dLnxXFwiwWi1vy0RlE94wclzL3uk4K4ufF9Fx373nQO3TXJN5XImXfZ9LhLt27K5eSu+PcQf6dL3VcZ8qh8s/Lg7dtNptE0gVBwNvbG7PZ3GW5ArlLVK/XXxRDpNfrpfmju2SxqzIJnUF0z/RF4Lj8PpZX1pbHnEFHkUL5RsfhcEhxRQ6HA6vVelFMmvw6KxQKNBqNZE3S6/VSAKw4932f7/X/ZnjIRz9DXPTb29s7KIAqFAra2tqk+Am1Wi3JEruLhZBnj8jTVMWCbqIgmPg58XXxPZHwQM8mlv4mB56Aw+6jM4Ihn1hFdLYz7Op6/1BdL93VRnGNdRLRmUvRFe76kKe2i25OsS3XsSX/Ddvb2y+69vI2xOPFhd/dIumaOi+K//W166GzNi9FiN19RqPRSJsx0fIqD5CXx5uJfctJCtDhGPHzKpVKSgt2p+Qsno/8PXH+/CGMge8jfnAO9xdffJGxY8diNBolCfOcnJwOx1gsFn7+858TFBSEwWBg2bJlVFVVdTimuLiYBQsW4O3tTWhoKE888cRlMXv5ZCNOOOKAdDgcHQaaOIGIVhJ3xcLk7F/MHpG3J98ZiBYP18HpwX8n+nLR+D65AvsD3fHvd/W+WOk3MTGR4cOH4+fnJ2UwdSd+oLM+wX2sFCBVaYbvSKLrbt9d+ra4aGo0motS4eXoz9+8r+cWV0uHCHFOk2fjuf4e4pwoWjnE9sT/XYPqxXlTbhG+3N/Yg+7jB0c+du/ezc9//nMOHTrEtm3bsNlszJkzp4Ni4SOPPML69etZtWoVu3fvpry8nOuvv1563+FwsGDBAqxWKwcOHOCDDz7g/fff57e//W2Pz8dms2Gz2aRYC7kbRBwEonmwpaWlgxlWPEYcZICUxik+xIHidDql3ZL4nnyy8wR2/vfDdSLs6je9nEmzs8XJ3SLw3wT5tejudYmLi2PixIlcd9113HnnnSQlJWE0Gju1DrlaPeSLlyB8pxgKHV1f8uvq5eUl1SERr7loBYXvrJBqtbpDO+JGxcvLq0M8luu5XemF9HKsmqL7Q7RUyNuQW43lcWVyF4nYr7iRE6+fSMrsdnsH17U4/yqVSmmOFj/vcbn0L37wAac1NTWEhoaye/dupk6dislkIiQkhE8++YQbbrgBgLNnzzJ48GAOHjzIhAkT2LRpEwsXLqS8vFwqdf/OO+/w5JNPUlNT47ZmhyvEgFMvLy+USiVWq/UiiXGxOJM4MBwOhzQAxJgOOdMXY0ZEAiO3fCgUCnQ6HWazGR8fHymQU61WS9YVhUJxVWWiPehb9IU164doEXONa3EX73EpN8zRo0dJSUmRrB0nT57k1Vdf5dNPP+203a5eu9RC7Bq7II5tV4juV7kuT2dt63Q6ydUiBnWLn1cqld/LFHexyKUIOQHo7F4VSYroXoGO7hSx2J2oSSSPoRMrY8vjP8T+5W4YT8Bp3+MHH/MhFuoKDAwELpRat9lszJo1SzomJSWFmJgYiXwcPHiQ1NRUiXgAzJ07l/vvv58zZ84wcuTIi/oRK2KKaGpqAjrugEQ3C3wXCyJn8K5uGYBf/OIXjBw5kujoaInJ22w2ysvL+eyzzzAajWRkZJCfny+JecnjPcT/+yLQUKVSERISwrRp08jPz+fUqVOXJYUtTgA/lEVPqVQSEhJCU1MTgwYNYsSIEdhsNpYsWcKZM2fYvn07Bw4c6HX8jOvk6263fanAQndtXOoznQUo95fuQ19D7q5wRzrcvfb8889z++23s3jxYgRBoKioSJIyd0dYXMdxZ5BnkoiWT9dYMHGuEJ+LFlPgos2G3KKi1Wo7CLeJY1+El5cXNputTwJD+4u0utYVkl9PsU/R8iOPoZG7XOTXVZ5pB99l54ltmM1mKZZGvNai1Rn+e+7x/0b8oMmH0+nkF7/4Benp6QwbNgyAyspKtFqtVAJaRFhYmCR7XVlZ2YF4iO+L77nDiy++yLPPPuv2HABpApHvcMTBJJcZhgsDztvbm/nz5zNv3jyGDh1KRESE1J7NZqO2thar1UpeXh6NjY3Y7XapFLu8Km1fThBqtZr4+HipRoler2ffvn09bqe/SIdSqcTb25ukpCTa2tqwWCyYzWYaGhqkGip9YflRqVQMGzaMhoYG2tvb0Wg0XH/99bS3txMfH8+gQYOw2+3MnDmT2NhYdDodhYWFKBQKGhoaLsr46Uu4XlvXRWLOnDlUVFSQm5sr7Ya7E0zZnb66ixEjRkgZCKmpqRQVFWE2m2lra6O4uBiTydSre8T1+1xOrIyYhSairq6u2wJproTO3W/iSvjkGW6ux4vtyatFw3cLtXwe6ep7y2Mk+hoajYbIyEgiIyMlgmQwGKSFvLm5uVu1XuTn5xoA7BrIKxIDd/Ea4jFyq5M7QiNu2ORxIt29dzzoHX7Q5OPnP/85mZmZl7VA9hRPPfUUjz76qPS8qamJ6OjoDoNDdKsAHVLgxDgOMTZEEASCgoJ49dVXMRgMHdw84g4oODiYO++8k1deeYW0tDSCg4NZt24dra2tHSY2efR4b/32Go2GwYMHM2PGDCkI73KubX9k0Gg0GrRaLWFhYdx6661UVlZSV1dHdXU12dnZ+Pr6UlFR4bZoX0+g1WoJDg5m+fLlZGVlUVFRgVKp5Ne//jU6ne6inWtKSgqBgYEcPnwYlUpFZmYmubm5l7Wb6mwi7GqCdLWKPPHEE+zatYt//vOfVFRUdNmGPKivp/12di6+vr7ccssteHt743Q6efDBB/n666+pqqqisrKSTZs2ceLECcnleLm7zu4QKneLnEJxIW11+vTpJCUl4XQ6aWtro6qqqsPYcv18T66FSCTk1j+tVnuRXo7Yh0gsREuH1WqV3LKu6aje3t7SgitmzgFSley+hGjB1Ov1BAcHc8011zB9+nTMZjNWq5Xo6Gjq6upQKBQUFRWRm5t7yUrTrsTB9ZrJLROii0V0XYvXqKGhQSpzYLVaO1ib5e4scV6WBxKLlhHxuYd89B9+sOTjwQcfZMOGDezZs4eoqCjp9fDwcKxWq1RdU0RVVRXh4eHSMYcPH+7QnpgNIx7jCp1OJwWLySEOIPGGF+uayH2TVqsVm80mVa8UrRri58XJxWazSYuBOHAee+wxSktLKSgoYPTo0bz44os0NDRIBeIiIiIwmUyYzeZe7/rVajXBwcEIgsCmTZt44403etVeX2LmzJlYLBZ8fHy45557MBgMwHeL0NatW1m3bh179+4lOzv7svtZvHgxL730EtHR0dTW1krtbtiwgVOnTlFRUUF1dTXFxcWEhIQwfvx40tPT+d///V/2798vxeIUFhb2yfe+lMtEXMhEl1lUVBRJSUkkJyd3IB8iuqsGeTkIDAzkyy+/ZNSoUXh7e0vnP3/+fKmvJ598kttuu42CggLq6+t7VcOksxgPd24YEb6+vvz0pz/ltttuIzg4mKqqKn7/+9/z6aefSq5UOTojOO5cYuJfeSVokSiIY9t1Fy9C3KG7kjH5c7PZzGOPPcbcuXMpKirihRdeoLq6WtL2cTqdHTY/lwutVovRaCQqKori4mLuuece7r//fiIiIiQrR1NTE2azmZKSEkpLS2lra+ORRx7h1VdfvSQJchdI7arELBJTkWDExcUxadIkXnvtNaZMmUJkZCSDBg3i73//u+Rige/Ipeh+UqlUtLW1dbCsyH870Y3tQd/jB0c+BEHgoYce4quvvmLXrl3Ex8d3eH/06NFoNBq2b9/OsmXLAMjJyaG4uJiJEycCMHHiRJ5//nmqq6sJDQ0FYNu2bfj6+jJkyJAenY84SFQqFUajkba2NsniIRcdA0hMTGTGjBkMHjyY+Ph49Hq9VIW2qqqKv/71r6xcuZKwsDB0Oh0WiwWdTkdoaCh+fn4MGjSIkSNH8sYbb7Bjxw5MJhPV1dXSpCYGpF4umpub+eijjxg9ejRTpkxh9OjRlJaW8utf/5qGhobLbrc3CAsL4/3338fb2xu9Xo/BYECn09Hc3MyGDRs4evQoycnJzJ07l/T0dFpaWnpFPk6dOsXvf/97ampqaG1tlXbsBQUFVFRUSK6d9vZ2qqurKSoq4uTJk7zxxhtMmzYNh8NBW1sbJSUlfWIB6sxiITc3i5kD4k57xIgRLFmyhN27d1/0WXmAc2ftXy6cTic1NTU4HA62b9/OmjVrsFqt3HPPPSQkJBAUFIRSqeS5557j9OnT7Nu3j9dff73H/bgSKNdddFcwGo3cd999+Pv7S5aan/zkJ1K5eDlc2+yNuV5OTuCC2NWAAQOIj49nyJAhzJ07V9ILMplMnD9/Hj8/P9auXcvOnTvR6XTMmzePhIQE/P39GTRoEEeOHGH37t0UFBRIC6iogdGbmI0ZM2Zw2223MWzYMMxmM9u3b+dXv/oVy5cv54MPPpAIj8PhoKmpidjYWIYNG8bYsWPRarVdkg+5FUIevyFuvuA7xWTxfo6N/f/snXd4XNW19n/Tm0Zl1HuzJVmSVdzljg02rhQDptuUQAiQXMJH7iUEbkJyExJSIKEm9NACtsHG2GDcwL0XucrqvXeNykia7w/fvTkzHtuSLWGHq/d59NgazZw25+z97rXe9a5orrzySq677jq8vb159913UavV6PV6brrpJu69916ysrJISEjg+eefp7GxUYpLRbRJGIuJKJOnqNgQBhbfO/Lx4IMP8v7777Ny5UqsVqvUaIjKEx8fH+655x5++tOfYrPZ8Pb25uGHHyYrK4sJEyYAp/PiycnJ3HHHHfzhD3+gsrKSX/ziFzz44IMeoxt9gdIQSCmUEg+YXq8nIiKCjIwMRo4cSXh4OE6nk7a2Ng4ePMiWLVvYsGEDUVFRJCQkEBkZSUxMjAwlGgwGzGYzY8eOxd/fH4PBQHx8vFxhizDkxaCnp4eKigo2b97M1VdfTWZmJtHR0UyfPp29e/dSUlJyUdvvD+bNm4fNZiMwMJCsrCwZinY4HBw9epQtW7bw9ddfk5OTw/Hjx+np6SE8PJwpU6awe/du8vPzLyik39HRQWVlJdu3b5chcEE22traXLbZ1dVFW1sb3d3dfPDBB6SnpxMYGMicOXOw2+1s2bJlUFZV7pOKv78/8fHxTJkyha1bt9LY2HhOAnahGpBzwWazSWG3aJS2efNmOjo60Ov1pKenk5KSwtixY9m9ezfHjx+noKDgovfrfh6e9BcCIv1ZUlJCUFCQnJwsFst5Ixye9ns2vcfZTMFE1ZvJZGLRokX4+/sTFRVFYmIiEyZMkPe4WOl7e3uj0+mIi4tDo9FgsVgICgrCz88PPz8/JkyYwMmTJykqKjrv8fYVV111FXPmzGHs2LGytNdut7N9+3Y0Gg1bt26lubnZJdWRlJREfHw88fHxMuJ7LiivmzJSJdI8SgGqyWRi/PjxZGVlkZqailarJT09XZbKRkdHk5WVxcSJE0lLS6O1tZX169dTVVVFS0sLHR0dLkRViFEHKlU9hLPje0c+Xn75ZQCmT5/u8vqbb77J0qVLAfjLX/6CWq1m0aJFdHZ2Mnv2bF566SX5Xo1Gw+rVq3nggQfIysrCYrGwZMkSnn766X4fjwgViodBiMYEi+/q6pIr9vDwcFJSUggJCZEEJTc3lw8++IB3330Xp9MpIw9ZWVmyAqa7u1tuz2q14uXlRVBQEHFxcRQXF8uQbl8e/L7giy++IDo6mnHjxhESEsL8+fNpamr6TsiHWq3G39+fH//4xyQkJKDRaGhsbMThcNDQ0EB5eTn79+/nueeek2HyEydOkJeXx29+8xumTZvGl19+SVFR0QWRD+FE6x7pOZeItK6ujt///vfMmzeP++67j0WLFtHd3c3u3bsvinycKzqhJBCRkZHMmjWLp556ikWLFrF3716qq6s9btNms0nx80BGs6KiorjqqqvIzMyksLCQoqIiioqKsNvtvPzyyyQnJzNt2jSCgoL47//+b8rKyi5Y76H8nHIVq7xOntIiBoMBvV7P5s2bGTFiBHD6uzt58uR50xSeQvaeIBYa7lboAL6+vmg0Gmw2Gz//+c/p7u7GYrHg4+Mjxw29Xo/RaMRms+Hj48P8+fOZNWsWdrudjz/+GF9fX5kaHTVqFGvWrHGZrJXH2x8iolar8fPz44c//CFpaWkYDAZ2796NxWKhqKiIsrIyPvzwwzO2q1arSUxMZPz48URGRp7X8FC5MFOmnzQaDXq9XjpFi9eGDRsmyZC/vz81NTVSJ6fRaGhqamL+/PnExcWRkJDA2LFjsVgsbNmyhRMnTsgyW3GsYpEmopJDmo/Bw/eOfPTlZjEajbz44ou8+OKLZ31PdHQ0a9asGZDjEfXkPT09LuW13d3dGI1GIiIiSEhIkNEZrVZLU1MTa9as4ZVXXiEvL086GO7btw+bzUZ0dDTLli2TqSPx0HZ3d/PHP/6R7du3c/vtt6PX66VOZKBW2VVVVXR3d8vy5WPHjp11Mhto+Pv78/XXXxMSEkJnZyfHjx9n0aJFNDc3nzONkZKSgs1mo76+ng0bNlxwzjs/P5/8/PwL+qwId7e1tbFt27aL1uCc714Xfw8ODiY1NZXe3l7mzJlDS0sLpaWlHo/vjTfeYPjw4Zw8eZIbb7xxwMTBI0eOZMmSJWg0Gv74xz+yadMml+qRY8eOcezYMbl4GAicixB4unYGg4GoqCieeOIJAD799FPeeecdVq9e7ZG4uO9HCfeKF2UkRJAIZVkswF133YWfnx8Oh4OwsDAZ5WhsbOTgwYPYbDZ6enooKCjgZz/7GbNmzcJkMtHS0sLevXvJzMxk8uTJ0o9Cp9PR2dnpkmoVomhhbNhX+Pn5sXz5ctLT0yksLOSzzz7j+eefp7y83EWk6U4Y9Xo9I0aMYMyYMWeNBimh1WrP0LYBMl0pFlFOp5PAwEC++eYbTCYT1dXVbNy4kUcffZSnnnqK8ePHExQUxNGjR1m4cKGMWHd3d/PII4/g5+dHV1eX7Horjl34hQyV1w4+vnfk43KDsvLBZDLR0dFxRjlYcHAwGRkZtLe3y7CiyWQiMDCQxsZG6c4qPrN9+3ays7Px8vIiOjoam82GxWIhKipKPuBeXl5kZmayfv16yeZVKtVFaT4E2tvbqauro6qqCn9/fzIzMzl8+DBHjhy56G2fDWq1msjISLKysoiJieGNN96gvLyc+vr6c5q+hYWF8eMf/5i5c+eSk5PDmjVrXNxuv0v87Gc/IzU1VZbhrl27dlA7+qpUKh5//HFmzpzJyJEjKS4uZsWKFWRnZ5/1M5GRkRiNRtl5eKBQVFTE5s2bWbJkCTU1NR7FmwMFT2WufdFjJCYmcvXVV8v3izTsZ599dtaIRl8rasS/ykWAMszf29tLfX09GRkZZGVlodFoeO655/D29iY0NJTHH39cmmW1t7fT0dHB2rVrXaII11xzDVFRUZw8eZL33nuPI0eOsH//fpdjEZGD/joed3d3c/z4caKjo9mxYwevv/465eXlkkCfTXv07LPPcsUVV3Dy5EkefPDB837vglyI6IYnV1MAs9mMn58fR44cYcSIEXh7exMREUFhYSG//OUvsVqtxMXF8dxzz6HT6WhpaaGyspKtW7dy5ZVXMnr0aDo6OsjOzpb+LSItrtyPiDgNYeAxRD4GGUqvDWFCpkzFmEwmKUC88cYbXfLLgumLh0IMpi0tLbS1tWE2m1m+fDnz5s1j1KhRLiViQUFBLFq0iE2bNkl31YFKuzidTg4dOsRnn33G0qVLsdlsspPkYEGlUpGQkMDVV19NdnY269evp7S0lM7OTux2u8cBws/Pj9jYWJKSkoiOjpbutIM5mChL/MT3brVaueqqqxg+fDg+Pj40NjaeU0cwEDAYDEydOpVRo0YRFRWFWq1m48aNnDp1Sg62nuDj4yOjZQOJzs5Oud/Ro0dTUVFxRj+lwYKn6+yJRAQHB0tBeXd3N0ePHuWrr77q07XwJGw924Ts/rtOpyMqKork5GTi4uKwWCy8//77HDhwQKYX8vLyXHw+1Go1bW1tWK1WAgMDSUpKIikpifb2dnJzc9m9ezfHjh2jvr5e7ktpmNXf71ekO1tbW6mqqnIhHp7OUafTYbPZGDNmDDqdjtzcXMrLy8/77J3r78rUsUajkR1oe3p6OHnyJBs2bJDfYVVVFWVlZTgcDpqamigvL+fIkSOsXr2a+Ph4AgMDiYuLcyHYyu/vfO6xQ7h4DJGPQYaSEHR2dspcpICPjw89PT3U1tYyZ84cKisr5cTV3d1NSEgIra2tchBRmpYZjUZ27drF9OnT8ff3lwMVQFBQEAsXLuSRRx6htbUVp9PZJ1v4vuLAgQOo1WqWLl16hgHQYEClUhEaGkpqaiqffPIJ27dvP2+qJyYmhtGjR+Pv709PTw96vV6WeA4GLBYLJpMJvV5PTU2NtGoOCAjgjjvuwGq10tHRQWNjIy0tLYOSTxZVTYGBgVxzzTVER0fT29tLXl4eX3zxBdXV1dL50t2WOigoCC8vLzo6Ojwaal1MhYRICcJp0WJxcTE7d+68qHPtD5SRC0/3qtFolI3kACoqKvjss8/4xz/+gZ+fn4waerIkP981UYomleW1AhqNhjFjxjBhwgQiIiKora3lrbfeoqOjg4qKCsrKylxKdAHpGSSeiQULFhAeHs7Jkyc5efKkrL4S+xHCdKW4sj8Qmo/Ozk6pS/GkCfL19cVgMGC1WklKSsLX15fS0lKOHz+O1Wo97zjhSeSpjHq4286LMe348eN89dVXjB8/nsWLF3P48GGOHz9OTk4O/v7+nDp1it27d7Njxw4WLVqEzWaTFYNi+57KsAe7q/f/ZQyRj0GGcrASuVZlg6jQ0FBuv/127rvvPpqbm7n33nvx8vJi9uzZ3HPPPSQmJvLSSy/x9ttvy5JJOO1HMG7cON5++20sFgtdXV0uJlft7e0UFxdjNptl2dtAPkhiIu/p6eHQoUNndX4dKHR3d7NhwwZOnTrFjh07+vSZBQsW8OCDD+Lj40NRUREvvvgiH3744aAd47x58wgODqazs5PVq1eTmZkpUzyNjY309vaya9euM8of+wpPLdHde4Ko1WrS0tKYNWsWOp2OiIgI1q5dy9///ne8vb3l+wwGg0zFNDc3Ex4ezmuvvYavry/Lli1j1apVZ+z/YsiS3W6ntrYWgOHDhxMWFiarCgYayuPsKynOyspi/PjxsoLs4YcfZu/evYSEhPDII48Ap8vtt23bdgYx86Qt8fR/MbEZjUZaW1tlFM7pdHLNNdcQHh5OSUkJO3bsYNSoUXz00Uc0NDS4TJLKc4uJiWHChAlMmzaNG264gd7eXmw2G1arlYKCAheCo1K59nXq74q+ra2NV155hd/+9rfcd999ZGVlcdVVV53xvv/4j/8gNjaWiIgIpk6dyuuvv87KlSvZs2eP/P7PBaU4VhANYSImyJPD4aC5uZmysjL5XSxatIgFCxbQ1NREaGgoCxYsIDc3l7lz5zJv3jyampqora1l7NixxMXFsW/fPr7++mupLxEmb+KZVJK2IdHp4GCIfAwyRD5XiMxEKE+tVjNz5kxGjx5NbGwsjY2NrFu3jvz8fAwGAwEBAVx55ZVy8hIWwCqVihkzZjBr1iyuvvpq+Tp8awltMBg4fPgwd955Jy0tLXLVOZDkw8fHR1q+D7Q+4Gyoqqqirq6uT+81mUw0NjZSVFREUlIS+fn550w3DAT27t3LDTfcwD333MNjjz0mzYx6e3vx9/dHp9PR2NhIfn4+n3322QU19nIfCMUgaTab+eUvf0lKSgrh4eEEBgai0Wjw8/Nj7ty5jBo1Co1Gw1NPPSXLM9PS0vD19SUvL4+2tjZCQkJ466232LFjh4sJ2kB4ftTX15OTkwPAl19+SW9vLz/5yU+49dZb2b59OwCtra385S9/oba2dkDC3e6CTyXcz+XOO+9kypQpwOlr2tDQQGZmJtOnT5dVcuI8CgoKJJk82z7d/y/gXummfN1kMnH48GF+//vf43Q6aWpqcjEkU/oFZWRk8PDDDzN8+HBZFpyXl8dLL73EZ599hsVi8Rhdu9Dv0uFwcOjQIR544AFuvPFGabbX3t5OXl4eDQ0NXHfddVxxxRX09PTQ1tbGkSNHePnllyksLKS1tbVP+1G6vIpjdF84idfb29vZtGkTn376KaNGjeKKK67A29ubzs5Odu3axZo1a6ioqGDq1KkMHz4cb29vtFotQUFBJCYm4u/vz9tvvy1dU923PxheN0P4FkPk4zuAUsQktBdGo5GRI0cyZswYYmJicDgcfPLJJ9TW1qJSqdi9ezdvvfUW8fHx8sEVqwGtVovZbCY6OlruQzwootb+yy+/lGkJYaCj7B9zsUhJSZHGR9HR0Wf0yhkMdHd39/n4Y2JiiImJwWAwsHLlSr744gs5+Q0Wqqur2bVrl4w43HDDDQQGBgKnKw82bdrE1q1bOXz48AX1dznXhKzVaklOTpaEQqvVotFoyMnJobq6msbGRoxGIzExMej1enlcGo2GkSNHYrFY8PPzIzc3V+bnBdwjCRcyGAcHB5Oeng6cjnyEhISg1WpJSUmReqG6ujq++uorHA4H+fn5slfRhcBTpYnydXfU19dLoq9SqVi6dClWq5Xhw4fLqq5p06bJiqns7Gx27dpFXl6eiyhS7PNscE+fwGkSsmrVKvbs2cORI0doaGjwaC0vzsNisXDzzTfLtgp6vR673S5TNNXV1dLhV7nfvh6jJ/T29lJVVYXBYGDDhg00NjYyc+ZMOjs7yczMxOFwkJ6eTn19vUx3lJSUUFBQQGtra5/JpPu9pkyBKHtWiev21Vdf0dPTQ2dnJ1qtVnqfHDlyhNraWkaPHs3w4cOJjY3FZDLJCPHGjRtZtWqVx9JgZZntEPEYPAyRj0GGMscsQoheXl6EhYWRlpZGamoqgYGBNDU1sXnzZlpbW+nu7qa5uZmmpibmzZtHdXW1zBfrdDp0Oh1ardZj2Lq3t5c9e/awbds26WgqHnzR5+ViodPpSE5OZurUqTQ3N0tX0csBWq2WkJAQJk6cyMiRI/Hx8WHLli2sWLFiQCp9zoXW1lZ27NjBkSNHiImJYezYscTHx0udicjF19fXy0Z3/cH5BIyiHFH0uWhqamLjxo0UFhbS0NCAxWKRBLS6upqGhgbi4uIYN24csbGx5OTkkJ+fT3FxcZ9C5P2B1WolPDyc9vZ2Ro4c6SKATkpKAqC2tpbp06dLx8kLJR99SbW4T8LV1dU0NTXJ1++8807a2tpkb5DOzk5SU1PJzMxEpVKxbds2mpubyc/P90hszkbSPOkIurq6WLlypewd4+m5FgsXlUqFxWJh/vz5eHl5ydLUqqoqsrOzqaurkwTnXOXBfbk+7p9vaWmhu7ubnTt3smfPHmbOnElMTAy+vr6YTCba29vZvHkz69evZ/fu3eTl5fVrn56OQRgjKq+ZSL+IY/Hz8wOQInyj0UhbWxtarZYFCxYQGRmJyWSiu7ub+vp6ysvL+eijj/j444/PaPTpKbU5hMHBEPkYZCgfHlEml5aWxl133cX8+fPl4NHc3IzNZqOrq0tqNOrq6nj11Vel1kOITKdPn87NN9/skgcWD0teXh5BQUEkJSWxZ88e+UANpCA0IiICm81Ga2srH330EevXr+fo0aMDtv2LQUhICK+++irTp09Hp9PR1NTEjTfeyMcffzzo5ANOTyQtLS309PSwefNmVCoVGRkZAPzwhz8kMzOTTZs2sWrVKvbv3z9gXh+dnZ288MIL2Gw2hg8fTlRUFL/61a+kJwt8O6EoBcJ//OMfgdNGbOPGjTtjYvQ0CV0IRE+djIwMgoKC8PX1xWq1urwnICCAJ554gk8++YS9e/eeIS7sD/rqgSIwceJEEhIS5O9NTU1s2rSJEydOcN9995GdnU14eDiRkZGYzWYmT57Me++9J5u7iW2eTdAK31qHu3/nYmIXEOlVTyk2k8mEt7c3er1e3meNjY188803PPXUU7KU1VM5uVh89EUge7YIycmTJ+VCaMqUKXzyySeMHj0agD179rBy5Ur279/v0UdGuX1P2xZ/U4piRdm3Uoiq7P6tUqlobGzkwIEDZGdn43A4MJvNjBo1ilmzZvHYY4+hUqloamqiqqqKw4cP89BDD0kBv9J3SWxPkL8hAjK4GCIfg4z29nYMBoNcdTqdTqkDsVgsHDhwgLKyMhlmVpbWwulcvsPhkBGMmJgYLBYLTqdTiknh9KRXUlLC7bffTktLCw6HQ9qui9XbQJmMCft3m83GPffcwyuvvDLoglMBnU7HmDFjOHTokMeKjLa2Nr744gsmTJjAihUrWL58OXl5eYPaxt4dGo2G4OBgFixYQHR0ND09PdTX1+Pn50dGRgYmk4n169cPKCHs6upi+/btMjqm0Wior6/3mCsX95i3t7cUoRoMBpYuXcr777/vQtKUeomLHYzr6+tZuHChTB3q9Xr0ej3Lli0jLi5OTs5XX301e/fuZdu2bRet0+lLygXg3XffxeFwcO211wKnydyePXv4+9//zquvviqrpdLT0/n0008BuPHGGzEajR4bLPa1zFZEqdyfTXfyoVKpCAkJITIykoyMDBkBee6553jrrbdoaWnxeI/r9XpUKhWdnZ19JrrnSzeoVKcbrkVGRhIZGYm3tzd2u52CggL27Nlz3iq0c21bNIsTUPoiuVekKKsGe3t76ezsRKfT8fbbb5OWlobNZsPpdLJ8+XKqqqooKCjg3XfflddJnKe7vkR5nkMEZPAwRD4GGTqdDpVKJctnb731VsaNG0dCQgJbt26lpaWFQ4cOsX79+jOc9ZTOgYKh33PPPYwbN04SGJ1OR3V1NTU1NVRVVVFVVSUnZdF6Wgw6wtb5YnHixAkqKyupr6/nn//850W3qe8LkpOTCQ4Oxt/fn5CQEMrLy6msrHQRbV5xxRVcffXVpKenYzQaqampoaKigtjYWE6dOjUolRXumDhxInPmzJGN0nbs2MGOHTvo7u6mo6OD2bNnk5qayv3338+kSZP4/PPPOXDgwEXv1+l0Yrfbz+szIV632Ww88sgjjBo1CovFQklJCQcOHJD3Sl8G3v4Ozr29vZKkitWzRqPhxRdfZN68eUycOFGWK6elpTFlyhTWrVvXb2Hu2dIg5/p7S0uLi+W50qdF6F+mT5/OzJkz5WeGDx8udSzu2z7b+QuIhYinEL97YzOhQwgODmbixInMmDEDg8HAX//6V7788ktKS0s9aiqUplngGvm4mKhScnIykydPZsyYMTgcDk6ePElDQwP19fUyanuxUKaq4UxCJIiIaJTX29uL2Wxm4cKFUoSrVqvJzs7m0KFDHD9+nNzcXOrq6tBqtWf18XAvgx7C4GGIfAwyBIsX9fFXX301EydORKVSsXHjRvz8/Oju7qampkZ2rRTM3uFwyCZxRqOR4OBgbrjhBoKDg2XO0+FwUF9fT1FRESdPnnTpztjT04PD4ZDN6wbKZEwMaq2traxevXpQ0xkqlYqAgAAmT55MbGwsVquVsrIyjEajvF5wmlhNnDiR++67Dy8vL6mwDw4OZubMmRw7dozy8nKP0ZKBQkBAANOmTeO+++5Dq9VSXV3NF198wYcffojRaJQTb3h4ODfccAOTJ0+msLBwQMgHfDtAny+iolKpsFqtLFiwgLCwMKqqqsjJyZFumAMZkTnXsYpU5AcffCD7mIwbNw6dTkdYWBhJSUnSJG+gVqBni4L4+vpiNptdGkAKvwrhTDx69GiuuOIK+ZnAwEAiIyPPu08xUbo7GytX3sr3Ko9TpFpjY2MZNWoUkydPJisri/b2dpYvX05OTs5ZJ0v3dJBSz3Ch37Fer2fkyJHceOONxMfHc/ToUerr66mvr6ekpESmRwYyYuB+jZTnJfbn5eVFbGwsixcvljb09fX1fPPNN2RnZ3P48GGKi4vlZ8X5e+rifDHXZwh9xxD5GGQ4HA458Yt20k6nk9DQUG655RZ6enqYMGEC8+bN44YbbpAdIUU9+6xZs2QH27vvvttlBaDVaqU9cH5+Pk8++SQOh0MamWm1WqnwForwgcCyZcsYNmwYTU1NLFmyhJycnEHpzgqnzZ/uuOMObr31Vnp7e9m/fz8ffvghpaWlLmHkyMhIQkJCZJrq4YcfZsSIEfzwhz9k5syZNDc3s3z5cg4ePDgoxwmnw/CTJ0/GYDBQX1/PM888w7Zt22RXUa1WyxtvvMGJEydYtmwZYWFhWCyWC9rXuQZ4T+WVyhWdWAGvXLmSq666ii1btrj0MXL/fF/3c6Goq6vjlVdeYePGjezatQutVktFRQU5OTnSh6E/cI9yePLhUP4dkBEpQdQjIiLQ6XT09PRwxx13kJeXh8FgoKioiNTUVOC0V4rJZDpnFEHsy2AwyIUFnI5qarXaMwSo7it8p9NJcHAwX375pRSY2u12Nm3aRFBQEFVVVbS1tbm4lyr3LYibOBdx31xoFDA0NJSUlBTi4+P529/+RktLi9TurF271qVR24VAmKc5nU6ZRvF0rMpqII1Gw4QJE7j55puZP38+KpWKkpISdu/ezUsvvURJSYk01hMRD9FVWERBlBU1ysZyg+VFM4Qh8vGdQNzsWq2Wuro6GhsbCQkJQa1W093dLR0Af/zjHzNr1izWrVvHihUreOyxx2RXXaXBjkajobm5mQ0bNlBUVMS6devYt28fvb29LkZjKpVK1vqfSwjXXxw7dgxvb286Ojp47rnnBk1PMWXKFB544AGuuOIKysvLWbduHf/85z8pLi6Wg4PFYuGaa67hzjvvZNiwYVRXV7NmzRr279/Pjh072LNnD5GRkaxdu1aufAYrrCoGuK6uLp5//nnWrl3r4kvS3d2Nt7c3QUFB8jWxyu7vMfVngHef0KZNm8aiRYu49tprMRqNfPDBB2zZsuWshMadvAwWysrKWLx4Me+88w46nU52Mb1QnOsauf/t0UcfJTU1lenTp/Pkk08C8Mgjj3DXXXdRXV0te94IXQqc7vnyySef9Om6KFsrqFSnXWgFCejp6cFoNEpyolar8fX1pampCT8/P+Li4qRlf1lZGcXFxZw8eZJ9+/a52KcLIy44fS8qyblYHPS3p4s7nnzySaZNm4a/vz9XXnklDz30EJMnT2b+/Pn4+fnx7LPP0tTUJN/vboJ3PogxUZyPpwoi5fMiXtu5cydNTU0sXbqUkpISPv/8cz799FPKyspcosnKNDS4Ou+KRaIysjKEwcMQ+RhkKFl1Z2cnfn5++Pr6uuRhw8LC0Ol0OBwO4uLiuPrqq4mNjSUjIwMfHx+pG4HTD+SpU6coKysjMjKS1157jePHj8t0gsFgcDEVE90zByKUaDQaGTduHHFxcZJ8CEHbYKC2tpaDBw9y7bXXkpOTQ2VlJVVVVYwaNYqEhASKi4upqKjgxhtvZOTIkahUKvLz83n77bdpbGyUzbB+9atfkZOT0y+/gf5ApVLh7e3N6NGjiYmJwWw2M2PGDKxWKxs2bHBxZBXVCgOxzwsRgwYHB5OQkEBcXBx5eXl89NFHbNy48ZyRK0+RlP7ss69Qq9X4+PigVqspKio6ZwO888E9yuGe7nBHQ0MDtbW10jxMrVbj5eWFyWSSbe3dw/3BwcHExMScdV/K/yt1HE6nUxJVT71WhH5n2rRppKenM3r0aEl6vLy80Ol0rFq1iubmZvn5c6U7RAWHmNj78gycbVt2u12K3wU5FAL3sWPHntHCoT/EQ+xXfE5JMMRryrSJIFqJiYmkpaUxadIkAEpKSjh69ChHjhyRkSzldTIYDHJ8FNEPcb7i/UPpl8HHEPn4DiDCfV1dXXIQaW5ulgOazWbDz89PPlxJSUkMHz5cDijigRBEJjc3l/3795ORkcHBgwdleZ1YKShzyRfTz8EdarWagIAAQkJCZMWN0WgcdPIhlOxqtZrg4GBmzZrF2LFjOXnyJCdOnCAzM5POzk7ZL0Q4ZsLpkP6yZcsG5fgEVKrTfVISEhIICQnBYDAwadIkhg0bRmdnJyUlJcDpfiE6nQ6j0egSbr+QyIeSfPTne01PTyc1NZXg4GCOHj3Ku+++2yfX2MFeBfr5+REfH8+ECRPQ6/W0tbW5rOoHA8pr19vbS2trK6WlpWzfvp3Y2FipKzKZTC4CyJaWFjnp9ifdqLyG7uW0yr8JvcmUKVOYPHkyqampctHR3NxMbm4u+/btO+v2PVXVKCvoLua7bGtrk923TSYTarWayspKjh49SnJy8hn3cX+Jh3uEVox9yr8pz1OlUhERESGjL52dnRw/fpxTp05RVVUlF27KtIoyTSbEt/BtKkfoYoYiH4OLIfIxyFCufABKS0s5fPgwGo2GmTNnypysCPkp2b7oeKusb1epVJw6dYply5bxzDPPyFSMSqWSpbciT67RaGQzOzjTX6C/sNvtrFq1it/97nd0d3fT3t5+VpvpgYDD4aClpUU6vKalpREXF8ett96Kr6+vHGwKCgr46KOP+PLLL9m1a9egHMu50NvbS21tLXq9Xubx/fz88PPz4+qrr8ZsNuN0Onn++eddJgGRrhK9Pvq7T+W/7vBUqgnwox/9iDFjxmA0GmVk4XyRDPe0y4VGPpQhf+XK0ul0MnXqVG6//XYWLVpET08PMTExZGZm8uWXX/ZrH2LbymMU/3eflN2Pv6ioiMLCQpYvX86vf/1r4uPjsdlsxMTEEBUVhVarpaWlhV27dtHU1MTrr7/Ohg0bzqopcScbSghdg5jolFUoXl5ejBs3jkmTJpGYmCiJ/tNPP83+/fvP2Q1Y9ChRisAFeYe+p/nO9t0KQzGA6Oho9Ho9O3fuZMeOHRc1WYtIhjsBEZEaYaoovI0ETCYTRqMRX19fAgICqKqqYvXq1Rw7dkx+Xpw3IEX47ucvoiAiOqR8/xAGB0PkY5AhVrjCUv33v/+9fNDmz5/P9OnTyczMJCkpifr6esxms/Q/EEIxtVpNTU0Nv/zlL/n1r3+NXq+Xqw4RMnQ4HLS2trpEIgSZEQPbxT5IWq2WyMhIVCoVe/fuZfXq1eTn5w8a+ejs7KSoqIjJkyfz6quvcu211+J0Olm/fj3Tp09n3759rFmzBj8/P15//XVqamoG5Tj6imuuuYbg4GAyMjJ4++230Wq1TJo0ibS0NLKzs1m9ejVXXXUV1113HU6nk7lz53L8+PF+Ew8B91XguQZ/q9XKnXfeSWZmJkePHmX16tW88cYb2O32804a7qvAC/m+Z8yYwR133CH9PD788EM++OADlixZwv79+5k7dy7z58/H6XQyf/58jh496rFral/h6Zz6EkYXE98zzzzj0gpBLBRqamo4ceIEbW1t59SjnO+aKhcCgtgpQ/++vr6EhITI9ObXX39NXV2dLGVVRjGUJE55TEJs7nQ6XdyORSTkQr7Hn/3sZyxcuJAZM2bw05/+VPaOulgIAibSxCKaqIxMdHd3y6iF0MX8+Mc/5pZbbiE0NBSn00ltbS3Z2dlUVFS4pG6UcF/kKb8r4QAsiMhA2RMM4UwMkY9BhrLETqvV0traKm/qnTt3kp+fj81mw8fHR5aGTpo0ifHjx7N3715UKhUnT54kOzubkydP8thjj1FQUEBxcbEUlYlQodKsSOxXEB9BeC5GuS1y8t3d3eTl5bFnz55BFSF2dXVRX19PXV0dL730EtHR0RiNRo4ePcqnn35KVVUVJSUlsrrkUq9SGhsb6ezsxGQy0dvbS01NDSaTCR8fH0aMGMGvfvUrIiIiCA4OJj8/n7a2tov6PjxpC872u7C+/uEPf0hNTY3c/3eF0tJStm7disViISsrizvvvJNJkyYxfPhwZs+eTUxMDK2trbz11luyL8eFRurcc/bKf8+nkxF/U5Zkt7S0sGXLFnp7e2lvb5cVaZ4+e7Z9KJ06BcTkqnSgTUhIYNKkSSxatMiFPKhUKqqrq+Vk7759MVkq968sURZCdU9pnv6gpaWFrVu30tzczJ/+9Cf+53/+h+DgYJKSkqitrWX9+vVntA3ob6TMPeqgTCMrt9HZ2cm6deu45ZZbOHXqFF9//TWbNm2SJmeerNmV2htltFlcU+E4rUyzDWFwMEQ+BhnKm9hd+FReXk5hYaF8GDo7OwkJCaGhoYHm5ma2bt2KRqPh8OHDHD16FC8vL3Jzc13EUspwoSAXIkcq/gbfPtAXM9np9XoyMjLo6emhpKSEU6dOXcylOS+U3Sw3bNiA1WrFbDbT2NhIXV3dZVcC53Q6aW9vp7Kyks2bN9PS0oKPj4/0rJg+fToVFRUcPXqU3NxcF1Or7+LYhP5E9G+5EPRXYyJQWVkp+3AMGzYMq9VKcnIyQUFBsjtyQUEBy5Yto7a2dkDKwj1pH9xTUZ5SU+7o7e2Vup0LhTLd5r4/5XEYjUbZm8hut8t+PcePH6e+vl5eF/fvwF0PIY5b/E25CDlbRKCvKC8vx2w2c/3117N7924iIyMZNmwYq1atuuhqGnfipvxRno9YXAmSWFxczFdffcVXX30lF2LKayK2614poxwn3SOJcGFRviH0DUPkY5AhwobKVtoi7yhyp+JG1+v1NDU1sWLFCj7++GMZbhQPTWNjo3Q2hdPW62ICE+8R1SfCLVW8LkrILmZQ9/Hx4dFHH6Wjo4PCwsKLHpD7g8bGxou22v4u4HQ6qaioYM6cOYSGhmKz2UhNTeWNN96guLiYN954g5UrV9La2kp1dfWAtY5XduP0BKvVytKlS9m2bRubN28mOzt7UMuO3dHc3CwnUOFVUV1dzfXXXy8jAmVlZQOi2TlXREi8piQaAymYPhvhsdvtsnxYHIOoeNHpdPIa5OXlsW7dOn7xi19gMpmor68nJyeHJ5980sUoUNlJV0Q13dvCC28P8R0LAnI2d8++wsvLC5vNRllZGX/4wx/Q6/Xk5ORw++23e7wH+0NWRRRC9LMSvkhKUiB0VQaDgQcffBB/f38aGxspLi6mu7tbikzdz9E96iO+AwHlYsdd5zSEgYfKOSTpHRSIahYR6hQERGntK9pAi061XV1dshJC2HErByuHw4G3tzcOh0P2ahDvFykWQOo+7HY7Xl5e0uVUhGKVONdK1tPKUGhNurq6Bs1Y7PsCMYCp1WpMJpMc7MQkMZiPnicRpCjDVg6y7uivL8OFHJdIN4hUpIC7ZuFi9qEkAZ7SIINVoXU2iFJ6cSwivA9IkWlLSwsTJ07kzjvv5JZbbiEvL4/8/HwOHjzIr3/9a/leIYp0/w7P992JSXsgurZqNBqsVqtLauRCtUvu2xWRXDFWCgIlIhpCkxEQEMDq1atJTEzk2LFjrF69mmeffdYlmqEcf1UqlRxzldEUQejcoyviNafTSVNT04CUyA/hWwxFPgYZSlMiMdiKQUI5gIiVinhNuUpxfxDESge+dUoUzcSUA5xoKicGfI1GcwZhONcg5ElHMJj25N83KAe4wTBiOxdx9DTJKrsgK7ehDE0PJvEQx6W8BwcjdeYp+nC2v31XUFZYKCc5kToVEczy8nJ27NjBzTffzCuvvMLRo0eprq4+Q0viyc1U+Z2f7TscCOIBp6METU1Nfd5WX9N1IhonFltCeC/+5qnfVW1tLXv37mXt2rVnpJvFmCiiwErHVEEC3TUhymM4X0RxCBeOIfIxyHAPcyqJhNLBT9zsgnicLW+ptJtWkg0BZR5Z9D5RMvu+YijsePmjrwP6+bQOytf6uj2BocDp2XEusqDssaJWq+VzXFNTw759+/jiiy/YuHEjBQUFLmTN3YPCU4TnbPfFQBEP5f4GC8porpKoKc/R4XCwZcsWvLy82L59OydPnnQZs5TiUjGeikiIuG5KcqEcO8W/l4qs/l/AUNplkCDSLl5eXpJkdHR0yDysYPXiYREPmghDixJZ4RHhcDhcLJJFWFIMKOJfURooxKdCud3b29uvNImIpgyVmf17QFnVAZ4FicoJy9Og6z6hnWsb4h683ES/Ahc7abh//mKHyXOlQi70ORMRUJVK5VIeCv++QkllJOJsix+lrq27uxtfX196enro6OiQKWGlmFRJNJSvuYv0AZeoifh7Z2fnUNplEDBEPgYJgnzApQv1eoJoOAffRl86OztlSFI8wALKh/9cE5hy++Lhdl/1qdVqdDrdgDW4G0yIMkdltApcI0JKoygxaIrr4p4/Fr+7D4Bi8hDEU7kiVpb8DfSqdaDQ1+iL+2fg8o6aCHIlQvCXK8m6GIj7T0Rcz/Yecc+Ka2AymTCZTLS2tp6xoBH3sHLcEOZ73d3dLlYASt2LgBDNK1PT4h4TURCRulampMW/SusBse+enh4MBoOL1YE4X5PJhMPhcLGf7+jokH18hNB/iHwMPC6uLmoI/3YQE6DQgADyIRMDg5IsiGZVwmFQvFe5LfFenU6H2Wx2mazV6tMtwcVqxeFwuFgeKwWHlxNEabRWqz2jwRW4+reIgVkMjkrioaxQUHbQFNtzj06Jz4hBX/lzOeJCCMSF6EqU19Edg0XuLRYLycnJvPbaa8THx2M0GgdlP5cKYkJXCn/d7zdxLyvJhLCWF2REtAwQJNq9lFUpknXfv9BtaDQaLBaLS3oETi9mDAaDJA/g6kaqTFeLsUV5f4ltORwO2tvbMRqNLqRFEJPe3l7pDi2IUkdHx5CofhBxeY78QxhUKL1GlKs7ofxW5ljBteeC0pQHPPsXiNfdhYwC7jqWyxHKKIVyoAPX6IenHPvZ0hrK/58vrO+eb76comeXEt9VefCIESMYPnw4KSkpjBgxwkU4/n2CUnei/N3Te5Q9UMQkrewCq3wmlK8J0i3GF2U0z12zIsiISEMrK1aUJEksipSVY0pNiBiX3F93j/aIsUy8x70Z5+U6Pn0fMEQ+/o9BVLyIh8q9MZwImyrLMZWlaUqfEeVEKh5cYdctBhzRhEq8T6QnlA/75Q7lwAyu5EM52ImBUpAWh8PhEsVQkj3xuxhsxapQec2HlPbfQlmt0JeKrYtN7Vx33XVcffXVxMXFsXr1ahoaGs65Cr6Q9NPlBOX1OlvVjKg8EVE+g8EgxxORuoVvU7tKvw7xN4PBIO9rpc5FjB2ifFeZolFWBHp5ecntiu24C3eVKRmRMtPpdHLsEQRGPHfC1l3o8ZTP98X2wxrC2TFEPv6PQYirxOQniIgYZLq6ujAYDKhUpz1B9Hq9XB0oc9/Cm0QQFZGnbWtrc5mY3SHCoErb6Mtx0BYrXWWUR6mVcTqdMpUkXlOaOYn3i9Wh8nqIf5VdbZURFveox+V4fS4GF+ol4nQ6+xwGv5BrphTR+vn5sXHjRl5++WWKi4vP20Dx3/E7Em0Aenp65HVVRjd8fHxoaWmREYL29naXKGhv7+mGdcrFhNBYCIt1lUrlQjLsdru8zkaj8QwrdkAei5eXlxxTNBoNJpOJtrY2aUMgFkWi67B4xjo7O+XYIgiSIBIajYbW1lb5uiBNSpLvrtUawuBgiHxcphAPTlBQEIsWLWLUqFH89Kc/lSItkXe9ECgHUTERKCfRrq4uWTWjFIeK14QQs7OzU5KQUaNGMXbsWDIyMqiqqmLFihXSrdI9n6wsD75cH27RTVMZrRHiN2VIV5lzvvXWW2lubqaoqIixY8cSGRmJl5cXFouFoKAgnnvuOYqKimhqasJut7sM9PBtuka85km8+n1AX8/FaDQyfPhwEhISiImJwW638/rrr3P//fcDUFhYyGeffTagx6XVaklISGDKlCns2rWLgoICjhw50q/cv5JIiu1ejhATr3gGrVYr7e3tLve5IOHufVaUujFheCj0GcqUibu4XEQgxDijjISKyhNld1tlREW58FFeY2EcphR9i+Ps6upyMSxTOqCKbYnvXZynOAYRvfk+io0vBwyRj8sQGo0GvV6PxWJh4cKFzJs3j5iYGGJiYvDz88Nms9HZ2cknn3zS720rH/azMXul3gFc7YjdSYPYjs1mIyEhgSuvvJLDhw+zadOmM3QQyjzrhSAwMJCQkBBOnTrF6NGj6ejooLKykrKysgva3rmgnPyV4V1liFen0+Hv709gYCCFhYWMGTMGnU5HbW0tycnJWCwWqqqqaG5uJiQkhDlz5nD48GFOnjxJYWEhra2tZ+hv3K/r9xVnS4totVpGjRpFaGgoQUFBREVFERsbS2hoKC0tLVRVVWE0GrFYLIPSGE+j0RAUFERQUBD+/v6YzWaam5sHfD+XA5QaDE/PpohqgKtbrzLd6E7Gle93Ok9boIsKFOX9LfYv7gMRERVCb+V+lO9Xbru3t1fqM8TfnU6ni+hURESUQnAR6XAf/wR56uzsdEndDJGPwcEQ+bhMoFKp8PX1lXlts9mMzWbjkUceITIyksrKSkaOHEliYiJjx46lu7ubtWvXegxbngt6vV6GJd0V6Eptg3hQlQI/oQhXDjzKlZDZbCY4ONglaqBctbvnk/sT1tTr9aSkpDBjxgzef/997rzzTqqqqti0adOgkA/4tgpInJ8YWMWg7eXlxahRo5gyZQpr1qwhJSWFhIQErFYrjY2N0hp79+7ddHV1sXDhQuLj49m+fTs6nY5Dhw65XGvlgCmgJIrfJUTER6vVSov/1tbWAdOgKEW5ysqGgIAA7rrrLqZMmcKwYcOkfqi1tZWmpiYCAwN56qmnCAsLk+H8gQqP63Q6rFYrERERaLVafH19iYiI6Pd2LiSqJ9IAggy0t7fL18RzKfQHytScuD/b29vlc90fKMWXwr1YbFuQO0EMVCoVer0eh8MhWzYoU4zi+MVxd3R04O3tTUNDA21tbWi1WpdSW2W6Q0QnxHkDLh4dyvMSz0tvby8mk8llvPHy8qKjo8OlikekapRjnlL0qqzYE9EOcW2/zwuAS40h8nGZIDAwkG3btuHt7c2hQ4c4evQoP/rRj+TNbzKZmDhxImPGjKGrq4uysjLuvPNO/vnPf/bLoEhpj64kF3q9XuZUlRbvcLqhXE9PjwyvCuMzkSsWA6SYRET3TaUgVbm6AlxWXH1ZWcyaNYubbrqJxYsX89Of/pTf/va3fPnll+zbt6/P594fOJ1O6XkiVlLKFVVvby8hISFMmDCBe+65hwcffJDq6mra2trIzc3lqaeeoqqqSp7vH//4R9avX8/dd9/Nr3/9a9rb20lPT6e+vt5lIFSq893LHb8rqNVq/Pz8yMzMJCsri4ULF9LW1sZDDz3EsWPHLvpYlKTU29ubmJgYNBoNwcHB/PrXvyYlJUWGwx0OB+Xl5bz77rvs27eP4cOHs337dpd73lOE7UKQmJjI7Nmz+c1vfkNXVxc5OTns3r37gs+zr8dhMBhYvHgxKSkpxMTE4OPjw1/+8hduu+02EhMTCQ4Opqenh61bt6JWq/Hx8cHf3x+LxUJISAh2u51nnnmGjz76iObm5j5/PyKFK45TrT7dg0ip2VAaIapUKikoB1x6udhsNu6++24mTZpEdHQ0Op2OnTt34u3tzeuvv86GDRvkGOF+P4uUhxibRPRDr9fT3NwsUyCC+AjRqPDosFgshIaGMmrUKF555RUyMjLIzc110QiZzWZZQtva2uqSOhKLDKUIVkRhhgSng4ch8nEZwM/Pj8TERAIDA9Hr9YwePZqUlBQXoVRtbS2fffYZ69atIzw8nOjoaG644QaOHz/OsWPHqKur69O+lCZgIscKp/OpYoUgcrJi4mxtbZWrGmESplyRWa1Whg8fTlRUFF9++SWvvfYax48fdxFgiv0JkZmnsOe5cOONNzJ58mQcDgd1dXWMHj2a/Px8CgoKuPvuu9Hr9ezdu5ddu3bR1NTU36/gDCidZsUArXRW1Ov1ZGRkUF9fz5/+9CfGjRvHq6++SmlpKe3t7bLjr5JIzJkzh+TkZMrKyvjxj38sB1tPaS5B/pQh7cEI/yYlJREZGYlOp2PTpk386Ec/kh2Xr7rqKvz9/amtrWXPnj2Ul5cPCAlyOp3cdttt3Hrrrfz9739n8eLFhIaGYrVaCQoKkt4ndrudsrIyamtr2b9/P5s2bWLHjh3njPad7X7qy70WFhZGZmYmOp2O+++/n127dlFcXHze8xHPVH8xcuRIpk6dysKFC4mMjMRqtWI0GtFqtfzlL38hICAAk8kkSe+cOXPk/kSkQafT4ePjw89+9jMKCws5ePAg1dXVfdq/l5eXyzMvNBhi9d/V1eWSbgTXii+TyUR0dDSNjY0YjUYmT57M+PHjgdOi0fnz59PT08OwYcPkguSRRx6hvLzchcQo+1SJf5VVJ4IYtLa2uujHuru76ezs5MUXXyQlJQWHw8EDDzwgnaRFtEVUSHV0dEjth7upmFgMCZIljmWo4mzwMEQ+LjHMZjN+fn4EBATIcKW3tze+vr7Aty6EFouF9PR0PvnkE0JCQkhMTGT48OFcffXVqNVqjh8/jlqtpqqq6ryDrHtprdIcSzyYyuZ2SkGYMrcrJqLQ0FCioqKIioqioqKCkpKS8zad6m+1w/Hjx4mNjcVms7Fx40aOHDlCWVkZvr6+LFiwQIZ5CwoKSEhI4NChQxdtEKT0MlH22xGTQXl5ORUVFTQ1NVFcXMyuXbuor693CSXDtymMkSNHEhwcTElJCbt27XIpeRbXREBMlsoBeCDIR2hoKMOGDSMwMJBDhw5x4403EhMTg1arJTExkQULFsiwdGxsLKWlpWzbto1t27YNSNdSOB3Fuuqqqxg3bhwVFRWMHj0aPz8/DAaDy8TT0dHBzp07iYiIwG6309DQcMa2+kpg+/KelpYWKisr5Qq/tbV1UNoLaDQaZsyYwdixY8nKymLixIny2RfnY7FYUKlUlJeXU1ZWRmhoKMXFxWi1Wnx8fAgPD2fv3r3ExMQQGxtLTEwMvr6+MkXWF4h0hZIgi1JVpVOpknAqPTd6e3sJCAggMzOT4cOHk5ycjM1mk2kZq9VKR0eHdHp2OBwEBgbS2Ngo20Uo07ruURGRglZqRUS0xmKxEBYWxvjx45k0aRI6nY4jR46wZ88eaYAmPiOeXTGWeqpQE/tTugz3d4waQv8wRD4uMaKjo4mMjJR5ZjjTlEqj0eDr68vcuXNZs2YNMTExjBkzBpPJxA033EBvby8WiwW1Ws3GjRtlh8zzQaQS3EOgSp3D2QYh5WogJiaGqKgowsPDsdlsLikbcQ7KFMuFhMb/9a9/4eXlRXJyMmvXrmX//v10dXURGxvL5MmT6enpIScnh5ycHEaMGMGJEycuinwIxb4I/4pjF2Hazs5Odu3aJdNRBw4ccMl/i+slIhdilWi1WoHTpFN8T8q0i/KaKeHJyK0/UKvV+Pr6MnbsWBYsWEB6ejqvvfYaDzzwAIGBgajVam655RY0Gg3Nzc00NjZKTc0nn3xCdnZ2v6Me7t+zSOfcf//9jBo1Cr1ez6JFi6QfTGNjo9QImEwm7HY7hw4dIjg42GPuvb+6ofOhtraWU6dOAZCQkEBeXt4ZeiJPGoT+roz1ej1Lly4lLS2NkJAQDAYDTU1N0kHV4XDQ0NCAVqtlx44dbNu2jXHjxrFp0ybMZjMxMTFkZWXx3nvvcc011xATEwN8m1roK5RkUpiGtbe3o9VqpSuxMsrkXvnV0dGByWRi9uzZzJs3j+7uburr69Hr9Wg0GqqqquS9bzQaMRqNxMTEUFdXR3t7u+zBIsYEUdYvSLaI7LgTh56eHqxWK+np6fzpT39Cp9Oxa9cuNm7cKK3Qla0JRERHp9Oh1+tltZ4gH6L6RTyrnipshjDwGCIflxi///3vmTRpktRVuHs8qFQqGhsbOXjwIIsXL2bjxo3s27ePv/71r/zyl79k2LBh/PznP5cP/s0330x2djb19fUe96cUcQkBqbAuVqvVsnxXWRarNB7zlAMNCQnBy8uLpqYm1q1b52Kh7skp0Gg0yuhJXx9uq9WK2WzGZDKxaNEi/ud//ge73U5jYyNdXV3odDoWLVpEUlISS5cuvegVqxjsent7sdvt0vtE/K6ciJVCUeVqSrTvNhqNLFy4kOrqasxmM/Hx8XzzzTdMmTJFtksXpdXKxlbi2in78VwoAgMDefPNNxkzZgze3t7odDpGjx4t/97V1UVJSQnh4eH86le/4o033uhTlce5Jn/31/38/Fi+fDkpKSnSD0IIoD/55BM2b97M3XffzUsvvcSIESPIysriiSee4LHHHiMnJ8fFF0KE6gcyJD537lx+/etfA1BdXe2xlH2gV8KdnZ0UFRXxyCOPsGDBAgCOHj3KCy+8QEBAAF1dXbS0tPC3v/3tjM9ef/31LvfFddddR1lZGYWFhRd0LOJZFHoKoUcSxNfLy8ulQgugtLSUlStXsm3bNr7++mt6e3vJysoiODiYN954g0cffZQZM2YwYsQIvLy8ePbZZ3nkkUfIzc0FXL8/QdbFcyfGG+UzIJ7F2tpaqfcqLi6moKCAkpIS6uvrz1g0KUmLGJsEOTEajTLFJBYrYlEmPjdksT44GCIflxjvv/8+nZ2dXHPNNS5K946ODnx9fVm9ejWVlZXk5+fT2NjIjTfeiN1ul/4RS5culVEPoR0pLi4+K/kQEIOo0WiUpXB6vR4vLy86OztdVgZK9bd4HyDFb59++inp6emEhYXx1ltv0d7e7pLGEZ8RdfvK2v++rlzT0tKIjo5GrVYzc+ZMLBYLDoeDxsZG1q9fz7Zt25g8eTIJCQn4+voOSKRAkAKhgVG6kyodSd1dE5WhZKHlECHnhoYGduzYwXvvvUdLS4sLcRErQUHMlJbeFyN8czpPlzxOnDgRs9lMfX09TU1NBAQE4OXlxfPPP8+HH35IcHCwDPP3NcXSn8m4paWFp556ipdeegmNRsPJkyfJz8/n888/Jz8/n/r6enbv3k1dXR3bt2/nww8/xGQyUVNTQ2trq8t9M5CkQ6VSkZWVRUpKCg0NDUyfPl2WQru/T1nhdaHo6Ojg8ccfl9EFjUYjK6OcTqd8/urq6s4pNhaaDDj9PSxbtoycnJw+H4d49tVqNQaDQZ5vV1cXzc3Nsqu2iO65Ew+AoqIiysvLpRmY0+mktrYWrVZLU1MTf/3rX/nwww/JysrixRdfxGKx4OXlJRvTKSHOXZAHITBVVsuJtMvkyZO566670Gq1PPHEE2RnZ0uxrfhR9mcym82kpKTwwgsv8PTTT7N7925KS0vp7u6WuhrxDCsr+kSkZAgDjyHycYmg0WiIj48nISGBwMBAGY3o6emhuLiYw4cPU1BQwP79+2UYXKQW4HTTq1WrVtHc3Ex0dDTDhg1j2rRpjBgxgpMnT9LQ0EBjY+MZ+1Ua8Sjzt8rKFWUdv4DyYRRREqPRSFxcHOPHj2fYsGE0NzdTXl4uBwz3QVrkcJWlpX0lHwEBAfj4+MjBRFSV7Nu3jy1bthAaGoper8dqtTJlyhSOHz9+UYOGpzI/pfDT3aNAKcRT/hsWFkZCQgLTp0/HYDDQ1dWF3W5n7969cuBX7kMJ5fW50Mlu7ty5REREyJSPmOD37NkDnJ6A1q5dy6FDh7DZbNTV1fUrvaIkWueDXq9n6tSpWCwWjhw5wqpVq8jLy+PgwYOyjFcpFq6pqQGQttfuKRwYOAMvMZHrdDpsNtsZaTv3sP/FkA+n0ymFrEoy6x5pOR/Bqqurc6le8/X1lWWqfYE4D5HqEPenEFnDt7oQcK2OEdejvb1dikfFokRZcVNVVSX9UuDbkmJw1TWJ6wC4kAflGCWul9PpxGazkZiYiFarlcZmoorFXSA7fPhwRo8ezZQpU0hNTSUwMBCLxSLPR2lsJszSPKXXhjCwGCIflwBiEk9JSeGqq64iOTlZhvSbm5s5cuQIy5YtY9myZWfdRltbG9u3b2f79u1MmDCBefPmMW3aNNLT08nPz6epqYmDBw+e8TnlZKFsaS0mVRHqV06iygfQYDDgdDqxWq2EhoYyfvx4fvGLX6DT6cjOzpaDs7tGREzWykqa/kwcJpMJOF3GW1paSktLCxs3bmTlypVkZ2fz+9//nqCgIIxGI5mZmf0S3nmCsv7f/f8iZCuiGkrCphxMbTYbaWlpTJ8+nYULF1JVVUVjY6MkaeCq9BcDrXhdSXD6C41GQ3h4OEuWLGHcuHGEhIRQUlJCTk4Oa9asYeXKlVRUVLh8Rkz2QlTr5eVFfX39OQdgMRn0ZZA2mUxcf/31eHl5UVZWxq5duzh69Oh5P+dp2+La9+UeOh/BdTqd2O12urq6MJvNXHvttRw6dEhagfv4+GC1WrHb7XR0dLh45YjU5YXC/TnpD+rr613Si6mpqezbt6/P0Q9lNK23t1f2TRGiX+V73NOC4r5X+mcoU63KapERI0YwatQo4DQZEREUpaOpslxfEA+n0ymfe7EPOD0GWa1WfH196erqIj09naqqKiorK13uRTHejBkzhttuu43p06fLKKDBYJDpF2UPJveI41Cly+BhiHxcAhiNRrnK9PPzw9vbm+7ubux2O+vWrWP16tVs3Lixz9uLiooiMTERlUrFtGnTCAkJISYmxiP5UNb1d3R0yIFZmAOp1WqXEjv3/gtidTZnzhyWLl3K7NmzZXhTVFKIGnsBTzbFyt4KfUF9fT0bN27ko48+Yv369ZSWlrqsTOvr62lra6Ouro7f/va3F+1KqbSJBteSWaUAFc4coMR7/vu//5vExETplvnDH/6QQ4cOyYoki8Uiy0rFtpUDu7I/Rn8REBDA7t27UalUmM1mqqqqmDx5MlVVVS6VAJ7g4+NDUlISt912Gz/72c9cVtfucNfsuEdClBN/Q0MDt9xyCy+99BJTpkwhJCSEa6+99rzn4kkX1B8hYF+I0fXXX8/YsWPR6XQkJiZK8urn58e9997LnXfeyVtvvcUXX3zB3Llzyc3NlTqrLVu29PlYBhJCawWnyUN4eLj8vS8QmiQxSbe0tEjtmUiJiLSLqEwxmUxSH6Gs6hJpF7PZjMFgwGQyyUVKREQEwcHBdHZ2MnnyZBobG6UpYXNzs2zqJtIqYqzo7Ox0sWAXkdmIiAji4uIIDQ1l8+bNhIeHExwcLImSiFoajUYiIyOZM2cOUVFR0rdHSZiV5F+r1WK1WiWpFc/mEAYHQ+TjEiApKYmbbrqJhQsXEh0djUqlor6+nqlTp9LW1kZra2u/rKNbWlpcyhCjoqKIj4/3+F6hHndPiygjH+KBVJa3CTIi9CXx8fGkpqZSX1+Pw+Fg1apVbNy4UU6Yyl4JYsWknMz727L6ww8/lCstu91+xqBw8OBBRo8eTXR0NGPGjKGoqOiiBg5lGaynXL+yA6bSLyUgIIDAwEBaWlpITk4mISEBi8UCwJ133klTUxMFBQXSyEoZKXFX6MOZLc/7CqfTSVtbGyEhIfzrX//iueeeo66u7rzE49lnn8Xb2xt/f3+mTZvGr371qz5VT7lfB+VxCBiNRq6//nri4+M5cOAAb7/9dr/OaTCg0WgIDQ3l6quvJjU1VU5uCxcuJDk5mSlTpqDVaomJieHRRx/lhz/8IV5eXjgcDj766CO+/vprpk2bxrZt276zygjhsdHQ0EB7ezvl5eX87W9/Y9euXZw4caLP21FGNeD0PS08eOA0Ae/o6JBjhYj2iPtelEYrFxZC7yXGjDVr1hAbG0tPTw/btm1jyZIlrFy5kqNHj7qkLXt7e2UDOWVES/mMCGLS0dFBdXU1paWlZGVlce+993Lw4EH0ej0tLS2yPDcgIIDbb7+d0aNHExAQIBdWXl5eUmMlSKYY+0Q6WWk/MITBwRD5uAQIDQ1l6tSpxMbGotPpaGho4OTJk1IB3l8IcZaYHDdt2sTnn3/u8b3upkEiDeJeqSHeo6z7h9MP6QMPPMD06dOxWq1otVoOHz7M/v372b9/v8s+4FszICXhEekFMWH1hSSczzgsMDBQCtnGjh0rm+K1traSnZ1NZ2cnvr6+hIaGMnLkSD7//HMpkm1sbGTFihXSH0Act9JvQEBJ1kSoVhg+ZWVlERMTQ1hYGDabjfb2dg4dOkRPTw8hISEMHz5c+mdUVFRQU1NDdnY2RUVFZ6RYlNevP+Wkfn5++Pv7k5CQgI+PDytXruSLL74gLy8PrVZLWloaw4YNw9/fnwMHDhASEiL1FsOGDePKK6/EZDJhMBjw8fEhMDCwz34X50sfaLVakpKS0Ov1+Pv7M2zYsD6d07lwsaW2BoOBmTNnEh4eTk1NDTk5OZSVlREQEEBCQgLDhg2jurpaEithSHX06FEiIiK46qqr2LJly0ULnPsDo9FIRkYGkyZNIi4ujtbWVjZu3EhRUdEFRfwEoYBvI5LieRXREREFMJvNZGRkEBcXxxdffEFwcDCpqanEx8fT3NzMvn37CA8PJywsDIfDQWJiojTdy8/P5+TJk1KLJp4xQbTdnwFBRJTPgEqloqWlhdLSUk6dOkVERATXXHMNKSkpFBcXs27dOiZNmoTNZiMoKIhZs2ZJ4iF61TQ1NUlS5f6Mi2uhdFIdin4MDobIxyWAXq/Hx8dHMvTW1taL6k/i5eUlTcl6enr44osvWLFihcf3uvtvuJvquIfNRThS1MgHBgaydOlSaUxlMpnYvXs3x44do7y8XLoIKsOaylWEeE3ZubKvD7cQrIpcb0dHB11dXfj5+REXF4fNZsNoNDJ27FjS0tJQqVQ0NTXx+eefU19fT1BQEAkJCcyZMwe73c61115LSkoKFRUVHDhwgNzcXDl4u4dn3aNESu8BvV5PXFwc8+bNY/jw4YSFhZGcnMybb75Jbm4uLS0t0sArMDCQsLAwvL29yc7Oxm63S5GucgJTrgqh78JKX19fRo4cyfTp0/Hz8+Obb77hxIkTMtU3ceJEZs6cSWJiIsuXLycpKYm6ujq6urqYPHkygYGBklTW1tZiNpvR6XTnJR99jWL19vbS1NQkIw4Xi/46ULqTFa1Wy4gRIzCbzZw6dYrt27dTUlLCmDFj8PPzo6Ojg5ycHNmrp7y8HH9/f/bs2cPChQvJyMigqKjoOyUfJpOJrKwsGUWqqKigsLBQVsf0B8qJXegwxL3f29srBay9vb1YrVbCwsKYMWMGV1xxBaWlpYwYMYK5c+cydepUKioqWL58OYmJiSQlJdHZ2UlDQwNFRUXk5eVx5MgRtm3bRkNDg1zQKFMbSgIgni2l+FMcb1tbG4WFhezbt49x48Zx6623Ul1dzZEjR2hpaeHWW28lPDwcHx8fSYLEQqq2tpbS0lLa2tqkxkPp1izep/QaGcLgYIh8XAJs3bqVn/zkJ6xZswa1Wk1gYCApKSkXvL2YmBiSkpKA0w9PY2PjWe3W3cWRQvchPms2m+WqQEDkhaOiovj8888lYRGlcB988AGnTp2iq6sLk8l0Rqmu2WyWg1l7ezsOh0P6ZvQnVG0wGAgNDeWBBx6goKCAvXv3curUKX7wgx8QEhKCTqfDaDQyZswYDh48SEhICKGhocydO5fjx49TUVFBXV0dmzZt4uc//zleXl5yFb5o0SI+/PBDjh8/LiM1RqNRhmcFqRIrMWWUyGaz8dVXX1FdXY3VaiUgIIDW1laef/55CgoK5PF3dXUxZ84c0tLSGDlyJBqNhr1795Kbm0tBQYEU83pKi4kw9vlgt9tJTU3loYceAuCmm24iODiYffv2MWbMGJKSkmQDPHHPKSesJ598kgkTJhASEsKKFSs4cuRIvwSV57Iab25u5uc//zk/+tGPOHjwIMuXL+/zdgWUpczKFXtf4T452+12XnvtNa655hpsNhvx8fE0NTWxaNEient72bp1K/feey/19fUuz8Tjjz+Ot7c3oaGh3HLLLbz66qsXJTztDywWCzNnziQtLQ2TyURjYyPp6els2bKl3xVeIo0qSuCVEUa9Xk9bW5s0qLvhhhsYM2YMGRkZpKamsnnzZtrb2+V3Eh0dzc9//nNJZrq6urj77rulZf5LL72E0Wh0sRQQ+xHjEpxp5OYvw0PaAABY8ElEQVTuwKzX6zl69Cjl5eVceeWVpKWlERoaSmhoKDNmzJD3R3NzM+vXr6epqYnMzEwsFgt/+MMf2LhxI52dndIs0GKxuFQ7iYWFGB+HMDgYIh+XAFdeeSV/+ctfPK50LwRKgVdNTc05V6miz4FyEFau8MVgolwhikl/5MiRREZGynK0yspKnn76aWJiYqRZUkdHB0ajUYZqBeEQ5yjC16I/jFCcnw8iZD979mzuuusuDhw4gN1u5/jx4+Tl5XH33XcTHh4uIzWiN87x48e57rrrmD59OtnZ2TK1JVZdFRUVZGdnM27cOBcyJHLc4jq4G4C5+3i0tLQQEBDAO++8I79bISwV73nuuef4+OOP8ff3p6uri3fffZcHH3yQkSNH8qMf/UhOHMJ3QazO+mJ0ZDabeeyxx1wcLwEmTJhARkaGzG8LPwOlN4ndbqewsJDXX3+d999/n3/84x9oNBrsdnufBcECSmIArpEGX19f3nrrLeLi4mTjMWXET7z3XBU0ngiHshzT02fcox3K3/38/FixYoVsUlhdXc1vfvMbPvnkE9avX8+WLVvOIB4A5eXltLa2UlNTw0cfffSdekF0dnZy6NAhJk6cKJtB7tixo9/pAb1e72KYp7wuQtMhKk6CgoKIi4tj1qxZBAcHS98e5WQtxOmffPIJX375JaWlpRw4cOCMqjARiRDPvvD2EPe6cvwRixkl2TcajTJycuDAAV577TV6enoICAhg9uzZHD58WHa7feGFF3jqqacwm83Y7Xa2bt0q04zi+JVaE3dR6lDKZfAwRD4uAdwFhA0NDdLWub/Q6/V4e3vL/gllZWXnFKsqBxdlSkS5ohQPv3ifKF+94YYbXAZ6jUZDVFQUe/fupa6uzqVZnJK4KIWmyvI6IbLsC9RqNTExMVxxxRX4+vpSWFhIcHCw7KTp7+8v0z1NTU1UVFSQk5PDjh07yM/PR61WU11dLYW57733Hj09PTQ3N1NVVUVtba1L6alysBNQEkQhihPnqtfr5WRUUVHhkr4S4ezGxkY6OjqoqakhKipKit1MJhNms5mWlhaXMLiy9LYvuWetVktQUBC+vr709PRQVVXFyZMnZS+M0aNH89xzzwEQHx/PDTfcwJ/+9CfKy8tl87b6+vqLEk66e2CI/1ssFoKDg2lpacHb25uJEyfS0tLC+vXraWxspKGhAaPRyEMPPcTx48fZuXMnx48f97gPZfROXF/lvtzh/rr4XaPRYDabiYuL409/+hP79+9Hr9cTGxtLV1cXO3fulOXH7rBYLOh0Opqamli/fr3Ld3OxOpRzYdiwYYwfP56srCwpetZoNERHR5OTk9PvSJC7qFJZCi9IQXh4OBMmTGDGjBmyB5UQfv7lL3+htbUVPz8/MjIyqKmpYf369ezYsYP6+nqX9vbi2RcRRHetmUgDK5s6igWMKOVVdtxubW1lxYoVlJaWAqfTzyUlJfL5s1gsTJgwgWHDhuHl5SXFqGIfYrGhFNGKNN5A+ccM4ewYIh+XAE1NTeTn5+Pn5yd/LyoquqBt+fr64uPjI0182tra0Ol0kum7w70u39MkKyAIilqtJiQkhOTkZJmC6ezspL29HR8fH0pLS6WjqogouDdXcy+/FK/3dbB0Op34+voybNgw1OrTvUCGDRtGWlqajHL09PTQ1tbG7t27ycvLY8eOHezdu5eenh5Onjzpsr0NGza4/F5eXu5x0hQQCn53CGJlNBrZu3cvZWVlLuJf95/29nbZKFCkV7RaLTabzcXxUSjvxXU7nzC3p6eHwsJCSkpK0Ov16PV69uzZw5YtW7Db7fj4+OB0Ovnoo49k5KWsrIx//OMfFBYWDtgKz/1eMhgMhIeHExISQlRUlBQbJiUlybRXVVUVFRUVmM1mHn30UdavX49arZbCQoGzRUYudKIXIXzhttnU1ITZbMbLy8uljNXT55R+F98loqOjmTJlCuPGjZORg56eHkJDQ8nLy+sX+fBEypTah66uLoKDg0lMTGTq1KmMHj1aPmPt7e20tLSwefNmGhsbsdlsFBcXU15ezrFjxygrK3OpnINvI6xCy6GMLCr3rzQhE+ONiJIqPYS6urr45ptvZBRERDoFOfH39+cnP/kJISEhmEwmWXYuxjSh+XAvvXXXoAxhcDBEPi4BiouL+fzzz8nIyJDVIBeSW1SpVIwYMUKudNVqNYmJiYwfP57a2lp27tx5xmeU1RzKpnLKPitipSH6KbS0tLBz5068vb157LHHsFgsVFVVsXPnTv785z/LhmtiwlRaIre3t7s4gIqVRn8nO4fDQU1NDbm5uURHR/Pggw+6+ABoNBrq6urYu3ev7JHRH3iawJTESehclK+LgVP0b/n5z3/OqVOnpFOkeK9yEBUEpry8nPr6eiIiIkhKSiI9PZ3KykqXlZhIjfRFlNvV1cWyZctobW2VeoDHH3+choYGWlpasNvt/OlPf2Lp0qXcdNNNjBw5kt/97ndUVFQMeGhZWaodFRXFH//4RxISEmRYW/QLioiI4PHHH3eJIsFpsyybzUZmZqbUrojtwcVZzSuh7B2yePFinE4ne/bsoaKigr///e9nPD9iEtRqtXzzzTdcccUV3HjjjWzdupXQ0FAZVVNGF5W/DwRMJhM+Pj5SCNrY2EhJSQmlpaX9jnp4inCJPkkWiwW73c6UKVOYO3cus2fPlvs7deoUJ0+epK2tjWeeeQaNRkNubi5Lly7FbrejUp02UQwICKC6ulqONUphp6c+UUqXU+UCRZyrcF8ViyZPUQvlONrc3My//vUvZs6ciZ+fn+zjItI44rsUxEMZ7RmM3kFDcMUQ+bgEOHHiBP/4xz9ITk7mqquucill7SsiIiJ47LHH6O7ulpUnarUaf39/UlNTKSws9Eg+4NtBUTxs4jURPRDpABEVycrKYsaMGcyaNQur1SojD7W1tZSVlbmkb4SQSzzUojxPaEC6u7tlvlhp49wXrF+/ngMHDnD99dezbds2Zs2axb333ktERIR0ooyIiCA+Ph6VSkVzczPNzc0XROzEYAnfulCKSIQIHYvr1t3dzbp160hJSSE1NRWz2cw///lPSQjFCkt07dRoNCQkJODl5SWrPn784x9LnxSlW6Qy8nGugdDpdNLc3MzKlStZu3YtOp2OxsZGObAGBgby3HPPMX36dGw2G729vdx+++3861//6nMfl75CGfXq7e0lKCgIg8FAUVERBQUFFBYWUlZWRl1dHdHR0fIz3t7eLFmyhKioKJlmevjhh3n99dfPaXR2oRCVN2+88QZz586VJPPtt98mMzNTtjcQMBqNWCwWfH19+fjjjzEYDOzZs4ecnByPmo+BTr2INJG3t7d8TUQi+hv1ENtTfsbLy4v29nZ6enpkusRsNuPn54fNZqOgoICOjg42bdrEqlWruO222ygpKSEsLAxfX1/5HYlnorq6GqPRKE3JRORC6L3MZrMsfxUmh6LSRJBRk8nkIsBWpmuExYCIQomxROg9HA4HZWVlMs0SGhrKU089xU9/+lOqq6vl8yk0H8qIpPg+jUZjvzyXhtB3DJGPS4Du7m6am5s5cOAAkyZNIjQ0lAkTJhATEyNZvZeXF3fffTfPPPMMVquV6OhoHA4HKSkpVFdXo9PpmDZtGg0NDbI3TGdnJ6+//jpbt24lOzv7rPsXD7B7gzcRThYRDKH9aG1txWKxSH+KU6dOsWXLFjZt2uQi0IRvQ6tKTYtIw4iJVAwy4n19za92dnZSVVXFunXrKC8vlxPBddddJ69dZGSk7Eza2tpKUVER7733HgkJCZw4cUL21DgflFoYpQBOkDRxzk6nk5aWFl599VU0Gg1jxowhISGBdevWkZmZSXFxsdRdiO2IChuh8xClkkpxqti++L0v10io893JlsViISwsjJiYGHx9fWU/nKKiokEdWPV6PQsXLiQoKEj6rSxfvpzGxkbZKE7oOpxOp1xtz5kzh/j4eCwWC4WFhYO6+tRqtYwbN05WuowfP57KykpCQ0OJi4sjOjqaoqIibr/9dmJiYqRbbVVVFQUFBZw4cYI9e/b0W5h7IVCpVLS1tUkditPp5OTJk2zfvv2CrpGI5gnhpahSU97zoiy8qqqKZ555htbWVk6dOkVhYSFr1qwhODiYBQsWMHLkSBYtWsSGDRtoa2s7w6RLudAQERBldBCQHWeFIF6QI6X+TCxqPNkBCIGssht0T08PBQUFBAUFodfryc3Npa2tzSUCq0wvK3Vc7mPkEAYWQ+TjEqG7u5uDBw+yZ88eMjMzSUlJYebMmdL3w2Qy8YMf/IDdu3fj6+tLcnIynZ2dTJgwgZKSEux2uywLNBgMVFdXc+zYMf71r39x7Nixc3a1FZOZMo2gJAtKMzDx4IsV0PHjx1m/fj2bNm3iwIEDZ2zbvQz1bKJS5eqlP5UCormeSqUiJycHjUZDYmIiOp1OrqymTJlCQEAAPT095Ofnk5ubi9VqpaSkpM/7UYrg3L0G3NHZ2cnGjRuZM2cONpuNkJAQpk6dypQpU9i2bRs1NTUYDAZsNhsdHR14eXmRnJyMVqulubmZsrIyOYEoBafuJO5C4evrS2xsrCSpJ0+eZPXq1eTm5g5KRAFOT2w+Pj5MmjQJHx8fqqurKSoq4ptvvpHfvTupslqtREVFUVNTI8lkfxvdCfQ15SHIY0NDA1arldTUVLRaLYGBgfj6+mK1WgkKCuL6669nxIgRUtD77LPPcuDAAU6ePOmxjcFgQFiKC31XfX09hw8fZvfu3Re0PSXJEM0axetwmjyazWYcDgcFBQV89tln0iVXrVazZ88eRo8eTX19PZ2dncTHx0uNkYBy0aGsqhHRQOX3JErwBTwZ/bkL2t2jIlqt9oyKldraWtn8Ljc3V1oJKDUfYvvKhZfSuXUIA48h8nGJ4HA4+Oqrr9i+fTv3338/v/3tb3nllVeoq6sjOzubwsJCVCqVtKBWCrPGjRsnt2M2myksLGTjxo089NBD52XqymoVZRmpMmypTMsYDAZSU1OJjIwETj+cy5Ytc1mRKiMB4oEWD7XBYKC9vV2mheB0RELkWy+0ZbXT6aS6upr29nbWrl1Lfn4+bW1ttLS0EBgYyOLFi/H39ycyMpIHH3yQH/zgB32OeohzUjouKidAESZ2NyAaNWoUra2tbNq0iddff52qqiopzJs1axbjx4/nyJEjNDQ08MADD8jKkvr6et566y2cTqdM54gVmdCK6PX6Cx4IIyIimDBhAvHx8bLsWavVUlVVdUHbOxuU96i3tzfx8fH4+fnJUmGh/3F32RWfDQwM5MknnyQhIQGtVktxcTGJiYkcOHCgX0Z00PeUR21tLVOmTOGvf/0ro0ePZvjw4WRlZdHT00NjYyMVFRVcc801TJkyRQrEu7u7Wb58OadOnXLpRDsYGg8lHn74YWbMmCE9fbZv386mTZvYu3fvBW1PTLTi/wIiShEYGEh1dTXZ2dkyBaKMRvT09HDvvfficDh49913WbVqlWxEKN7n6dkW37+Icrgfk7h+4jlTWqyL4xCLGjHeidSOKMOFb1tGmEwmF3G9eJ7EWChSPeLvIuUp/j6k+xgcDJGPS4y2tjYOHDjAiy++yHvvvcebb77JhAkTGDt2LEVFRURGRkqNhDucTieFhYWyu21fQoTiQRIPl7IyRVmyKEKxYWFhsu9FU1MTL7zwAjU1NS7EQ4g+RbdPAeHxocwtK9tYC7+Pi0FLSwvvvPPOGaTqd7/7HUlJSURGRtLc3Cw9SPoK99Wa6GMhohHuq7Lu7m6effZZ1Go1Xl5eNDQ0sGPHDq655hr+/Oc/4+/vj0qlIj4+HofDQXFxMQaDgRdeeIGPP/7YY9hbbFsM9BeCkSNHkpSUREBAAAB///vfWblyJdu2bbug7Z0Lykm3oaGBgwcP8tprr/H000+Tl5fHp59+6iIOVJKrhQsXcvPNNxMaGopGo6GhoeGMrrv9PQYlzkcM/uu//gtfX18SExN5+eWX+eijjxg+fDirV6/GYDDIktrNmzfz8ccf09TUdEaZ6mCRDnH8x48fJzk5WZKPP//5zxw+fPiC7w3lYsPdylylUlFTUyOty2tra2lpaWHUqFFs2LCBTz75hJkzZ8q074gRI/jHP/4hIx2i1FVUtQgRuniORCWMt7e39NBpampyqcYTzsqCGAkCLiIbYvxSPosGg8FFHG42m6Xzsd1ul60MBJxOp4svkYieKMfFIQwOhsjHZYCjR4/S0NBAbm4uTzzxhCyLbG1txcvLi5SUFIYNG0ZlZSUhISEEBgbS3d3NypUrKS8vl6WKfYUy3Cp6OYiJ2+FwyFJRMbhWVVVRV1eHVqultbXVJcWhdDJVDr5iMFO2ileudt0noIuBJwLT3t7O8ePHKS4upru7+4KiK8qoh3JF5h6uFas4oaLv6upiw4YNVFZWcvToUb744gu2bt1KREQEkyZNIigoiDfeeIOWlhYOHjxIU1OTHPTc9SRK0euFYNq0aUydOpWMjAzgdAWAyHkPJgQJnDBhAmq1moyMDB5//HH+9re/oVKpsFgs+Pv7Exsby969exkzZgzjx4/H29sbh8PBF198wapVqzh69OgZ350ywgKujQ/PdTzngt1up6uri87OTn72s5+Rn5+Pt7e3JG1qtZqamhpZpfRdwmKxMG/ePGbPnk1cXJx8vb6+vk89d84Gd5G7Mg0m7se6ujo6OjoICgrihhtuICAggJCQECZMmEB0dDQBAQGoVCqZwhP3rHBNda9kEpVxgCzXF5GN3t5eF4dk0XJAVOUJc0NwtfNX2sLb7XYZ5RDOrGazWXasnT9/PocPH5ZER3xekGIhkIVvK9WGSMjg4HtHPn73u9+xYsUKTpw4gclkYuLEifz+978nMTFRvmf69Ol8/fXXLp+7//77eeWVV+TvxcXFPPDAA2zatAkvLy+WLFnC7373u35XpfQF1dXVVFdXA7B69eoz/p6ens6IESMoLS0lMjKSkJAQHA4H77//vqxo6CvcBZTKGnf3vGpv7+lOk4cOHUKtVhMUFERVVZV82OHb9IAnQy731bsy7Cl+PHVCHSg0NTWdtyHd2SDIkbg27j4lyjAwuGpdurq6yM/Pp7u7mxMnTtDa2spnn33GsGHDaGxsJCIigjVr1khjNvF59/TVQKyqU1NTSU9PJzY2Vk6aA6Ej6QucTqfsQCw0J8JMz2q1yhVzYGCgbDhXX19PdnY2X375pRQvnu/clffX+XCu93V3d1NXV8eqVav6f7KDCJPJxNy5cxk9ejT+/v50d3dTVVV13g7F54N7NFU5oYt07O7du/Hz82PixImkpqYCp9sJJCcny4iF0IEoo6HuZa9if0pDQ/FdCPG5J0G3ICtikSL6YYm/e4pAupfCNzQ0YLfb8fPzk1or8Xl3DYnSaFH5TA5h4PG9Ix9ff/01Dz74IGPHjqW7u5uf//znzJo1i2PHjsnW5gA/+MEPePrpp+XvQsQFp1MT8+bNIyQkhO3bt1NRUcGdd96JTqfjt7/97Xd6PgCHDh3i0KFDA7ItZctq94ZvcPqBVUYSKioq+Pjjj1m2bJl0NRQrfZFCUXbBFHAfyJQCQ6VDpVarvSwV5e52z+7nJ0K7ylWdMrojBtTDhw9z+PBhNBoNpaWlvPHGGy7aDuVnhPhWhK1FvtldH9EfBAUFYbVaaW9vZ/v27dKK/7uA3W7n8ccfZ8KECYSGhmK1WvnDH/4g/y7Oa+rUqeTk5LBlyxZqa2t56qmnpGeGJ7hfi3PpQdwJYl+7KJ9tW+JeOJcF/EDDbDYzb948fH19UavVNDQ0sHLlSlnhcaHW7iKyoCQCAoIEPPfcc7S2tjJ+/HiZ7hARot7eXiorKyksLOTIkSMyQnE2cismdjFm6PV6lwqV9vZ2Waqv1+tRq9U0NjbK6CwgP6fsvyS8Y7q7u7FYLLJFRG9vL0VFRXz99dcEBwfj5+dHV1eX3L/YNyB7u7j3ujqX0HwIFweV87t4ei4hampqCAoK4uuvv2bq1KnA6chHRkaGtJp2x9q1a5k/fz7l5eUEBwcD8Morr/Cf//mf1NTUSB+Mc6G5uVlanl9ON7BQkwtRqM1mo7m5Wa4YlCt4MdmK83Vv8KR0KvR0G4nVg0hRCCijH5erjbEYmMSPUiujVMMrlfbKxnBCEKfMTYt8t7KvCnzbr0RpeCSusRIXMsnMmTOHMWPGEBoayt/+9jeKi4ulh8N3BZPJJPvKCCLU1dUl7zlxL4pr6YmMDraY83JGVFQUBw8exMvLC7VaTUVFBU8++aQ0lbsYiFSfSqXyWKItNFtKAiDuT4PBQEdHh/TEqa2tlZ8Vok73PlLucCdxYlED3+rTlAsjEW0R5EOQFEFglIsh8fm1a9fKSE1BQQE33nijrMipr6+X3h7C+EyknEQkpbu7m6amJhd/lSFcPL53kQ93iLC7zWZzef29997j3XffJSQkhAULFvDkk0/K6MeOHTsYOXKkJB4As2fP5oEHHuDo0aNkZmaesR/RFVJAtGa/3CAeLvHAK0WOYnAROXQx2SmFqMo8q5g03TUk7e3t8n2CoChr75WRgssVylJhQbCERbPSKEmcjzJvLEiccrBWWkYryYsy/eQeQlZWhlwo9u3bR15eHiaTieLiYpmXHwycLaXR3t4uV80tLS0ug3pf0iXKa3y+/V9IGq8vXjPux+neX2YwUVtby5IlS+SE2N7eztGjRy9K7yEgFhZixS+uoYjCibFASXLE+8RkLz6rrFwT0T/h6aMku6JaRTS1EwRCWdrqKQUs/hWaEWW5rBDIKyNT4j3PPPMM3t7ecp8tLS3yeITGROxPiOPdFx1DGHh8r8lHb28v//Ef/8GkSZNkvhLg1ltvJTo6mrCwMA4fPsx//ud/cvLkSVasWAFAZWWlC/EA5O+VlZUe9/W73/2OX/3qV4N0JgMH97CoIAXKqgoxeQqluXsVDJw5OAi4R3mEa6Qn/Yenz18ucD9XsTpUalnc/QHcPy/+FdtSEhrlPtyvqYCnKFR/odQTXUqIgVwZ4RGv9+UeuBzvke8Kdrudzz77bFC27R5pU97jyvvck+5JSfaEGyogxwz3Z14QNjEeuKfE1Gq1y3ikHKeUBEQ8i2J7Sp2HeK/y71u3bj1DvyHeo9PpJDF2P28RARnqbDs4+F6TjwcffJAjR46wdetWl9fvu+8++f+RI0cSGhrKzJkzycvLIz4+/oL29fjjj/PTn/5U/t7c3Cy9MS43KFcF7i6EYkVqNBqxWq20trZK/QLg4tchHnBlpEPpmClCocpJ2j2fejk/3GLCFAOmED8qS22VTarEa2IlplzFiYFWvN89oqEU8YrvRawIRZj5cl+F9ZUguBM1T5oh5X3Sn+aD7tvuS1SjL8ROeW7iO/k+QERPRLRD3GtdXV14eXlht9ulX48yLaNcxIj7XZTbC5GxyWSira1NTvJGo1GW3Cq/b/GdiZSLUuwpomPKyIQQnortK78L8X2LbYlIjDg/ETlSpo4FsRH7ENoVlUqFyWS6bMenf3d8b8nHQw89xOrVq/nmm2+IiIg453vHjx8PQG5uLvHx8YSEhJzhGigMmUJCQjxuw2AwuLjzfVc4V/j3bAOvGDiUJj/KlY3ol9DQ0HCGvuVsoXKR9/XkpaHUKij1HyI0eznCUyRDGYrtb/dQMWi6b1d5Pd2vxUD3XLlc4SlNMlCRjsHQFF2uOqWLgad7Wtx/Z3P6FGX3YuxwrywTn3c6ndIEzBNEhVhfNE3iOIQ41NO24HR6WTxPZ3telc3tlCllZfr8QvpCDaFv+G5q7r5DOJ1OHnroIT755BM2btxIbGzseT8j7JFDQ0MByMrKIjs72yVc/dVXX+Ht7U1ycvKgHHdfobT6Pl/e+WyDpFidK8s8BSEQjZyUvQ/ct69UyJvNZkm6lJOnaMIlxGNKR1Cxyld2ubzccbHai3NNWP+XUwpD+PeEMAFzn9gvJ3H9EC5vfO8iHw8++CDvv/8+K1euxGq1So2Gj48PJpOJvLw83n//febOnYu/vz+HDx/mkUceYerUqaSlpQEwa9YskpOTueOOO/jDH/5AZWUlv/jFL3jwwQcvSXRDCaVWQvl7XyDSJMqJVJnXVarMlakY8T6lSFIQEJG/V1omK50TlTla5bEqc8z/DivJiyUIQwRjCN8XKBcrZ6tyO9/9riQpQ8/G/01870ptz8a833zzTZYuXUpJSQm33347R44coa2tjcjISK677jp+8YtfuJRSFRUV8cADD7B582YsFgtLlizhmWee6bPJ2ECX2qrVaoxGo8zRKvOt54MgDsptKHOcQl9gMpnOasolohRCw2EwGGSLeNGGW6VS4e3tTWNjo4t7qbLEVDkwaTQaKfjqC5QVIMKFVWnbLq7J5RAqFddI5LaFL8i/g3ZjCP+34Wlh4/7cirYK7pVI51oUKQ28lBqw76pq6EIgjmuo1Hbg8b0jH5cL+ko+zlVGKHoMGAwG4uPjeeGFF7jtttukhXBtba1H6/JzQWkopNynIALuZXHun/Xx8ZF9LdyP1WAwYDabz9qJVKfT4evrS3NzMwaDQXph9LWte2hoKJGRkezevZvHH3+c6upqdu/ejV6vZ+rUqcTExOBwOPh//+//9Wl7gwW9Xk9qaiqPPfYY+fn55OTksGDBAo4cOcLatWvZtWvXJT2+IQyhP1CSfnAlH3357L/zFDNEPgYP37u0y78bzrUKFn+79dZbue+++0hMTOSDDz7g6NGj1NTUMGzYMF577TWOHTvW53JKd1IgmioJ0ZdYmYiHzmQySVfT3t5eWlpazvA7EN1vfX19CQ0N5bXXXuP111/ns88+c0mrdHd309jYKAkVeO7Lcjbo9XpiYmL47W9/S2RkJA6HQ3YV9fPzw2g00tbWRltbGy+88AIRERHYbDY2bNjQ531cLKZNm8a1115LamoqCQkJxMTESIvzjIwMiouL2blz51Bu/DxISkrCZrPJBniXy/VSqU73/7jvvvtkWvfDDz/83oqD3SOsgojo9XrCwsK48cYb2bdvH5s3b/a44LiQ9PAQ/m9giHxcxhAPbEREBBkZGWg0GrKysggJCaGuro74+Hh27twpTX6qq6vP+5B7qoBxj5woBwz37bmXziodTG02G9dddx3Tp08nPz+fiooKDhw44OITohSy9lfvIezdy8rKiI+PJzQ0VDa/stls0gxszpw51NfX09nZeU6b7sFAbGwskydPlj1dKioqZNXQpEmTmDp1KpWVlRw8eJDKysp/C73LdwW1+nRH4PDwcK644goSEhKIi4tjzZo10oX3UiImJoaoqCh8fHy48soraWxsxOFwYLPZpGHW9xkqlYrQ0FDCw8OJiooiISFBNoc7G/z9/eno6KCrqwu1Wk10dDQVFRUX3HNpCN8fDJGPyxyifLWxsRFfX190Oh3x8fHExsbS09NDeno6cDpCUVtbe149gTJNA8i6e09GYU6n06N+QmkDLlZCBoOB6OhoHn30Udrb2xk9ejRNTU0cPnzYZdIQZEX0X+hPtUtHRweFhYU8/PDDvPnmm6Snp6PX6zl06BAjRozAZDKh0+nIzMxk2LBhrFu3js8//xyLxSLL/QZ7AvP29sZisfDHP/4RLy8vysvLaWpqYtasWWRkZLBw4UISEhL47//+b2pray+4L0d/IVJmyrLHSzWZi7bnyjbuwmVyxIgRzJgxgwULFjBu3Dja29uZPHkyp06dGtDjValOu/EajUYaGxvP+36TycTkyZO5+uqrCQ0NJTY2li+//JKioiJsNhtlZWUDdmz9geh1Yjab6e7ulh4bAwWlMZ5Op2Ps2LFMmTKFSZMmkZ6ezsSJEzl+/LgL8RJ2+u3t7SQmJtLa2kpbWxt6vZ7p06ezcePGQScfyv4wysZ0Q6Tn8sEQ+biMoVKpGD58ODt27ODJJ5/kxRdfpLu7m9bWVqqrq9m3bx+33HILAQEBtLS0yDb354L7wCRSJmJSEoJaMSkoB3xRWisaO4k0jbe3N/Pnz2fhwoU0NTXx61//mm+++YZTp06dkVZRCkTBs8fD2VBTU0NNTQ0Af/jDH4iMjESv1/PBBx9II6Pk5GS+/vpr/vGPfzBq1Ch+9atfMWnSJKqqqli1ahX79u3r8/4uBCtXruTAgQPk5+fT1tZGb28vZrOZiooK+Z7u7u6z9sMZDGg0GmJiYti8eTOtra2sXr2aZcuWXTLtyQ033MCECRNISUlBr9cTERHBe++9x5YtW2SqTqU63WukoKCAsrIy2YtjoODv78/tt9/OHXfcwejRo8/7/kcffZSUlBRiY2NJS0vjxz/+MZs2bSIvL29Aj6u/SE1NZdasWfz2t79l+/btPPvssx47Y18IRCmt03m66eHYsWP5zW9+w/Dhw+nt7eXw4cOYzWYsFotcxAD8v//3/7jyyit55JFHWLx4MVOnTmXYsGE4nU5+85vfuBjyDRauvPJK5s2bR0BAAHPmzMFsNnPw4EHGjRs3lAK6TDBEPi5z3H///aSnpxMeHk53dzfPP/882dnZ1NbWEhgYyLx585g6dSpxcXFMnjyZ//iP/+izgNOThboYbJTltKJcVriZCg2IeIh1Oh1RUVEkJSW5VHSIbfr5+eFwOOSKW5AkjUYjBaz9xZEjR8jJyXFpTNXV1cXJkyeZMWMGcXFxcvWzYMECOjo6mDp1Ktu3b+eJJ57o9/76isrKSurr611awavVaqxWKwCffvop77//PgcOHBiwlbxWq8VsNhMdHY23tzeVlZUuk2J4eDjjxo0jMDAQf39/Jk+ejN1uv2TkIysri8mTJxMTEyMjEEuWLOG6665zscDu6Ojg6NGjg2JEl56ezvDhw8/bJFKtVmM2m2lubiYvL48jR47w8MMPU1hY+J31bwoKCuKPf/wjOp2OZcuWsXz5cgDCwsIICQnBz88PtVpNeHg4Xl5eA7ZfUZ2WmJjI1KlTufvuuzGZTBw6dIgjR47w17/+lfz8fJeUk4jCJCUl8Y9//IOAgADeffddNmzYQFdXF/n5+TQ0NJw10joQePnllxk7dizh4eHy2dBoNCQlJbFt2zb+67/+i2HDhqHVavn73/8+IPscQv8xRD4uU2g0GkJDQ/H29iYsLIzY2Fg6Ozs5ceIEBw8epKqqiuDgYNrb2wkMDCQmJobu7m4SEhLIzc2VDbzOVvKmXH0o0y5ms1k2m3PvRaJs7qTE2LFjGT58OL6+vphMJoKCgmQTNlGxIyIeojxX6RZ6IRDCUiWcTid2u529e/fS1taGn58fwcHBDB8+nODgYMxmM21tbYwYMYKcnJxBKXl1bzCYmZnJhAkTSEtLo6urS0aPhFD2YmEwGIiJiWH06NGMGjWKnp4etm3b5kI+Ojs7aW5uprGxEZvNRkxMDGPHjiUxMZG8vLzvPP2ye/duGhsbCQ4Oxt/fH39/f2JiYkhKSsLpdFJfX09lZSU5OTl89tln/RIl9xWjRo2S5GPChAkcOnToDO2CWNVbLBYqKiooLS2lqqqKPXv2DPjxCERERJCQkEBzczMBAQHy2lxxxRU4HA5OnDjB/v37cTgcTJkyhYyMDEaNGgWcbp5pNBr7tb9zTfziteDgYMaOHUtycjJfffUVhw4d4sCBA2RnZ7uMEb6+vsydO5eRI0ficDg4fvw4Y8eOJTc3l507d8poqYBYOAwEdDodOp2O9vZ2xowZI9OwSlgsFsaPH8+tt95KbW3tJY9a/V/HEPn4jtDfkjO9Xk96ejrt7e1yUGxtbaWxsZGWlhaam5tpamqiqqpK9izw9fVl2rRptLa2npd8eGqjLVbo7voIZcdJUd2ixMyZM0lISMBkMmG1WklKSmL79u3yPMREq9FoMJvNtLa2SuIxWJ4cx48fJzg4mMjISKKjo0lNTUWtVuPv78/MmTPJz8/vF/m4kJJBnU7H1KlTefjhh4mKiqK4uJjQ0FAyMjJYtWpVf0/JI3x9fRk3bhz3338/WVlZFBUV0dTU5LL9uro6jhw5woEDB5g8eTLBwcGMHDmSUaNGUVJS8p2Tj3feeQedTofVaiU1NZWJEycyZ84c2QspJyeHHTt2sGXLFlauXDkox5CWlkZsbCw6nY7Zs2eTn59/BvkICAggOjoas9lMUVERRUVFss3CYECr1ZKens7tt99OSUkJKSkpJCYmEhcXB0BDQwOJiYlMnz4du93OjTfeSGZmJlFRUfL5768J4vmiDk6nE6vVSlRUFGq1mo0bN7Jx40aOHz/usg2j0UhERAQ/+9nPCA8Pp6ioiJdffpne3l6ZNlNGtZSLH6V+7ELIiKi08/HxwW63Y7PZMJlM9PT0YLfbUalUdHV10dPTg8lk4t577+WNN95g06ZNLqaIQ/huMUQ+viOc7aE6m8+Hl5cX8+fP55prrsFms1FfX8/LL7/M4cOHqauro6enB51OxzPPPENqaippaWksWLCAX/7yl1RUVHDq1CmPOVWljkMI7sTKUqVSUVlZKdMtYiDr6uqSxy/SJcLUq729ndzcXJKTk+VAdt1117Fx40Y2bNgg21+LVU5LS4tsMCVC2oMlAisqKmLbtm10dXURFxeHn58fCQkJLFy4kLfffrtfK+oLGRRTU1M5evQof/7zn/nb3/5GbGwsL730En/+85/7va2zYdKkSVx99dVkZWVJUZ07qeru7qakpITbbruNXbt2ER8fT2dn56ClNPoCh8NBU1MTeXl5vPHGGy5tEF555RW2bNlCYWHhoO1/9+7dBAYGkpqayqFDhzyS4AkTJnDbbbcRGxvLrFmzBpV4AAwfPpxp06Zx0003efy7r68vixcvZvHixfI1MXYoJ/b+wH2MUKYx4TSBrq6uZseOHYwYMUI2j1N2ofX19SU4OFimgITA9Oabb+anP/0pDQ0NqFQql/tSVL4pzcYuNApyxRVXkJSUREpKCnfffbd8vb6+npdeeglfX1+2bdtGcXExN910E/fffz/33HMPY8eO5Z577uHQoUNDxn+XAEPkY5AhGP7ZTMCUN70yquBwOCguLpYrg8bGRpYvX05lZaUUKzocDjZu3Eh7ezt+fn44nU5WrlxJSUnJeQVdQueh0WikE6cIiSrTK56OW0xy3t7e3HLLLdx5551ERETQ29tLc3Mzd911FwcOHMBgMMjzEf4hwpzI29sbrVY7KCF1gaamJmpra/Hx8UGlUrFv3z62bt3Km2++2WddTH/h5eVFbGwsTz/9NH//+9+ZOnUqEydOZPHixZSWllJQUDCg+8vKyiI9PV0O4jU1NR7JnMlkYsaMGbLtudlsZurUqeTn518SAqLRaIiMjOTjjz8mLCxMEtO9e/eydevWQa8eqayspK6uDr1ez3XXXcfevXvP0HAcOHAAvV7PD37wg++kjLalpUWmKCZMmOASleju7pZl5RUVFVRUVBAVFYXZbMZkMhEQEMA777zDsWPHLnj/nkrfRWm90WgkJyeHuLg4GhoaZAo4MzNTporuu+8+NBoNpaWl7Nu3j2effZaGhoazTuwDZUA2b948srKypIYI4PPPP+ejjz5i3bp1aDQa2tra8Pb2pqWlRY5FWq1Wjg1D+O4xRD6+Ayj9M871sIm/abVarFYraWlpMkrQ1NRESUmJS5WEyI+LkLDT6WTv3r3U1NScdT+BgYE0NzfT0dHhMtCczfsDvrVWF+FLpcCzsrISf39/fHx8UKvVdHV1cfjwYaqqqmTTKdEAT0Q6WltbZVpnMEtNU1NTmTlzJqNGjUKn08lrlZubOyiTiUqlIioqimnTpjFhwgRqampISkrCz8+PnTt3UlNTM+DnGxERQXBwsPzd4XCcNY1iMBhcmhLabLYzSp1jYmJoaGigubl5UKsCwsLCGD9+PCNHjkSn01FaWsqRI0f48MMPqaqqGnRCVFpaKqs1cnNzPX4vRqMRtVrNypUrz+llMVBoamqiqKiII0eOkJaWRn5+PsXFxZSXlwOnNQvl5eUUFRXR2NjID37wA6Kjo2W12po1a8jPzx/QY3I6nZSXl7Nz5058fHwYNmwYQUFBpKSkcODAATIyMggJCSE8PJyYmBj+9re/kZeXR35+/qATSJPJxHXXXcfYsWOJi4vDarVSX1/PiRMn2LhxIwcPHmTUqFFs3bqVkSNHMmnSJLKysqTIWK/XExoa+m/T3PL7hiHyMcjw5AZ6NogJ0WQyERYWxvTp06VIsqmpSWol3D/T0NBAbW0tAMXFxWe4kAqoVCr8/f3p7OyU3WrF8Zytj4NYIYg0iyAfovqltLQUQOZXq6urJbkREH1YxAqqtbVVDuaDOcGNGTOGxYsXExUVJat4BrO3isViITU1lauvvpqAgABuvvlmNBoNRUVFMurj6+uLRqOhrq5uQM5d2VUYkFoKPz8/2WMHviWQAhqNhoCAAMLDw+nt7cVut2M2m5k4cSInTpzg1KlTAyaKdUdgYCCjR49m9uzZ0oOhoqKCHTt28MEHH8j7bTC1KMXFxezfv5+uri7y8vLOSLsIIjl8+HBWrFjxnfQLamlpoaCggL1795KRkcGmTZvYtWsXBw8elGSxvLyc0tJSVCoVs2fPJioqCqvVSldXF9u3b5dE5ULgKcLpdDopLi6mtraWkJAQJk6cKPUfR44cISIiAh8fH/lcv/jiixQXF5/RxwnONDhUVoPBuTs/e4LZbGbp0qUkJyfj5eVFV1cXFRUVrFy5kq+//pqGhgaefPJJmpubWbRoEYsXLyYkJASn0yk1c15eXkORj0uEIfJxiXCuKEh0dDRTpkwhKCgION0nRjSD84SkpCTGjBmDSqVi/PjxFBYWSrt194f92LFjUs9hsViora2VItPW1lZ6e3tlGsbhcGAwGGRqRExyvb29REVFMX78eJ544gmCgoL45ptvWL16Ne+8844cqJVpFvE54dMhlOiDuaKsqKggJyeHyMhIjEYjiYmJlJSUDNj23cV6EydOZMGCBcyZMwen04nZbMbpdBISEsLzzz/Pq6++ypQpUwgPD+fhhx92Kce9UOzcuZOAgACysrIAGDFiBDfeeCPBwcH89re/lcfg6+vLggULsFgswOnKiAcffJBZs2bxu9/9jlWrVjFnzhx+//vfs2HDBlauXMknn3xyUcd2Njz//PNMnjyZ8PBweQ3F/RQTE0NMTAy5ubmDqvkoKysjJSWF8ePHs3DhQo4cOeKSdjEajSQlJXH99dczZcoUbrrppj63MLgY5OTkkJOTwz/+8Y9zvs/pdPLPf/4Tq9VKSEgIxcXFBAcH09zc3GfSKHQiZ+stJRYZoorsrbfeYvbs2fj5+eHn58fIkSNl2X1DQwNr1qyRaZr+EPwLJR+dnZ188803jBw5Ei8vL7q7uykrK+O9996jrq6OtLQ0Fi1axKJFi8743HvvvceKFSvYsWPHoKZ+h3B2DJGP7xB9eSA1Gg2jR4/mtttuA05Xbbz77rt88MEHHt8/ffp0lixZwqxZs3A6nezcufO8tt1C3yEGl9bWVhnhUIafnU6nTPMIe+QxY8ZQXFyMXq+XJmgdHR0YjUb8/PwkWVEKVD2ho6MDrVaLxWK5IP1FUFAQHR0d5/RaaGhooLKyUmphli9fzpYtW/q9r7NBWZ587bXXsmTJElJSUqQNvFjBW61WrrzySsaMGSNV+CtWrKC0tJT333+fr7/++oLTDK+++irHjh1jyZIlXHPNNVitVtLT04mNjWX48OHU19fLMkil5kNA2Lz39PTQ2NiI0WhkwYIF+Pr6Dhr5iImJITAwUBKPOXPmYDKZmDBhAl9++SU6nY7nnnuON998c1Dt8fV6PVarFbVajcVicSHaM2bMIC0tjba2Nn7wgx9QX18/aMfRX3h7ezN37lyeeOIJoqOjZfRGtBToK843HimrUeD0pP2LX/yC0aNHM3nyZG666SbpVOvl5cXMmTN56qmn5L3sKUoLrqRdCFH7S8LFPX3vvffi5+fH7t27Wb16NW+++SZarZaHHnqIO+6444yohiBShw4dYseOHd9JOm0InjFEPi4RzpYWGTlyJCkpKYSFhQGwb98+Dh06dNYVe1paGuHh4bK+v6mpqU8TmUi5CAIC3w5GYvWiHIyFwLWhoYE77riD8PBwIiIiUKlUvPvuuxw9epRTp07JfbtHBZS/Cw2I0oisL1CpVHh5eXH99dfLcuOamhoOHTp0xnvDwsJIS0uTPXGKi4spKChwcRodKAjb6ejoaHQ6HSUlJXz00UfodDoCAgLw8vIiLy+P6dOn09TUREdHB6NHjyYqKop9+/Zx7NgxqZHpL+rr6ykvL6ekpIS6ujrptaLX6xk/frwklkaj0WNXzsTERG699VYmTJhAV1cXer0ei8VCfHw8s2fPZuPGjYOmv3A4HJSWlpKTkyP9UcaMGUNwcDCTJ09Go9HwxhtvUF9fPyjpudzcXNasWcPDDz/MwoULWb9+Pbt27cJgMMh0ht1up6Ki4rKqhrBardxwww3ExsZiNBppaGigra0Nu90+oKkqd7G50+mkoKBAVrxERUWRnp6OTqejsbGRl19++bxRF09k4EKPrb29nW+++YZ58+ZRWFjI5s2bqamp4bHHHmP27NkMGzbM5TPd3d0yQnP8+PEBd80dQv8wRD4uAyj7o0ybNk2K8HJzc9myZQv5+fln7RiZkpKCr68vDocDvV5/3lWE+8MvIh7CxwOQjeJ0Op0kH6KTpclk4pZbbpEOgdXV1bz11lsUFha6aEmERbYn8qHVauX7+jOx+fj4SFX9sWPHaGhooKqqirKyMlnH39PTQ2dnJ9HR0WRmZpKcnExRURH19fXY7fZBmURUKhVBQUFoNBoqKys5fPgwL7zwAlqtlqioKPz8/Ni+fTt2u53y8nK6urqIiIggPj6e1NRUTp06RUdHxxnOj32F0Ark5+djsViks6sQogrr6/Lycjo7OzEajXh5eeHt7U16ejrp6ek0NzezY8cOWUYZEBDAddddx5YtWwacfBQVFeHv74/BYODrr7/GbrdTVVWF3W5n+fLlzJ49m8zMTFJTUzl8+DCbNm0aFGFyfn4+TqeTp59+mmuvvZbu7m4qKiqwWCzExcVhNpux2+0EBgbS3t5+2RAQg8FAamqqNNWqq6ujsLDwnKnZC4Gne9Fut1NWVobRaCQ6OprExES8vLxobm6W2phzpZT720zyXMfW2trKxx9/zOTJk6WAPSUlhbvuuovo6Ogzyo8dDgdlZWUsW7aM3Nzciz6GIVwknEMYFDQ1NTkBJ+BUqVTyR61WO9Vqtfxdq9U6LRaLMygoyJmRkeE8ceKEs6ury3nq1ClneHi402AwuLxf+aPT6Zz79+93trS0OLu6upzV1dXOmTNnOgMCAs65T51O59Tr9U69Xu8MCgpy6vV6p1ardRqNRqdKpXIaDAb5ml6vd6rVaqfNZnNOnTrVWVBQ4CwoKHCWlpY6T5486fyf//kfp6+vr1OlUjk1Go3TYrG47Euj0Zxx3Far1anT6Zxqtdqp0+k8npunn5tuusm5b98+Z3t7u9PhcDg7OzudFRUVzl//+tfO22+/3Tlnzhzn2LFjnVar1XnzzTc7P/30U+euXbuciYmJzkcffdQ5evToPu+rPz8Wi8V5zz33OL/66ivnT37yk/O+X6vVOgMDA52FhYXOpqYm5+7du50LFy506vX6Cz4Gk8nkfOSRR5yRkZHOgIAAZ1ZWlnPv3r3OJUuWOGfMmOGcNm2a89Zbb3WmpKQ4ly5d6ly2bJmzt7dX/rijra3NmZ2dLb/bgfyJiIhwLly40PnII494/PuBAwecbW1tzt7eXmdnZ6czJCRkUL63oKAg51VXXeWsqalxNjY2Oo8fP+5cu3atc+3atc6KigrngQMHnB9++KHz6aefHpTrcKE/vr6+ziVLljhra2ud+/btc/7mN7/5zo/BZrM5//CHPziLioqcLS0tzvr6eueuXbuccXFxLvfx2cYu8eNpfOjrj06ncyYnJztPnjzpdDqd8n7xdD/39vY6GxoanCtWrHD6+fn1eR9iDG9qahr0OeP/GoYiH98xnG5lt0FBQWRmZjJjxgyuvfZawsPDaW5upqSkhPb2dtmC3h0BAQHccsstREZGYjKZOHbsGPfffz+HDx+WHULF55SfF/bpwuBHREpE1ACQq0yRC7fb7TLqYbVaMZvNnDp1iq1bt/LSSy/R2toKnM7ptre3y/JgZc8YsT2xWhOvezq3s8FsNssIQ1dXF3v37uXAgQNcf/31sndKT08PXV1dGAwGqqurKS8v54EHHuCPf/yjFLsOJObNm8e9995LR0eHFHeeD1qtlsDAQNRqNSaTibS0NF5++WVSU1P71GHVEzo7O3n99dex2+04nU7279/PggULaGlpkREtjUaDw+GgqKiIzz//nEcffZS4uDh+9KMfccMNN7hs78SJE9x6660kJSWRl5cnq6kGApWVlaxfv57Nmzd7/Pv111/Pf/3Xf3HXXXeh1WqZPHkyO3bsuKhKDk+oq6vj6NGj5OfnU1NTg9VqJTY2lrCwMDQaDd7e3sTHxzN16lQ+/vhjpk2bRkhIyCXtB5KSksKUKVO4++678fLyQqvV9tvVtD9wF6WqVCosFgvR0dFceeWVWCwW+ZwPGzYMf39/ampqpImge5RD2axObLe/WLhwIXBaiP+LX/xCpqgBaWrojpKSEnbs2METTzwxaFVcQ+gfhsjHJYRaraa1tZWgoCCuuuoqwsPDKSkpYd++fWzatElOJEqoVCquuOIKpk2bRnJyMmazmcbGRmpra7HZbDgcjnOGh0UIXvW/6RbRFEr1v5UpwsxIEJLOzk4yMzNJT09n3LhxUg/S1tZGRUUF9fX1Z1TUKDtcuh+7ELU6FamZvqK2tpajR4/i7e3N7t27ZY6+ubmZ0aNHExMTQ0hIiBR1CjFcVVUVLS0tAx66nzRpEpMnTyYqKorXXnuN1tZWjhw5ct7PWa1WrrjiCoxGo/RKWb169UUdn/N/TboExHY9weFwSJFvWFgYZWVlnDp1iuHDhwOny1Czs7MpLCyUWoKBRE9PzzmFfiUlJezdu5cRI0YwefJkrrrqKioqKgacfPT29tLY2Mhzzz1HW1sbXl5ehIWFMXXqVIKCgqRJXWdnJ0uWLCE6OhqtVktZWRm1tbWStAw2RNsD4elRU1NDfHy8LFMeSJ8K5fOoJBzieXU6nSQlJTF//nwiIiJob2+X921QUBC33XYbmzdvZv/+/bIMXwmlgFXsoz/Q6/U4HA40Gg06nQ6LxUJXVxenTp2ipKQEi8VCenq61MA5nU6KiopYvXo1a9eupbS09LJJn/1fxxD5uERw/q/vRVBQEMOGDSM5OZnu7m4OHz7MV199xbp161yU68Ijwul0Mn36dG677TZJDqqqqmTJ7Pkmc4fDIYmGRqOROVrR7wWQXWd7e3vR6/WMGzeOGTNmMGrUKOrq6lCr1ZSXl1NYWOjRAVVEVTytfJSEQ3WO3LA7VCqVFP/V1dWxYcMGNm7cyKFDh6iurqaiooJRo0aRnp7OyJEjUalU2Gw2tFot2dnZ6HS6AW/jHRkZSUREBFarlaqqKtavX9+nTqcmk4nMzEwMBgO1tbXs37+fN95445KU/KlUKpqamqiurpbko7a2ltLSUrq6ugbdKMoTenp6qK2tlWQjMDDwjCZhA4X29nY+/PBD4PR9b7PZqK2tJT4+nsrKSoqKiuju7uaxxx4jPDycnp4eFi1axMGDB2ltbR1U8pGYmIjBYECtVhMSEsLIkSOlxbuvry+dnZ3U19cP+DG4R02V0VrRsXb69On4+vpy6tQpysrK6OzsJDQ0lGuvvZbOzk4pgnbHxT5/QlclKskKCwtpbW0lLy+PU6dOkZWVRUpKijz27u5uysvL2bZtG19++eV34lQ7hL5hiHxcQvT09PDcc88xadIk4HSn1tWrV7Njx44zPAWsVivXXnstTU1NJCUlERwcjF6v5+uvv6a1tZXc3Fz+9a9/uXzmbJO7WDGJFYBOp5Plt4GBgbLyQFRMTJo0ifj4eHp7e9m6dSthYWGsXr2aTz75RK7e3fcjBk3lqlkMBsJ0THiJ9AUGg4HY2FjGjh3LwYMH+eCDDyguLgZOlyOfOHGCiIgIJk6cyDvvvAMgG+GNGTOGkJAQOjs7B8RbQ+Cjjz4iMDCQxYsX8+KLLzJjxow+kQ/n/5b7aTQavvnmGz766COys7MH5Jj6ix07djBt2jSio6Pla35+ftJj5lJh0qRJ3HTTTTidTn7/+9+7NDIbLDgcDqqqqnj77bfP+JvFYiElJYXU1FRuuukmWltb2b1796Aezz//+U8SExPp6enBx8fnjL8XFBSwcuVKPv744wHbp6fFhBIjR44kJiZGuoRWVlbywQcfcPToUebNm0dUVBTe3t7nFJy6768/aG9v58CBA2g0GiwWC6+++ip79uyhra2NmJgYfvOb36DT6WTkVvSVgYsnPkMYWAyRj0sEi8XCr371K4YPH45Go6GlpYXPPvuMbdu2UVRUhE6nk43lRLRg/vz5MhrhcDjIzs5m9+7dfPHFFxw4cOCMfZztwRYDTHd3Nz4+PrS1tUldQF1dHT4+Pvj7+xMQEMD1119PWloaISEh2O12vvzyS7Kzs6murpYdd53/W8EiuuuKbYuqGaVbpep/O+mKyI+ynPd88Pb2JjY2lra2NpfcrlqtJjIykvvuu4977rkHOD3QiKoPvV7Pe++9x1dffcWGDRv44osv+vVdnQ0jRowgKiqK9vZ23nnnHelJoVKpsFqtDBs2DIvFgtFoJCAgAJvNxsSJE8nIyMDPzw+j0UhpaeklV95/8803+Pj48J//+Z8AfPHFF7z//vuX9Jg2btyIzWZj6dKlzJ8/n87OTo8l1YMJnU6HVqulvb2dzz//nK+++ork5GQyMzNZvHgxPj4+sj/NYOCpp55i8eLFXHfddVRXV/Pggw8SGhrK9OnTuf7661mxYgXbt28/a3rtYiEmbWUUJCsri+nTp5OWlkZRURE//elPKSkpwd/fn9/85jfcfffdJCcnc/XVV7N3794ztqkck/qTcnVHT08PLS0tsnv2iBEjmDZtmiRF+/fvZ//+/TidTv7whz8MeMpuCBePIfJxiSBCmHq9XroIClfFrq4uOjs7+cEPfkBsbKzsIOnt7U1bWxvNzc3k5eXx4osvkp+fT0FBgRR99gVKS/WOjg6XHGhPTw9Go5H4+HhGjx7NlClT8Pb25vDhw2zZsoV9+/bJPLggHUJwJlI6YoARDfWUxEO5slL+7XyIiooiKCiInp4eCgsLiY6OliLYRYsWERERwf9v7+6Doq7zOIC/95kHhVWeFiQFkkQUTS0ImsSCU7ymJJ3G65yy7sYeTrsezOk5ralsqmmmmjpnzrm8m+u8pEFTp5pIBUWRBNZEjdUFFB/YJTCWZZdlefjeH9z32y4ssuDub2X7vGaYgf399rff34f9/faz38eMjAz09vbi008/xdmzZ5GTk4OMjAxcunQJKpUKJpMJXV1dyM7OxrFjx655ToSkpCTExcWht7cXDQ0NmDZtGmbOnImkpCRkZ2dj0qRJ4v+rUqngdDqRlJSEKVOmQKPRoKioCMePH/fbInfe4s0uHJ92PZCSk5Nx8803A4BYyExKISEhyMzMRFpaGg4dOoTW1lZYrVacO3cOW7duxWOPPYYZM2bAZDL5LfnQ6/Xo6uoSk2EdPXoUsbGxkMvlWL58uUjAfdWHYbjpz11VVVVh1qxZmDlzJjZt2oTGxkbY7XZERkZi6tSp0Gg0OHfuHGpqakZ8vWutgWT/n/zwrrvuQm5uLvLy8gAM3GdsNhsaGxtx8OBB0YRIri+UfAQQX7yLJx/h4eG49dZbxeRGubm5YkE2YKAtvrm5WaxLsXv37lHP0De4t/ngJhO5XI6bbrpJNLdMnz4dra2tqK2txc6dO8W6EoNnKxxcpalQKIYkG/x5ro97e+OcMmUKoqKixORkOTk56OjoQHh4OB5++GFotVpcvHgRhw4dwvbt21FbWwuTyQSTyYRz585Bq9WKBe9SUlJ8sp5DZGQkNBoNnE4nYmNjkZubi/j4eMycORN33XWXWIyP3yTb2trEBGDs/7Ounjp1KuDJR19fn1vzV3JyMmbNmuXTPjJRUVHQ6XRwOBy4cOHCVT8MUlJSMGfOHKSlpcFut4s4SkkulyMxMRGZmZlQKpUwm81oaGiAxWLBTz/9hM7OTiiVyiEzxvqS2WzGzz//jMOHD4tE2el0ipoyjUYDpdJ3t3BvYmyxWGC329Hd3Q2DwSDm1wEGah9CQkLw888/+3z1Zk/kcjliYmKQk5ODvLw85OTkABjosFxfX4+6ujpRM0KuP5R8BAD/EOYzO/LOnowxFBQU4MEHH8TkyZMhk8nEipUdHR0oKSnBjz/+iLKyMuj1+jFN/hQZGYmOjg4xaoUnI/wGEh4ejqeeego5OTmIjo4GMNAUYzAYoNfrERYWJiYI4yNbhjs/nnS4zmjqusrtaL75xMXFienblyxZgsLCQpGU8bbdTz/9FB9++KF4TnFxMYqLi4ccq66uzvuAXYXFYhEjaTZt2jQkIXNNstRqNXQ6HYBfR6KUlZXBbDb7ZfbO0QgLC3PrUzBr1ixYLBaEhIT4bKTLokWL8OSTT+Ls2bN44403xEgI3vzG4ySTyfD8889j4cKFopYrNzcXJ0+elKTfB2e323HmzBkkJSVhw4YNiI6OxjfffIPq6mrMmzcPISEhOHz4ML777ju/lqO/v98tAVQoFGJoresHvy/wY/FmXv5FAfi1lmLlypXIzs5GbGws/v73v6OwsBBNTU3QaDRITU2FUqnEpEmToNPp/P7/4ksB5OTk4IYbbhBl3Lp1K77++mtUV1f79fXJtaHkIwB4E8srr7wCtVoNm82G8PBw3HnnnWLZc37xHzp0CBMnTkRfXx+2bNmCEydOwGazud10RrMwE+9vwffn1dk80bntttvENMRKpRLNzc1YvXo1Tp8+DcaYGJKoVqtFU4tcLhfzkfBVePkxPdVuuHZ0DQ8P92pui+LiYjQ0NKCurg4vvfSSSIAuXbqEwsJCLF26FMePHx/xOL703XffoaGhAbW1tVi/fj3efPNN2Gw26HQ6zJw5EytWrMDu3btRUlKCZ555BmvWrMHKlSsxf/58PPTQQ35ftt5by5Ytw5NPPin+5n0dfDnEtra2Fjt27MD7778v/udWqxXbtm3Dyy+/jG+//Ra7d+9GQUEB0tPTYTAY8J///AefffaZWFhRanq9HkajEUeOHEFzczPuvfde3HPPPUhPT4fFYhE1NHv27JGsTIWFhVi3bh0AoLy8XHS69qXBTaOcTCZDXFwcJk6cCJPJhD/96U+w2Wy488478bvf/Q7AQCfvRYsWQaPR4MCBA1d9nWutWevq6kJxcTHWrVuHhIQEOBwOHDlyBLt27UJ9ff2Yj0ukQclHgNjtdrz11ltYtGgRVCoVenp6cP/990OpVOLKlSs4f/48SkpKRA1Hd3e3qO4dfMG6fkMZicPhcJvXY3DNhVKpRGJiIrRaLa5cuYJ//etfuHjxolubO08oeFUwTzwUCgVCQ0Nht9uhUqnEUN7hbjB9fX1ef8A5nU6cOXMGO3bswJkzZ8Qxedvunj17JF/8q6enBxcuXMC+fftgNpvF/yosLAyVlZUoKyvD+fPncenSJdFf4Msvv0RpaSksFoukZb0avpjbCy+8AABuw659xeFwoLW1FWazGZmZmQAG4peWloabb74ZycnJ+P3vf4/ExETU1NSgqqoKP/74I8xms9/WlhkJ79RYW1srRklptVo4HA5ERESgqqpK0sQDACZMmICYmBgAA/2geH+LsdbmDa7ZuNp+jDH84x//QG9vL+6//3688MILsFqtiIqKQmJioljeoby8HF9++SUAuNVquR7H9TXHuqpteHg4HnvsMTHxoFwuFx3o+cra5PpFyUeAdHd3o7i4GN3d3VAoFLDZbIiJiYFCoUBrayuMRiN27dqFpqYmdHZ2ig6eg28Sg1eeHIlr1aorPvS1r68PEydOREdHB44ePYqSkhK3yatkMplINviPaz8OXhaVSgWVSjXsTYC//mg6fba3t6O9vd3jRF4Gg8Hr4/hSZ2cnOjs70dDQMGSba6c7vqDdqVOnJCubt+rr6/1eRW2322EymXDmzBnMmzcPkZGRotO11WpFaGgoZsyYgfDwcFRUVODYsWNijo1A6uvrQ1tbG4CBvgQ1NTVQKBRivZ4TJ05IWh7eVAoA8+fPR1RUFIxGI+rr6yVJ0urq6mA0GmG327Fs2TI4HA44HA50dnZCr9ejt7cXZWVlKC8vH/JcXqN7LbObulIoFGLY7y+//ILLly/j5MmTsNlsNKx2HKDkI0AYY/jll1/w73//WzzGvy0MR6FQDGnCUKlUYlirt/i3kcE3q/7+fthsNrS3t6Oqqgpvv/32kPlGFAoFuru7odFoEBoaKlZN5SNX+I2aj9AZ7ibAR4Hw5edJ4CQkJCA1NVV0AnU6nT6f1ZRPpnbgwAFEREQgKSkJCoUCRUVFqK6uFlNyp6enY+/evaMavSWVL774YshcOlLjywcAwIoVK9Dc3Iyqqip8//33aG1tHfWHrqcaCT5BoOs9hW9bsGABZDIZysvLsXz5coSGhqKlpQVVVVV46623xKgyPt8N/2LCOw17uk+NNVHo6urC559/joULF+LixYsoKioK6NT3ZHRk7HpodA5CHR0dohPfaHrq846n3l6Q/NvE4E6envDqdNf1YvhoDdfOoXx6cqfTKWo6vC1Hf38/IiMjRedSPjMpMJBwTJo0CS0tLaJz4eCbHJEe/zbN50gARp4CfazUarWYD0Ymk4nlAFyr4APVzDIePP3001i/fj0SEhLw17/+FXq9HufPn8fly5dHXZMwmhmGOT4zsmsNDG+G5UnRSBOV+ZJCoUBISIhYldvX7x1+HhaLBRERET499m8dJR9+wpOPkbJ+znX9BP7DP7y9+RcNXn9huH2AXxMcPgnYcOuwcIOH4rqu/eLpuXyGQf48ft58YblATCNOSDCYPn06UlNTERoaipqaGrS3t8Nut/t1HovBzSXA8E0mg/t4eDrWePrIoeTDf6jZxc9Gu3iaa9XnaHhzQQ/uuc5fg9eIyOVyMfSXb/M0qmYkg7998OcxxtxG13hbbkLIAKPR6LMZcceSCLhet2N9Pl3zBKDkw29ch7N604Qy+FuFpyXnPV243n4jccWHx/JqU74st1qthtlshlKpHDI7Ka9udTqdo56jQ6lUis6s/Hl8dsbreebBsfbCJ2Q8GDy/ynDXtOvjrqOgPNVwjNSE6qvOplIbb+UdDyj58BPXESK+4ukCGOtFwReSA4Z2MPTULOI6EdloX9PT8a7npIOjpIMEM08dSkfznLEYr9eU1Wr1uLgfGTvq8+En/f39MBgMSE9Px4ULF37T7YUdHR244YYbKA4UBwAUB47iMOB6jgNjDFarFQkJCV43OxPvUM2Hn8jlcrE4V0RExHV3UQUCxWEAxWEAxWEAxWHA9RoHqvHwD0rlCCGEECIpSj4IIYQQIilKPvxIo9Fg48aNYhXK3yqKwwCKwwCKwwCKwwCKw28TdTglhBBCiKSo5oMQQgghkqLkgxBCCCGSouSDEEIIIZKi5IMQQgghkqLkw08++eQTJCUlISQkBFlZWfjhhx8CXSS/2rRpk9uKvDKZDGlpaWK7w+HA2rVrERUVhQkTJmDFihUwm80BLLFvHDx4EPfccw8SEhIgk8mwa9cut+2MMbz22muIj49HaGgo8vPzcfbsWbd9rly5glWrViEiIgJarRZ//vOf0dnZKeFZXLuR4vDwww8PeX8UFBS47RMMcdi8eTNuvfVWTJw4EbGxsSgsLITBYHDbx5troampCXfffTfCwsIQGxuLDRs2iHWWxgNv4rBo0aIh74nHH3/cbZ/xHgcyPEo+/OCLL77As88+i40bN6KmpgZz587FkiVL0NLSEuii+dWsWbPQ3NwsfsrLy8W2Z555Bnv27EFRURHKyspw+fJlLF++PICl9Q2bzYa5c+fik08+8bj93XffxUcffYQtW7agsrIS4eHhWLJkCRwOh9hn1apVOHXqFEpKSrB3714cPHgQjz76qFSn4BMjxQEACgoK3N4f27dvd9seDHEoKyvD2rVrcfToUZSUlKCnpweLFy+GzWYT+4x0LfT19eHuu++G0+nEkSNH8M9//hPbtm3Da6+9FohTGhNv4gAAa9ascXtPvPvuu2JbMMSBXAUjPpeZmcnWrl0r/u7r62MJCQls8+bNASyVf23cuJHNnTvX47b29namUqlYUVGReOynn35iAFhFRYVEJfQ/AGznzp3i7/7+fqbT6dh7770nHmtvb2cajYZt376dMcbY6dOnGQB27Ngxsc8333zDZDIZu3TpkmRl96XBcWCMsdWrV7Nly5YN+5xgjANjjLW0tDAArKysjDHm3bXw9ddfM7lczkwmk9jnb3/7G4uIiGDd3d3SnoCPDI4DY4zl5uayp556atjnBGMcyK+o5sPHnE4nqqurkZ+fLx6Ty+XIz89HRUVFAEvmf2fPnkVCQgJSUlKwatUqNDU1AQCqq6vR09PjFpO0tDRMnTo1qGPS2NgIk8nkdt6RkZHIysoS511RUQGtVotbbrlF7JOfnw+5XI7KykrJy+xPpaWliI2NxYwZM/DEE0+gra1NbAvWOFgsFgDA5MmTAXh3LVRUVCAjIwNxcXFinyVLlqCjowOnTp2SsPS+MzgO3Oeff47o6GjMnj0bL774otvq2sEYB/IrWljOx1pbW9HX1+d2wQBAXFwc6urqAlQq/8vKysK2bdswY8YMNDc34/XXX8cdd9yBkydPwmQyQa1WQ6vVuj0nLi4OJpMpMAWWAD83T+8Fvs1kMiE2NtZtu1KpxOTJk4MqNgUFBVi+fDmSk5NRX1+Pl156CUuXLkVFRQUUCkVQxqG/vx9PP/00br/9dsyePRsAvLoWTCaTx/cM3zbeeIoDAPzxj3/EtGnTkJCQgBMnTuD555+HwWBAcXExgOCLA3FHyQfxiaVLl4rf58yZg6ysLEybNg07duxAaGhoAEtGrgd/+MMfxO8ZGRmYM2cObrzxRpSWliIvLy+AJfOftWvX4uTJk259n36LhouDa3+ejIwMxMfHIy8vD/X19bjxxhulLiaRGDW7+Fh0dDQUCsWQ3utmsxk6nS5ApZKeVqvFTTfdBKPRCJ1OB6fTifb2drd9gj0m/Nyu9l7Q6XRDOiL39vbiypUrQR2blJQUREdHw2g0Agi+OKxbtw579+7FgQMHkJiYKB735lrQ6XQe3zN823gyXBw8ycrKAgC390SwxIEMRcmHj6nVaixYsAD79u0Tj/X392Pfvn3Izs4OYMmk1dnZifr6esTHx2PBggVQqVRuMTEYDGhqagrqmCQnJ0On07mdd0dHByorK8V5Z2dno729HdXV1WKf/fv3o7+/X9yMg9HFixfR1taG+Ph4AMETB8YY1q1bh507d2L//v1ITk522+7NtZCdnY3a2lq3ZKykpAQRERFIT0+X5kSu0Uhx8OT48eMA4PaeGO9xIFcR6B6vwei///0v02g0bNu2bez06dPs0UcfZVqt1q3XdrBZv349Ky0tZY2Njezw4cMsPz+fRUdHs5aWFsYYY48//jibOnUq279/P6uqqmLZ2dksOzs7wKW+dlarlen1eqbX6xkA9sEHHzC9Xs/Onz/PGGPsnXfeYVqtln311VfsxIkTbNmyZSw5OZl1dXWJYxQUFLB58+axyspKVl5ezlJTU9kDDzwQqFMak6vFwWq1sueee45VVFSwxsZG9v3337P58+ez1NRU5nA4xDGCIQ5PPPEEi4yMZKWlpay5uVn82O12sc9I10Jvby+bPXs2W7x4MTt+/Dj79ttvWUxMDHvxxRcDcUpjMlIcjEYje+ONN1hVVRVrbGxkX331FUtJSWELFy4UxwiGOJDhUfLhJx9//DGbOnUqU6vVLDMzkx09ejTQRfKrlStXsvj4eKZWq9mUKVPYypUrmdFoFNu7urrYX/7yFzZp0iQWFhbG7rvvPtbc3BzAEvvGgQMHGIAhP6tXr2aMDQy3ffXVV1lcXBzTaDQsLy+PGQwGt2O0tbWxBx54gE2YMIFFRESwRx55hFmt1gCczdhdLQ52u50tXryYxcTEMJVKxaZNm8bWrFkzJBkPhjh4igEA9tlnn4l9vLkWzp07x5YuXcpCQ0NZdHQ0W79+Pevp6ZH4bMZupDg0NTWxhQsXssmTJzONRsOmT5/ONmzYwCwWi9txxnscyPBkjDEmXT0LIYQQQn7rqM8HIYQQQiRFyQchhBBCJEXJByGEEEIkRckHIYQQQiRFyQchhBBCJEXJByGEEEIkRckHIYQQQiRFyQchhBBCJEXJByGEEEIkRckHIYQQQiRFyQchhBBCJEXJByGEEEIk9T8wt3VTM5rJuAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "USE_TORCH_DIFFEQ = True\n", + "ntest = 10 * 10\n", + "generated_class_list = (\n", + " torch.arange(10, device=device).repeat(10).reshape((ntest, 1)).float() / 2.0\n", + ") # TODO: reshape\n", + "with torch.no_grad():\n", + " if USE_TORCH_DIFFEQ:\n", + " traj = torchdiffeq.odeint(\n", + " lambda t, x: model.forward(t, x, generated_class_list),\n", + " torch.randn(100, 1, 28, 28, device=device),\n", + " torch.linspace(0, 1, 2, device=device),\n", + " atol=1e-4,\n", + " rtol=1e-4,\n", + " method=\"dopri5\",\n", + " )\n", + " else:\n", + " traj = node.trajectory(\n", + " torch.randn(100, 1, 28, 28, device=device),\n", + " t_span=torch.linspace(0, 1, 2, device=device),\n", + " )\n", + "grid = make_grid(\n", + " traj[-1, :100].view([-1, 1, 28, 28]).clip(-1, 1), value_range=(-1, 1), padding=0, nrow=10\n", + ")\n", + "img = ToPILImage()(grid)\n", + "plt.imshow(img)\n", + "cond_values = \", \".join([f\"{float(item):.2f}\" for item in generated_class_list[0:10, 0]])\n", + "plt.title(f\"float conditional cfm\\nlabels: {cond_values}\")\n", + "plt.savefig(\"floatconditional-cfm_noninteger.svg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "cba1746c", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T13:00:11.619797Z", + "iopub.status.busy": "2025-05-08T13:00:11.619647Z", + "iopub.status.idle": "2025-05-08T13:00:11.718533Z", + "shell.execute_reply": "2025-05-08T13:00:11.717939Z" + } + }, + "outputs": [], + "source": [ + "#################################\n", + "# OT-CFM\n", + "#################################\n", + "\n", + "sigma = 0.0\n", + "model = UNetModel(\n", + " dim=(1, 28, 28), num_channels=32, num_res_blocks=1, embedding_net=embed_condition\n", + ").to(device)\n", + "optimizer = torch.optim.Adam(model.parameters())\n", + "FM = ExactOptimalTransportConditionalFlowMatcher(sigma=sigma)\n", + "node = NeuralODE(model, solver=\"dopri5\", sensitivity=\"adjoint\", atol=1e-4, rtol=1e-4)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c0c4abad", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T13:00:11.720373Z", + "iopub.status.busy": "2025-05-08T13:00:11.720114Z", + "iopub.status.idle": "2025-05-08T13:05:28.760193Z", + "shell.execute_reply": "2025-05-08T13:05:28.759713Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 0, loss: 1.85\r", + "OT-CFM epoch: 0, steps: 1, loss: 1.783\r", + "OT-CFM epoch: 0, steps: 2, loss: 1.674\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 3, loss: 1.57\r", + "OT-CFM epoch: 0, steps: 4, loss: 1.483\r", + "OT-CFM epoch: 0, steps: 5, loss: 1.335\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 6, loss: 1.245\r", + "OT-CFM epoch: 0, steps: 7, loss: 1.107\r", + "OT-CFM epoch: 0, steps: 8, loss: 1.051\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 9, loss: 0.9559\r", + "OT-CFM epoch: 0, steps: 10, loss: 0.8646\r", + "OT-CFM epoch: 0, steps: 11, loss: 0.7999\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 12, loss: 0.7174\r", + "OT-CFM epoch: 0, steps: 13, loss: 0.6748\r", + "OT-CFM epoch: 0, steps: 14, loss: 0.641\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 15, loss: 0.5832\r", + "OT-CFM epoch: 0, steps: 16, loss: 0.5354\r", + "OT-CFM epoch: 0, steps: 17, loss: 0.5067\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 18, loss: 0.4997\r", + "OT-CFM epoch: 0, steps: 19, loss: 0.4595\r", + "OT-CFM epoch: 0, steps: 20, loss: 0.4431\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 21, loss: 0.4358\r", + "OT-CFM epoch: 0, steps: 22, loss: 0.4089\r", + "OT-CFM epoch: 0, steps: 23, loss: 0.4158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 24, loss: 0.3969\r", + "OT-CFM epoch: 0, steps: 25, loss: 0.3919\r", + "OT-CFM epoch: 0, steps: 26, loss: 0.3711\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 27, loss: 0.3749\r", + "OT-CFM epoch: 0, steps: 28, loss: 0.3667\r", + "OT-CFM epoch: 0, steps: 29, loss: 0.3472\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 30, loss: 0.3249\r", + "OT-CFM epoch: 0, steps: 31, loss: 0.353\r", + "OT-CFM epoch: 0, steps: 32, loss: 0.332\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 33, loss: 0.3389\r", + "OT-CFM epoch: 0, steps: 34, loss: 0.3243\r", + "OT-CFM epoch: 0, steps: 35, loss: 0.3424\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 36, loss: 0.2894\r", + "OT-CFM epoch: 0, steps: 37, loss: 0.2953\r", + "OT-CFM epoch: 0, steps: 38, loss: 0.2918\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 39, loss: 0.3176\r", + "OT-CFM epoch: 0, steps: 40, loss: 0.2716\r", + "OT-CFM epoch: 0, steps: 41, loss: 0.286\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 42, loss: 0.2787\r", + "OT-CFM epoch: 0, steps: 43, loss: 0.3025\r", + "OT-CFM epoch: 0, steps: 44, loss: 0.2699\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 45, loss: 0.27\r", + "OT-CFM epoch: 0, steps: 46, loss: 0.2602\r", + "OT-CFM epoch: 0, steps: 47, loss: 0.2549\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 48, loss: 0.2624\r", + "OT-CFM epoch: 0, steps: 49, loss: 0.2576\r", + "OT-CFM epoch: 0, steps: 50, loss: 0.2545\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 51, loss: 0.263\r", + "OT-CFM epoch: 0, steps: 52, loss: 0.2436\r", + "OT-CFM epoch: 0, steps: 53, loss: 0.2502\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 54, loss: 0.2692\r", + "OT-CFM epoch: 0, steps: 55, loss: 0.2628\r", + "OT-CFM epoch: 0, steps: 56, loss: 0.2507\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 57, loss: 0.2611\r", + "OT-CFM epoch: 0, steps: 58, loss: 0.2625\r", + "OT-CFM epoch: 0, steps: 59, loss: 0.2509\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 60, loss: 0.2691\r", + "OT-CFM epoch: 0, steps: 61, loss: 0.2329\r", + "OT-CFM epoch: 0, steps: 62, loss: 0.2494\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 63, loss: 0.233\r", + "OT-CFM epoch: 0, steps: 64, loss: 0.258\r", + "OT-CFM epoch: 0, steps: 65, loss: 0.2499\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 66, loss: 0.2313\r", + "OT-CFM epoch: 0, steps: 67, loss: 0.2277\r", + "OT-CFM epoch: 0, steps: 68, loss: 0.2331\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 69, loss: 0.2416\r", + "OT-CFM epoch: 0, steps: 70, loss: 0.2219\r", + "OT-CFM epoch: 0, steps: 71, loss: 0.2339\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 72, loss: 0.2361\r", + "OT-CFM epoch: 0, steps: 73, loss: 0.2393\r", + "OT-CFM epoch: 0, steps: 74, loss: 0.2314\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 75, loss: 0.2148\r", + "OT-CFM epoch: 0, steps: 76, loss: 0.241\r", + "OT-CFM epoch: 0, steps: 77, loss: 0.2239\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 78, loss: 0.214\r", + "OT-CFM epoch: 0, steps: 79, loss: 0.2273\r", + "OT-CFM epoch: 0, steps: 80, loss: 0.23\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 81, loss: 0.2181\r", + "OT-CFM epoch: 0, steps: 82, loss: 0.2342\r", + "OT-CFM epoch: 0, steps: 83, loss: 0.209\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 84, loss: 0.2237\r", + "OT-CFM epoch: 0, steps: 85, loss: 0.2302\r", + "OT-CFM epoch: 0, steps: 86, loss: 0.2217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 87, loss: 0.2176\r", + "OT-CFM epoch: 0, steps: 88, loss: 0.2031\r", + "OT-CFM epoch: 0, steps: 89, loss: 0.2163\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 90, loss: 0.222\r", + "OT-CFM epoch: 0, steps: 91, loss: 0.2139\r", + "OT-CFM epoch: 0, steps: 92, loss: 0.2059\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 93, loss: 0.1977\r", + "OT-CFM epoch: 0, steps: 94, loss: 0.1953\r", + "OT-CFM epoch: 0, steps: 95, loss: 0.1976\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 96, loss: 0.1969\r", + "OT-CFM epoch: 0, steps: 97, loss: 0.2008\r", + "OT-CFM epoch: 0, steps: 98, loss: 0.2098\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 99, loss: 0.2071\r", + "OT-CFM epoch: 0, steps: 100, loss: 0.1971\r", + "OT-CFM epoch: 0, steps: 101, loss: 0.1986\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 102, loss: 0.2045\r", + "OT-CFM epoch: 0, steps: 103, loss: 0.2134\r", + "OT-CFM epoch: 0, steps: 104, loss: 0.1899\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 105, loss: 0.2052\r", + "OT-CFM epoch: 0, steps: 106, loss: 0.1943\r", + "OT-CFM epoch: 0, steps: 107, loss: 0.211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 108, loss: 0.1861\r", + "OT-CFM epoch: 0, steps: 109, loss: 0.1909\r", + "OT-CFM epoch: 0, steps: 110, loss: 0.1859\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 111, loss: 0.1972\r", + "OT-CFM epoch: 0, steps: 112, loss: 0.2088\r", + "OT-CFM epoch: 0, steps: 113, loss: 0.205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 114, loss: 0.1868\r", + "OT-CFM epoch: 0, steps: 115, loss: 0.2007\r", + "OT-CFM epoch: 0, steps: 116, loss: 0.1939\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 117, loss: 0.2124\r", + "OT-CFM epoch: 0, steps: 118, loss: 0.1979\r", + "OT-CFM epoch: 0, steps: 119, loss: 0.2134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 120, loss: 0.1989\r", + "OT-CFM epoch: 0, steps: 121, loss: 0.1887\r", + "OT-CFM epoch: 0, steps: 122, loss: 0.1973\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 123, loss: 0.1726\r", + "OT-CFM epoch: 0, steps: 124, loss: 0.2048\r", + "OT-CFM epoch: 0, steps: 125, loss: 0.1809\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 126, loss: 0.1908\r", + "OT-CFM epoch: 0, steps: 127, loss: 0.1841\r", + "OT-CFM epoch: 0, steps: 128, loss: 0.1838\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 129, loss: 0.2065\r", + "OT-CFM epoch: 0, steps: 130, loss: 0.1974\r", + "OT-CFM epoch: 0, steps: 131, loss: 0.1971\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 132, loss: 0.1866\r", + "OT-CFM epoch: 0, steps: 133, loss: 0.1768\r", + "OT-CFM epoch: 0, steps: 134, loss: 0.1866\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 135, loss: 0.1703\r", + "OT-CFM epoch: 0, steps: 136, loss: 0.1737\r", + "OT-CFM epoch: 0, steps: 137, loss: 0.1986\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 138, loss: 0.1806\r", + "OT-CFM epoch: 0, steps: 139, loss: 0.2059\r", + "OT-CFM epoch: 0, steps: 140, loss: 0.1809\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 141, loss: 0.2022\r", + "OT-CFM epoch: 0, steps: 142, loss: 0.1905\r", + "OT-CFM epoch: 0, steps: 143, loss: 0.187\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 144, loss: 0.1844\r", + "OT-CFM epoch: 0, steps: 145, loss: 0.1886\r", + "OT-CFM epoch: 0, steps: 146, loss: 0.1871\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 147, loss: 0.1861\r", + "OT-CFM epoch: 0, steps: 148, loss: 0.1842\r", + "OT-CFM epoch: 0, steps: 149, loss: 0.1736\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 150, loss: 0.171\r", + "OT-CFM epoch: 0, steps: 151, loss: 0.1942\r", + "OT-CFM epoch: 0, steps: 152, loss: 0.1821\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 153, loss: 0.192\r", + "OT-CFM epoch: 0, steps: 154, loss: 0.1778\r", + "OT-CFM epoch: 0, steps: 155, loss: 0.1776\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 156, loss: 0.1605\r", + "OT-CFM epoch: 0, steps: 157, loss: 0.203\r", + "OT-CFM epoch: 0, steps: 158, loss: 0.1662\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 159, loss: 0.1745\r", + "OT-CFM epoch: 0, steps: 160, loss: 0.1804\r", + "OT-CFM epoch: 0, steps: 161, loss: 0.1719\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 162, loss: 0.1755\r", + "OT-CFM epoch: 0, steps: 163, loss: 0.1887\r", + "OT-CFM epoch: 0, steps: 164, loss: 0.1726\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 165, loss: 0.1717\r", + "OT-CFM epoch: 0, steps: 166, loss: 0.189\r", + "OT-CFM epoch: 0, steps: 167, loss: 0.1723\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 168, loss: 0.1748\r", + "OT-CFM epoch: 0, steps: 169, loss: 0.1791\r", + "OT-CFM epoch: 0, steps: 170, loss: 0.1764\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 171, loss: 0.1781\r", + "OT-CFM epoch: 0, steps: 172, loss: 0.1903\r", + "OT-CFM epoch: 0, steps: 173, loss: 0.1882\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 174, loss: 0.1842\r", + "OT-CFM epoch: 0, steps: 175, loss: 0.1764\r", + "OT-CFM epoch: 0, steps: 176, loss: 0.1681\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 177, loss: 0.1834\r", + "OT-CFM epoch: 0, steps: 178, loss: 0.1892\r", + "OT-CFM epoch: 0, steps: 179, loss: 0.1738\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 180, loss: 0.1865\r", + "OT-CFM epoch: 0, steps: 181, loss: 0.1782\r", + "OT-CFM epoch: 0, steps: 182, loss: 0.1699\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 183, loss: 0.1734\r", + "OT-CFM epoch: 0, steps: 184, loss: 0.1736\r", + "OT-CFM epoch: 0, steps: 185, loss: 0.1835\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 186, loss: 0.1918\r", + "OT-CFM epoch: 0, steps: 187, loss: 0.1647\r", + "OT-CFM epoch: 0, steps: 188, loss: 0.1821\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 189, loss: 0.1703\r", + "OT-CFM epoch: 0, steps: 190, loss: 0.1902\r", + "OT-CFM epoch: 0, steps: 191, loss: 0.1717\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 192, loss: 0.1807\r", + "OT-CFM epoch: 0, steps: 193, loss: 0.1773\r", + "OT-CFM epoch: 0, steps: 194, loss: 0.1657\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 195, loss: 0.171\r", + "OT-CFM epoch: 0, steps: 196, loss: 0.1653\r", + "OT-CFM epoch: 0, steps: 197, loss: 0.1577\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 198, loss: 0.1671\r", + "OT-CFM epoch: 0, steps: 199, loss: 0.1923\r", + "OT-CFM epoch: 0, steps: 200, loss: 0.172\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 201, loss: 0.1639\r", + "OT-CFM epoch: 0, steps: 202, loss: 0.183\r", + "OT-CFM epoch: 0, steps: 203, loss: 0.1608\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 204, loss: 0.1715\r", + "OT-CFM epoch: 0, steps: 205, loss: 0.1644\r", + "OT-CFM epoch: 0, steps: 206, loss: 0.1685\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 207, loss: 0.1765\r", + "OT-CFM epoch: 0, steps: 208, loss: 0.1683\r", + "OT-CFM epoch: 0, steps: 209, loss: 0.1648\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 210, loss: 0.1632\r", + "OT-CFM epoch: 0, steps: 211, loss: 0.1728\r", + "OT-CFM epoch: 0, steps: 212, loss: 0.1722\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 213, loss: 0.1628\r", + "OT-CFM epoch: 0, steps: 214, loss: 0.1741\r", + "OT-CFM epoch: 0, steps: 215, loss: 0.1678\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 216, loss: 0.1795\r", + "OT-CFM epoch: 0, steps: 217, loss: 0.1662\r", + "OT-CFM epoch: 0, steps: 218, loss: 0.1531\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 219, loss: 0.1651\r", + "OT-CFM epoch: 0, steps: 220, loss: 0.1721\r", + "OT-CFM epoch: 0, steps: 221, loss: 0.1647\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 222, loss: 0.1513\r", + "OT-CFM epoch: 0, steps: 223, loss: 0.1805\r", + "OT-CFM epoch: 0, steps: 224, loss: 0.1535\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 225, loss: 0.1706\r", + "OT-CFM epoch: 0, steps: 226, loss: 0.1644\r", + "OT-CFM epoch: 0, steps: 227, loss: 0.1691\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 228, loss: 0.1489\r", + "OT-CFM epoch: 0, steps: 229, loss: 0.1755\r", + "OT-CFM epoch: 0, steps: 230, loss: 0.1623\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 231, loss: 0.1711\r", + "OT-CFM epoch: 0, steps: 232, loss: 0.1936\r", + "OT-CFM epoch: 0, steps: 233, loss: 0.1668\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 234, loss: 0.1611\r", + "OT-CFM epoch: 0, steps: 235, loss: 0.1704\r", + "OT-CFM epoch: 0, steps: 236, loss: 0.1686\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 237, loss: 0.1695\r", + "OT-CFM epoch: 0, steps: 238, loss: 0.172\r", + "OT-CFM epoch: 0, steps: 239, loss: 0.1635\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 240, loss: 0.1565\r", + "OT-CFM epoch: 0, steps: 241, loss: 0.1883\r", + "OT-CFM epoch: 0, steps: 242, loss: 0.1659\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 243, loss: 0.1664\r", + "OT-CFM epoch: 0, steps: 244, loss: 0.1666\r", + "OT-CFM epoch: 0, steps: 245, loss: 0.1701\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 246, loss: 0.156\r", + "OT-CFM epoch: 0, steps: 247, loss: 0.1522\r", + "OT-CFM epoch: 0, steps: 248, loss: 0.1618\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 249, loss: 0.159\r", + "OT-CFM epoch: 0, steps: 250, loss: 0.1704\r", + "OT-CFM epoch: 0, steps: 251, loss: 0.1654\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 252, loss: 0.1757\r", + "OT-CFM epoch: 0, steps: 253, loss: 0.151\r", + "OT-CFM epoch: 0, steps: 254, loss: 0.1727\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 255, loss: 0.1737\r", + "OT-CFM epoch: 0, steps: 256, loss: 0.1709\r", + "OT-CFM epoch: 0, steps: 257, loss: 0.1632\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 258, loss: 0.1739\r", + "OT-CFM epoch: 0, steps: 259, loss: 0.1691\r", + "OT-CFM epoch: 0, steps: 260, loss: 0.1724\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 261, loss: 0.1693\r", + "OT-CFM epoch: 0, steps: 262, loss: 0.1552\r", + "OT-CFM epoch: 0, steps: 263, loss: 0.1796\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 264, loss: 0.1681\r", + "OT-CFM epoch: 0, steps: 265, loss: 0.164\r", + "OT-CFM epoch: 0, steps: 266, loss: 0.1862\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 267, loss: 0.156\r", + "OT-CFM epoch: 0, steps: 268, loss: 0.1678\r", + "OT-CFM epoch: 0, steps: 269, loss: 0.1694\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 270, loss: 0.1584\r", + "OT-CFM epoch: 0, steps: 271, loss: 0.1648\r", + "OT-CFM epoch: 0, steps: 272, loss: 0.1495\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 273, loss: 0.1572\r", + "OT-CFM epoch: 0, steps: 274, loss: 0.1823\r", + "OT-CFM epoch: 0, steps: 275, loss: 0.1758\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 276, loss: 0.1615\r", + "OT-CFM epoch: 0, steps: 277, loss: 0.1626\r", + "OT-CFM epoch: 0, steps: 278, loss: 0.1747\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 279, loss: 0.1626\r", + "OT-CFM epoch: 0, steps: 280, loss: 0.1585\r", + "OT-CFM epoch: 0, steps: 281, loss: 0.1386\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 282, loss: 0.1647\r", + "OT-CFM epoch: 0, steps: 283, loss: 0.1574\r", + "OT-CFM epoch: 0, steps: 284, loss: 0.1449\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 285, loss: 0.1558\r", + "OT-CFM epoch: 0, steps: 286, loss: 0.1641\r", + "OT-CFM epoch: 0, steps: 287, loss: 0.1518\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 288, loss: 0.1682\r", + "OT-CFM epoch: 0, steps: 289, loss: 0.1538\r", + "OT-CFM epoch: 0, steps: 290, loss: 0.1665\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 291, loss: 0.1502\r", + "OT-CFM epoch: 0, steps: 292, loss: 0.1699\r", + "OT-CFM epoch: 0, steps: 293, loss: 0.1575\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 294, loss: 0.1642\r", + "OT-CFM epoch: 0, steps: 295, loss: 0.1376\r", + "OT-CFM epoch: 0, steps: 296, loss: 0.1614\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 297, loss: 0.1512\r", + "OT-CFM epoch: 0, steps: 298, loss: 0.1648\r", + "OT-CFM epoch: 0, steps: 299, loss: 0.1507\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 300, loss: 0.157\r", + "OT-CFM epoch: 0, steps: 301, loss: 0.1692\r", + "OT-CFM epoch: 0, steps: 302, loss: 0.1626\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 303, loss: 0.1633\r", + "OT-CFM epoch: 0, steps: 304, loss: 0.1588\r", + "OT-CFM epoch: 0, steps: 305, loss: 0.166\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 306, loss: 0.1724\r", + "OT-CFM epoch: 0, steps: 307, loss: 0.1661\r", + "OT-CFM epoch: 0, steps: 308, loss: 0.1438\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 309, loss: 0.1578\r", + "OT-CFM epoch: 0, steps: 310, loss: 0.167\r", + "OT-CFM epoch: 0, steps: 311, loss: 0.1584\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 312, loss: 0.1464\r", + "OT-CFM epoch: 0, steps: 313, loss: 0.1565\r", + "OT-CFM epoch: 0, steps: 314, loss: 0.1695\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 315, loss: 0.1541\r", + "OT-CFM epoch: 0, steps: 316, loss: 0.1515\r", + "OT-CFM epoch: 0, steps: 317, loss: 0.1476\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 318, loss: 0.1567\r", + "OT-CFM epoch: 0, steps: 319, loss: 0.1474\r", + "OT-CFM epoch: 0, steps: 320, loss: 0.1418\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 321, loss: 0.1487\r", + "OT-CFM epoch: 0, steps: 322, loss: 0.1479\r", + "OT-CFM epoch: 0, steps: 323, loss: 0.1586\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 324, loss: 0.1749\r", + "OT-CFM epoch: 0, steps: 325, loss: 0.1531\r", + "OT-CFM epoch: 0, steps: 326, loss: 0.1623\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 327, loss: 0.1538\r", + "OT-CFM epoch: 0, steps: 328, loss: 0.1472\r", + "OT-CFM epoch: 0, steps: 329, loss: 0.1419\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 330, loss: 0.1605\r", + "OT-CFM epoch: 0, steps: 331, loss: 0.1536\r", + "OT-CFM epoch: 0, steps: 332, loss: 0.1549\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 333, loss: 0.1442\r", + "OT-CFM epoch: 0, steps: 334, loss: 0.1477\r", + "OT-CFM epoch: 0, steps: 335, loss: 0.1556\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 336, loss: 0.1509\r", + "OT-CFM epoch: 0, steps: 337, loss: 0.1658\r", + "OT-CFM epoch: 0, steps: 338, loss: 0.1547\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 339, loss: 0.1467\r", + "OT-CFM epoch: 0, steps: 340, loss: 0.1621\r", + "OT-CFM epoch: 0, steps: 341, loss: 0.1407\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 342, loss: 0.1573\r", + "OT-CFM epoch: 0, steps: 343, loss: 0.1533\r", + "OT-CFM epoch: 0, steps: 344, loss: 0.1635\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 345, loss: 0.1615\r", + "OT-CFM epoch: 0, steps: 346, loss: 0.1447\r", + "OT-CFM epoch: 0, steps: 347, loss: 0.173\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 348, loss: 0.1528\r", + "OT-CFM epoch: 0, steps: 349, loss: 0.1573\r", + "OT-CFM epoch: 0, steps: 350, loss: 0.1458\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 351, loss: 0.1588\r", + "OT-CFM epoch: 0, steps: 352, loss: 0.153\r", + "OT-CFM epoch: 0, steps: 353, loss: 0.1446\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 354, loss: 0.1492\r", + "OT-CFM epoch: 0, steps: 355, loss: 0.1439\r", + "OT-CFM epoch: 0, steps: 356, loss: 0.1585\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 357, loss: 0.1668\r", + "OT-CFM epoch: 0, steps: 358, loss: 0.1585\r", + "OT-CFM epoch: 0, steps: 359, loss: 0.1643\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 360, loss: 0.1575\r", + "OT-CFM epoch: 0, steps: 361, loss: 0.169\r", + "OT-CFM epoch: 0, steps: 362, loss: 0.1512\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 363, loss: 0.1474\r", + "OT-CFM epoch: 0, steps: 364, loss: 0.1466\r", + "OT-CFM epoch: 0, steps: 365, loss: 0.1531\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 366, loss: 0.1564\r", + "OT-CFM epoch: 0, steps: 367, loss: 0.1629\r", + "OT-CFM epoch: 0, steps: 368, loss: 0.1542\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 369, loss: 0.1505\r", + "OT-CFM epoch: 0, steps: 370, loss: 0.152\r", + "OT-CFM epoch: 0, steps: 371, loss: 0.1446\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 372, loss: 0.1524\r", + "OT-CFM epoch: 0, steps: 373, loss: 0.1627\r", + "OT-CFM epoch: 0, steps: 374, loss: 0.1392\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 375, loss: 0.1613\r", + "OT-CFM epoch: 0, steps: 376, loss: 0.1463\r", + "OT-CFM epoch: 0, steps: 377, loss: 0.1526\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 378, loss: 0.1494\r", + "OT-CFM epoch: 0, steps: 379, loss: 0.1587\r", + "OT-CFM epoch: 0, steps: 380, loss: 0.1441\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 381, loss: 0.1702\r", + "OT-CFM epoch: 0, steps: 382, loss: 0.1561\r", + "OT-CFM epoch: 0, steps: 383, loss: 0.1456\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 384, loss: 0.1607\r", + "OT-CFM epoch: 0, steps: 385, loss: 0.128\r", + "OT-CFM epoch: 0, steps: 386, loss: 0.1595\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 387, loss: 0.1513\r", + "OT-CFM epoch: 0, steps: 388, loss: 0.1454\r", + "OT-CFM epoch: 0, steps: 389, loss: 0.1593\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 390, loss: 0.1654\r", + "OT-CFM epoch: 0, steps: 391, loss: 0.1446\r", + "OT-CFM epoch: 0, steps: 392, loss: 0.1528\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 393, loss: 0.1579\r", + "OT-CFM epoch: 0, steps: 394, loss: 0.1458\r", + "OT-CFM epoch: 0, steps: 395, loss: 0.1536\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 396, loss: 0.1561\r", + "OT-CFM epoch: 0, steps: 397, loss: 0.147\r", + "OT-CFM epoch: 0, steps: 398, loss: 0.1551\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 399, loss: 0.1509\r", + "OT-CFM epoch: 0, steps: 400, loss: 0.1447\r", + "OT-CFM epoch: 0, steps: 401, loss: 0.1647\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 402, loss: 0.1488\r", + "OT-CFM epoch: 0, steps: 403, loss: 0.1606\r", + "OT-CFM epoch: 0, steps: 404, loss: 0.1457\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 405, loss: 0.1378\r", + "OT-CFM epoch: 0, steps: 406, loss: 0.153\r", + "OT-CFM epoch: 0, steps: 407, loss: 0.159\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 408, loss: 0.1476\r", + "OT-CFM epoch: 0, steps: 409, loss: 0.1517\r", + "OT-CFM epoch: 0, steps: 410, loss: 0.15\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 411, loss: 0.1533\r", + "OT-CFM epoch: 0, steps: 412, loss: 0.1437\r", + "OT-CFM epoch: 0, steps: 413, loss: 0.144\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 414, loss: 0.1458\r", + "OT-CFM epoch: 0, steps: 415, loss: 0.163\r", + "OT-CFM epoch: 0, steps: 416, loss: 0.1442\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 417, loss: 0.1416\r", + "OT-CFM epoch: 0, steps: 418, loss: 0.1497\r", + "OT-CFM epoch: 0, steps: 419, loss: 0.1501\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 420, loss: 0.1538\r", + "OT-CFM epoch: 0, steps: 421, loss: 0.1568\r", + "OT-CFM epoch: 0, steps: 422, loss: 0.174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 423, loss: 0.1484\r", + "OT-CFM epoch: 0, steps: 424, loss: 0.1466\r", + "OT-CFM epoch: 0, steps: 425, loss: 0.1357\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 426, loss: 0.1509\r", + "OT-CFM epoch: 0, steps: 427, loss: 0.153\r", + "OT-CFM epoch: 0, steps: 428, loss: 0.1537\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 429, loss: 0.1337\r", + "OT-CFM epoch: 0, steps: 430, loss: 0.1528\r", + "OT-CFM epoch: 0, steps: 431, loss: 0.1564\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 432, loss: 0.1494\r", + "OT-CFM epoch: 0, steps: 433, loss: 0.1423\r", + "OT-CFM epoch: 0, steps: 434, loss: 0.1738\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 435, loss: 0.1416\r", + "OT-CFM epoch: 0, steps: 436, loss: 0.1433\r", + "OT-CFM epoch: 0, steps: 437, loss: 0.1522\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 438, loss: 0.1435\r", + "OT-CFM epoch: 0, steps: 439, loss: 0.1629\r", + "OT-CFM epoch: 0, steps: 440, loss: 0.1511\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 441, loss: 0.1437\r", + "OT-CFM epoch: 0, steps: 442, loss: 0.1448\r", + "OT-CFM epoch: 0, steps: 443, loss: 0.1545\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 444, loss: 0.1405\r", + "OT-CFM epoch: 0, steps: 445, loss: 0.1481\r", + "OT-CFM epoch: 0, steps: 446, loss: 0.1397\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 447, loss: 0.1415\r", + "OT-CFM epoch: 0, steps: 448, loss: 0.1374\r", + "OT-CFM epoch: 0, steps: 449, loss: 0.1463\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 450, loss: 0.1528\r", + "OT-CFM epoch: 0, steps: 451, loss: 0.1474\r", + "OT-CFM epoch: 0, steps: 452, loss: 0.1511\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 453, loss: 0.1482\r", + "OT-CFM epoch: 0, steps: 454, loss: 0.1576\r", + "OT-CFM epoch: 0, steps: 455, loss: 0.1521\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 456, loss: 0.1508\r", + "OT-CFM epoch: 0, steps: 457, loss: 0.1389\r", + "OT-CFM epoch: 0, steps: 458, loss: 0.1333\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 459, loss: 0.1453\r", + "OT-CFM epoch: 0, steps: 460, loss: 0.1593\r", + "OT-CFM epoch: 0, steps: 461, loss: 0.1494\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 462, loss: 0.1374\r", + "OT-CFM epoch: 0, steps: 463, loss: 0.1439\r", + "OT-CFM epoch: 0, steps: 464, loss: 0.1431\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 0, steps: 465, loss: 0.1395\r", + "OT-CFM epoch: 0, steps: 466, loss: 0.1539\r", + "OT-CFM epoch: 0, steps: 467, loss: 0.1441\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 0, loss: 0.1429\r", + "OT-CFM epoch: 1, steps: 1, loss: 0.1501\r", + "OT-CFM epoch: 1, steps: 2, loss: 0.1451\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 3, loss: 0.162\r", + "OT-CFM epoch: 1, steps: 4, loss: 0.1314\r", + "OT-CFM epoch: 1, steps: 5, loss: 0.1437\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 6, loss: 0.1419\r", + "OT-CFM epoch: 1, steps: 7, loss: 0.1514\r", + "OT-CFM epoch: 1, steps: 8, loss: 0.1478\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 9, loss: 0.1448\r", + "OT-CFM epoch: 1, steps: 10, loss: 0.1608\r", + "OT-CFM epoch: 1, steps: 11, loss: 0.1468\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 12, loss: 0.1465\r", + "OT-CFM epoch: 1, steps: 13, loss: 0.145\r", + "OT-CFM epoch: 1, steps: 14, loss: 0.1484\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 15, loss: 0.1648\r", + "OT-CFM epoch: 1, steps: 16, loss: 0.152\r", + "OT-CFM epoch: 1, steps: 17, loss: 0.1579\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 18, loss: 0.1418\r", + "OT-CFM epoch: 1, steps: 19, loss: 0.1416\r", + "OT-CFM epoch: 1, steps: 20, loss: 0.1505\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 21, loss: 0.1386\r", + "OT-CFM epoch: 1, steps: 22, loss: 0.1477\r", + "OT-CFM epoch: 1, steps: 23, loss: 0.163\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 24, loss: 0.1464\r", + "OT-CFM epoch: 1, steps: 25, loss: 0.1652\r", + "OT-CFM epoch: 1, steps: 26, loss: 0.1451\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 27, loss: 0.1451\r", + "OT-CFM epoch: 1, steps: 28, loss: 0.1572\r", + "OT-CFM epoch: 1, steps: 29, loss: 0.1387\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 30, loss: 0.1504\r", + "OT-CFM epoch: 1, steps: 31, loss: 0.1499\r", + "OT-CFM epoch: 1, steps: 32, loss: 0.1504\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 33, loss: 0.1479\r", + "OT-CFM epoch: 1, steps: 34, loss: 0.1481\r", + "OT-CFM epoch: 1, steps: 35, loss: 0.1449\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 36, loss: 0.1379\r", + "OT-CFM epoch: 1, steps: 37, loss: 0.1432\r", + "OT-CFM epoch: 1, steps: 38, loss: 0.141\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 39, loss: 0.1346\r", + "OT-CFM epoch: 1, steps: 40, loss: 0.1466\r", + "OT-CFM epoch: 1, steps: 41, loss: 0.1554\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 42, loss: 0.1468\r", + "OT-CFM epoch: 1, steps: 43, loss: 0.1493\r", + "OT-CFM epoch: 1, steps: 44, loss: 0.1394\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 45, loss: 0.1424\r", + "OT-CFM epoch: 1, steps: 46, loss: 0.1504\r", + "OT-CFM epoch: 1, steps: 47, loss: 0.1434\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 48, loss: 0.1356\r", + "OT-CFM epoch: 1, steps: 49, loss: 0.1494\r", + "OT-CFM epoch: 1, steps: 50, loss: 0.1425\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 51, loss: 0.1369\r", + "OT-CFM epoch: 1, steps: 52, loss: 0.1325\r", + "OT-CFM epoch: 1, steps: 53, loss: 0.1396\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 54, loss: 0.1509\r", + "OT-CFM epoch: 1, steps: 55, loss: 0.1449\r", + "OT-CFM epoch: 1, steps: 56, loss: 0.161\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 57, loss: 0.1568\r", + "OT-CFM epoch: 1, steps: 58, loss: 0.1546\r", + "OT-CFM epoch: 1, steps: 59, loss: 0.1378\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 60, loss: 0.1406\r", + "OT-CFM epoch: 1, steps: 61, loss: 0.1442\r", + "OT-CFM epoch: 1, steps: 62, loss: 0.1448\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 63, loss: 0.1453\r", + "OT-CFM epoch: 1, steps: 64, loss: 0.1507\r", + "OT-CFM epoch: 1, steps: 65, loss: 0.1377\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 66, loss: 0.1558\r", + "OT-CFM epoch: 1, steps: 67, loss: 0.1409\r", + "OT-CFM epoch: 1, steps: 68, loss: 0.1353\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 69, loss: 0.1355\r", + "OT-CFM epoch: 1, steps: 70, loss: 0.1667\r", + "OT-CFM epoch: 1, steps: 71, loss: 0.1393\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 72, loss: 0.1454\r", + "OT-CFM epoch: 1, steps: 73, loss: 0.1449\r", + "OT-CFM epoch: 1, steps: 74, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 75, loss: 0.1487\r", + "OT-CFM epoch: 1, steps: 76, loss: 0.1506\r", + "OT-CFM epoch: 1, steps: 77, loss: 0.1276\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 78, loss: 0.1436\r", + "OT-CFM epoch: 1, steps: 79, loss: 0.1435\r", + "OT-CFM epoch: 1, steps: 80, loss: 0.1481\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 81, loss: 0.1374\r", + "OT-CFM epoch: 1, steps: 82, loss: 0.1539\r", + "OT-CFM epoch: 1, steps: 83, loss: 0.1507\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 84, loss: 0.1436\r", + "OT-CFM epoch: 1, steps: 85, loss: 0.1499\r", + "OT-CFM epoch: 1, steps: 86, loss: 0.1368\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 87, loss: 0.1393\r", + "OT-CFM epoch: 1, steps: 88, loss: 0.1532\r", + "OT-CFM epoch: 1, steps: 89, loss: 0.1419\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 90, loss: 0.1299\r", + "OT-CFM epoch: 1, steps: 91, loss: 0.1303\r", + "OT-CFM epoch: 1, steps: 92, loss: 0.1506\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 93, loss: 0.1376\r", + "OT-CFM epoch: 1, steps: 94, loss: 0.1346\r", + "OT-CFM epoch: 1, steps: 95, loss: 0.1434\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 96, loss: 0.144\r", + "OT-CFM epoch: 1, steps: 97, loss: 0.1476\r", + "OT-CFM epoch: 1, steps: 98, loss: 0.1302\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 99, loss: 0.1351\r", + "OT-CFM epoch: 1, steps: 100, loss: 0.1507\r", + "OT-CFM epoch: 1, steps: 101, loss: 0.154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 102, loss: 0.1371\r", + "OT-CFM epoch: 1, steps: 103, loss: 0.1376\r", + "OT-CFM epoch: 1, steps: 104, loss: 0.1523\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 105, loss: 0.1448\r", + "OT-CFM epoch: 1, steps: 106, loss: 0.1434\r", + "OT-CFM epoch: 1, steps: 107, loss: 0.1327\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 108, loss: 0.134\r", + "OT-CFM epoch: 1, steps: 109, loss: 0.1616\r", + "OT-CFM epoch: 1, steps: 110, loss: 0.1416\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 111, loss: 0.1438\r", + "OT-CFM epoch: 1, steps: 112, loss: 0.1447\r", + "OT-CFM epoch: 1, steps: 113, loss: 0.1481\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 114, loss: 0.1348\r", + "OT-CFM epoch: 1, steps: 115, loss: 0.1461\r", + "OT-CFM epoch: 1, steps: 116, loss: 0.1367\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 117, loss: 0.135\r", + "OT-CFM epoch: 1, steps: 118, loss: 0.1614\r", + "OT-CFM epoch: 1, steps: 119, loss: 0.1471\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 120, loss: 0.1445\r", + "OT-CFM epoch: 1, steps: 121, loss: 0.1338\r", + "OT-CFM epoch: 1, steps: 122, loss: 0.1411\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 123, loss: 0.1391\r", + "OT-CFM epoch: 1, steps: 124, loss: 0.1488\r", + "OT-CFM epoch: 1, steps: 125, loss: 0.1573\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 126, loss: 0.1408\r", + "OT-CFM epoch: 1, steps: 127, loss: 0.1394\r", + "OT-CFM epoch: 1, steps: 128, loss: 0.143\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 129, loss: 0.144\r", + "OT-CFM epoch: 1, steps: 130, loss: 0.1473\r", + "OT-CFM epoch: 1, steps: 131, loss: 0.1466\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 132, loss: 0.1463\r", + "OT-CFM epoch: 1, steps: 133, loss: 0.1474\r", + "OT-CFM epoch: 1, steps: 134, loss: 0.1419\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 135, loss: 0.1401\r", + "OT-CFM epoch: 1, steps: 136, loss: 0.1405\r", + "OT-CFM epoch: 1, steps: 137, loss: 0.1525\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 138, loss: 0.135\r", + "OT-CFM epoch: 1, steps: 139, loss: 0.1429\r", + "OT-CFM epoch: 1, steps: 140, loss: 0.1361\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 141, loss: 0.1364\r", + "OT-CFM epoch: 1, steps: 142, loss: 0.1466\r", + "OT-CFM epoch: 1, steps: 143, loss: 0.1469\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 144, loss: 0.1353\r", + "OT-CFM epoch: 1, steps: 145, loss: 0.1476\r", + "OT-CFM epoch: 1, steps: 146, loss: 0.1325\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 147, loss: 0.1425\r", + "OT-CFM epoch: 1, steps: 148, loss: 0.1369\r", + "OT-CFM epoch: 1, steps: 149, loss: 0.1379\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 150, loss: 0.1394\r", + "OT-CFM epoch: 1, steps: 151, loss: 0.1453\r", + "OT-CFM epoch: 1, steps: 152, loss: 0.1472\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 153, loss: 0.1408\r", + "OT-CFM epoch: 1, steps: 154, loss: 0.1357\r", + "OT-CFM epoch: 1, steps: 155, loss: 0.1395\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 156, loss: 0.1397\r", + "OT-CFM epoch: 1, steps: 157, loss: 0.1383\r", + "OT-CFM epoch: 1, steps: 158, loss: 0.1303\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 159, loss: 0.1391\r", + "OT-CFM epoch: 1, steps: 160, loss: 0.1537\r", + "OT-CFM epoch: 1, steps: 161, loss: 0.1462\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 162, loss: 0.1389\r", + "OT-CFM epoch: 1, steps: 163, loss: 0.1586\r", + "OT-CFM epoch: 1, steps: 164, loss: 0.1528\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 165, loss: 0.1322\r", + "OT-CFM epoch: 1, steps: 166, loss: 0.1444\r", + "OT-CFM epoch: 1, steps: 167, loss: 0.1493\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 168, loss: 0.1338\r", + "OT-CFM epoch: 1, steps: 169, loss: 0.1336\r", + "OT-CFM epoch: 1, steps: 170, loss: 0.1452\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 171, loss: 0.1367\r", + "OT-CFM epoch: 1, steps: 172, loss: 0.1407\r", + "OT-CFM epoch: 1, steps: 173, loss: 0.14\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 174, loss: 0.1345\r", + "OT-CFM epoch: 1, steps: 175, loss: 0.1441\r", + "OT-CFM epoch: 1, steps: 176, loss: 0.1377\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 177, loss: 0.1457\r", + "OT-CFM epoch: 1, steps: 178, loss: 0.1541\r", + "OT-CFM epoch: 1, steps: 179, loss: 0.1435\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 180, loss: 0.1362\r", + "OT-CFM epoch: 1, steps: 181, loss: 0.1219\r", + "OT-CFM epoch: 1, steps: 182, loss: 0.1429\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 183, loss: 0.1363\r", + "OT-CFM epoch: 1, steps: 184, loss: 0.1487\r", + "OT-CFM epoch: 1, steps: 185, loss: 0.1407\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 186, loss: 0.1325\r", + "OT-CFM epoch: 1, steps: 187, loss: 0.1419\r", + "OT-CFM epoch: 1, steps: 188, loss: 0.1464\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 189, loss: 0.1387\r", + "OT-CFM epoch: 1, steps: 190, loss: 0.1485\r", + "OT-CFM epoch: 1, steps: 191, loss: 0.134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 192, loss: 0.151\r", + "OT-CFM epoch: 1, steps: 193, loss: 0.1409\r", + "OT-CFM epoch: 1, steps: 194, loss: 0.1383\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 195, loss: 0.135\r", + "OT-CFM epoch: 1, steps: 196, loss: 0.1418\r", + "OT-CFM epoch: 1, steps: 197, loss: 0.1336\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 198, loss: 0.1369\r", + "OT-CFM epoch: 1, steps: 199, loss: 0.1483\r", + "OT-CFM epoch: 1, steps: 200, loss: 0.1331\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 201, loss: 0.1326\r", + "OT-CFM epoch: 1, steps: 202, loss: 0.1384\r", + "OT-CFM epoch: 1, steps: 203, loss: 0.1456\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 204, loss: 0.1359\r", + "OT-CFM epoch: 1, steps: 205, loss: 0.1367\r", + "OT-CFM epoch: 1, steps: 206, loss: 0.139\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 207, loss: 0.1299\r", + "OT-CFM epoch: 1, steps: 208, loss: 0.1302\r", + "OT-CFM epoch: 1, steps: 209, loss: 0.1455\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 210, loss: 0.1546\r", + "OT-CFM epoch: 1, steps: 211, loss: 0.1364\r", + "OT-CFM epoch: 1, steps: 212, loss: 0.137\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 213, loss: 0.141\r", + "OT-CFM epoch: 1, steps: 214, loss: 0.1411\r", + "OT-CFM epoch: 1, steps: 215, loss: 0.1387\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 216, loss: 0.1342\r", + "OT-CFM epoch: 1, steps: 217, loss: 0.1478\r", + "OT-CFM epoch: 1, steps: 218, loss: 0.1383\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 219, loss: 0.133\r", + "OT-CFM epoch: 1, steps: 220, loss: 0.1421\r", + "OT-CFM epoch: 1, steps: 221, loss: 0.1329\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 222, loss: 0.134\r", + "OT-CFM epoch: 1, steps: 223, loss: 0.1267\r", + "OT-CFM epoch: 1, steps: 224, loss: 0.1475\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 225, loss: 0.1385\r", + "OT-CFM epoch: 1, steps: 226, loss: 0.1279\r", + "OT-CFM epoch: 1, steps: 227, loss: 0.1306\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 228, loss: 0.13\r", + "OT-CFM epoch: 1, steps: 229, loss: 0.1385\r", + "OT-CFM epoch: 1, steps: 230, loss: 0.1262\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 231, loss: 0.1412\r", + "OT-CFM epoch: 1, steps: 232, loss: 0.1317\r", + "OT-CFM epoch: 1, steps: 233, loss: 0.137\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 234, loss: 0.1352\r", + "OT-CFM epoch: 1, steps: 235, loss: 0.1454\r", + "OT-CFM epoch: 1, steps: 236, loss: 0.1403\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 237, loss: 0.128\r", + "OT-CFM epoch: 1, steps: 238, loss: 0.1357\r", + "OT-CFM epoch: 1, steps: 239, loss: 0.1358\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 240, loss: 0.1332\r", + "OT-CFM epoch: 1, steps: 241, loss: 0.1292\r", + "OT-CFM epoch: 1, steps: 242, loss: 0.1447\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 243, loss: 0.1399\r", + "OT-CFM epoch: 1, steps: 244, loss: 0.1221\r", + "OT-CFM epoch: 1, steps: 245, loss: 0.1297\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 246, loss: 0.1534\r", + "OT-CFM epoch: 1, steps: 247, loss: 0.1294\r", + "OT-CFM epoch: 1, steps: 248, loss: 0.1409\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 249, loss: 0.1358\r", + "OT-CFM epoch: 1, steps: 250, loss: 0.126\r", + "OT-CFM epoch: 1, steps: 251, loss: 0.129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 252, loss: 0.1508\r", + "OT-CFM epoch: 1, steps: 253, loss: 0.128\r", + "OT-CFM epoch: 1, steps: 254, loss: 0.1358\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 255, loss: 0.1415\r", + "OT-CFM epoch: 1, steps: 256, loss: 0.128\r", + "OT-CFM epoch: 1, steps: 257, loss: 0.1389\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 258, loss: 0.1366\r", + "OT-CFM epoch: 1, steps: 259, loss: 0.1437\r", + "OT-CFM epoch: 1, steps: 260, loss: 0.1298\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 261, loss: 0.1379\r", + "OT-CFM epoch: 1, steps: 262, loss: 0.1291\r", + "OT-CFM epoch: 1, steps: 263, loss: 0.1396\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 264, loss: 0.1334\r", + "OT-CFM epoch: 1, steps: 265, loss: 0.1234\r", + "OT-CFM epoch: 1, steps: 266, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 267, loss: 0.1449\r", + "OT-CFM epoch: 1, steps: 268, loss: 0.1345\r", + "OT-CFM epoch: 1, steps: 269, loss: 0.1428\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 270, loss: 0.1388\r", + "OT-CFM epoch: 1, steps: 271, loss: 0.1392\r", + "OT-CFM epoch: 1, steps: 272, loss: 0.1351\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 273, loss: 0.1434\r", + "OT-CFM epoch: 1, steps: 274, loss: 0.127\r", + "OT-CFM epoch: 1, steps: 275, loss: 0.1462\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 276, loss: 0.1468\r", + "OT-CFM epoch: 1, steps: 277, loss: 0.1526\r", + "OT-CFM epoch: 1, steps: 278, loss: 0.1309\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 279, loss: 0.1328\r", + "OT-CFM epoch: 1, steps: 280, loss: 0.1404\r", + "OT-CFM epoch: 1, steps: 281, loss: 0.1277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 282, loss: 0.1296\r", + "OT-CFM epoch: 1, steps: 283, loss: 0.14\r", + "OT-CFM epoch: 1, steps: 284, loss: 0.1422\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 285, loss: 0.1384\r", + "OT-CFM epoch: 1, steps: 286, loss: 0.1385\r", + "OT-CFM epoch: 1, steps: 287, loss: 0.1233\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 288, loss: 0.1278\r", + "OT-CFM epoch: 1, steps: 289, loss: 0.1371\r", + "OT-CFM epoch: 1, steps: 290, loss: 0.1437\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 291, loss: 0.1439\r", + "OT-CFM epoch: 1, steps: 292, loss: 0.133\r", + "OT-CFM epoch: 1, steps: 293, loss: 0.151\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 294, loss: 0.1426\r", + "OT-CFM epoch: 1, steps: 295, loss: 0.1349\r", + "OT-CFM epoch: 1, steps: 296, loss: 0.1346\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 297, loss: 0.1379\r", + "OT-CFM epoch: 1, steps: 298, loss: 0.1373\r", + "OT-CFM epoch: 1, steps: 299, loss: 0.1453\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 300, loss: 0.1427\r", + "OT-CFM epoch: 1, steps: 301, loss: 0.1413\r", + "OT-CFM epoch: 1, steps: 302, loss: 0.1357\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 303, loss: 0.141\r", + "OT-CFM epoch: 1, steps: 304, loss: 0.1377\r", + "OT-CFM epoch: 1, steps: 305, loss: 0.1493\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 306, loss: 0.1325\r", + "OT-CFM epoch: 1, steps: 307, loss: 0.132\r", + "OT-CFM epoch: 1, steps: 308, loss: 0.1408\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 309, loss: 0.1395\r", + "OT-CFM epoch: 1, steps: 310, loss: 0.1279\r", + "OT-CFM epoch: 1, steps: 311, loss: 0.1489\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 312, loss: 0.1364\r", + "OT-CFM epoch: 1, steps: 313, loss: 0.1408\r", + "OT-CFM epoch: 1, steps: 314, loss: 0.1336\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 315, loss: 0.1437\r", + "OT-CFM epoch: 1, steps: 316, loss: 0.1236\r", + "OT-CFM epoch: 1, steps: 317, loss: 0.1571\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 318, loss: 0.1366\r", + "OT-CFM epoch: 1, steps: 319, loss: 0.1499\r", + "OT-CFM epoch: 1, steps: 320, loss: 0.1514\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 321, loss: 0.1513\r", + "OT-CFM epoch: 1, steps: 322, loss: 0.1285\r", + "OT-CFM epoch: 1, steps: 323, loss: 0.1292\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 324, loss: 0.1403\r", + "OT-CFM epoch: 1, steps: 325, loss: 0.1444\r", + "OT-CFM epoch: 1, steps: 326, loss: 0.1433\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 327, loss: 0.1386\r", + "OT-CFM epoch: 1, steps: 328, loss: 0.1261\r", + "OT-CFM epoch: 1, steps: 329, loss: 0.1377\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 330, loss: 0.1398\r", + "OT-CFM epoch: 1, steps: 331, loss: 0.1393\r", + "OT-CFM epoch: 1, steps: 332, loss: 0.1327\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 333, loss: 0.1393\r", + "OT-CFM epoch: 1, steps: 334, loss: 0.1413\r", + "OT-CFM epoch: 1, steps: 335, loss: 0.1278\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 336, loss: 0.1312\r", + "OT-CFM epoch: 1, steps: 337, loss: 0.1362\r", + "OT-CFM epoch: 1, steps: 338, loss: 0.1414\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 339, loss: 0.1423\r", + "OT-CFM epoch: 1, steps: 340, loss: 0.1467\r", + "OT-CFM epoch: 1, steps: 341, loss: 0.1444\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 342, loss: 0.1384\r", + "OT-CFM epoch: 1, steps: 343, loss: 0.1408\r", + "OT-CFM epoch: 1, steps: 344, loss: 0.1367\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 345, loss: 0.1428\r", + "OT-CFM epoch: 1, steps: 346, loss: 0.1304\r", + "OT-CFM epoch: 1, steps: 347, loss: 0.1457\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 348, loss: 0.1324\r", + "OT-CFM epoch: 1, steps: 349, loss: 0.1399\r", + "OT-CFM epoch: 1, steps: 350, loss: 0.1337\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 351, loss: 0.1278\r", + "OT-CFM epoch: 1, steps: 352, loss: 0.1474\r", + "OT-CFM epoch: 1, steps: 353, loss: 0.1298\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 354, loss: 0.1324\r", + "OT-CFM epoch: 1, steps: 355, loss: 0.1368\r", + "OT-CFM epoch: 1, steps: 356, loss: 0.1327\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 357, loss: 0.1419\r", + "OT-CFM epoch: 1, steps: 358, loss: 0.1247\r", + "OT-CFM epoch: 1, steps: 359, loss: 0.1387\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 360, loss: 0.1363\r", + "OT-CFM epoch: 1, steps: 361, loss: 0.1358\r", + "OT-CFM epoch: 1, steps: 362, loss: 0.1393\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 363, loss: 0.1389\r", + "OT-CFM epoch: 1, steps: 364, loss: 0.1429\r", + "OT-CFM epoch: 1, steps: 365, loss: 0.1286\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 366, loss: 0.1343\r", + "OT-CFM epoch: 1, steps: 367, loss: 0.134\r", + "OT-CFM epoch: 1, steps: 368, loss: 0.1289\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 369, loss: 0.1266\r", + "OT-CFM epoch: 1, steps: 370, loss: 0.1378\r", + "OT-CFM epoch: 1, steps: 371, loss: 0.1344\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 372, loss: 0.1435\r", + "OT-CFM epoch: 1, steps: 373, loss: 0.1354\r", + "OT-CFM epoch: 1, steps: 374, loss: 0.1437\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 375, loss: 0.1331\r", + "OT-CFM epoch: 1, steps: 376, loss: 0.1328\r", + "OT-CFM epoch: 1, steps: 377, loss: 0.1376\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 378, loss: 0.1323\r", + "OT-CFM epoch: 1, steps: 379, loss: 0.1414\r", + "OT-CFM epoch: 1, steps: 380, loss: 0.1313\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 381, loss: 0.1368\r", + "OT-CFM epoch: 1, steps: 382, loss: 0.1302\r", + "OT-CFM epoch: 1, steps: 383, loss: 0.1267\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 384, loss: 0.1365\r", + "OT-CFM epoch: 1, steps: 385, loss: 0.1267\r", + "OT-CFM epoch: 1, steps: 386, loss: 0.1332\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 387, loss: 0.1495\r", + "OT-CFM epoch: 1, steps: 388, loss: 0.151\r", + "OT-CFM epoch: 1, steps: 389, loss: 0.1332\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 390, loss: 0.1246\r", + "OT-CFM epoch: 1, steps: 391, loss: 0.135\r", + "OT-CFM epoch: 1, steps: 392, loss: 0.1323\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 393, loss: 0.1409\r", + "OT-CFM epoch: 1, steps: 394, loss: 0.1315\r", + "OT-CFM epoch: 1, steps: 395, loss: 0.1289\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 396, loss: 0.1318\r", + "OT-CFM epoch: 1, steps: 397, loss: 0.1378\r", + "OT-CFM epoch: 1, steps: 398, loss: 0.1349\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 399, loss: 0.1382\r", + "OT-CFM epoch: 1, steps: 400, loss: 0.1431\r", + "OT-CFM epoch: 1, steps: 401, loss: 0.1337\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 402, loss: 0.1383\r", + "OT-CFM epoch: 1, steps: 403, loss: 0.1215\r", + "OT-CFM epoch: 1, steps: 404, loss: 0.1191\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 405, loss: 0.1399\r", + "OT-CFM epoch: 1, steps: 406, loss: 0.1316\r", + "OT-CFM epoch: 1, steps: 407, loss: 0.1288\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 408, loss: 0.1315\r", + "OT-CFM epoch: 1, steps: 409, loss: 0.1319\r", + "OT-CFM epoch: 1, steps: 410, loss: 0.1348\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 411, loss: 0.125\r", + "OT-CFM epoch: 1, steps: 412, loss: 0.1335\r", + "OT-CFM epoch: 1, steps: 413, loss: 0.1402\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 414, loss: 0.1322\r", + "OT-CFM epoch: 1, steps: 415, loss: 0.134\r", + "OT-CFM epoch: 1, steps: 416, loss: 0.1234\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 417, loss: 0.1354\r", + "OT-CFM epoch: 1, steps: 418, loss: 0.1426\r", + "OT-CFM epoch: 1, steps: 419, loss: 0.1339\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 420, loss: 0.1283\r", + "OT-CFM epoch: 1, steps: 421, loss: 0.1335\r", + "OT-CFM epoch: 1, steps: 422, loss: 0.139\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 423, loss: 0.1206\r", + "OT-CFM epoch: 1, steps: 424, loss: 0.1332\r", + "OT-CFM epoch: 1, steps: 425, loss: 0.1397\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 426, loss: 0.1344\r", + "OT-CFM epoch: 1, steps: 427, loss: 0.1353\r", + "OT-CFM epoch: 1, steps: 428, loss: 0.1255\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 429, loss: 0.1228\r", + "OT-CFM epoch: 1, steps: 430, loss: 0.1298\r", + "OT-CFM epoch: 1, steps: 431, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 432, loss: 0.128\r", + "OT-CFM epoch: 1, steps: 433, loss: 0.1283\r", + "OT-CFM epoch: 1, steps: 434, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 435, loss: 0.15\r", + "OT-CFM epoch: 1, steps: 436, loss: 0.1355\r", + "OT-CFM epoch: 1, steps: 437, loss: 0.1342\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 438, loss: 0.1229\r", + "OT-CFM epoch: 1, steps: 439, loss: 0.1403\r", + "OT-CFM epoch: 1, steps: 440, loss: 0.1268\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 441, loss: 0.127\r", + "OT-CFM epoch: 1, steps: 442, loss: 0.1463\r", + "OT-CFM epoch: 1, steps: 443, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 444, loss: 0.1279\r", + "OT-CFM epoch: 1, steps: 445, loss: 0.1504\r", + "OT-CFM epoch: 1, steps: 446, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 447, loss: 0.1422\r", + "OT-CFM epoch: 1, steps: 448, loss: 0.1261\r", + "OT-CFM epoch: 1, steps: 449, loss: 0.13\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 450, loss: 0.1391\r", + "OT-CFM epoch: 1, steps: 451, loss: 0.135\r", + "OT-CFM epoch: 1, steps: 452, loss: 0.1384\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 453, loss: 0.1379\r", + "OT-CFM epoch: 1, steps: 454, loss: 0.1219\r", + "OT-CFM epoch: 1, steps: 455, loss: 0.1359\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 456, loss: 0.1382\r", + "OT-CFM epoch: 1, steps: 457, loss: 0.1434\r", + "OT-CFM epoch: 1, steps: 458, loss: 0.1399\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 459, loss: 0.1233\r", + "OT-CFM epoch: 1, steps: 460, loss: 0.142\r", + "OT-CFM epoch: 1, steps: 461, loss: 0.1334\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 462, loss: 0.1321\r", + "OT-CFM epoch: 1, steps: 463, loss: 0.1281\r", + "OT-CFM epoch: 1, steps: 464, loss: 0.1305\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 1, steps: 465, loss: 0.1301\r", + "OT-CFM epoch: 1, steps: 466, loss: 0.1416\r", + "OT-CFM epoch: 1, steps: 467, loss: 0.13\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 0, loss: 0.1376\r", + "OT-CFM epoch: 2, steps: 1, loss: 0.1558\r", + "OT-CFM epoch: 2, steps: 2, loss: 0.1323\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 3, loss: 0.1381\r", + "OT-CFM epoch: 2, steps: 4, loss: 0.1377\r", + "OT-CFM epoch: 2, steps: 5, loss: 0.1294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 6, loss: 0.1316\r", + "OT-CFM epoch: 2, steps: 7, loss: 0.1256\r", + "OT-CFM epoch: 2, steps: 8, loss: 0.1393\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 9, loss: 0.1509\r", + "OT-CFM epoch: 2, steps: 10, loss: 0.1238\r", + "OT-CFM epoch: 2, steps: 11, loss: 0.151\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 12, loss: 0.1281\r", + "OT-CFM epoch: 2, steps: 13, loss: 0.1385\r", + "OT-CFM epoch: 2, steps: 14, loss: 0.1229\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 15, loss: 0.1294\r", + "OT-CFM epoch: 2, steps: 16, loss: 0.1431\r", + "OT-CFM epoch: 2, steps: 17, loss: 0.1421\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 18, loss: 0.1365\r", + "OT-CFM epoch: 2, steps: 19, loss: 0.1261\r", + "OT-CFM epoch: 2, steps: 20, loss: 0.1309\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 21, loss: 0.1222\r", + "OT-CFM epoch: 2, steps: 22, loss: 0.154\r", + "OT-CFM epoch: 2, steps: 23, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 24, loss: 0.1279\r", + "OT-CFM epoch: 2, steps: 25, loss: 0.1385\r", + "OT-CFM epoch: 2, steps: 26, loss: 0.126\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 27, loss: 0.1344\r", + "OT-CFM epoch: 2, steps: 28, loss: 0.1292\r", + "OT-CFM epoch: 2, steps: 29, loss: 0.1441\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 30, loss: 0.1413\r", + "OT-CFM epoch: 2, steps: 31, loss: 0.1344\r", + "OT-CFM epoch: 2, steps: 32, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 33, loss: 0.1374\r", + "OT-CFM epoch: 2, steps: 34, loss: 0.1256\r", + "OT-CFM epoch: 2, steps: 35, loss: 0.1354\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 36, loss: 0.1262\r", + "OT-CFM epoch: 2, steps: 37, loss: 0.1267\r", + "OT-CFM epoch: 2, steps: 38, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 39, loss: 0.1234\r", + "OT-CFM epoch: 2, steps: 40, loss: 0.1259\r", + "OT-CFM epoch: 2, steps: 41, loss: 0.1386\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 42, loss: 0.1201\r", + "OT-CFM epoch: 2, steps: 43, loss: 0.1427\r", + "OT-CFM epoch: 2, steps: 44, loss: 0.1139\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 45, loss: 0.1362\r", + "OT-CFM epoch: 2, steps: 46, loss: 0.1239\r", + "OT-CFM epoch: 2, steps: 47, loss: 0.1356\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 48, loss: 0.1307\r", + "OT-CFM epoch: 2, steps: 49, loss: 0.1248\r", + "OT-CFM epoch: 2, steps: 50, loss: 0.1337\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 51, loss: 0.1338\r", + "OT-CFM epoch: 2, steps: 52, loss: 0.1403\r", + "OT-CFM epoch: 2, steps: 53, loss: 0.1352\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 54, loss: 0.1418\r", + "OT-CFM epoch: 2, steps: 55, loss: 0.1361\r", + "OT-CFM epoch: 2, steps: 56, loss: 0.1238\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 57, loss: 0.1225\r", + "OT-CFM epoch: 2, steps: 58, loss: 0.1288\r", + "OT-CFM epoch: 2, steps: 59, loss: 0.1256\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 60, loss: 0.1248\r", + "OT-CFM epoch: 2, steps: 61, loss: 0.1323\r", + "OT-CFM epoch: 2, steps: 62, loss: 0.1318\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 63, loss: 0.1284\r", + "OT-CFM epoch: 2, steps: 64, loss: 0.1444\r", + "OT-CFM epoch: 2, steps: 65, loss: 0.1195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 66, loss: 0.1368\r", + "OT-CFM epoch: 2, steps: 67, loss: 0.1383\r", + "OT-CFM epoch: 2, steps: 68, loss: 0.1302\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 69, loss: 0.1268\r", + "OT-CFM epoch: 2, steps: 70, loss: 0.1367\r", + "OT-CFM epoch: 2, steps: 71, loss: 0.1402\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 72, loss: 0.1184\r", + "OT-CFM epoch: 2, steps: 73, loss: 0.1315\r", + "OT-CFM epoch: 2, steps: 74, loss: 0.1422\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 75, loss: 0.1362\r", + "OT-CFM epoch: 2, steps: 76, loss: 0.1353\r", + "OT-CFM epoch: 2, steps: 77, loss: 0.1438\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 78, loss: 0.1363\r", + "OT-CFM epoch: 2, steps: 79, loss: 0.1351\r", + "OT-CFM epoch: 2, steps: 80, loss: 0.1429\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 81, loss: 0.138\r", + "OT-CFM epoch: 2, steps: 82, loss: 0.1309\r", + "OT-CFM epoch: 2, steps: 83, loss: 0.1249\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 84, loss: 0.1364\r", + "OT-CFM epoch: 2, steps: 85, loss: 0.1293\r", + "OT-CFM epoch: 2, steps: 86, loss: 0.1294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 87, loss: 0.1413\r", + "OT-CFM epoch: 2, steps: 88, loss: 0.133\r", + "OT-CFM epoch: 2, steps: 89, loss: 0.1349\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 90, loss: 0.1319\r", + "OT-CFM epoch: 2, steps: 91, loss: 0.137\r", + "OT-CFM epoch: 2, steps: 92, loss: 0.1272\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 93, loss: 0.1137\r", + "OT-CFM epoch: 2, steps: 94, loss: 0.1237\r", + "OT-CFM epoch: 2, steps: 95, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 96, loss: 0.1444\r", + "OT-CFM epoch: 2, steps: 97, loss: 0.1194\r", + "OT-CFM epoch: 2, steps: 98, loss: 0.1371\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 99, loss: 0.1379\r", + "OT-CFM epoch: 2, steps: 100, loss: 0.1306\r", + "OT-CFM epoch: 2, steps: 101, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 102, loss: 0.125\r", + "OT-CFM epoch: 2, steps: 103, loss: 0.1397\r", + "OT-CFM epoch: 2, steps: 104, loss: 0.1379\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 105, loss: 0.1172\r", + "OT-CFM epoch: 2, steps: 106, loss: 0.1366\r", + "OT-CFM epoch: 2, steps: 107, loss: 0.1304\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 108, loss: 0.1389\r", + "OT-CFM epoch: 2, steps: 109, loss: 0.1306\r", + "OT-CFM epoch: 2, steps: 110, loss: 0.1401\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 111, loss: 0.1309\r", + "OT-CFM epoch: 2, steps: 112, loss: 0.1371\r", + "OT-CFM epoch: 2, steps: 113, loss: 0.1391\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 114, loss: 0.1235\r", + "OT-CFM epoch: 2, steps: 115, loss: 0.1296\r", + "OT-CFM epoch: 2, steps: 116, loss: 0.129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 117, loss: 0.1373\r", + "OT-CFM epoch: 2, steps: 118, loss: 0.1256\r", + "OT-CFM epoch: 2, steps: 119, loss: 0.1331\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 120, loss: 0.1308\r", + "OT-CFM epoch: 2, steps: 121, loss: 0.1285\r", + "OT-CFM epoch: 2, steps: 122, loss: 0.136\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 123, loss: 0.1319\r", + "OT-CFM epoch: 2, steps: 124, loss: 0.1248\r", + "OT-CFM epoch: 2, steps: 125, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 126, loss: 0.1323\r", + "OT-CFM epoch: 2, steps: 127, loss: 0.1336\r", + "OT-CFM epoch: 2, steps: 128, loss: 0.1355\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 129, loss: 0.135\r", + "OT-CFM epoch: 2, steps: 130, loss: 0.1212\r", + "OT-CFM epoch: 2, steps: 131, loss: 0.1412\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 132, loss: 0.1163\r", + "OT-CFM epoch: 2, steps: 133, loss: 0.1399\r", + "OT-CFM epoch: 2, steps: 134, loss: 0.1294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 135, loss: 0.1328\r", + "OT-CFM epoch: 2, steps: 136, loss: 0.1262\r", + "OT-CFM epoch: 2, steps: 137, loss: 0.1402\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 138, loss: 0.1221\r", + "OT-CFM epoch: 2, steps: 139, loss: 0.1409\r", + "OT-CFM epoch: 2, steps: 140, loss: 0.132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 141, loss: 0.1343\r", + "OT-CFM epoch: 2, steps: 142, loss: 0.1307\r", + "OT-CFM epoch: 2, steps: 143, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 144, loss: 0.1152\r", + "OT-CFM epoch: 2, steps: 145, loss: 0.1359\r", + "OT-CFM epoch: 2, steps: 146, loss: 0.1315\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 147, loss: 0.1307\r", + "OT-CFM epoch: 2, steps: 148, loss: 0.1328\r", + "OT-CFM epoch: 2, steps: 149, loss: 0.1456\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 150, loss: 0.1275\r", + "OT-CFM epoch: 2, steps: 151, loss: 0.1204\r", + "OT-CFM epoch: 2, steps: 152, loss: 0.128\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 153, loss: 0.1356\r", + "OT-CFM epoch: 2, steps: 154, loss: 0.1355\r", + "OT-CFM epoch: 2, steps: 155, loss: 0.136\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 156, loss: 0.1299\r", + "OT-CFM epoch: 2, steps: 157, loss: 0.1338\r", + "OT-CFM epoch: 2, steps: 158, loss: 0.1291\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 159, loss: 0.1431\r", + "OT-CFM epoch: 2, steps: 160, loss: 0.1394\r", + "OT-CFM epoch: 2, steps: 161, loss: 0.1343\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 162, loss: 0.1373\r", + "OT-CFM epoch: 2, steps: 163, loss: 0.1209\r", + "OT-CFM epoch: 2, steps: 164, loss: 0.1357\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 165, loss: 0.127\r", + "OT-CFM epoch: 2, steps: 166, loss: 0.1261\r", + "OT-CFM epoch: 2, steps: 167, loss: 0.1228\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 168, loss: 0.1351\r", + "OT-CFM epoch: 2, steps: 169, loss: 0.1188\r", + "OT-CFM epoch: 2, steps: 170, loss: 0.1347\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 171, loss: 0.1406\r", + "OT-CFM epoch: 2, steps: 172, loss: 0.1385\r", + "OT-CFM epoch: 2, steps: 173, loss: 0.1344\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 174, loss: 0.1364\r", + "OT-CFM epoch: 2, steps: 175, loss: 0.1387\r", + "OT-CFM epoch: 2, steps: 176, loss: 0.1288\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 177, loss: 0.1299\r", + "OT-CFM epoch: 2, steps: 178, loss: 0.1321\r", + "OT-CFM epoch: 2, steps: 179, loss: 0.1325\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 180, loss: 0.1248\r", + "OT-CFM epoch: 2, steps: 181, loss: 0.1408\r", + "OT-CFM epoch: 2, steps: 182, loss: 0.1369\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 183, loss: 0.1295\r", + "OT-CFM epoch: 2, steps: 184, loss: 0.1135\r", + "OT-CFM epoch: 2, steps: 185, loss: 0.1393\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 186, loss: 0.1252\r", + "OT-CFM epoch: 2, steps: 187, loss: 0.1139\r", + "OT-CFM epoch: 2, steps: 188, loss: 0.1354\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 189, loss: 0.1298\r", + "OT-CFM epoch: 2, steps: 190, loss: 0.1235\r", + "OT-CFM epoch: 2, steps: 191, loss: 0.1319\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 192, loss: 0.1191\r", + "OT-CFM epoch: 2, steps: 193, loss: 0.1237\r", + "OT-CFM epoch: 2, steps: 194, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 195, loss: 0.1222\r", + "OT-CFM epoch: 2, steps: 196, loss: 0.1325\r", + "OT-CFM epoch: 2, steps: 197, loss: 0.1229\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 198, loss: 0.1179\r", + "OT-CFM epoch: 2, steps: 199, loss: 0.1279\r", + "OT-CFM epoch: 2, steps: 200, loss: 0.129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 201, loss: 0.1353\r", + "OT-CFM epoch: 2, steps: 202, loss: 0.1403\r", + "OT-CFM epoch: 2, steps: 203, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 204, loss: 0.1224\r", + "OT-CFM epoch: 2, steps: 205, loss: 0.1273\r", + "OT-CFM epoch: 2, steps: 206, loss: 0.1349\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 207, loss: 0.1298\r", + "OT-CFM epoch: 2, steps: 208, loss: 0.1274\r", + "OT-CFM epoch: 2, steps: 209, loss: 0.1303\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 210, loss: 0.1403\r", + "OT-CFM epoch: 2, steps: 211, loss: 0.1271\r", + "OT-CFM epoch: 2, steps: 212, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 213, loss: 0.1202\r", + "OT-CFM epoch: 2, steps: 214, loss: 0.1389\r", + "OT-CFM epoch: 2, steps: 215, loss: 0.1244\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 216, loss: 0.1437\r", + "OT-CFM epoch: 2, steps: 217, loss: 0.1373\r", + "OT-CFM epoch: 2, steps: 218, loss: 0.1307\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 219, loss: 0.1305\r", + "OT-CFM epoch: 2, steps: 220, loss: 0.1312\r", + "OT-CFM epoch: 2, steps: 221, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 222, loss: 0.1329\r", + "OT-CFM epoch: 2, steps: 223, loss: 0.1362\r", + "OT-CFM epoch: 2, steps: 224, loss: 0.1336\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 225, loss: 0.1381\r", + "OT-CFM epoch: 2, steps: 226, loss: 0.1396\r", + "OT-CFM epoch: 2, steps: 227, loss: 0.1383\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 228, loss: 0.1393\r", + "OT-CFM epoch: 2, steps: 229, loss: 0.1363\r", + "OT-CFM epoch: 2, steps: 230, loss: 0.1389\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 231, loss: 0.1251\r", + "OT-CFM epoch: 2, steps: 232, loss: 0.1333\r", + "OT-CFM epoch: 2, steps: 233, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 234, loss: 0.1235\r", + "OT-CFM epoch: 2, steps: 235, loss: 0.1308\r", + "OT-CFM epoch: 2, steps: 236, loss: 0.1351\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 237, loss: 0.1387\r", + "OT-CFM epoch: 2, steps: 238, loss: 0.1305\r", + "OT-CFM epoch: 2, steps: 239, loss: 0.1371\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 240, loss: 0.1437\r", + "OT-CFM epoch: 2, steps: 241, loss: 0.1294\r", + "OT-CFM epoch: 2, steps: 242, loss: 0.1369\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 243, loss: 0.1221\r", + "OT-CFM epoch: 2, steps: 244, loss: 0.1393\r", + "OT-CFM epoch: 2, steps: 245, loss: 0.1287\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 246, loss: 0.1258\r", + "OT-CFM epoch: 2, steps: 247, loss: 0.1239\r", + "OT-CFM epoch: 2, steps: 248, loss: 0.1348\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 249, loss: 0.1356\r", + "OT-CFM epoch: 2, steps: 250, loss: 0.137\r", + "OT-CFM epoch: 2, steps: 251, loss: 0.1283\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 252, loss: 0.14\r", + "OT-CFM epoch: 2, steps: 253, loss: 0.1224\r", + "OT-CFM epoch: 2, steps: 254, loss: 0.1265\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 255, loss: 0.1361\r", + "OT-CFM epoch: 2, steps: 256, loss: 0.1309\r", + "OT-CFM epoch: 2, steps: 257, loss: 0.1379\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 258, loss: 0.1252\r", + "OT-CFM epoch: 2, steps: 259, loss: 0.1375\r", + "OT-CFM epoch: 2, steps: 260, loss: 0.1304\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 261, loss: 0.1312\r", + "OT-CFM epoch: 2, steps: 262, loss: 0.136\r", + "OT-CFM epoch: 2, steps: 263, loss: 0.1331\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 264, loss: 0.1226\r", + "OT-CFM epoch: 2, steps: 265, loss: 0.1297\r", + "OT-CFM epoch: 2, steps: 266, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 267, loss: 0.1188\r", + "OT-CFM epoch: 2, steps: 268, loss: 0.1235\r", + "OT-CFM epoch: 2, steps: 269, loss: 0.1454\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 270, loss: 0.1268\r", + "OT-CFM epoch: 2, steps: 271, loss: 0.1301\r", + "OT-CFM epoch: 2, steps: 272, loss: 0.1321\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 273, loss: 0.1332\r", + "OT-CFM epoch: 2, steps: 274, loss: 0.1389\r", + "OT-CFM epoch: 2, steps: 275, loss: 0.1222\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 276, loss: 0.1345\r", + "OT-CFM epoch: 2, steps: 277, loss: 0.1324\r", + "OT-CFM epoch: 2, steps: 278, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 279, loss: 0.1337\r", + "OT-CFM epoch: 2, steps: 280, loss: 0.1275\r", + "OT-CFM epoch: 2, steps: 281, loss: 0.1302\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 282, loss: 0.1264\r", + "OT-CFM epoch: 2, steps: 283, loss: 0.127\r", + "OT-CFM epoch: 2, steps: 284, loss: 0.133\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 285, loss: 0.1367\r", + "OT-CFM epoch: 2, steps: 286, loss: 0.1298\r", + "OT-CFM epoch: 2, steps: 287, loss: 0.1327\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 288, loss: 0.1312\r", + "OT-CFM epoch: 2, steps: 289, loss: 0.1461\r", + "OT-CFM epoch: 2, steps: 290, loss: 0.127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 291, loss: 0.1455\r", + "OT-CFM epoch: 2, steps: 292, loss: 0.142\r", + "OT-CFM epoch: 2, steps: 293, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 294, loss: 0.1301\r", + "OT-CFM epoch: 2, steps: 295, loss: 0.1215\r", + "OT-CFM epoch: 2, steps: 296, loss: 0.1266\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 297, loss: 0.1233\r", + "OT-CFM epoch: 2, steps: 298, loss: 0.1447\r", + "OT-CFM epoch: 2, steps: 299, loss: 0.1275\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 300, loss: 0.143\r", + "OT-CFM epoch: 2, steps: 301, loss: 0.1224\r", + "OT-CFM epoch: 2, steps: 302, loss: 0.1362\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 303, loss: 0.1324\r", + "OT-CFM epoch: 2, steps: 304, loss: 0.1504\r", + "OT-CFM epoch: 2, steps: 305, loss: 0.1244\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 306, loss: 0.1337\r", + "OT-CFM epoch: 2, steps: 307, loss: 0.1291\r", + "OT-CFM epoch: 2, steps: 308, loss: 0.1237\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 309, loss: 0.1349\r", + "OT-CFM epoch: 2, steps: 310, loss: 0.1253\r", + "OT-CFM epoch: 2, steps: 311, loss: 0.1358\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 312, loss: 0.1273\r", + "OT-CFM epoch: 2, steps: 313, loss: 0.1342\r", + "OT-CFM epoch: 2, steps: 314, loss: 0.1233\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 315, loss: 0.1272\r", + "OT-CFM epoch: 2, steps: 316, loss: 0.128\r", + "OT-CFM epoch: 2, steps: 317, loss: 0.1363\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 318, loss: 0.1293\r", + "OT-CFM epoch: 2, steps: 319, loss: 0.1412\r", + "OT-CFM epoch: 2, steps: 320, loss: 0.1228\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 321, loss: 0.1281\r", + "OT-CFM epoch: 2, steps: 322, loss: 0.1216\r", + "OT-CFM epoch: 2, steps: 323, loss: 0.125\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 324, loss: 0.1337\r", + "OT-CFM epoch: 2, steps: 325, loss: 0.1185\r", + "OT-CFM epoch: 2, steps: 326, loss: 0.1378\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 327, loss: 0.137\r", + "OT-CFM epoch: 2, steps: 328, loss: 0.1311\r", + "OT-CFM epoch: 2, steps: 329, loss: 0.1418\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 330, loss: 0.1248\r", + "OT-CFM epoch: 2, steps: 331, loss: 0.1369\r", + "OT-CFM epoch: 2, steps: 332, loss: 0.1194\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 333, loss: 0.1362\r", + "OT-CFM epoch: 2, steps: 334, loss: 0.1354\r", + "OT-CFM epoch: 2, steps: 335, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 336, loss: 0.1434\r", + "OT-CFM epoch: 2, steps: 337, loss: 0.1368\r", + "OT-CFM epoch: 2, steps: 338, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 339, loss: 0.13\r", + "OT-CFM epoch: 2, steps: 340, loss: 0.1321\r", + "OT-CFM epoch: 2, steps: 341, loss: 0.1328\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 342, loss: 0.1275\r", + "OT-CFM epoch: 2, steps: 343, loss: 0.1301\r", + "OT-CFM epoch: 2, steps: 344, loss: 0.1348\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 345, loss: 0.1339\r", + "OT-CFM epoch: 2, steps: 346, loss: 0.1242\r", + "OT-CFM epoch: 2, steps: 347, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 348, loss: 0.1313\r", + "OT-CFM epoch: 2, steps: 349, loss: 0.1265\r", + "OT-CFM epoch: 2, steps: 350, loss: 0.1248\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 351, loss: 0.1242\r", + "OT-CFM epoch: 2, steps: 352, loss: 0.1367\r", + "OT-CFM epoch: 2, steps: 353, loss: 0.1147\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 354, loss: 0.1239\r", + "OT-CFM epoch: 2, steps: 355, loss: 0.1265\r", + "OT-CFM epoch: 2, steps: 356, loss: 0.1375\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 357, loss: 0.1196\r", + "OT-CFM epoch: 2, steps: 358, loss: 0.1413\r", + "OT-CFM epoch: 2, steps: 359, loss: 0.1244\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 360, loss: 0.1297\r", + "OT-CFM epoch: 2, steps: 361, loss: 0.141\r", + "OT-CFM epoch: 2, steps: 362, loss: 0.1408\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 363, loss: 0.12\r", + "OT-CFM epoch: 2, steps: 364, loss: 0.125\r", + "OT-CFM epoch: 2, steps: 365, loss: 0.1319\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 366, loss: 0.1272\r", + "OT-CFM epoch: 2, steps: 367, loss: 0.121\r", + "OT-CFM epoch: 2, steps: 368, loss: 0.1357\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 369, loss: 0.1388\r", + "OT-CFM epoch: 2, steps: 370, loss: 0.1233\r", + "OT-CFM epoch: 2, steps: 371, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 372, loss: 0.1417\r", + "OT-CFM epoch: 2, steps: 373, loss: 0.1328\r", + "OT-CFM epoch: 2, steps: 374, loss: 0.1321\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 375, loss: 0.1256\r", + "OT-CFM epoch: 2, steps: 376, loss: 0.1198\r", + "OT-CFM epoch: 2, steps: 377, loss: 0.1303\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 378, loss: 0.1326\r", + "OT-CFM epoch: 2, steps: 379, loss: 0.1222\r", + "OT-CFM epoch: 2, steps: 380, loss: 0.126\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 381, loss: 0.1268\r", + "OT-CFM epoch: 2, steps: 382, loss: 0.1246\r", + "OT-CFM epoch: 2, steps: 383, loss: 0.1395\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 384, loss: 0.1249\r", + "OT-CFM epoch: 2, steps: 385, loss: 0.1275\r", + "OT-CFM epoch: 2, steps: 386, loss: 0.1407\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 387, loss: 0.1307\r", + "OT-CFM epoch: 2, steps: 388, loss: 0.1403\r", + "OT-CFM epoch: 2, steps: 389, loss: 0.1357\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 390, loss: 0.1278\r", + "OT-CFM epoch: 2, steps: 391, loss: 0.1285\r", + "OT-CFM epoch: 2, steps: 392, loss: 0.1292\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 393, loss: 0.119\r", + "OT-CFM epoch: 2, steps: 394, loss: 0.1295\r", + "OT-CFM epoch: 2, steps: 395, loss: 0.1171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 396, loss: 0.1266\r", + "OT-CFM epoch: 2, steps: 397, loss: 0.1306\r", + "OT-CFM epoch: 2, steps: 398, loss: 0.1316\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 399, loss: 0.1322\r", + "OT-CFM epoch: 2, steps: 400, loss: 0.125\r", + "OT-CFM epoch: 2, steps: 401, loss: 0.1326\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 402, loss: 0.1465\r", + "OT-CFM epoch: 2, steps: 403, loss: 0.1333\r", + "OT-CFM epoch: 2, steps: 404, loss: 0.1243\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 405, loss: 0.1396\r", + "OT-CFM epoch: 2, steps: 406, loss: 0.139\r", + "OT-CFM epoch: 2, steps: 407, loss: 0.1341\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 408, loss: 0.1223\r", + "OT-CFM epoch: 2, steps: 409, loss: 0.125\r", + "OT-CFM epoch: 2, steps: 410, loss: 0.1165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 411, loss: 0.134\r", + "OT-CFM epoch: 2, steps: 412, loss: 0.1276\r", + "OT-CFM epoch: 2, steps: 413, loss: 0.1289\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 414, loss: 0.1293\r", + "OT-CFM epoch: 2, steps: 415, loss: 0.1247\r", + "OT-CFM epoch: 2, steps: 416, loss: 0.1313\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 417, loss: 0.1292\r", + "OT-CFM epoch: 2, steps: 418, loss: 0.1212\r", + "OT-CFM epoch: 2, steps: 419, loss: 0.1309\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 420, loss: 0.1268\r", + "OT-CFM epoch: 2, steps: 421, loss: 0.1232\r", + "OT-CFM epoch: 2, steps: 422, loss: 0.1228\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 423, loss: 0.1297\r", + "OT-CFM epoch: 2, steps: 424, loss: 0.1433\r", + "OT-CFM epoch: 2, steps: 425, loss: 0.1353\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 426, loss: 0.1167\r", + "OT-CFM epoch: 2, steps: 427, loss: 0.1335\r", + "OT-CFM epoch: 2, steps: 428, loss: 0.1324\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 429, loss: 0.1298\r", + "OT-CFM epoch: 2, steps: 430, loss: 0.1288\r", + "OT-CFM epoch: 2, steps: 431, loss: 0.1279\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 432, loss: 0.1392\r", + "OT-CFM epoch: 2, steps: 433, loss: 0.1365\r", + "OT-CFM epoch: 2, steps: 434, loss: 0.1259\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 435, loss: 0.1222\r", + "OT-CFM epoch: 2, steps: 436, loss: 0.1336\r", + "OT-CFM epoch: 2, steps: 437, loss: 0.1315\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 438, loss: 0.1359\r", + "OT-CFM epoch: 2, steps: 439, loss: 0.1342\r", + "OT-CFM epoch: 2, steps: 440, loss: 0.1231\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 441, loss: 0.1262\r", + "OT-CFM epoch: 2, steps: 442, loss: 0.1237\r", + "OT-CFM epoch: 2, steps: 443, loss: 0.1377\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 444, loss: 0.1287\r", + "OT-CFM epoch: 2, steps: 445, loss: 0.1298\r", + "OT-CFM epoch: 2, steps: 446, loss: 0.1311\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 447, loss: 0.1348\r", + "OT-CFM epoch: 2, steps: 448, loss: 0.1287\r", + "OT-CFM epoch: 2, steps: 449, loss: 0.13\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 450, loss: 0.1382\r", + "OT-CFM epoch: 2, steps: 451, loss: 0.1362\r", + "OT-CFM epoch: 2, steps: 452, loss: 0.1301\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 453, loss: 0.1328\r", + "OT-CFM epoch: 2, steps: 454, loss: 0.1289\r", + "OT-CFM epoch: 2, steps: 455, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 456, loss: 0.1342\r", + "OT-CFM epoch: 2, steps: 457, loss: 0.1265\r", + "OT-CFM epoch: 2, steps: 458, loss: 0.1234\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 459, loss: 0.1323\r", + "OT-CFM epoch: 2, steps: 460, loss: 0.1331\r", + "OT-CFM epoch: 2, steps: 461, loss: 0.1344\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 462, loss: 0.123\r", + "OT-CFM epoch: 2, steps: 463, loss: 0.1262\r", + "OT-CFM epoch: 2, steps: 464, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 2, steps: 465, loss: 0.1147\r", + "OT-CFM epoch: 2, steps: 466, loss: 0.1401\r", + "OT-CFM epoch: 2, steps: 467, loss: 0.1483\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 0, loss: 0.1305\r", + "OT-CFM epoch: 3, steps: 1, loss: 0.137\r", + "OT-CFM epoch: 3, steps: 2, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 3, loss: 0.1277\r", + "OT-CFM epoch: 3, steps: 4, loss: 0.1368\r", + "OT-CFM epoch: 3, steps: 5, loss: 0.1208\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 6, loss: 0.1221\r", + "OT-CFM epoch: 3, steps: 7, loss: 0.1253\r", + "OT-CFM epoch: 3, steps: 8, loss: 0.1305\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 9, loss: 0.1174\r", + "OT-CFM epoch: 3, steps: 10, loss: 0.1311\r", + "OT-CFM epoch: 3, steps: 11, loss: 0.1248\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 12, loss: 0.1291\r", + "OT-CFM epoch: 3, steps: 13, loss: 0.1278\r", + "OT-CFM epoch: 3, steps: 14, loss: 0.132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 15, loss: 0.1255\r", + "OT-CFM epoch: 3, steps: 16, loss: 0.1228\r", + "OT-CFM epoch: 3, steps: 17, loss: 0.1306\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 18, loss: 0.1247\r", + "OT-CFM epoch: 3, steps: 19, loss: 0.1219\r", + "OT-CFM epoch: 3, steps: 20, loss: 0.1285\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 21, loss: 0.1293\r", + "OT-CFM epoch: 3, steps: 22, loss: 0.1304\r", + "OT-CFM epoch: 3, steps: 23, loss: 0.1312\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 24, loss: 0.1183\r", + "OT-CFM epoch: 3, steps: 25, loss: 0.1304\r", + "OT-CFM epoch: 3, steps: 26, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 27, loss: 0.1326\r", + "OT-CFM epoch: 3, steps: 28, loss: 0.1203\r", + "OT-CFM epoch: 3, steps: 29, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 30, loss: 0.1239\r", + "OT-CFM epoch: 3, steps: 31, loss: 0.1304\r", + "OT-CFM epoch: 3, steps: 32, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 33, loss: 0.1278\r", + "OT-CFM epoch: 3, steps: 34, loss: 0.1301\r", + "OT-CFM epoch: 3, steps: 35, loss: 0.134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 36, loss: 0.1343\r", + "OT-CFM epoch: 3, steps: 37, loss: 0.1215\r", + "OT-CFM epoch: 3, steps: 38, loss: 0.1394\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 39, loss: 0.1227\r", + "OT-CFM epoch: 3, steps: 40, loss: 0.1297\r", + "OT-CFM epoch: 3, steps: 41, loss: 0.1238\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 42, loss: 0.1217\r", + "OT-CFM epoch: 3, steps: 43, loss: 0.1245\r", + "OT-CFM epoch: 3, steps: 44, loss: 0.1292\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 45, loss: 0.1395\r", + "OT-CFM epoch: 3, steps: 46, loss: 0.1255\r", + "OT-CFM epoch: 3, steps: 47, loss: 0.1303\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 48, loss: 0.1274\r", + "OT-CFM epoch: 3, steps: 49, loss: 0.1348\r", + "OT-CFM epoch: 3, steps: 50, loss: 0.1347\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 51, loss: 0.1206\r", + "OT-CFM epoch: 3, steps: 52, loss: 0.1449\r", + "OT-CFM epoch: 3, steps: 53, loss: 0.1329\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 54, loss: 0.1277\r", + "OT-CFM epoch: 3, steps: 55, loss: 0.129\r", + "OT-CFM epoch: 3, steps: 56, loss: 0.1283\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 57, loss: 0.1306\r", + "OT-CFM epoch: 3, steps: 58, loss: 0.1283\r", + "OT-CFM epoch: 3, steps: 59, loss: 0.1354\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 60, loss: 0.1346\r", + "OT-CFM epoch: 3, steps: 61, loss: 0.1216\r", + "OT-CFM epoch: 3, steps: 62, loss: 0.1303\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 63, loss: 0.1383\r", + "OT-CFM epoch: 3, steps: 64, loss: 0.1383\r", + "OT-CFM epoch: 3, steps: 65, loss: 0.1296\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 66, loss: 0.1318\r", + "OT-CFM epoch: 3, steps: 67, loss: 0.1363\r", + "OT-CFM epoch: 3, steps: 68, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 69, loss: 0.1223\r", + "OT-CFM epoch: 3, steps: 70, loss: 0.1145\r", + "OT-CFM epoch: 3, steps: 71, loss: 0.1318\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 72, loss: 0.1304\r", + "OT-CFM epoch: 3, steps: 73, loss: 0.1273\r", + "OT-CFM epoch: 3, steps: 74, loss: 0.1191\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 75, loss: 0.1386\r", + "OT-CFM epoch: 3, steps: 76, loss: 0.1258\r", + "OT-CFM epoch: 3, steps: 77, loss: 0.1135\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 78, loss: 0.1222\r", + "OT-CFM epoch: 3, steps: 79, loss: 0.1339\r", + "OT-CFM epoch: 3, steps: 80, loss: 0.1281\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 81, loss: 0.1298\r", + "OT-CFM epoch: 3, steps: 82, loss: 0.1169\r", + "OT-CFM epoch: 3, steps: 83, loss: 0.1321\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 84, loss: 0.1372\r", + "OT-CFM epoch: 3, steps: 85, loss: 0.1435\r", + "OT-CFM epoch: 3, steps: 86, loss: 0.1428\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 87, loss: 0.1286\r", + "OT-CFM epoch: 3, steps: 88, loss: 0.1262\r", + "OT-CFM epoch: 3, steps: 89, loss: 0.1224\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 90, loss: 0.1353\r", + "OT-CFM epoch: 3, steps: 91, loss: 0.1301\r", + "OT-CFM epoch: 3, steps: 92, loss: 0.1248\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 93, loss: 0.1222\r", + "OT-CFM epoch: 3, steps: 94, loss: 0.1335\r", + "OT-CFM epoch: 3, steps: 95, loss: 0.1455\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 96, loss: 0.1232\r", + "OT-CFM epoch: 3, steps: 97, loss: 0.124\r", + "OT-CFM epoch: 3, steps: 98, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 99, loss: 0.1242\r", + "OT-CFM epoch: 3, steps: 100, loss: 0.129\r", + "OT-CFM epoch: 3, steps: 101, loss: 0.1154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 102, loss: 0.125\r", + "OT-CFM epoch: 3, steps: 103, loss: 0.1194\r", + "OT-CFM epoch: 3, steps: 104, loss: 0.1401\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 105, loss: 0.1363\r", + "OT-CFM epoch: 3, steps: 106, loss: 0.1224\r", + "OT-CFM epoch: 3, steps: 107, loss: 0.1255\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 108, loss: 0.136\r", + "OT-CFM epoch: 3, steps: 109, loss: 0.1323\r", + "OT-CFM epoch: 3, steps: 110, loss: 0.1259\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 111, loss: 0.1344\r", + "OT-CFM epoch: 3, steps: 112, loss: 0.1312\r", + "OT-CFM epoch: 3, steps: 113, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 114, loss: 0.1185\r", + "OT-CFM epoch: 3, steps: 115, loss: 0.1329\r", + "OT-CFM epoch: 3, steps: 116, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 117, loss: 0.1216\r", + "OT-CFM epoch: 3, steps: 118, loss: 0.1354\r", + "OT-CFM epoch: 3, steps: 119, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 120, loss: 0.1279\r", + "OT-CFM epoch: 3, steps: 121, loss: 0.1241\r", + "OT-CFM epoch: 3, steps: 122, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 123, loss: 0.1331\r", + "OT-CFM epoch: 3, steps: 124, loss: 0.1232\r", + "OT-CFM epoch: 3, steps: 125, loss: 0.1176\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 126, loss: 0.1299\r", + "OT-CFM epoch: 3, steps: 127, loss: 0.1242\r", + "OT-CFM epoch: 3, steps: 128, loss: 0.1274\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 129, loss: 0.1291\r", + "OT-CFM epoch: 3, steps: 130, loss: 0.1232\r", + "OT-CFM epoch: 3, steps: 131, loss: 0.1324\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 132, loss: 0.115\r", + "OT-CFM epoch: 3, steps: 133, loss: 0.1373\r", + "OT-CFM epoch: 3, steps: 134, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 135, loss: 0.1338\r", + "OT-CFM epoch: 3, steps: 136, loss: 0.1341\r", + "OT-CFM epoch: 3, steps: 137, loss: 0.133\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 138, loss: 0.1266\r", + "OT-CFM epoch: 3, steps: 139, loss: 0.1227\r", + "OT-CFM epoch: 3, steps: 140, loss: 0.1133\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 141, loss: 0.1266\r", + "OT-CFM epoch: 3, steps: 142, loss: 0.1161\r", + "OT-CFM epoch: 3, steps: 143, loss: 0.1217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 144, loss: 0.1251\r", + "OT-CFM epoch: 3, steps: 145, loss: 0.1286\r", + "OT-CFM epoch: 3, steps: 146, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 147, loss: 0.1218\r", + "OT-CFM epoch: 3, steps: 148, loss: 0.1384\r", + "OT-CFM epoch: 3, steps: 149, loss: 0.1324\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 150, loss: 0.1265\r", + "OT-CFM epoch: 3, steps: 151, loss: 0.1232\r", + "OT-CFM epoch: 3, steps: 152, loss: 0.1246\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 153, loss: 0.1405\r", + "OT-CFM epoch: 3, steps: 154, loss: 0.1248\r", + "OT-CFM epoch: 3, steps: 155, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 156, loss: 0.123\r", + "OT-CFM epoch: 3, steps: 157, loss: 0.1309\r", + "OT-CFM epoch: 3, steps: 158, loss: 0.1414\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 159, loss: 0.1252\r", + "OT-CFM epoch: 3, steps: 160, loss: 0.1282\r", + "OT-CFM epoch: 3, steps: 161, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 162, loss: 0.1308\r", + "OT-CFM epoch: 3, steps: 163, loss: 0.13\r", + "OT-CFM epoch: 3, steps: 164, loss: 0.1283\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 165, loss: 0.1386\r", + "OT-CFM epoch: 3, steps: 166, loss: 0.1313\r", + "OT-CFM epoch: 3, steps: 167, loss: 0.129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 168, loss: 0.1201\r", + "OT-CFM epoch: 3, steps: 169, loss: 0.1197\r", + "OT-CFM epoch: 3, steps: 170, loss: 0.1258\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 171, loss: 0.1229\r", + "OT-CFM epoch: 3, steps: 172, loss: 0.1303\r", + "OT-CFM epoch: 3, steps: 173, loss: 0.1209\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 174, loss: 0.1241\r", + "OT-CFM epoch: 3, steps: 175, loss: 0.1325\r", + "OT-CFM epoch: 3, steps: 176, loss: 0.129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 177, loss: 0.1247\r", + "OT-CFM epoch: 3, steps: 178, loss: 0.1306\r", + "OT-CFM epoch: 3, steps: 179, loss: 0.13\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 180, loss: 0.1393\r", + "OT-CFM epoch: 3, steps: 181, loss: 0.1157\r", + "OT-CFM epoch: 3, steps: 182, loss: 0.1298\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 183, loss: 0.1187\r", + "OT-CFM epoch: 3, steps: 184, loss: 0.1183\r", + "OT-CFM epoch: 3, steps: 185, loss: 0.138\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 186, loss: 0.1269\r", + "OT-CFM epoch: 3, steps: 187, loss: 0.1295\r", + "OT-CFM epoch: 3, steps: 188, loss: 0.1305\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 189, loss: 0.1455\r", + "OT-CFM epoch: 3, steps: 190, loss: 0.1177\r", + "OT-CFM epoch: 3, steps: 191, loss: 0.1367\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 192, loss: 0.1227\r", + "OT-CFM epoch: 3, steps: 193, loss: 0.1304\r", + "OT-CFM epoch: 3, steps: 194, loss: 0.1277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 195, loss: 0.1236\r", + "OT-CFM epoch: 3, steps: 196, loss: 0.1251\r", + "OT-CFM epoch: 3, steps: 197, loss: 0.1223\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 198, loss: 0.128\r", + "OT-CFM epoch: 3, steps: 199, loss: 0.1291\r", + "OT-CFM epoch: 3, steps: 200, loss: 0.1142\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 201, loss: 0.1194\r", + "OT-CFM epoch: 3, steps: 202, loss: 0.1231\r", + "OT-CFM epoch: 3, steps: 203, loss: 0.1268\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 204, loss: 0.1308\r", + "OT-CFM epoch: 3, steps: 205, loss: 0.1303\r", + "OT-CFM epoch: 3, steps: 206, loss: 0.1307\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 207, loss: 0.1368\r", + "OT-CFM epoch: 3, steps: 208, loss: 0.1276\r", + "OT-CFM epoch: 3, steps: 209, loss: 0.1401\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 210, loss: 0.1335\r", + "OT-CFM epoch: 3, steps: 211, loss: 0.1234\r", + "OT-CFM epoch: 3, steps: 212, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 213, loss: 0.1194\r", + "OT-CFM epoch: 3, steps: 214, loss: 0.1342\r", + "OT-CFM epoch: 3, steps: 215, loss: 0.1302\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 216, loss: 0.13\r", + "OT-CFM epoch: 3, steps: 217, loss: 0.1231\r", + "OT-CFM epoch: 3, steps: 218, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 219, loss: 0.1264\r", + "OT-CFM epoch: 3, steps: 220, loss: 0.1257\r", + "OT-CFM epoch: 3, steps: 221, loss: 0.1348\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 222, loss: 0.1266\r", + "OT-CFM epoch: 3, steps: 223, loss: 0.1203\r", + "OT-CFM epoch: 3, steps: 224, loss: 0.1402\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 225, loss: 0.114\r", + "OT-CFM epoch: 3, steps: 226, loss: 0.1157\r", + "OT-CFM epoch: 3, steps: 227, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 228, loss: 0.133\r", + "OT-CFM epoch: 3, steps: 229, loss: 0.1384\r", + "OT-CFM epoch: 3, steps: 230, loss: 0.1268\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 231, loss: 0.1251\r", + "OT-CFM epoch: 3, steps: 232, loss: 0.1237\r", + "OT-CFM epoch: 3, steps: 233, loss: 0.1203\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 234, loss: 0.1211\r", + "OT-CFM epoch: 3, steps: 235, loss: 0.1158\r", + "OT-CFM epoch: 3, steps: 236, loss: 0.1316\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 237, loss: 0.1344\r", + "OT-CFM epoch: 3, steps: 238, loss: 0.121\r", + "OT-CFM epoch: 3, steps: 239, loss: 0.1311\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 240, loss: 0.1293\r", + "OT-CFM epoch: 3, steps: 241, loss: 0.1303\r", + "OT-CFM epoch: 3, steps: 242, loss: 0.1265\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 243, loss: 0.122\r", + "OT-CFM epoch: 3, steps: 244, loss: 0.1312\r", + "OT-CFM epoch: 3, steps: 245, loss: 0.1294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 246, loss: 0.1272\r", + "OT-CFM epoch: 3, steps: 247, loss: 0.1309\r", + "OT-CFM epoch: 3, steps: 248, loss: 0.1245\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 249, loss: 0.1328\r", + "OT-CFM epoch: 3, steps: 250, loss: 0.1251\r", + "OT-CFM epoch: 3, steps: 251, loss: 0.1335\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 252, loss: 0.131\r", + "OT-CFM epoch: 3, steps: 253, loss: 0.1301\r", + "OT-CFM epoch: 3, steps: 254, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 255, loss: 0.1257\r", + "OT-CFM epoch: 3, steps: 256, loss: 0.1238\r", + "OT-CFM epoch: 3, steps: 257, loss: 0.1369\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 258, loss: 0.1261\r", + "OT-CFM epoch: 3, steps: 259, loss: 0.1217\r", + "OT-CFM epoch: 3, steps: 260, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 261, loss: 0.1321\r", + "OT-CFM epoch: 3, steps: 262, loss: 0.1233\r", + "OT-CFM epoch: 3, steps: 263, loss: 0.1383\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 264, loss: 0.1249\r", + "OT-CFM epoch: 3, steps: 265, loss: 0.1245\r", + "OT-CFM epoch: 3, steps: 266, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 267, loss: 0.1253\r", + "OT-CFM epoch: 3, steps: 268, loss: 0.1355\r", + "OT-CFM epoch: 3, steps: 269, loss: 0.1344\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 270, loss: 0.1283\r", + "OT-CFM epoch: 3, steps: 271, loss: 0.124\r", + "OT-CFM epoch: 3, steps: 272, loss: 0.1331\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 273, loss: 0.1259\r", + "OT-CFM epoch: 3, steps: 274, loss: 0.1263\r", + "OT-CFM epoch: 3, steps: 275, loss: 0.1173\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 276, loss: 0.1264\r", + "OT-CFM epoch: 3, steps: 277, loss: 0.123\r", + "OT-CFM epoch: 3, steps: 278, loss: 0.134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 279, loss: 0.1216\r", + "OT-CFM epoch: 3, steps: 280, loss: 0.1256\r", + "OT-CFM epoch: 3, steps: 281, loss: 0.1251\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 282, loss: 0.1235\r", + "OT-CFM epoch: 3, steps: 283, loss: 0.1322\r", + "OT-CFM epoch: 3, steps: 284, loss: 0.1174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 285, loss: 0.1444\r", + "OT-CFM epoch: 3, steps: 286, loss: 0.1226\r", + "OT-CFM epoch: 3, steps: 287, loss: 0.1348\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 288, loss: 0.1228\r", + "OT-CFM epoch: 3, steps: 289, loss: 0.1377\r", + "OT-CFM epoch: 3, steps: 290, loss: 0.1224\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 291, loss: 0.1339\r", + "OT-CFM epoch: 3, steps: 292, loss: 0.1318\r", + "OT-CFM epoch: 3, steps: 293, loss: 0.119\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 294, loss: 0.1315\r", + "OT-CFM epoch: 3, steps: 295, loss: 0.1179\r", + "OT-CFM epoch: 3, steps: 296, loss: 0.1298\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 297, loss: 0.1161\r", + "OT-CFM epoch: 3, steps: 298, loss: 0.1264\r", + "OT-CFM epoch: 3, steps: 299, loss: 0.1233\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 300, loss: 0.1322\r", + "OT-CFM epoch: 3, steps: 301, loss: 0.1258\r", + "OT-CFM epoch: 3, steps: 302, loss: 0.1269\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 303, loss: 0.1225\r", + "OT-CFM epoch: 3, steps: 304, loss: 0.1198\r", + "OT-CFM epoch: 3, steps: 305, loss: 0.1328\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 306, loss: 0.1298\r", + "OT-CFM epoch: 3, steps: 307, loss: 0.1228\r", + "OT-CFM epoch: 3, steps: 308, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 309, loss: 0.1174\r", + "OT-CFM epoch: 3, steps: 310, loss: 0.1272\r", + "OT-CFM epoch: 3, steps: 311, loss: 0.1285\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 312, loss: 0.1322\r", + "OT-CFM epoch: 3, steps: 313, loss: 0.1287\r", + "OT-CFM epoch: 3, steps: 314, loss: 0.1175\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 315, loss: 0.1291\r", + "OT-CFM epoch: 3, steps: 316, loss: 0.1262\r", + "OT-CFM epoch: 3, steps: 317, loss: 0.1313\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 318, loss: 0.1229\r", + "OT-CFM epoch: 3, steps: 319, loss: 0.1309\r", + "OT-CFM epoch: 3, steps: 320, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 321, loss: 0.1241\r", + "OT-CFM epoch: 3, steps: 322, loss: 0.1308\r", + "OT-CFM epoch: 3, steps: 323, loss: 0.1333\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 324, loss: 0.125\r", + "OT-CFM epoch: 3, steps: 325, loss: 0.1359\r", + "OT-CFM epoch: 3, steps: 326, loss: 0.1118\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 327, loss: 0.1232\r", + "OT-CFM epoch: 3, steps: 328, loss: 0.1232\r", + "OT-CFM epoch: 3, steps: 329, loss: 0.127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 330, loss: 0.1255\r", + "OT-CFM epoch: 3, steps: 331, loss: 0.1249\r", + "OT-CFM epoch: 3, steps: 332, loss: 0.1273\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 333, loss: 0.1267\r", + "OT-CFM epoch: 3, steps: 334, loss: 0.1271\r", + "OT-CFM epoch: 3, steps: 335, loss: 0.1268\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 336, loss: 0.1247\r", + "OT-CFM epoch: 3, steps: 337, loss: 0.1155\r", + "OT-CFM epoch: 3, steps: 338, loss: 0.1308\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 339, loss: 0.1285\r", + "OT-CFM epoch: 3, steps: 340, loss: 0.1237\r", + "OT-CFM epoch: 3, steps: 341, loss: 0.1452\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 342, loss: 0.1242\r", + "OT-CFM epoch: 3, steps: 343, loss: 0.1267\r", + "OT-CFM epoch: 3, steps: 344, loss: 0.1291\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 345, loss: 0.1378\r", + "OT-CFM epoch: 3, steps: 346, loss: 0.1317\r", + "OT-CFM epoch: 3, steps: 347, loss: 0.1286\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 348, loss: 0.12\r", + "OT-CFM epoch: 3, steps: 349, loss: 0.1345\r", + "OT-CFM epoch: 3, steps: 350, loss: 0.123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 351, loss: 0.1316\r", + "OT-CFM epoch: 3, steps: 352, loss: 0.1348\r", + "OT-CFM epoch: 3, steps: 353, loss: 0.1229\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 354, loss: 0.1387\r", + "OT-CFM epoch: 3, steps: 355, loss: 0.1255\r", + "OT-CFM epoch: 3, steps: 356, loss: 0.1298\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 357, loss: 0.1225\r", + "OT-CFM epoch: 3, steps: 358, loss: 0.128\r", + "OT-CFM epoch: 3, steps: 359, loss: 0.1297\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 360, loss: 0.1202\r", + "OT-CFM epoch: 3, steps: 361, loss: 0.1244\r", + "OT-CFM epoch: 3, steps: 362, loss: 0.1254\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 363, loss: 0.1323\r", + "OT-CFM epoch: 3, steps: 364, loss: 0.1227\r", + "OT-CFM epoch: 3, steps: 365, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 366, loss: 0.141\r", + "OT-CFM epoch: 3, steps: 367, loss: 0.1404\r", + "OT-CFM epoch: 3, steps: 368, loss: 0.127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 369, loss: 0.1235\r", + "OT-CFM epoch: 3, steps: 370, loss: 0.126\r", + "OT-CFM epoch: 3, steps: 371, loss: 0.1306\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 372, loss: 0.1315\r", + "OT-CFM epoch: 3, steps: 373, loss: 0.1171\r", + "OT-CFM epoch: 3, steps: 374, loss: 0.1262\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 375, loss: 0.1375\r", + "OT-CFM epoch: 3, steps: 376, loss: 0.1197\r", + "OT-CFM epoch: 3, steps: 377, loss: 0.1177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 378, loss: 0.1179\r", + "OT-CFM epoch: 3, steps: 379, loss: 0.1274\r", + "OT-CFM epoch: 3, steps: 380, loss: 0.1462\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 381, loss: 0.1332\r", + "OT-CFM epoch: 3, steps: 382, loss: 0.1206\r", + "OT-CFM epoch: 3, steps: 383, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 384, loss: 0.1284\r", + "OT-CFM epoch: 3, steps: 385, loss: 0.1211\r", + "OT-CFM epoch: 3, steps: 386, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 387, loss: 0.1239\r", + "OT-CFM epoch: 3, steps: 388, loss: 0.1388\r", + "OT-CFM epoch: 3, steps: 389, loss: 0.1363\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 390, loss: 0.1315\r", + "OT-CFM epoch: 3, steps: 391, loss: 0.1196\r", + "OT-CFM epoch: 3, steps: 392, loss: 0.1275\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 393, loss: 0.1548\r", + "OT-CFM epoch: 3, steps: 394, loss: 0.1246\r", + "OT-CFM epoch: 3, steps: 395, loss: 0.1251\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 396, loss: 0.1291\r", + "OT-CFM epoch: 3, steps: 397, loss: 0.1291\r", + "OT-CFM epoch: 3, steps: 398, loss: 0.134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 399, loss: 0.1261\r", + "OT-CFM epoch: 3, steps: 400, loss: 0.1228\r", + "OT-CFM epoch: 3, steps: 401, loss: 0.1238\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 402, loss: 0.1254\r", + "OT-CFM epoch: 3, steps: 403, loss: 0.1191\r", + "OT-CFM epoch: 3, steps: 404, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 405, loss: 0.1228\r", + "OT-CFM epoch: 3, steps: 406, loss: 0.1353\r", + "OT-CFM epoch: 3, steps: 407, loss: 0.1287\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 408, loss: 0.1351\r", + "OT-CFM epoch: 3, steps: 409, loss: 0.1284\r", + "OT-CFM epoch: 3, steps: 410, loss: 0.1315\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 411, loss: 0.1331\r", + "OT-CFM epoch: 3, steps: 412, loss: 0.1325\r", + "OT-CFM epoch: 3, steps: 413, loss: 0.127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 414, loss: 0.1253\r", + "OT-CFM epoch: 3, steps: 415, loss: 0.1279\r", + "OT-CFM epoch: 3, steps: 416, loss: 0.1189\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 417, loss: 0.1347\r", + "OT-CFM epoch: 3, steps: 418, loss: 0.1263\r", + "OT-CFM epoch: 3, steps: 419, loss: 0.1343\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 420, loss: 0.1219\r", + "OT-CFM epoch: 3, steps: 421, loss: 0.1241\r", + "OT-CFM epoch: 3, steps: 422, loss: 0.1274\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 423, loss: 0.14\r", + "OT-CFM epoch: 3, steps: 424, loss: 0.1289\r", + "OT-CFM epoch: 3, steps: 425, loss: 0.1281\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 426, loss: 0.1275\r", + "OT-CFM epoch: 3, steps: 427, loss: 0.1207\r", + "OT-CFM epoch: 3, steps: 428, loss: 0.1314\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 429, loss: 0.1217\r", + "OT-CFM epoch: 3, steps: 430, loss: 0.1179\r", + "OT-CFM epoch: 3, steps: 431, loss: 0.1218\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 432, loss: 0.1351\r", + "OT-CFM epoch: 3, steps: 433, loss: 0.1186\r", + "OT-CFM epoch: 3, steps: 434, loss: 0.1162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 435, loss: 0.124\r", + "OT-CFM epoch: 3, steps: 436, loss: 0.1309\r", + "OT-CFM epoch: 3, steps: 437, loss: 0.1241\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 438, loss: 0.1299\r", + "OT-CFM epoch: 3, steps: 439, loss: 0.125\r", + "OT-CFM epoch: 3, steps: 440, loss: 0.1316\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 441, loss: 0.1228\r", + "OT-CFM epoch: 3, steps: 442, loss: 0.1209\r", + "OT-CFM epoch: 3, steps: 443, loss: 0.1216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 444, loss: 0.1242\r", + "OT-CFM epoch: 3, steps: 445, loss: 0.1233\r", + "OT-CFM epoch: 3, steps: 446, loss: 0.1146\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 447, loss: 0.1299\r", + "OT-CFM epoch: 3, steps: 448, loss: 0.1328\r", + "OT-CFM epoch: 3, steps: 449, loss: 0.1328\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 450, loss: 0.1369\r", + "OT-CFM epoch: 3, steps: 451, loss: 0.1212\r", + "OT-CFM epoch: 3, steps: 452, loss: 0.1251\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 453, loss: 0.1252\r", + "OT-CFM epoch: 3, steps: 454, loss: 0.1223\r", + "OT-CFM epoch: 3, steps: 455, loss: 0.1141\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 456, loss: 0.131\r", + "OT-CFM epoch: 3, steps: 457, loss: 0.131\r", + "OT-CFM epoch: 3, steps: 458, loss: 0.1311\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 459, loss: 0.1327\r", + "OT-CFM epoch: 3, steps: 460, loss: 0.1342\r", + "OT-CFM epoch: 3, steps: 461, loss: 0.125\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 462, loss: 0.123\r", + "OT-CFM epoch: 3, steps: 463, loss: 0.1339\r", + "OT-CFM epoch: 3, steps: 464, loss: 0.1324\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 3, steps: 465, loss: 0.1237\r", + "OT-CFM epoch: 3, steps: 466, loss: 0.1369\r", + "OT-CFM epoch: 3, steps: 467, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 0, loss: 0.1249\r", + "OT-CFM epoch: 4, steps: 1, loss: 0.1216\r", + "OT-CFM epoch: 4, steps: 2, loss: 0.1252\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 3, loss: 0.1144\r", + "OT-CFM epoch: 4, steps: 4, loss: 0.1392\r", + "OT-CFM epoch: 4, steps: 5, loss: 0.1324\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 6, loss: 0.1221\r", + "OT-CFM epoch: 4, steps: 7, loss: 0.1311\r", + "OT-CFM epoch: 4, steps: 8, loss: 0.1229\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 9, loss: 0.1257\r", + "OT-CFM epoch: 4, steps: 10, loss: 0.1318\r", + "OT-CFM epoch: 4, steps: 11, loss: 0.1301\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 12, loss: 0.1343\r", + "OT-CFM epoch: 4, steps: 13, loss: 0.1267\r", + "OT-CFM epoch: 4, steps: 14, loss: 0.1185\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 15, loss: 0.1144\r", + "OT-CFM epoch: 4, steps: 16, loss: 0.1241\r", + "OT-CFM epoch: 4, steps: 17, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 18, loss: 0.1253\r", + "OT-CFM epoch: 4, steps: 19, loss: 0.1255\r", + "OT-CFM epoch: 4, steps: 20, loss: 0.1364\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 21, loss: 0.1524\r", + "OT-CFM epoch: 4, steps: 22, loss: 0.1256\r", + "OT-CFM epoch: 4, steps: 23, loss: 0.1325\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 24, loss: 0.1254\r", + "OT-CFM epoch: 4, steps: 25, loss: 0.1273\r", + "OT-CFM epoch: 4, steps: 26, loss: 0.1192\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 27, loss: 0.1134\r", + "OT-CFM epoch: 4, steps: 28, loss: 0.119\r", + "OT-CFM epoch: 4, steps: 29, loss: 0.1363\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 30, loss: 0.1168\r", + "OT-CFM epoch: 4, steps: 31, loss: 0.1273\r", + "OT-CFM epoch: 4, steps: 32, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 33, loss: 0.1147\r", + "OT-CFM epoch: 4, steps: 34, loss: 0.1338\r", + "OT-CFM epoch: 4, steps: 35, loss: 0.1456\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 36, loss: 0.1132\r", + "OT-CFM epoch: 4, steps: 37, loss: 0.136\r", + "OT-CFM epoch: 4, steps: 38, loss: 0.1041\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 39, loss: 0.1202\r", + "OT-CFM epoch: 4, steps: 40, loss: 0.1329\r", + "OT-CFM epoch: 4, steps: 41, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 42, loss: 0.1222\r", + "OT-CFM epoch: 4, steps: 43, loss: 0.1218\r", + "OT-CFM epoch: 4, steps: 44, loss: 0.1124\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 45, loss: 0.1253\r", + "OT-CFM epoch: 4, steps: 46, loss: 0.1348\r", + "OT-CFM epoch: 4, steps: 47, loss: 0.1216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 48, loss: 0.133\r", + "OT-CFM epoch: 4, steps: 49, loss: 0.1164\r", + "OT-CFM epoch: 4, steps: 50, loss: 0.1379\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 51, loss: 0.1224\r", + "OT-CFM epoch: 4, steps: 52, loss: 0.1216\r", + "OT-CFM epoch: 4, steps: 53, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 54, loss: 0.1252\r", + "OT-CFM epoch: 4, steps: 55, loss: 0.1334\r", + "OT-CFM epoch: 4, steps: 56, loss: 0.1186\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 57, loss: 0.1225\r", + "OT-CFM epoch: 4, steps: 58, loss: 0.1384\r", + "OT-CFM epoch: 4, steps: 59, loss: 0.1252\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 60, loss: 0.1247\r", + "OT-CFM epoch: 4, steps: 61, loss: 0.1362\r", + "OT-CFM epoch: 4, steps: 62, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 63, loss: 0.123\r", + "OT-CFM epoch: 4, steps: 64, loss: 0.1286\r", + "OT-CFM epoch: 4, steps: 65, loss: 0.1265\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 66, loss: 0.1345\r", + "OT-CFM epoch: 4, steps: 67, loss: 0.1184\r", + "OT-CFM epoch: 4, steps: 68, loss: 0.1235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 69, loss: 0.1212\r", + "OT-CFM epoch: 4, steps: 70, loss: 0.1259\r", + "OT-CFM epoch: 4, steps: 71, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 72, loss: 0.1204\r", + "OT-CFM epoch: 4, steps: 73, loss: 0.128\r", + "OT-CFM epoch: 4, steps: 74, loss: 0.1364\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 75, loss: 0.1225\r", + "OT-CFM epoch: 4, steps: 76, loss: 0.1306\r", + "OT-CFM epoch: 4, steps: 77, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 78, loss: 0.1157\r", + "OT-CFM epoch: 4, steps: 79, loss: 0.1135\r", + "OT-CFM epoch: 4, steps: 80, loss: 0.1314\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 81, loss: 0.1215\r", + "OT-CFM epoch: 4, steps: 82, loss: 0.1385\r", + "OT-CFM epoch: 4, steps: 83, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 84, loss: 0.1348\r", + "OT-CFM epoch: 4, steps: 85, loss: 0.1123\r", + "OT-CFM epoch: 4, steps: 86, loss: 0.1277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 87, loss: 0.1261\r", + "OT-CFM epoch: 4, steps: 88, loss: 0.1259\r", + "OT-CFM epoch: 4, steps: 89, loss: 0.125\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 90, loss: 0.1285\r", + "OT-CFM epoch: 4, steps: 91, loss: 0.1215\r", + "OT-CFM epoch: 4, steps: 92, loss: 0.118\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 93, loss: 0.1276\r", + "OT-CFM epoch: 4, steps: 94, loss: 0.1351\r", + "OT-CFM epoch: 4, steps: 95, loss: 0.1453\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 96, loss: 0.1164\r", + "OT-CFM epoch: 4, steps: 97, loss: 0.1203\r", + "OT-CFM epoch: 4, steps: 98, loss: 0.1312\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 99, loss: 0.1207\r", + "OT-CFM epoch: 4, steps: 100, loss: 0.1314\r", + "OT-CFM epoch: 4, steps: 101, loss: 0.1183\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 102, loss: 0.1267\r", + "OT-CFM epoch: 4, steps: 103, loss: 0.1288\r", + "OT-CFM epoch: 4, steps: 104, loss: 0.1296\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 105, loss: 0.1252\r", + "OT-CFM epoch: 4, steps: 106, loss: 0.1227\r", + "OT-CFM epoch: 4, steps: 107, loss: 0.1296\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 108, loss: 0.1212\r", + "OT-CFM epoch: 4, steps: 109, loss: 0.1324\r", + "OT-CFM epoch: 4, steps: 110, loss: 0.1343\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 111, loss: 0.1263\r", + "OT-CFM epoch: 4, steps: 112, loss: 0.1199\r", + "OT-CFM epoch: 4, steps: 113, loss: 0.1122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 114, loss: 0.1199\r", + "OT-CFM epoch: 4, steps: 115, loss: 0.1233\r", + "OT-CFM epoch: 4, steps: 116, loss: 0.1277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 117, loss: 0.1321\r", + "OT-CFM epoch: 4, steps: 118, loss: 0.1282\r", + "OT-CFM epoch: 4, steps: 119, loss: 0.1274\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 120, loss: 0.125\r", + "OT-CFM epoch: 4, steps: 121, loss: 0.1236\r", + "OT-CFM epoch: 4, steps: 122, loss: 0.1171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 123, loss: 0.114\r", + "OT-CFM epoch: 4, steps: 124, loss: 0.1315\r", + "OT-CFM epoch: 4, steps: 125, loss: 0.1245\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 126, loss: 0.1211\r", + "OT-CFM epoch: 4, steps: 127, loss: 0.1229\r", + "OT-CFM epoch: 4, steps: 128, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 129, loss: 0.1264\r", + "OT-CFM epoch: 4, steps: 130, loss: 0.1374\r", + "OT-CFM epoch: 4, steps: 131, loss: 0.12\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 132, loss: 0.1313\r", + "OT-CFM epoch: 4, steps: 133, loss: 0.1306\r", + "OT-CFM epoch: 4, steps: 134, loss: 0.1148\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 135, loss: 0.1229\r", + "OT-CFM epoch: 4, steps: 136, loss: 0.1192\r", + "OT-CFM epoch: 4, steps: 137, loss: 0.128\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 138, loss: 0.1342\r", + "OT-CFM epoch: 4, steps: 139, loss: 0.1238\r", + "OT-CFM epoch: 4, steps: 140, loss: 0.1275\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 141, loss: 0.1225\r", + "OT-CFM epoch: 4, steps: 142, loss: 0.1204\r", + "OT-CFM epoch: 4, steps: 143, loss: 0.1391\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 144, loss: 0.1112\r", + "OT-CFM epoch: 4, steps: 145, loss: 0.1314\r", + "OT-CFM epoch: 4, steps: 146, loss: 0.1248\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 147, loss: 0.1245\r", + "OT-CFM epoch: 4, steps: 148, loss: 0.1138\r", + "OT-CFM epoch: 4, steps: 149, loss: 0.1246\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 150, loss: 0.1246\r", + "OT-CFM epoch: 4, steps: 151, loss: 0.1174\r", + "OT-CFM epoch: 4, steps: 152, loss: 0.1398\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 153, loss: 0.1139\r", + "OT-CFM epoch: 4, steps: 154, loss: 0.1323\r", + "OT-CFM epoch: 4, steps: 155, loss: 0.1229\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 156, loss: 0.1195\r", + "OT-CFM epoch: 4, steps: 157, loss: 0.1229\r", + "OT-CFM epoch: 4, steps: 158, loss: 0.1258\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 159, loss: 0.1252\r", + "OT-CFM epoch: 4, steps: 160, loss: 0.1242\r", + "OT-CFM epoch: 4, steps: 161, loss: 0.1252\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 162, loss: 0.1264\r", + "OT-CFM epoch: 4, steps: 163, loss: 0.1285\r", + "OT-CFM epoch: 4, steps: 164, loss: 0.1395\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 165, loss: 0.1211\r", + "OT-CFM epoch: 4, steps: 166, loss: 0.1378\r", + "OT-CFM epoch: 4, steps: 167, loss: 0.111\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 168, loss: 0.1087\r", + "OT-CFM epoch: 4, steps: 169, loss: 0.123\r", + "OT-CFM epoch: 4, steps: 170, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 171, loss: 0.1213\r", + "OT-CFM epoch: 4, steps: 172, loss: 0.1277\r", + "OT-CFM epoch: 4, steps: 173, loss: 0.1183\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 174, loss: 0.1163\r", + "OT-CFM epoch: 4, steps: 175, loss: 0.131\r", + "OT-CFM epoch: 4, steps: 176, loss: 0.1298\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 177, loss: 0.132\r", + "OT-CFM epoch: 4, steps: 178, loss: 0.1427\r", + "OT-CFM epoch: 4, steps: 179, loss: 0.1273\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 180, loss: 0.1347\r", + "OT-CFM epoch: 4, steps: 181, loss: 0.1245\r", + "OT-CFM epoch: 4, steps: 182, loss: 0.1147\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 183, loss: 0.1263\r", + "OT-CFM epoch: 4, steps: 184, loss: 0.1339\r", + "OT-CFM epoch: 4, steps: 185, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 186, loss: 0.1286\r", + "OT-CFM epoch: 4, steps: 187, loss: 0.1237\r", + "OT-CFM epoch: 4, steps: 188, loss: 0.132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 189, loss: 0.1244\r", + "OT-CFM epoch: 4, steps: 190, loss: 0.1245\r", + "OT-CFM epoch: 4, steps: 191, loss: 0.1388\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 192, loss: 0.1309\r", + "OT-CFM epoch: 4, steps: 193, loss: 0.1261\r", + "OT-CFM epoch: 4, steps: 194, loss: 0.1295\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 195, loss: 0.12\r", + "OT-CFM epoch: 4, steps: 196, loss: 0.1338\r", + "OT-CFM epoch: 4, steps: 197, loss: 0.1266\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 198, loss: 0.1247\r", + "OT-CFM epoch: 4, steps: 199, loss: 0.1229\r", + "OT-CFM epoch: 4, steps: 200, loss: 0.1189\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 201, loss: 0.1153\r", + "OT-CFM epoch: 4, steps: 202, loss: 0.1182\r", + "OT-CFM epoch: 4, steps: 203, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 204, loss: 0.1289\r", + "OT-CFM epoch: 4, steps: 205, loss: 0.1151\r", + "OT-CFM epoch: 4, steps: 206, loss: 0.1294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 207, loss: 0.1296\r", + "OT-CFM epoch: 4, steps: 208, loss: 0.1336\r", + "OT-CFM epoch: 4, steps: 209, loss: 0.1165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 210, loss: 0.1223\r", + "OT-CFM epoch: 4, steps: 211, loss: 0.1189\r", + "OT-CFM epoch: 4, steps: 212, loss: 0.1338\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 213, loss: 0.1305\r", + "OT-CFM epoch: 4, steps: 214, loss: 0.1181\r", + "OT-CFM epoch: 4, steps: 215, loss: 0.1129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 216, loss: 0.1251\r", + "OT-CFM epoch: 4, steps: 217, loss: 0.1321\r", + "OT-CFM epoch: 4, steps: 218, loss: 0.1312\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 219, loss: 0.1315\r", + "OT-CFM epoch: 4, steps: 220, loss: 0.1281\r", + "OT-CFM epoch: 4, steps: 221, loss: 0.1263\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 222, loss: 0.1321\r", + "OT-CFM epoch: 4, steps: 223, loss: 0.1236\r", + "OT-CFM epoch: 4, steps: 224, loss: 0.1277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 225, loss: 0.1157\r", + "OT-CFM epoch: 4, steps: 226, loss: 0.1287\r", + "OT-CFM epoch: 4, steps: 227, loss: 0.1366\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 228, loss: 0.1271\r", + "OT-CFM epoch: 4, steps: 229, loss: 0.1259\r", + "OT-CFM epoch: 4, steps: 230, loss: 0.1268\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 231, loss: 0.133\r", + "OT-CFM epoch: 4, steps: 232, loss: 0.1415\r", + "OT-CFM epoch: 4, steps: 233, loss: 0.1172\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 234, loss: 0.1312\r", + "OT-CFM epoch: 4, steps: 235, loss: 0.1325\r", + "OT-CFM epoch: 4, steps: 236, loss: 0.1136\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 237, loss: 0.1163\r", + "OT-CFM epoch: 4, steps: 238, loss: 0.1253\r", + "OT-CFM epoch: 4, steps: 239, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 240, loss: 0.1225\r", + "OT-CFM epoch: 4, steps: 241, loss: 0.1248\r", + "OT-CFM epoch: 4, steps: 242, loss: 0.1242\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 243, loss: 0.1189\r", + "OT-CFM epoch: 4, steps: 244, loss: 0.137\r", + "OT-CFM epoch: 4, steps: 245, loss: 0.1338\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 246, loss: 0.1263\r", + "OT-CFM epoch: 4, steps: 247, loss: 0.134\r", + "OT-CFM epoch: 4, steps: 248, loss: 0.1281\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 249, loss: 0.1205\r", + "OT-CFM epoch: 4, steps: 250, loss: 0.1213\r", + "OT-CFM epoch: 4, steps: 251, loss: 0.1362\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 252, loss: 0.1303\r", + "OT-CFM epoch: 4, steps: 253, loss: 0.1151\r", + "OT-CFM epoch: 4, steps: 254, loss: 0.125\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 255, loss: 0.1266\r", + "OT-CFM epoch: 4, steps: 256, loss: 0.1321\r", + "OT-CFM epoch: 4, steps: 257, loss: 0.1164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 258, loss: 0.1249\r", + "OT-CFM epoch: 4, steps: 259, loss: 0.124\r", + "OT-CFM epoch: 4, steps: 260, loss: 0.1243\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 261, loss: 0.1145\r", + "OT-CFM epoch: 4, steps: 262, loss: 0.1285\r", + "OT-CFM epoch: 4, steps: 263, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 264, loss: 0.1289\r", + "OT-CFM epoch: 4, steps: 265, loss: 0.1306\r", + "OT-CFM epoch: 4, steps: 266, loss: 0.1225\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 267, loss: 0.1163\r", + "OT-CFM epoch: 4, steps: 268, loss: 0.1151\r", + "OT-CFM epoch: 4, steps: 269, loss: 0.1329\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 270, loss: 0.1177\r", + "OT-CFM epoch: 4, steps: 271, loss: 0.1109\r", + "OT-CFM epoch: 4, steps: 272, loss: 0.1256\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 273, loss: 0.1138\r", + "OT-CFM epoch: 4, steps: 274, loss: 0.1229\r", + "OT-CFM epoch: 4, steps: 275, loss: 0.1212\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 276, loss: 0.117\r", + "OT-CFM epoch: 4, steps: 277, loss: 0.1227\r", + "OT-CFM epoch: 4, steps: 278, loss: 0.1222\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 279, loss: 0.1307\r", + "OT-CFM epoch: 4, steps: 280, loss: 0.1246\r", + "OT-CFM epoch: 4, steps: 281, loss: 0.1198\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 282, loss: 0.1168\r", + "OT-CFM epoch: 4, steps: 283, loss: 0.1213\r", + "OT-CFM epoch: 4, steps: 284, loss: 0.1418\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 285, loss: 0.1203\r", + "OT-CFM epoch: 4, steps: 286, loss: 0.13\r", + "OT-CFM epoch: 4, steps: 287, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 288, loss: 0.1403\r", + "OT-CFM epoch: 4, steps: 289, loss: 0.1264\r", + "OT-CFM epoch: 4, steps: 290, loss: 0.1241\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 291, loss: 0.1237\r", + "OT-CFM epoch: 4, steps: 292, loss: 0.123\r", + "OT-CFM epoch: 4, steps: 293, loss: 0.1228\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 294, loss: 0.1307\r", + "OT-CFM epoch: 4, steps: 295, loss: 0.1308\r", + "OT-CFM epoch: 4, steps: 296, loss: 0.1248\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 297, loss: 0.1368\r", + "OT-CFM epoch: 4, steps: 298, loss: 0.1159\r", + "OT-CFM epoch: 4, steps: 299, loss: 0.1265\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 300, loss: 0.1253\r", + "OT-CFM epoch: 4, steps: 301, loss: 0.1355\r", + "OT-CFM epoch: 4, steps: 302, loss: 0.1287\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 303, loss: 0.117\r", + "OT-CFM epoch: 4, steps: 304, loss: 0.126\r", + "OT-CFM epoch: 4, steps: 305, loss: 0.1386\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 306, loss: 0.1177\r", + "OT-CFM epoch: 4, steps: 307, loss: 0.1184\r", + "OT-CFM epoch: 4, steps: 308, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 309, loss: 0.1342\r", + "OT-CFM epoch: 4, steps: 310, loss: 0.1238\r", + "OT-CFM epoch: 4, steps: 311, loss: 0.1223\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 312, loss: 0.1229\r", + "OT-CFM epoch: 4, steps: 313, loss: 0.1239\r", + "OT-CFM epoch: 4, steps: 314, loss: 0.1476\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 315, loss: 0.1208\r", + "OT-CFM epoch: 4, steps: 316, loss: 0.1205\r", + "OT-CFM epoch: 4, steps: 317, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 318, loss: 0.1169\r", + "OT-CFM epoch: 4, steps: 319, loss: 0.1331\r", + "OT-CFM epoch: 4, steps: 320, loss: 0.1232\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 321, loss: 0.1383\r", + "OT-CFM epoch: 4, steps: 322, loss: 0.1283\r", + "OT-CFM epoch: 4, steps: 323, loss: 0.1286\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 324, loss: 0.1289\r", + "OT-CFM epoch: 4, steps: 325, loss: 0.1263\r", + "OT-CFM epoch: 4, steps: 326, loss: 0.1181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 327, loss: 0.1356\r", + "OT-CFM epoch: 4, steps: 328, loss: 0.1158\r", + "OT-CFM epoch: 4, steps: 329, loss: 0.1304\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 330, loss: 0.1237\r", + "OT-CFM epoch: 4, steps: 331, loss: 0.1228\r", + "OT-CFM epoch: 4, steps: 332, loss: 0.1218\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 333, loss: 0.1207\r", + "OT-CFM epoch: 4, steps: 334, loss: 0.1235\r", + "OT-CFM epoch: 4, steps: 335, loss: 0.116\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 336, loss: 0.1112\r", + "OT-CFM epoch: 4, steps: 337, loss: 0.1292\r", + "OT-CFM epoch: 4, steps: 338, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 339, loss: 0.1373\r", + "OT-CFM epoch: 4, steps: 340, loss: 0.1128\r", + "OT-CFM epoch: 4, steps: 341, loss: 0.1255\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 342, loss: 0.1215\r", + "OT-CFM epoch: 4, steps: 343, loss: 0.1206\r", + "OT-CFM epoch: 4, steps: 344, loss: 0.121\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 345, loss: 0.1227\r", + "OT-CFM epoch: 4, steps: 346, loss: 0.1143\r", + "OT-CFM epoch: 4, steps: 347, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 348, loss: 0.1174\r", + "OT-CFM epoch: 4, steps: 349, loss: 0.1138\r", + "OT-CFM epoch: 4, steps: 350, loss: 0.1309\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 351, loss: 0.1138\r", + "OT-CFM epoch: 4, steps: 352, loss: 0.1148\r", + "OT-CFM epoch: 4, steps: 353, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 354, loss: 0.1153\r", + "OT-CFM epoch: 4, steps: 355, loss: 0.123\r", + "OT-CFM epoch: 4, steps: 356, loss: 0.1357\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 357, loss: 0.121\r", + "OT-CFM epoch: 4, steps: 358, loss: 0.1307\r", + "OT-CFM epoch: 4, steps: 359, loss: 0.1329\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 360, loss: 0.1219\r", + "OT-CFM epoch: 4, steps: 361, loss: 0.1196\r", + "OT-CFM epoch: 4, steps: 362, loss: 0.1346\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 363, loss: 0.1253\r", + "OT-CFM epoch: 4, steps: 364, loss: 0.1358\r", + "OT-CFM epoch: 4, steps: 365, loss: 0.1307\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 366, loss: 0.131\r", + "OT-CFM epoch: 4, steps: 367, loss: 0.1262\r", + "OT-CFM epoch: 4, steps: 368, loss: 0.1131\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 369, loss: 0.1312\r", + "OT-CFM epoch: 4, steps: 370, loss: 0.1291\r", + "OT-CFM epoch: 4, steps: 371, loss: 0.1258\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 372, loss: 0.1261\r", + "OT-CFM epoch: 4, steps: 373, loss: 0.1283\r", + "OT-CFM epoch: 4, steps: 374, loss: 0.1277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 375, loss: 0.1074\r", + "OT-CFM epoch: 4, steps: 376, loss: 0.125\r", + "OT-CFM epoch: 4, steps: 377, loss: 0.1178\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 378, loss: 0.1376\r", + "OT-CFM epoch: 4, steps: 379, loss: 0.1269\r", + "OT-CFM epoch: 4, steps: 380, loss: 0.1275\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 381, loss: 0.1336\r", + "OT-CFM epoch: 4, steps: 382, loss: 0.1162\r", + "OT-CFM epoch: 4, steps: 383, loss: 0.1388\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 384, loss: 0.121\r", + "OT-CFM epoch: 4, steps: 385, loss: 0.1238\r", + "OT-CFM epoch: 4, steps: 386, loss: 0.1285\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 387, loss: 0.1199\r", + "OT-CFM epoch: 4, steps: 388, loss: 0.1156\r", + "OT-CFM epoch: 4, steps: 389, loss: 0.1224\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 390, loss: 0.1224\r", + "OT-CFM epoch: 4, steps: 391, loss: 0.1275\r", + "OT-CFM epoch: 4, steps: 392, loss: 0.1244\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 393, loss: 0.1258\r", + "OT-CFM epoch: 4, steps: 394, loss: 0.1191\r", + "OT-CFM epoch: 4, steps: 395, loss: 0.1306\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 396, loss: 0.1191\r", + "OT-CFM epoch: 4, steps: 397, loss: 0.1129\r", + "OT-CFM epoch: 4, steps: 398, loss: 0.124\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 399, loss: 0.1222\r", + "OT-CFM epoch: 4, steps: 400, loss: 0.1185\r", + "OT-CFM epoch: 4, steps: 401, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 402, loss: 0.1253\r", + "OT-CFM epoch: 4, steps: 403, loss: 0.1295\r", + "OT-CFM epoch: 4, steps: 404, loss: 0.123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 405, loss: 0.1204\r", + "OT-CFM epoch: 4, steps: 406, loss: 0.1333\r", + "OT-CFM epoch: 4, steps: 407, loss: 0.119\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 408, loss: 0.122\r", + "OT-CFM epoch: 4, steps: 409, loss: 0.1221\r", + "OT-CFM epoch: 4, steps: 410, loss: 0.1323\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 411, loss: 0.1216\r", + "OT-CFM epoch: 4, steps: 412, loss: 0.1415\r", + "OT-CFM epoch: 4, steps: 413, loss: 0.121\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 414, loss: 0.1262\r", + "OT-CFM epoch: 4, steps: 415, loss: 0.1345\r", + "OT-CFM epoch: 4, steps: 416, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 417, loss: 0.1179\r", + "OT-CFM epoch: 4, steps: 418, loss: 0.1313\r", + "OT-CFM epoch: 4, steps: 419, loss: 0.13\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 420, loss: 0.1205\r", + "OT-CFM epoch: 4, steps: 421, loss: 0.1079\r", + "OT-CFM epoch: 4, steps: 422, loss: 0.1159\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 423, loss: 0.1337\r", + "OT-CFM epoch: 4, steps: 424, loss: 0.1242\r", + "OT-CFM epoch: 4, steps: 425, loss: 0.1199\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 426, loss: 0.1233\r", + "OT-CFM epoch: 4, steps: 427, loss: 0.1259\r", + "OT-CFM epoch: 4, steps: 428, loss: 0.1192\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 429, loss: 0.1281\r", + "OT-CFM epoch: 4, steps: 430, loss: 0.1149\r", + "OT-CFM epoch: 4, steps: 431, loss: 0.1231\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 432, loss: 0.12\r", + "OT-CFM epoch: 4, steps: 433, loss: 0.1246\r", + "OT-CFM epoch: 4, steps: 434, loss: 0.1241\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 435, loss: 0.1236\r", + "OT-CFM epoch: 4, steps: 436, loss: 0.125\r", + "OT-CFM epoch: 4, steps: 437, loss: 0.1182\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 438, loss: 0.1193\r", + "OT-CFM epoch: 4, steps: 439, loss: 0.1251\r", + "OT-CFM epoch: 4, steps: 440, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 441, loss: 0.1258\r", + "OT-CFM epoch: 4, steps: 442, loss: 0.1194\r", + "OT-CFM epoch: 4, steps: 443, loss: 0.1174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 444, loss: 0.1181\r", + "OT-CFM epoch: 4, steps: 445, loss: 0.1223\r", + "OT-CFM epoch: 4, steps: 446, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 447, loss: 0.1208\r", + "OT-CFM epoch: 4, steps: 448, loss: 0.1405\r", + "OT-CFM epoch: 4, steps: 449, loss: 0.1387\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 450, loss: 0.1219\r", + "OT-CFM epoch: 4, steps: 451, loss: 0.1215\r", + "OT-CFM epoch: 4, steps: 452, loss: 0.1369\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 453, loss: 0.1247\r", + "OT-CFM epoch: 4, steps: 454, loss: 0.1336\r", + "OT-CFM epoch: 4, steps: 455, loss: 0.1239\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 456, loss: 0.1079\r", + "OT-CFM epoch: 4, steps: 457, loss: 0.1273\r", + "OT-CFM epoch: 4, steps: 458, loss: 0.1361\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 459, loss: 0.1129\r", + "OT-CFM epoch: 4, steps: 460, loss: 0.1202\r", + "OT-CFM epoch: 4, steps: 461, loss: 0.1355\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 462, loss: 0.13\r", + "OT-CFM epoch: 4, steps: 463, loss: 0.1263\r", + "OT-CFM epoch: 4, steps: 464, loss: 0.1276\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 4, steps: 465, loss: 0.1306\r", + "OT-CFM epoch: 4, steps: 466, loss: 0.1205\r", + "OT-CFM epoch: 4, steps: 467, loss: 0.1335\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 0, loss: 0.1266\r", + "OT-CFM epoch: 5, steps: 1, loss: 0.1267\r", + "OT-CFM epoch: 5, steps: 2, loss: 0.1208\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 3, loss: 0.1219\r", + "OT-CFM epoch: 5, steps: 4, loss: 0.1186\r", + "OT-CFM epoch: 5, steps: 5, loss: 0.1224\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 6, loss: 0.1277\r", + "OT-CFM epoch: 5, steps: 7, loss: 0.1254\r", + "OT-CFM epoch: 5, steps: 8, loss: 0.1222\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 9, loss: 0.1178\r", + "OT-CFM epoch: 5, steps: 10, loss: 0.1169\r", + "OT-CFM epoch: 5, steps: 11, loss: 0.1103\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 12, loss: 0.1384\r", + "OT-CFM epoch: 5, steps: 13, loss: 0.1205\r", + "OT-CFM epoch: 5, steps: 14, loss: 0.1343\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 15, loss: 0.1195\r", + "OT-CFM epoch: 5, steps: 16, loss: 0.126\r", + "OT-CFM epoch: 5, steps: 17, loss: 0.1311\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 18, loss: 0.1275\r", + "OT-CFM epoch: 5, steps: 19, loss: 0.1351\r", + "OT-CFM epoch: 5, steps: 20, loss: 0.1326\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 21, loss: 0.1296\r", + "OT-CFM epoch: 5, steps: 22, loss: 0.1236\r", + "OT-CFM epoch: 5, steps: 23, loss: 0.1233\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 24, loss: 0.13\r", + "OT-CFM epoch: 5, steps: 25, loss: 0.1365\r", + "OT-CFM epoch: 5, steps: 26, loss: 0.1223\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 27, loss: 0.1283\r", + "OT-CFM epoch: 5, steps: 28, loss: 0.1326\r", + "OT-CFM epoch: 5, steps: 29, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 30, loss: 0.1242\r", + "OT-CFM epoch: 5, steps: 31, loss: 0.145\r", + "OT-CFM epoch: 5, steps: 32, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 33, loss: 0.1192\r", + "OT-CFM epoch: 5, steps: 34, loss: 0.1224\r", + "OT-CFM epoch: 5, steps: 35, loss: 0.1254\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 36, loss: 0.1232\r", + "OT-CFM epoch: 5, steps: 37, loss: 0.1295\r", + "OT-CFM epoch: 5, steps: 38, loss: 0.1238\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 39, loss: 0.1295\r", + "OT-CFM epoch: 5, steps: 40, loss: 0.128\r", + "OT-CFM epoch: 5, steps: 41, loss: 0.1188\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 42, loss: 0.1245\r", + "OT-CFM epoch: 5, steps: 43, loss: 0.1305\r", + "OT-CFM epoch: 5, steps: 44, loss: 0.1235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 45, loss: 0.1236\r", + "OT-CFM epoch: 5, steps: 46, loss: 0.1233\r", + "OT-CFM epoch: 5, steps: 47, loss: 0.1326\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 48, loss: 0.1146\r", + "OT-CFM epoch: 5, steps: 49, loss: 0.1235\r", + "OT-CFM epoch: 5, steps: 50, loss: 0.1158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 51, loss: 0.1239\r", + "OT-CFM epoch: 5, steps: 52, loss: 0.1249\r", + "OT-CFM epoch: 5, steps: 53, loss: 0.1117\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 54, loss: 0.117\r", + "OT-CFM epoch: 5, steps: 55, loss: 0.1245\r", + "OT-CFM epoch: 5, steps: 56, loss: 0.1234\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 57, loss: 0.1162\r", + "OT-CFM epoch: 5, steps: 58, loss: 0.1291\r", + "OT-CFM epoch: 5, steps: 59, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 60, loss: 0.1246\r", + "OT-CFM epoch: 5, steps: 61, loss: 0.1309\r", + "OT-CFM epoch: 5, steps: 62, loss: 0.1354\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 63, loss: 0.1163\r", + "OT-CFM epoch: 5, steps: 64, loss: 0.1225\r", + "OT-CFM epoch: 5, steps: 65, loss: 0.1288\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 66, loss: 0.1266\r", + "OT-CFM epoch: 5, steps: 67, loss: 0.1272\r", + "OT-CFM epoch: 5, steps: 68, loss: 0.133\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 69, loss: 0.1218\r", + "OT-CFM epoch: 5, steps: 70, loss: 0.1167\r", + "OT-CFM epoch: 5, steps: 71, loss: 0.1217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 72, loss: 0.1287\r", + "OT-CFM epoch: 5, steps: 73, loss: 0.1225\r", + "OT-CFM epoch: 5, steps: 74, loss: 0.1179\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 75, loss: 0.1314\r", + "OT-CFM epoch: 5, steps: 76, loss: 0.1162\r", + "OT-CFM epoch: 5, steps: 77, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 78, loss: 0.1238\r", + "OT-CFM epoch: 5, steps: 79, loss: 0.1161\r", + "OT-CFM epoch: 5, steps: 80, loss: 0.1209\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 81, loss: 0.1282\r", + "OT-CFM epoch: 5, steps: 82, loss: 0.1184\r", + "OT-CFM epoch: 5, steps: 83, loss: 0.1151\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 84, loss: 0.1148\r", + "OT-CFM epoch: 5, steps: 85, loss: 0.1317\r", + "OT-CFM epoch: 5, steps: 86, loss: 0.1191\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 87, loss: 0.1264\r", + "OT-CFM epoch: 5, steps: 88, loss: 0.1208\r", + "OT-CFM epoch: 5, steps: 89, loss: 0.1307\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 90, loss: 0.1273\r", + "OT-CFM epoch: 5, steps: 91, loss: 0.1146\r", + "OT-CFM epoch: 5, steps: 92, loss: 0.1258\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 93, loss: 0.1291\r", + "OT-CFM epoch: 5, steps: 94, loss: 0.1124\r", + "OT-CFM epoch: 5, steps: 95, loss: 0.1349\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 96, loss: 0.1304\r", + "OT-CFM epoch: 5, steps: 97, loss: 0.1227\r", + "OT-CFM epoch: 5, steps: 98, loss: 0.1195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 99, loss: 0.1228\r", + "OT-CFM epoch: 5, steps: 100, loss: 0.1256\r", + "OT-CFM epoch: 5, steps: 101, loss: 0.1222\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 102, loss: 0.1328\r", + "OT-CFM epoch: 5, steps: 103, loss: 0.1272\r", + "OT-CFM epoch: 5, steps: 104, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 105, loss: 0.1287\r", + "OT-CFM epoch: 5, steps: 106, loss: 0.1267\r", + "OT-CFM epoch: 5, steps: 107, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 108, loss: 0.1262\r", + "OT-CFM epoch: 5, steps: 109, loss: 0.1222\r", + "OT-CFM epoch: 5, steps: 110, loss: 0.1325\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 111, loss: 0.1168\r", + "OT-CFM epoch: 5, steps: 112, loss: 0.1115\r", + "OT-CFM epoch: 5, steps: 113, loss: 0.1391\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 114, loss: 0.1244\r", + "OT-CFM epoch: 5, steps: 115, loss: 0.1287\r", + "OT-CFM epoch: 5, steps: 116, loss: 0.1127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 117, loss: 0.1263\r", + "OT-CFM epoch: 5, steps: 118, loss: 0.1114\r", + "OT-CFM epoch: 5, steps: 119, loss: 0.1147\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 120, loss: 0.1262\r", + "OT-CFM epoch: 5, steps: 121, loss: 0.1164\r", + "OT-CFM epoch: 5, steps: 122, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 123, loss: 0.1254\r", + "OT-CFM epoch: 5, steps: 124, loss: 0.1177\r", + "OT-CFM epoch: 5, steps: 125, loss: 0.1134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 126, loss: 0.1257\r", + "OT-CFM epoch: 5, steps: 127, loss: 0.1219\r", + "OT-CFM epoch: 5, steps: 128, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 129, loss: 0.1204\r", + "OT-CFM epoch: 5, steps: 130, loss: 0.1228\r", + "OT-CFM epoch: 5, steps: 131, loss: 0.1374\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 132, loss: 0.1249\r", + "OT-CFM epoch: 5, steps: 133, loss: 0.1188\r", + "OT-CFM epoch: 5, steps: 134, loss: 0.1245\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 135, loss: 0.1366\r", + "OT-CFM epoch: 5, steps: 136, loss: 0.1266\r", + "OT-CFM epoch: 5, steps: 137, loss: 0.1269\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 138, loss: 0.1195\r", + "OT-CFM epoch: 5, steps: 139, loss: 0.116\r", + "OT-CFM epoch: 5, steps: 140, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 141, loss: 0.1275\r", + "OT-CFM epoch: 5, steps: 142, loss: 0.1172\r", + "OT-CFM epoch: 5, steps: 143, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 144, loss: 0.1312\r", + "OT-CFM epoch: 5, steps: 145, loss: 0.1123\r", + "OT-CFM epoch: 5, steps: 146, loss: 0.1262\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 147, loss: 0.1238\r", + "OT-CFM epoch: 5, steps: 148, loss: 0.1222\r", + "OT-CFM epoch: 5, steps: 149, loss: 0.1268\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 150, loss: 0.1268\r", + "OT-CFM epoch: 5, steps: 151, loss: 0.1338\r", + "OT-CFM epoch: 5, steps: 152, loss: 0.1174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 153, loss: 0.1292\r", + "OT-CFM epoch: 5, steps: 154, loss: 0.1343\r", + "OT-CFM epoch: 5, steps: 155, loss: 0.1268\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 156, loss: 0.1296\r", + "OT-CFM epoch: 5, steps: 157, loss: 0.1209\r", + "OT-CFM epoch: 5, steps: 158, loss: 0.1216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 159, loss: 0.1297\r", + "OT-CFM epoch: 5, steps: 160, loss: 0.1332\r", + "OT-CFM epoch: 5, steps: 161, loss: 0.13\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 162, loss: 0.126\r", + "OT-CFM epoch: 5, steps: 163, loss: 0.1189\r", + "OT-CFM epoch: 5, steps: 164, loss: 0.1135\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 165, loss: 0.1192\r", + "OT-CFM epoch: 5, steps: 166, loss: 0.1255\r", + "OT-CFM epoch: 5, steps: 167, loss: 0.1263\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 168, loss: 0.1146\r", + "OT-CFM epoch: 5, steps: 169, loss: 0.1301\r", + "OT-CFM epoch: 5, steps: 170, loss: 0.1177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 171, loss: 0.1169\r", + "OT-CFM epoch: 5, steps: 172, loss: 0.1185\r", + "OT-CFM epoch: 5, steps: 173, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 174, loss: 0.1229\r", + "OT-CFM epoch: 5, steps: 175, loss: 0.1269\r", + "OT-CFM epoch: 5, steps: 176, loss: 0.1189\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 177, loss: 0.1211\r", + "OT-CFM epoch: 5, steps: 178, loss: 0.1206\r", + "OT-CFM epoch: 5, steps: 179, loss: 0.1267\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 180, loss: 0.1338\r", + "OT-CFM epoch: 5, steps: 181, loss: 0.1154\r", + "OT-CFM epoch: 5, steps: 182, loss: 0.1316\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 183, loss: 0.1249\r", + "OT-CFM epoch: 5, steps: 184, loss: 0.1109\r", + "OT-CFM epoch: 5, steps: 185, loss: 0.1137\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 186, loss: 0.1167\r", + "OT-CFM epoch: 5, steps: 187, loss: 0.1302\r", + "OT-CFM epoch: 5, steps: 188, loss: 0.1296\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 189, loss: 0.127\r", + "OT-CFM epoch: 5, steps: 190, loss: 0.1295\r", + "OT-CFM epoch: 5, steps: 191, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 192, loss: 0.1233\r", + "OT-CFM epoch: 5, steps: 193, loss: 0.1243\r", + "OT-CFM epoch: 5, steps: 194, loss: 0.1258\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 195, loss: 0.1199\r", + "OT-CFM epoch: 5, steps: 196, loss: 0.1121\r", + "OT-CFM epoch: 5, steps: 197, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 198, loss: 0.1267\r", + "OT-CFM epoch: 5, steps: 199, loss: 0.1286\r", + "OT-CFM epoch: 5, steps: 200, loss: 0.1156\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 201, loss: 0.1242\r", + "OT-CFM epoch: 5, steps: 202, loss: 0.1225\r", + "OT-CFM epoch: 5, steps: 203, loss: 0.1344\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 204, loss: 0.111\r", + "OT-CFM epoch: 5, steps: 205, loss: 0.1226\r", + "OT-CFM epoch: 5, steps: 206, loss: 0.1278\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 207, loss: 0.1196\r", + "OT-CFM epoch: 5, steps: 208, loss: 0.1209\r", + "OT-CFM epoch: 5, steps: 209, loss: 0.127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 210, loss: 0.1289\r", + "OT-CFM epoch: 5, steps: 211, loss: 0.1182\r", + "OT-CFM epoch: 5, steps: 212, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 213, loss: 0.1332\r", + "OT-CFM epoch: 5, steps: 214, loss: 0.1315\r", + "OT-CFM epoch: 5, steps: 215, loss: 0.1241\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 216, loss: 0.122\r", + "OT-CFM epoch: 5, steps: 217, loss: 0.1241\r", + "OT-CFM epoch: 5, steps: 218, loss: 0.1273\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 219, loss: 0.1274\r", + "OT-CFM epoch: 5, steps: 220, loss: 0.1168\r", + "OT-CFM epoch: 5, steps: 221, loss: 0.1288\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 222, loss: 0.1168\r", + "OT-CFM epoch: 5, steps: 223, loss: 0.1189\r", + "OT-CFM epoch: 5, steps: 224, loss: 0.1329\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 225, loss: 0.1144\r", + "OT-CFM epoch: 5, steps: 226, loss: 0.1312\r", + "OT-CFM epoch: 5, steps: 227, loss: 0.1208\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 228, loss: 0.124\r", + "OT-CFM epoch: 5, steps: 229, loss: 0.1185\r", + "OT-CFM epoch: 5, steps: 230, loss: 0.134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 231, loss: 0.1279\r", + "OT-CFM epoch: 5, steps: 232, loss: 0.118\r", + "OT-CFM epoch: 5, steps: 233, loss: 0.1305\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 234, loss: 0.1189\r", + "OT-CFM epoch: 5, steps: 235, loss: 0.1129\r", + "OT-CFM epoch: 5, steps: 236, loss: 0.1143\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 237, loss: 0.1178\r", + "OT-CFM epoch: 5, steps: 238, loss: 0.1312\r", + "OT-CFM epoch: 5, steps: 239, loss: 0.1243\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 240, loss: 0.1155\r", + "OT-CFM epoch: 5, steps: 241, loss: 0.1315\r", + "OT-CFM epoch: 5, steps: 242, loss: 0.1255\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 243, loss: 0.1276\r", + "OT-CFM epoch: 5, steps: 244, loss: 0.1165\r", + "OT-CFM epoch: 5, steps: 245, loss: 0.1324\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 246, loss: 0.1275\r", + "OT-CFM epoch: 5, steps: 247, loss: 0.1241\r", + "OT-CFM epoch: 5, steps: 248, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 249, loss: 0.12\r", + "OT-CFM epoch: 5, steps: 250, loss: 0.1289\r", + "OT-CFM epoch: 5, steps: 251, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 252, loss: 0.1252\r", + "OT-CFM epoch: 5, steps: 253, loss: 0.1282\r", + "OT-CFM epoch: 5, steps: 254, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 255, loss: 0.1365\r", + "OT-CFM epoch: 5, steps: 256, loss: 0.1396\r", + "OT-CFM epoch: 5, steps: 257, loss: 0.1173\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 258, loss: 0.1141\r", + "OT-CFM epoch: 5, steps: 259, loss: 0.1236\r", + "OT-CFM epoch: 5, steps: 260, loss: 0.1143\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 261, loss: 0.132\r", + "OT-CFM epoch: 5, steps: 262, loss: 0.1233\r", + "OT-CFM epoch: 5, steps: 263, loss: 0.123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 264, loss: 0.1111\r", + "OT-CFM epoch: 5, steps: 265, loss: 0.1231\r", + "OT-CFM epoch: 5, steps: 266, loss: 0.1139\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 267, loss: 0.1185\r", + "OT-CFM epoch: 5, steps: 268, loss: 0.1174\r", + "OT-CFM epoch: 5, steps: 269, loss: 0.1262\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 270, loss: 0.1155\r", + "OT-CFM epoch: 5, steps: 271, loss: 0.1144\r", + "OT-CFM epoch: 5, steps: 272, loss: 0.1242\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 273, loss: 0.1349\r", + "OT-CFM epoch: 5, steps: 274, loss: 0.1282\r", + "OT-CFM epoch: 5, steps: 275, loss: 0.1184\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 276, loss: 0.1212\r", + "OT-CFM epoch: 5, steps: 277, loss: 0.126\r", + "OT-CFM epoch: 5, steps: 278, loss: 0.1305\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 279, loss: 0.1157\r", + "OT-CFM epoch: 5, steps: 280, loss: 0.127\r", + "OT-CFM epoch: 5, steps: 281, loss: 0.1255\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 282, loss: 0.1277\r", + "OT-CFM epoch: 5, steps: 283, loss: 0.1262\r", + "OT-CFM epoch: 5, steps: 284, loss: 0.1317\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 285, loss: 0.1265\r", + "OT-CFM epoch: 5, steps: 286, loss: 0.1291\r", + "OT-CFM epoch: 5, steps: 287, loss: 0.116\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 288, loss: 0.1159\r", + "OT-CFM epoch: 5, steps: 289, loss: 0.1317\r", + "OT-CFM epoch: 5, steps: 290, loss: 0.1183\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 291, loss: 0.1336\r", + "OT-CFM epoch: 5, steps: 292, loss: 0.1272\r", + "OT-CFM epoch: 5, steps: 293, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 294, loss: 0.1211\r", + "OT-CFM epoch: 5, steps: 295, loss: 0.1148\r", + "OT-CFM epoch: 5, steps: 296, loss: 0.1263\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 297, loss: 0.1266\r", + "OT-CFM epoch: 5, steps: 298, loss: 0.125\r", + "OT-CFM epoch: 5, steps: 299, loss: 0.1224\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 300, loss: 0.1263\r", + "OT-CFM epoch: 5, steps: 301, loss: 0.1377\r", + "OT-CFM epoch: 5, steps: 302, loss: 0.1166\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 303, loss: 0.1166\r", + "OT-CFM epoch: 5, steps: 304, loss: 0.1178\r", + "OT-CFM epoch: 5, steps: 305, loss: 0.1237\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 306, loss: 0.1191\r", + "OT-CFM epoch: 5, steps: 307, loss: 0.117\r", + "OT-CFM epoch: 5, steps: 308, loss: 0.1178\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 309, loss: 0.1146\r", + "OT-CFM epoch: 5, steps: 310, loss: 0.1232\r", + "OT-CFM epoch: 5, steps: 311, loss: 0.1187\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 312, loss: 0.1129\r", + "OT-CFM epoch: 5, steps: 313, loss: 0.122\r", + "OT-CFM epoch: 5, steps: 314, loss: 0.1381\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 315, loss: 0.1265\r", + "OT-CFM epoch: 5, steps: 316, loss: 0.122\r", + "OT-CFM epoch: 5, steps: 317, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 318, loss: 0.1283\r", + "OT-CFM epoch: 5, steps: 319, loss: 0.124\r", + "OT-CFM epoch: 5, steps: 320, loss: 0.1149\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 321, loss: 0.1216\r", + "OT-CFM epoch: 5, steps: 322, loss: 0.1213\r", + "OT-CFM epoch: 5, steps: 323, loss: 0.1096\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 324, loss: 0.1251\r", + "OT-CFM epoch: 5, steps: 325, loss: 0.1228\r", + "OT-CFM epoch: 5, steps: 326, loss: 0.1159\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 327, loss: 0.1179\r", + "OT-CFM epoch: 5, steps: 328, loss: 0.1226\r", + "OT-CFM epoch: 5, steps: 329, loss: 0.1112\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 330, loss: 0.1152\r", + "OT-CFM epoch: 5, steps: 331, loss: 0.1232\r", + "OT-CFM epoch: 5, steps: 332, loss: 0.1304\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 333, loss: 0.1229\r", + "OT-CFM epoch: 5, steps: 334, loss: 0.1315\r", + "OT-CFM epoch: 5, steps: 335, loss: 0.1281\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 336, loss: 0.1248\r", + "OT-CFM epoch: 5, steps: 337, loss: 0.1181\r", + "OT-CFM epoch: 5, steps: 338, loss: 0.1328\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 339, loss: 0.1151\r", + "OT-CFM epoch: 5, steps: 340, loss: 0.1285\r", + "OT-CFM epoch: 5, steps: 341, loss: 0.1148\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 342, loss: 0.1181\r", + "OT-CFM epoch: 5, steps: 343, loss: 0.1228\r", + "OT-CFM epoch: 5, steps: 344, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 345, loss: 0.1184\r", + "OT-CFM epoch: 5, steps: 346, loss: 0.1217\r", + "OT-CFM epoch: 5, steps: 347, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 348, loss: 0.1203\r", + "OT-CFM epoch: 5, steps: 349, loss: 0.1211\r", + "OT-CFM epoch: 5, steps: 350, loss: 0.134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 351, loss: 0.1238\r", + "OT-CFM epoch: 5, steps: 352, loss: 0.1289\r", + "OT-CFM epoch: 5, steps: 353, loss: 0.1185\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 354, loss: 0.1192\r", + "OT-CFM epoch: 5, steps: 355, loss: 0.1115\r", + "OT-CFM epoch: 5, steps: 356, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 357, loss: 0.1233\r", + "OT-CFM epoch: 5, steps: 358, loss: 0.1311\r", + "OT-CFM epoch: 5, steps: 359, loss: 0.1218\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 360, loss: 0.114\r", + "OT-CFM epoch: 5, steps: 361, loss: 0.1207\r", + "OT-CFM epoch: 5, steps: 362, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 363, loss: 0.1359\r", + "OT-CFM epoch: 5, steps: 364, loss: 0.1211\r", + "OT-CFM epoch: 5, steps: 365, loss: 0.1364\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 366, loss: 0.1202\r", + "OT-CFM epoch: 5, steps: 367, loss: 0.1203\r", + "OT-CFM epoch: 5, steps: 368, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 369, loss: 0.134\r", + "OT-CFM epoch: 5, steps: 370, loss: 0.1293\r", + "OT-CFM epoch: 5, steps: 371, loss: 0.1267\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 372, loss: 0.1049\r", + "OT-CFM epoch: 5, steps: 373, loss: 0.1355\r", + "OT-CFM epoch: 5, steps: 374, loss: 0.1142\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 375, loss: 0.1305\r", + "OT-CFM epoch: 5, steps: 376, loss: 0.1319\r", + "OT-CFM epoch: 5, steps: 377, loss: 0.1384\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 378, loss: 0.1298\r", + "OT-CFM epoch: 5, steps: 379, loss: 0.1193\r", + "OT-CFM epoch: 5, steps: 380, loss: 0.117\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 381, loss: 0.12\r", + "OT-CFM epoch: 5, steps: 382, loss: 0.1317\r", + "OT-CFM epoch: 5, steps: 383, loss: 0.125\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 384, loss: 0.1232\r", + "OT-CFM epoch: 5, steps: 385, loss: 0.1204\r", + "OT-CFM epoch: 5, steps: 386, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 387, loss: 0.1203\r", + "OT-CFM epoch: 5, steps: 388, loss: 0.1261\r", + "OT-CFM epoch: 5, steps: 389, loss: 0.1231\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 390, loss: 0.1266\r", + "OT-CFM epoch: 5, steps: 391, loss: 0.1218\r", + "OT-CFM epoch: 5, steps: 392, loss: 0.1191\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 393, loss: 0.122\r", + "OT-CFM epoch: 5, steps: 394, loss: 0.1211\r", + "OT-CFM epoch: 5, steps: 395, loss: 0.1163\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 396, loss: 0.1324\r", + "OT-CFM epoch: 5, steps: 397, loss: 0.1368\r", + "OT-CFM epoch: 5, steps: 398, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 399, loss: 0.1265\r", + "OT-CFM epoch: 5, steps: 400, loss: 0.1116\r", + "OT-CFM epoch: 5, steps: 401, loss: 0.1309\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 402, loss: 0.1185\r", + "OT-CFM epoch: 5, steps: 403, loss: 0.1244\r", + "OT-CFM epoch: 5, steps: 404, loss: 0.1223\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 405, loss: 0.122\r", + "OT-CFM epoch: 5, steps: 406, loss: 0.1351\r", + "OT-CFM epoch: 5, steps: 407, loss: 0.1368\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 408, loss: 0.1274\r", + "OT-CFM epoch: 5, steps: 409, loss: 0.1258\r", + "OT-CFM epoch: 5, steps: 410, loss: 0.1191\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 411, loss: 0.1284\r", + "OT-CFM epoch: 5, steps: 412, loss: 0.124\r", + "OT-CFM epoch: 5, steps: 413, loss: 0.1244\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 414, loss: 0.1258\r", + "OT-CFM epoch: 5, steps: 415, loss: 0.1279\r", + "OT-CFM epoch: 5, steps: 416, loss: 0.1313\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 417, loss: 0.1139\r", + "OT-CFM epoch: 5, steps: 418, loss: 0.1239\r", + "OT-CFM epoch: 5, steps: 419, loss: 0.1168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 420, loss: 0.1247\r", + "OT-CFM epoch: 5, steps: 421, loss: 0.1179\r", + "OT-CFM epoch: 5, steps: 422, loss: 0.1203\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 423, loss: 0.1232\r", + "OT-CFM epoch: 5, steps: 424, loss: 0.1151\r", + "OT-CFM epoch: 5, steps: 425, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 426, loss: 0.1194\r", + "OT-CFM epoch: 5, steps: 427, loss: 0.1235\r", + "OT-CFM epoch: 5, steps: 428, loss: 0.1243\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 429, loss: 0.1151\r", + "OT-CFM epoch: 5, steps: 430, loss: 0.1279\r", + "OT-CFM epoch: 5, steps: 431, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 432, loss: 0.122\r", + "OT-CFM epoch: 5, steps: 433, loss: 0.127\r", + "OT-CFM epoch: 5, steps: 434, loss: 0.1263\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 435, loss: 0.1225\r", + "OT-CFM epoch: 5, steps: 436, loss: 0.118\r", + "OT-CFM epoch: 5, steps: 437, loss: 0.1151\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 438, loss: 0.1263\r", + "OT-CFM epoch: 5, steps: 439, loss: 0.1287\r", + "OT-CFM epoch: 5, steps: 440, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 441, loss: 0.1198\r", + "OT-CFM epoch: 5, steps: 442, loss: 0.1227\r", + "OT-CFM epoch: 5, steps: 443, loss: 0.1128\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 444, loss: 0.1296\r", + "OT-CFM epoch: 5, steps: 445, loss: 0.1181\r", + "OT-CFM epoch: 5, steps: 446, loss: 0.1141\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 447, loss: 0.1256\r", + "OT-CFM epoch: 5, steps: 448, loss: 0.1264\r", + "OT-CFM epoch: 5, steps: 449, loss: 0.1275\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 450, loss: 0.1406\r", + "OT-CFM epoch: 5, steps: 451, loss: 0.1173\r", + "OT-CFM epoch: 5, steps: 452, loss: 0.1184\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 453, loss: 0.1203\r", + "OT-CFM epoch: 5, steps: 454, loss: 0.1227\r", + "OT-CFM epoch: 5, steps: 455, loss: 0.1273\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 456, loss: 0.1246\r", + "OT-CFM epoch: 5, steps: 457, loss: 0.1332\r", + "OT-CFM epoch: 5, steps: 458, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 459, loss: 0.1333\r", + "OT-CFM epoch: 5, steps: 460, loss: 0.113\r", + "OT-CFM epoch: 5, steps: 461, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 462, loss: 0.1271\r", + "OT-CFM epoch: 5, steps: 463, loss: 0.1243\r", + "OT-CFM epoch: 5, steps: 464, loss: 0.1342\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 5, steps: 465, loss: 0.1223\r", + "OT-CFM epoch: 5, steps: 466, loss: 0.1261\r", + "OT-CFM epoch: 5, steps: 467, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 0, loss: 0.128\r", + "OT-CFM epoch: 6, steps: 1, loss: 0.1197\r", + "OT-CFM epoch: 6, steps: 2, loss: 0.1116\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 3, loss: 0.1193\r", + "OT-CFM epoch: 6, steps: 4, loss: 0.1131\r", + "OT-CFM epoch: 6, steps: 5, loss: 0.1127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 6, loss: 0.1214\r", + "OT-CFM epoch: 6, steps: 7, loss: 0.1291\r", + "OT-CFM epoch: 6, steps: 8, loss: 0.1188\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 9, loss: 0.1283\r", + "OT-CFM epoch: 6, steps: 10, loss: 0.1163\r", + "OT-CFM epoch: 6, steps: 11, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 12, loss: 0.1381\r", + "OT-CFM epoch: 6, steps: 13, loss: 0.1228\r", + "OT-CFM epoch: 6, steps: 14, loss: 0.136\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 15, loss: 0.1288\r", + "OT-CFM epoch: 6, steps: 16, loss: 0.1157\r", + "OT-CFM epoch: 6, steps: 17, loss: 0.119\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 18, loss: 0.1206\r", + "OT-CFM epoch: 6, steps: 19, loss: 0.1116\r", + "OT-CFM epoch: 6, steps: 20, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 21, loss: 0.1223\r", + "OT-CFM epoch: 6, steps: 22, loss: 0.1234\r", + "OT-CFM epoch: 6, steps: 23, loss: 0.1224\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 24, loss: 0.1243\r", + "OT-CFM epoch: 6, steps: 25, loss: 0.1242\r", + "OT-CFM epoch: 6, steps: 26, loss: 0.1217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 27, loss: 0.12\r", + "OT-CFM epoch: 6, steps: 28, loss: 0.1243\r", + "OT-CFM epoch: 6, steps: 29, loss: 0.1351\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 30, loss: 0.123\r", + "OT-CFM epoch: 6, steps: 31, loss: 0.1326\r", + "OT-CFM epoch: 6, steps: 32, loss: 0.1303\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 33, loss: 0.1232\r", + "OT-CFM epoch: 6, steps: 34, loss: 0.1168\r", + "OT-CFM epoch: 6, steps: 35, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 36, loss: 0.1242\r", + "OT-CFM epoch: 6, steps: 37, loss: 0.1269\r", + "OT-CFM epoch: 6, steps: 38, loss: 0.1262\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 39, loss: 0.119\r", + "OT-CFM epoch: 6, steps: 40, loss: 0.1074\r", + "OT-CFM epoch: 6, steps: 41, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 42, loss: 0.1221\r", + "OT-CFM epoch: 6, steps: 43, loss: 0.1428\r", + "OT-CFM epoch: 6, steps: 44, loss: 0.121\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 45, loss: 0.1228\r", + "OT-CFM epoch: 6, steps: 46, loss: 0.1224\r", + "OT-CFM epoch: 6, steps: 47, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 48, loss: 0.1328\r", + "OT-CFM epoch: 6, steps: 49, loss: 0.1232\r", + "OT-CFM epoch: 6, steps: 50, loss: 0.1276\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 51, loss: 0.1205\r", + "OT-CFM epoch: 6, steps: 52, loss: 0.1228\r", + "OT-CFM epoch: 6, steps: 53, loss: 0.1184\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 54, loss: 0.1239\r", + "OT-CFM epoch: 6, steps: 55, loss: 0.1233\r", + "OT-CFM epoch: 6, steps: 56, loss: 0.1267\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 57, loss: 0.1167\r", + "OT-CFM epoch: 6, steps: 58, loss: 0.1221\r", + "OT-CFM epoch: 6, steps: 59, loss: 0.1231\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 60, loss: 0.1176\r", + "OT-CFM epoch: 6, steps: 61, loss: 0.1179\r", + "OT-CFM epoch: 6, steps: 62, loss: 0.1212\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 63, loss: 0.1262\r", + "OT-CFM epoch: 6, steps: 64, loss: 0.124\r", + "OT-CFM epoch: 6, steps: 65, loss: 0.1154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 66, loss: 0.1242\r", + "OT-CFM epoch: 6, steps: 67, loss: 0.1218\r", + "OT-CFM epoch: 6, steps: 68, loss: 0.1206\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 69, loss: 0.123\r", + "OT-CFM epoch: 6, steps: 70, loss: 0.118\r", + "OT-CFM epoch: 6, steps: 71, loss: 0.1216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 72, loss: 0.1257\r", + "OT-CFM epoch: 6, steps: 73, loss: 0.1208\r", + "OT-CFM epoch: 6, steps: 74, loss: 0.1169\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 75, loss: 0.1249\r", + "OT-CFM epoch: 6, steps: 76, loss: 0.1127\r", + "OT-CFM epoch: 6, steps: 77, loss: 0.1313\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 78, loss: 0.1172\r", + "OT-CFM epoch: 6, steps: 79, loss: 0.1138\r", + "OT-CFM epoch: 6, steps: 80, loss: 0.1218\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 81, loss: 0.1215\r", + "OT-CFM epoch: 6, steps: 82, loss: 0.1196\r", + "OT-CFM epoch: 6, steps: 83, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 84, loss: 0.1266\r", + "OT-CFM epoch: 6, steps: 85, loss: 0.1184\r", + "OT-CFM epoch: 6, steps: 86, loss: 0.1413\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 87, loss: 0.1188\r", + "OT-CFM epoch: 6, steps: 88, loss: 0.1227\r", + "OT-CFM epoch: 6, steps: 89, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 90, loss: 0.1331\r", + "OT-CFM epoch: 6, steps: 91, loss: 0.1152\r", + "OT-CFM epoch: 6, steps: 92, loss: 0.1429\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 93, loss: 0.1177\r", + "OT-CFM epoch: 6, steps: 94, loss: 0.1163\r", + "OT-CFM epoch: 6, steps: 95, loss: 0.1194\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 96, loss: 0.125\r", + "OT-CFM epoch: 6, steps: 97, loss: 0.1265\r", + "OT-CFM epoch: 6, steps: 98, loss: 0.1164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 99, loss: 0.1366\r", + "OT-CFM epoch: 6, steps: 100, loss: 0.1359\r", + "OT-CFM epoch: 6, steps: 101, loss: 0.1181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 102, loss: 0.1185\r", + "OT-CFM epoch: 6, steps: 103, loss: 0.1383\r", + "OT-CFM epoch: 6, steps: 104, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 105, loss: 0.1203\r", + "OT-CFM epoch: 6, steps: 106, loss: 0.1348\r", + "OT-CFM epoch: 6, steps: 107, loss: 0.1168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 108, loss: 0.1214\r", + "OT-CFM epoch: 6, steps: 109, loss: 0.1297\r", + "OT-CFM epoch: 6, steps: 110, loss: 0.119\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 111, loss: 0.1296\r", + "OT-CFM epoch: 6, steps: 112, loss: 0.1313\r", + "OT-CFM epoch: 6, steps: 113, loss: 0.1233\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 114, loss: 0.1148\r", + "OT-CFM epoch: 6, steps: 115, loss: 0.1258\r", + "OT-CFM epoch: 6, steps: 116, loss: 0.1208\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 117, loss: 0.1284\r", + "OT-CFM epoch: 6, steps: 118, loss: 0.1157\r", + "OT-CFM epoch: 6, steps: 119, loss: 0.1121\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 120, loss: 0.1177\r", + "OT-CFM epoch: 6, steps: 121, loss: 0.1278\r", + "OT-CFM epoch: 6, steps: 122, loss: 0.1189\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 123, loss: 0.1154\r", + "OT-CFM epoch: 6, steps: 124, loss: 0.1147\r", + "OT-CFM epoch: 6, steps: 125, loss: 0.1195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 126, loss: 0.128\r", + "OT-CFM epoch: 6, steps: 127, loss: 0.1275\r", + "OT-CFM epoch: 6, steps: 128, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 129, loss: 0.1111\r", + "OT-CFM epoch: 6, steps: 130, loss: 0.1231\r", + "OT-CFM epoch: 6, steps: 131, loss: 0.1228\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 132, loss: 0.119\r", + "OT-CFM epoch: 6, steps: 133, loss: 0.1416\r", + "OT-CFM epoch: 6, steps: 134, loss: 0.1231\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 135, loss: 0.1088\r", + "OT-CFM epoch: 6, steps: 136, loss: 0.1174\r", + "OT-CFM epoch: 6, steps: 137, loss: 0.1223\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 138, loss: 0.1255\r", + "OT-CFM epoch: 6, steps: 139, loss: 0.1192\r", + "OT-CFM epoch: 6, steps: 140, loss: 0.132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 141, loss: 0.1188\r", + "OT-CFM epoch: 6, steps: 142, loss: 0.1172\r", + "OT-CFM epoch: 6, steps: 143, loss: 0.1333\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 144, loss: 0.1215\r", + "OT-CFM epoch: 6, steps: 145, loss: 0.1221\r", + "OT-CFM epoch: 6, steps: 146, loss: 0.1197\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 147, loss: 0.1332\r", + "OT-CFM epoch: 6, steps: 148, loss: 0.13\r", + "OT-CFM epoch: 6, steps: 149, loss: 0.1208\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 150, loss: 0.1249\r", + "OT-CFM epoch: 6, steps: 151, loss: 0.1165\r", + "OT-CFM epoch: 6, steps: 152, loss: 0.126\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 153, loss: 0.1105\r", + "OT-CFM epoch: 6, steps: 154, loss: 0.13\r", + "OT-CFM epoch: 6, steps: 155, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 156, loss: 0.133\r", + "OT-CFM epoch: 6, steps: 157, loss: 0.1158\r", + "OT-CFM epoch: 6, steps: 158, loss: 0.1114\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 159, loss: 0.1235\r", + "OT-CFM epoch: 6, steps: 160, loss: 0.1348\r", + "OT-CFM epoch: 6, steps: 161, loss: 0.1048\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 162, loss: 0.115\r", + "OT-CFM epoch: 6, steps: 163, loss: 0.1137\r", + "OT-CFM epoch: 6, steps: 164, loss: 0.1229\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 165, loss: 0.1242\r", + "OT-CFM epoch: 6, steps: 166, loss: 0.1293\r", + "OT-CFM epoch: 6, steps: 167, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 168, loss: 0.1311\r", + "OT-CFM epoch: 6, steps: 169, loss: 0.1213\r", + "OT-CFM epoch: 6, steps: 170, loss: 0.1298\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 171, loss: 0.128\r", + "OT-CFM epoch: 6, steps: 172, loss: 0.1216\r", + "OT-CFM epoch: 6, steps: 173, loss: 0.1365\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 174, loss: 0.1229\r", + "OT-CFM epoch: 6, steps: 175, loss: 0.1163\r", + "OT-CFM epoch: 6, steps: 176, loss: 0.1271\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 177, loss: 0.1159\r", + "OT-CFM epoch: 6, steps: 178, loss: 0.1353\r", + "OT-CFM epoch: 6, steps: 179, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 180, loss: 0.1337\r", + "OT-CFM epoch: 6, steps: 181, loss: 0.1236\r", + "OT-CFM epoch: 6, steps: 182, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 183, loss: 0.1261\r", + "OT-CFM epoch: 6, steps: 184, loss: 0.1302\r", + "OT-CFM epoch: 6, steps: 185, loss: 0.1208\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 186, loss: 0.1311\r", + "OT-CFM epoch: 6, steps: 187, loss: 0.1232\r", + "OT-CFM epoch: 6, steps: 188, loss: 0.1297\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 189, loss: 0.1179\r", + "OT-CFM epoch: 6, steps: 190, loss: 0.1285\r", + "OT-CFM epoch: 6, steps: 191, loss: 0.1181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 192, loss: 0.1219\r", + "OT-CFM epoch: 6, steps: 193, loss: 0.118\r", + "OT-CFM epoch: 6, steps: 194, loss: 0.1195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 195, loss: 0.1195\r", + "OT-CFM epoch: 6, steps: 196, loss: 0.1264\r", + "OT-CFM epoch: 6, steps: 197, loss: 0.1198\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 198, loss: 0.1258\r", + "OT-CFM epoch: 6, steps: 199, loss: 0.1145\r", + "OT-CFM epoch: 6, steps: 200, loss: 0.1154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 201, loss: 0.1154\r", + "OT-CFM epoch: 6, steps: 202, loss: 0.1185\r", + "OT-CFM epoch: 6, steps: 203, loss: 0.1122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 204, loss: 0.1269\r", + "OT-CFM epoch: 6, steps: 205, loss: 0.1258\r", + "OT-CFM epoch: 6, steps: 206, loss: 0.1232\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 207, loss: 0.1227\r", + "OT-CFM epoch: 6, steps: 208, loss: 0.133\r", + "OT-CFM epoch: 6, steps: 209, loss: 0.1134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 210, loss: 0.1289\r", + "OT-CFM epoch: 6, steps: 211, loss: 0.1326\r", + "OT-CFM epoch: 6, steps: 212, loss: 0.1148\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 213, loss: 0.1333\r", + "OT-CFM epoch: 6, steps: 214, loss: 0.1303\r", + "OT-CFM epoch: 6, steps: 215, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 216, loss: 0.1286\r", + "OT-CFM epoch: 6, steps: 217, loss: 0.1265\r", + "OT-CFM epoch: 6, steps: 218, loss: 0.113\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 219, loss: 0.1255\r", + "OT-CFM epoch: 6, steps: 220, loss: 0.1204\r", + "OT-CFM epoch: 6, steps: 221, loss: 0.12\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 222, loss: 0.1199\r", + "OT-CFM epoch: 6, steps: 223, loss: 0.1241\r", + "OT-CFM epoch: 6, steps: 224, loss: 0.1184\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 225, loss: 0.1081\r", + "OT-CFM epoch: 6, steps: 226, loss: 0.1209\r", + "OT-CFM epoch: 6, steps: 227, loss: 0.1249\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 228, loss: 0.1209\r", + "OT-CFM epoch: 6, steps: 229, loss: 0.1233\r", + "OT-CFM epoch: 6, steps: 230, loss: 0.1287\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 231, loss: 0.1249\r", + "OT-CFM epoch: 6, steps: 232, loss: 0.1265\r", + "OT-CFM epoch: 6, steps: 233, loss: 0.1131\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 234, loss: 0.1292\r", + "OT-CFM epoch: 6, steps: 235, loss: 0.1221\r", + "OT-CFM epoch: 6, steps: 236, loss: 0.124\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 237, loss: 0.1151\r", + "OT-CFM epoch: 6, steps: 238, loss: 0.1231\r", + "OT-CFM epoch: 6, steps: 239, loss: 0.12\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 240, loss: 0.1371\r", + "OT-CFM epoch: 6, steps: 241, loss: 0.1292\r", + "OT-CFM epoch: 6, steps: 242, loss: 0.1186\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 243, loss: 0.1276\r", + "OT-CFM epoch: 6, steps: 244, loss: 0.1245\r", + "OT-CFM epoch: 6, steps: 245, loss: 0.1188\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 246, loss: 0.1198\r", + "OT-CFM epoch: 6, steps: 247, loss: 0.1238\r", + "OT-CFM epoch: 6, steps: 248, loss: 0.1164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 249, loss: 0.1221\r", + "OT-CFM epoch: 6, steps: 250, loss: 0.1222\r", + "OT-CFM epoch: 6, steps: 251, loss: 0.134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 252, loss: 0.1157\r", + "OT-CFM epoch: 6, steps: 253, loss: 0.113\r", + "OT-CFM epoch: 6, steps: 254, loss: 0.1254\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 255, loss: 0.1322\r", + "OT-CFM epoch: 6, steps: 256, loss: 0.1339\r", + "OT-CFM epoch: 6, steps: 257, loss: 0.1296\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 258, loss: 0.1203\r", + "OT-CFM epoch: 6, steps: 259, loss: 0.1314\r", + "OT-CFM epoch: 6, steps: 260, loss: 0.1129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 261, loss: 0.1186\r", + "OT-CFM epoch: 6, steps: 262, loss: 0.1235\r", + "OT-CFM epoch: 6, steps: 263, loss: 0.1105\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 264, loss: 0.1283\r", + "OT-CFM epoch: 6, steps: 265, loss: 0.1098\r", + "OT-CFM epoch: 6, steps: 266, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 267, loss: 0.128\r", + "OT-CFM epoch: 6, steps: 268, loss: 0.132\r", + "OT-CFM epoch: 6, steps: 269, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 270, loss: 0.1375\r", + "OT-CFM epoch: 6, steps: 271, loss: 0.1282\r", + "OT-CFM epoch: 6, steps: 272, loss: 0.1223\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 273, loss: 0.1242\r", + "OT-CFM epoch: 6, steps: 274, loss: 0.1233\r", + "OT-CFM epoch: 6, steps: 275, loss: 0.1311\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 276, loss: 0.1242\r", + "OT-CFM epoch: 6, steps: 277, loss: 0.1194\r", + "OT-CFM epoch: 6, steps: 278, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 279, loss: 0.1186\r", + "OT-CFM epoch: 6, steps: 280, loss: 0.1222\r", + "OT-CFM epoch: 6, steps: 281, loss: 0.1195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 282, loss: 0.1269\r", + "OT-CFM epoch: 6, steps: 283, loss: 0.127\r", + "OT-CFM epoch: 6, steps: 284, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 285, loss: 0.1286\r", + "OT-CFM epoch: 6, steps: 286, loss: 0.1151\r", + "OT-CFM epoch: 6, steps: 287, loss: 0.1252\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 288, loss: 0.1259\r", + "OT-CFM epoch: 6, steps: 289, loss: 0.128\r", + "OT-CFM epoch: 6, steps: 290, loss: 0.1329\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 291, loss: 0.1234\r", + "OT-CFM epoch: 6, steps: 292, loss: 0.1209\r", + "OT-CFM epoch: 6, steps: 293, loss: 0.1314\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 294, loss: 0.1292\r", + "OT-CFM epoch: 6, steps: 295, loss: 0.1208\r", + "OT-CFM epoch: 6, steps: 296, loss: 0.1273\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 297, loss: 0.1242\r", + "OT-CFM epoch: 6, steps: 298, loss: 0.1191\r", + "OT-CFM epoch: 6, steps: 299, loss: 0.1202\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 300, loss: 0.1213\r", + "OT-CFM epoch: 6, steps: 301, loss: 0.1164\r", + "OT-CFM epoch: 6, steps: 302, loss: 0.1088\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 303, loss: 0.112\r", + "OT-CFM epoch: 6, steps: 304, loss: 0.1164\r", + "OT-CFM epoch: 6, steps: 305, loss: 0.1169\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 306, loss: 0.1279\r", + "OT-CFM epoch: 6, steps: 307, loss: 0.1187\r", + "OT-CFM epoch: 6, steps: 308, loss: 0.1206\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 309, loss: 0.117\r", + "OT-CFM epoch: 6, steps: 310, loss: 0.128\r", + "OT-CFM epoch: 6, steps: 311, loss: 0.12\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 312, loss: 0.1183\r", + "OT-CFM epoch: 6, steps: 313, loss: 0.1311\r", + "OT-CFM epoch: 6, steps: 314, loss: 0.1185\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 315, loss: 0.1295\r", + "OT-CFM epoch: 6, steps: 316, loss: 0.1212\r", + "OT-CFM epoch: 6, steps: 317, loss: 0.1294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 318, loss: 0.1283\r", + "OT-CFM epoch: 6, steps: 319, loss: 0.1127\r", + "OT-CFM epoch: 6, steps: 320, loss: 0.1178\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 321, loss: 0.1262\r", + "OT-CFM epoch: 6, steps: 322, loss: 0.1248\r", + "OT-CFM epoch: 6, steps: 323, loss: 0.1243\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 324, loss: 0.1208\r", + "OT-CFM epoch: 6, steps: 325, loss: 0.117\r", + "OT-CFM epoch: 6, steps: 326, loss: 0.1187\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 327, loss: 0.1109\r", + "OT-CFM epoch: 6, steps: 328, loss: 0.1281\r", + "OT-CFM epoch: 6, steps: 329, loss: 0.1232\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 330, loss: 0.1205\r", + "OT-CFM epoch: 6, steps: 331, loss: 0.1135\r", + "OT-CFM epoch: 6, steps: 332, loss: 0.1098\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 333, loss: 0.1132\r", + "OT-CFM epoch: 6, steps: 334, loss: 0.1186\r", + "OT-CFM epoch: 6, steps: 335, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 336, loss: 0.1237\r", + "OT-CFM epoch: 6, steps: 337, loss: 0.1183\r", + "OT-CFM epoch: 6, steps: 338, loss: 0.1137\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 339, loss: 0.1185\r", + "OT-CFM epoch: 6, steps: 340, loss: 0.1281\r", + "OT-CFM epoch: 6, steps: 341, loss: 0.1295\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 342, loss: 0.1223\r", + "OT-CFM epoch: 6, steps: 343, loss: 0.1267\r", + "OT-CFM epoch: 6, steps: 344, loss: 0.1186\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 345, loss: 0.1208\r", + "OT-CFM epoch: 6, steps: 346, loss: 0.1091\r", + "OT-CFM epoch: 6, steps: 347, loss: 0.1195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 348, loss: 0.1208\r", + "OT-CFM epoch: 6, steps: 349, loss: 0.1301\r", + "OT-CFM epoch: 6, steps: 350, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 351, loss: 0.1266\r", + "OT-CFM epoch: 6, steps: 352, loss: 0.1279\r", + "OT-CFM epoch: 6, steps: 353, loss: 0.1396\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 354, loss: 0.1183\r", + "OT-CFM epoch: 6, steps: 355, loss: 0.1408\r", + "OT-CFM epoch: 6, steps: 356, loss: 0.1269\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 357, loss: 0.127\r", + "OT-CFM epoch: 6, steps: 358, loss: 0.1254\r", + "OT-CFM epoch: 6, steps: 359, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 360, loss: 0.1257\r", + "OT-CFM epoch: 6, steps: 361, loss: 0.1276\r", + "OT-CFM epoch: 6, steps: 362, loss: 0.1202\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 363, loss: 0.1279\r", + "OT-CFM epoch: 6, steps: 364, loss: 0.1143\r", + "OT-CFM epoch: 6, steps: 365, loss: 0.1317\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 366, loss: 0.1176\r", + "OT-CFM epoch: 6, steps: 367, loss: 0.125\r", + "OT-CFM epoch: 6, steps: 368, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 369, loss: 0.1175\r", + "OT-CFM epoch: 6, steps: 370, loss: 0.125\r", + "OT-CFM epoch: 6, steps: 371, loss: 0.1305\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 372, loss: 0.117\r", + "OT-CFM epoch: 6, steps: 373, loss: 0.1173\r", + "OT-CFM epoch: 6, steps: 374, loss: 0.1238\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 375, loss: 0.1202\r", + "OT-CFM epoch: 6, steps: 376, loss: 0.1094\r", + "OT-CFM epoch: 6, steps: 377, loss: 0.1181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 378, loss: 0.1158\r", + "OT-CFM epoch: 6, steps: 379, loss: 0.1151\r", + "OT-CFM epoch: 6, steps: 380, loss: 0.1127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 381, loss: 0.1105\r", + "OT-CFM epoch: 6, steps: 382, loss: 0.1153\r", + "OT-CFM epoch: 6, steps: 383, loss: 0.1278\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 384, loss: 0.1191\r", + "OT-CFM epoch: 6, steps: 385, loss: 0.1152\r", + "OT-CFM epoch: 6, steps: 386, loss: 0.1249\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 387, loss: 0.1235\r", + "OT-CFM epoch: 6, steps: 388, loss: 0.1314\r", + "OT-CFM epoch: 6, steps: 389, loss: 0.1208\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 390, loss: 0.1202\r", + "OT-CFM epoch: 6, steps: 391, loss: 0.1266\r", + "OT-CFM epoch: 6, steps: 392, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 393, loss: 0.1303\r", + "OT-CFM epoch: 6, steps: 394, loss: 0.1112\r", + "OT-CFM epoch: 6, steps: 395, loss: 0.1162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 396, loss: 0.1267\r", + "OT-CFM epoch: 6, steps: 397, loss: 0.1193\r", + "OT-CFM epoch: 6, steps: 398, loss: 0.1192\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 399, loss: 0.1143\r", + "OT-CFM epoch: 6, steps: 400, loss: 0.1248\r", + "OT-CFM epoch: 6, steps: 401, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 402, loss: 0.1158\r", + "OT-CFM epoch: 6, steps: 403, loss: 0.1184\r", + "OT-CFM epoch: 6, steps: 404, loss: 0.1218\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 405, loss: 0.1196\r", + "OT-CFM epoch: 6, steps: 406, loss: 0.1253\r", + "OT-CFM epoch: 6, steps: 407, loss: 0.1404\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 408, loss: 0.12\r", + "OT-CFM epoch: 6, steps: 409, loss: 0.121\r", + "OT-CFM epoch: 6, steps: 410, loss: 0.1167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 411, loss: 0.1167\r", + "OT-CFM epoch: 6, steps: 412, loss: 0.1211\r", + "OT-CFM epoch: 6, steps: 413, loss: 0.1287\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 414, loss: 0.1317\r", + "OT-CFM epoch: 6, steps: 415, loss: 0.1195\r", + "OT-CFM epoch: 6, steps: 416, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 417, loss: 0.1244\r", + "OT-CFM epoch: 6, steps: 418, loss: 0.1132\r", + "OT-CFM epoch: 6, steps: 419, loss: 0.1328\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 420, loss: 0.1142\r", + "OT-CFM epoch: 6, steps: 421, loss: 0.1235\r", + "OT-CFM epoch: 6, steps: 422, loss: 0.1079\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 423, loss: 0.117\r", + "OT-CFM epoch: 6, steps: 424, loss: 0.121\r", + "OT-CFM epoch: 6, steps: 425, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 426, loss: 0.1171\r", + "OT-CFM epoch: 6, steps: 427, loss: 0.1233\r", + "OT-CFM epoch: 6, steps: 428, loss: 0.1204\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 429, loss: 0.1208\r", + "OT-CFM epoch: 6, steps: 430, loss: 0.122\r", + "OT-CFM epoch: 6, steps: 431, loss: 0.1278\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 432, loss: 0.1262\r", + "OT-CFM epoch: 6, steps: 433, loss: 0.1198\r", + "OT-CFM epoch: 6, steps: 434, loss: 0.1231\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 435, loss: 0.1315\r", + "OT-CFM epoch: 6, steps: 436, loss: 0.1188\r", + "OT-CFM epoch: 6, steps: 437, loss: 0.1254\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 438, loss: 0.1242\r", + "OT-CFM epoch: 6, steps: 439, loss: 0.1266\r", + "OT-CFM epoch: 6, steps: 440, loss: 0.12\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 441, loss: 0.117\r", + "OT-CFM epoch: 6, steps: 442, loss: 0.1221\r", + "OT-CFM epoch: 6, steps: 443, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 444, loss: 0.1126\r", + "OT-CFM epoch: 6, steps: 445, loss: 0.1136\r", + "OT-CFM epoch: 6, steps: 446, loss: 0.1119\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 447, loss: 0.1205\r", + "OT-CFM epoch: 6, steps: 448, loss: 0.1203\r", + "OT-CFM epoch: 6, steps: 449, loss: 0.1209\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 450, loss: 0.1263\r", + "OT-CFM epoch: 6, steps: 451, loss: 0.1232\r", + "OT-CFM epoch: 6, steps: 452, loss: 0.1183\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 453, loss: 0.1381\r", + "OT-CFM epoch: 6, steps: 454, loss: 0.1246\r", + "OT-CFM epoch: 6, steps: 455, loss: 0.126\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 456, loss: 0.1196\r", + "OT-CFM epoch: 6, steps: 457, loss: 0.1255\r", + "OT-CFM epoch: 6, steps: 458, loss: 0.117\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 459, loss: 0.1181\r", + "OT-CFM epoch: 6, steps: 460, loss: 0.1176\r", + "OT-CFM epoch: 6, steps: 461, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 462, loss: 0.119\r", + "OT-CFM epoch: 6, steps: 463, loss: 0.1273\r", + "OT-CFM epoch: 6, steps: 464, loss: 0.124\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 6, steps: 465, loss: 0.1188\r", + "OT-CFM epoch: 6, steps: 466, loss: 0.1141\r", + "OT-CFM epoch: 6, steps: 467, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 0, loss: 0.1137\r", + "OT-CFM epoch: 7, steps: 1, loss: 0.1211\r", + "OT-CFM epoch: 7, steps: 2, loss: 0.1202\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 3, loss: 0.123\r", + "OT-CFM epoch: 7, steps: 4, loss: 0.1314\r", + "OT-CFM epoch: 7, steps: 5, loss: 0.1206\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 6, loss: 0.1329\r", + "OT-CFM epoch: 7, steps: 7, loss: 0.1158\r", + "OT-CFM epoch: 7, steps: 8, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 9, loss: 0.1191\r", + "OT-CFM epoch: 7, steps: 10, loss: 0.1207\r", + "OT-CFM epoch: 7, steps: 11, loss: 0.1218\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 12, loss: 0.1142\r", + "OT-CFM epoch: 7, steps: 13, loss: 0.1317\r", + "OT-CFM epoch: 7, steps: 14, loss: 0.1212\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 15, loss: 0.1208\r", + "OT-CFM epoch: 7, steps: 16, loss: 0.126\r", + "OT-CFM epoch: 7, steps: 17, loss: 0.1249\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 18, loss: 0.1194\r", + "OT-CFM epoch: 7, steps: 19, loss: 0.1289\r", + "OT-CFM epoch: 7, steps: 20, loss: 0.1104\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 21, loss: 0.1268\r", + "OT-CFM epoch: 7, steps: 22, loss: 0.1232\r", + "OT-CFM epoch: 7, steps: 23, loss: 0.1162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 24, loss: 0.1338\r", + "OT-CFM epoch: 7, steps: 25, loss: 0.1253\r", + "OT-CFM epoch: 7, steps: 26, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 27, loss: 0.121\r", + "OT-CFM epoch: 7, steps: 28, loss: 0.1221\r", + "OT-CFM epoch: 7, steps: 29, loss: 0.1171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 30, loss: 0.1163\r", + "OT-CFM epoch: 7, steps: 31, loss: 0.119\r", + "OT-CFM epoch: 7, steps: 32, loss: 0.1212\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 33, loss: 0.1191\r", + "OT-CFM epoch: 7, steps: 34, loss: 0.1237\r", + "OT-CFM epoch: 7, steps: 35, loss: 0.1122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 36, loss: 0.1165\r", + "OT-CFM epoch: 7, steps: 37, loss: 0.1263\r", + "OT-CFM epoch: 7, steps: 38, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 39, loss: 0.1162\r", + "OT-CFM epoch: 7, steps: 40, loss: 0.1245\r", + "OT-CFM epoch: 7, steps: 41, loss: 0.1117\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 42, loss: 0.12\r", + "OT-CFM epoch: 7, steps: 43, loss: 0.1129\r", + "OT-CFM epoch: 7, steps: 44, loss: 0.1164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 45, loss: 0.1132\r", + "OT-CFM epoch: 7, steps: 46, loss: 0.1224\r", + "OT-CFM epoch: 7, steps: 47, loss: 0.1137\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 48, loss: 0.1219\r", + "OT-CFM epoch: 7, steps: 49, loss: 0.1246\r", + "OT-CFM epoch: 7, steps: 50, loss: 0.1132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 51, loss: 0.1193\r", + "OT-CFM epoch: 7, steps: 52, loss: 0.1138\r", + "OT-CFM epoch: 7, steps: 53, loss: 0.1178\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 54, loss: 0.1247\r", + "OT-CFM epoch: 7, steps: 55, loss: 0.1113\r", + "OT-CFM epoch: 7, steps: 56, loss: 0.1256\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 57, loss: 0.1254\r", + "OT-CFM epoch: 7, steps: 58, loss: 0.1283\r", + "OT-CFM epoch: 7, steps: 59, loss: 0.124\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 60, loss: 0.1271\r", + "OT-CFM epoch: 7, steps: 61, loss: 0.1238\r", + "OT-CFM epoch: 7, steps: 62, loss: 0.1377\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 63, loss: 0.1192\r", + "OT-CFM epoch: 7, steps: 64, loss: 0.1299\r", + "OT-CFM epoch: 7, steps: 65, loss: 0.1173\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 66, loss: 0.1368\r", + "OT-CFM epoch: 7, steps: 67, loss: 0.1156\r", + "OT-CFM epoch: 7, steps: 68, loss: 0.128\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 69, loss: 0.1151\r", + "OT-CFM epoch: 7, steps: 70, loss: 0.1121\r", + "OT-CFM epoch: 7, steps: 71, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 72, loss: 0.1381\r", + "OT-CFM epoch: 7, steps: 73, loss: 0.1269\r", + "OT-CFM epoch: 7, steps: 74, loss: 0.1241\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 75, loss: 0.1304\r", + "OT-CFM epoch: 7, steps: 76, loss: 0.1279\r", + "OT-CFM epoch: 7, steps: 77, loss: 0.1082\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 78, loss: 0.1244\r", + "OT-CFM epoch: 7, steps: 79, loss: 0.1151\r", + "OT-CFM epoch: 7, steps: 80, loss: 0.1229\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 81, loss: 0.1221\r", + "OT-CFM epoch: 7, steps: 82, loss: 0.1228\r", + "OT-CFM epoch: 7, steps: 83, loss: 0.124\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 84, loss: 0.1183\r", + "OT-CFM epoch: 7, steps: 85, loss: 0.1257\r", + "OT-CFM epoch: 7, steps: 86, loss: 0.1276\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 87, loss: 0.1184\r", + "OT-CFM epoch: 7, steps: 88, loss: 0.1235\r", + "OT-CFM epoch: 7, steps: 89, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 90, loss: 0.1189\r", + "OT-CFM epoch: 7, steps: 91, loss: 0.1143\r", + "OT-CFM epoch: 7, steps: 92, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 93, loss: 0.1264\r", + "OT-CFM epoch: 7, steps: 94, loss: 0.1183\r", + "OT-CFM epoch: 7, steps: 95, loss: 0.1255\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 96, loss: 0.1177\r", + "OT-CFM epoch: 7, steps: 97, loss: 0.1134\r", + "OT-CFM epoch: 7, steps: 98, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 99, loss: 0.1192\r", + "OT-CFM epoch: 7, steps: 100, loss: 0.1268\r", + "OT-CFM epoch: 7, steps: 101, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 102, loss: 0.1056\r", + "OT-CFM epoch: 7, steps: 103, loss: 0.137\r", + "OT-CFM epoch: 7, steps: 104, loss: 0.1219\r", + "OT-CFM epoch: 7, steps: 105, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 106, loss: 0.1172\r", + "OT-CFM epoch: 7, steps: 107, loss: 0.1253\r", + "OT-CFM epoch: 7, steps: 108, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 109, loss: 0.1304\r", + "OT-CFM epoch: 7, steps: 110, loss: 0.1248\r", + "OT-CFM epoch: 7, steps: 111, loss: 0.1289\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 112, loss: 0.1129\r", + "OT-CFM epoch: 7, steps: 113, loss: 0.1235\r", + "OT-CFM epoch: 7, steps: 114, loss: 0.1149\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 115, loss: 0.1202\r", + "OT-CFM epoch: 7, steps: 116, loss: 0.1211\r", + "OT-CFM epoch: 7, steps: 117, loss: 0.1241\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 118, loss: 0.1221\r", + "OT-CFM epoch: 7, steps: 119, loss: 0.1128\r", + "OT-CFM epoch: 7, steps: 120, loss: 0.1325\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 121, loss: 0.134\r", + "OT-CFM epoch: 7, steps: 122, loss: 0.119\r", + "OT-CFM epoch: 7, steps: 123, loss: 0.1119\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 124, loss: 0.1073\r", + "OT-CFM epoch: 7, steps: 125, loss: 0.1086\r", + "OT-CFM epoch: 7, steps: 126, loss: 0.1132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 127, loss: 0.1232\r", + "OT-CFM epoch: 7, steps: 128, loss: 0.1147\r", + "OT-CFM epoch: 7, steps: 129, loss: 0.1318\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 130, loss: 0.1167\r", + "OT-CFM epoch: 7, steps: 131, loss: 0.1211\r", + "OT-CFM epoch: 7, steps: 132, loss: 0.1104\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 133, loss: 0.1141\r", + "OT-CFM epoch: 7, steps: 134, loss: 0.1368\r", + "OT-CFM epoch: 7, steps: 135, loss: 0.1169\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 136, loss: 0.1133\r", + "OT-CFM epoch: 7, steps: 137, loss: 0.1103\r", + "OT-CFM epoch: 7, steps: 138, loss: 0.1164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 139, loss: 0.1263\r", + "OT-CFM epoch: 7, steps: 140, loss: 0.1192\r", + "OT-CFM epoch: 7, steps: 141, loss: 0.1271\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 142, loss: 0.1213\r", + "OT-CFM epoch: 7, steps: 143, loss: 0.1028\r", + "OT-CFM epoch: 7, steps: 144, loss: 0.115\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 145, loss: 0.1296\r", + "OT-CFM epoch: 7, steps: 146, loss: 0.1293\r", + "OT-CFM epoch: 7, steps: 147, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 148, loss: 0.1282\r", + "OT-CFM epoch: 7, steps: 149, loss: 0.1281\r", + "OT-CFM epoch: 7, steps: 150, loss: 0.1179\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 151, loss: 0.1277\r", + "OT-CFM epoch: 7, steps: 152, loss: 0.1165\r", + "OT-CFM epoch: 7, steps: 153, loss: 0.1237\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 154, loss: 0.1247\r", + "OT-CFM epoch: 7, steps: 155, loss: 0.1337\r", + "OT-CFM epoch: 7, steps: 156, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 157, loss: 0.1285\r", + "OT-CFM epoch: 7, steps: 158, loss: 0.1218\r", + "OT-CFM epoch: 7, steps: 159, loss: 0.1171\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 160, loss: 0.131\r", + "OT-CFM epoch: 7, steps: 161, loss: 0.1227\r", + "OT-CFM epoch: 7, steps: 162, loss: 0.123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 163, loss: 0.1173\r", + "OT-CFM epoch: 7, steps: 164, loss: 0.1368\r", + "OT-CFM epoch: 7, steps: 165, loss: 0.1139\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 166, loss: 0.122\r", + "OT-CFM epoch: 7, steps: 167, loss: 0.1197\r", + "OT-CFM epoch: 7, steps: 168, loss: 0.1151\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 169, loss: 0.1167\r", + "OT-CFM epoch: 7, steps: 170, loss: 0.1071\r", + "OT-CFM epoch: 7, steps: 171, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 172, loss: 0.1235\r", + "OT-CFM epoch: 7, steps: 173, loss: 0.1238\r", + "OT-CFM epoch: 7, steps: 174, loss: 0.1197\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 175, loss: 0.1136\r", + "OT-CFM epoch: 7, steps: 176, loss: 0.13\r", + "OT-CFM epoch: 7, steps: 177, loss: 0.1292\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 178, loss: 0.1152\r", + "OT-CFM epoch: 7, steps: 179, loss: 0.124\r", + "OT-CFM epoch: 7, steps: 180, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 181, loss: 0.1146\r", + "OT-CFM epoch: 7, steps: 182, loss: 0.1219\r", + "OT-CFM epoch: 7, steps: 183, loss: 0.1157\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 184, loss: 0.1229\r", + "OT-CFM epoch: 7, steps: 185, loss: 0.1148\r", + "OT-CFM epoch: 7, steps: 186, loss: 0.1354\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 187, loss: 0.1071\r", + "OT-CFM epoch: 7, steps: 188, loss: 0.1233\r", + "OT-CFM epoch: 7, steps: 189, loss: 0.1289\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 190, loss: 0.1261\r", + "OT-CFM epoch: 7, steps: 191, loss: 0.1186\r", + "OT-CFM epoch: 7, steps: 192, loss: 0.1121\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 193, loss: 0.1271\r", + "OT-CFM epoch: 7, steps: 194, loss: 0.1198\r", + "OT-CFM epoch: 7, steps: 195, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 196, loss: 0.1229\r", + "OT-CFM epoch: 7, steps: 197, loss: 0.1172\r", + "OT-CFM epoch: 7, steps: 198, loss: 0.1242\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 199, loss: 0.1143\r", + "OT-CFM epoch: 7, steps: 200, loss: 0.1202\r", + "OT-CFM epoch: 7, steps: 201, loss: 0.1198\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 202, loss: 0.1318\r", + "OT-CFM epoch: 7, steps: 203, loss: 0.1254\r", + "OT-CFM epoch: 7, steps: 204, loss: 0.1194\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 205, loss: 0.1184\r", + "OT-CFM epoch: 7, steps: 206, loss: 0.1158\r", + "OT-CFM epoch: 7, steps: 207, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 208, loss: 0.1287\r", + "OT-CFM epoch: 7, steps: 209, loss: 0.1196\r", + "OT-CFM epoch: 7, steps: 210, loss: 0.1235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 211, loss: 0.119\r", + "OT-CFM epoch: 7, steps: 212, loss: 0.1291\r", + "OT-CFM epoch: 7, steps: 213, loss: 0.1206\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 214, loss: 0.1262\r", + "OT-CFM epoch: 7, steps: 215, loss: 0.1082\r", + "OT-CFM epoch: 7, steps: 216, loss: 0.1186\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 217, loss: 0.1231\r", + "OT-CFM epoch: 7, steps: 218, loss: 0.1229\r", + "OT-CFM epoch: 7, steps: 219, loss: 0.1146\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 220, loss: 0.1185\r", + "OT-CFM epoch: 7, steps: 221, loss: 0.1168\r", + "OT-CFM epoch: 7, steps: 222, loss: 0.1131\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 223, loss: 0.1149\r", + "OT-CFM epoch: 7, steps: 224, loss: 0.1136\r", + "OT-CFM epoch: 7, steps: 225, loss: 0.1106\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 226, loss: 0.114\r", + "OT-CFM epoch: 7, steps: 227, loss: 0.1139\r", + "OT-CFM epoch: 7, steps: 228, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 229, loss: 0.1196\r", + "OT-CFM epoch: 7, steps: 230, loss: 0.1354\r", + "OT-CFM epoch: 7, steps: 231, loss: 0.1176\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 232, loss: 0.129\r", + "OT-CFM epoch: 7, steps: 233, loss: 0.1265\r", + "OT-CFM epoch: 7, steps: 234, loss: 0.1116\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 235, loss: 0.129\r", + "OT-CFM epoch: 7, steps: 236, loss: 0.1304\r", + "OT-CFM epoch: 7, steps: 237, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 238, loss: 0.1196\r", + "OT-CFM epoch: 7, steps: 239, loss: 0.1079\r", + "OT-CFM epoch: 7, steps: 240, loss: 0.1197\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 241, loss: 0.1234\r", + "OT-CFM epoch: 7, steps: 242, loss: 0.1214\r", + "OT-CFM epoch: 7, steps: 243, loss: 0.1362\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 244, loss: 0.1269\r", + "OT-CFM epoch: 7, steps: 245, loss: 0.1226\r", + "OT-CFM epoch: 7, steps: 246, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 247, loss: 0.1205\r", + "OT-CFM epoch: 7, steps: 248, loss: 0.1267\r", + "OT-CFM epoch: 7, steps: 249, loss: 0.1129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 250, loss: 0.1131\r", + "OT-CFM epoch: 7, steps: 251, loss: 0.1282\r", + "OT-CFM epoch: 7, steps: 252, loss: 0.1229\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 253, loss: 0.1271\r", + "OT-CFM epoch: 7, steps: 254, loss: 0.1205\r", + "OT-CFM epoch: 7, steps: 255, loss: 0.1264\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 256, loss: 0.1319\r", + "OT-CFM epoch: 7, steps: 257, loss: 0.1311\r", + "OT-CFM epoch: 7, steps: 258, loss: 0.1132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 259, loss: 0.1176\r", + "OT-CFM epoch: 7, steps: 260, loss: 0.1305\r", + "OT-CFM epoch: 7, steps: 261, loss: 0.1212\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 262, loss: 0.1106\r", + "OT-CFM epoch: 7, steps: 263, loss: 0.1231\r", + "OT-CFM epoch: 7, steps: 264, loss: 0.1118\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 265, loss: 0.1265\r", + "OT-CFM epoch: 7, steps: 266, loss: 0.1121\r", + "OT-CFM epoch: 7, steps: 267, loss: 0.1131\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 268, loss: 0.1234\r", + "OT-CFM epoch: 7, steps: 269, loss: 0.1276\r", + "OT-CFM epoch: 7, steps: 270, loss: 0.1286\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 271, loss: 0.1282\r", + "OT-CFM epoch: 7, steps: 272, loss: 0.1163\r", + "OT-CFM epoch: 7, steps: 273, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 274, loss: 0.1297\r", + "OT-CFM epoch: 7, steps: 275, loss: 0.1276\r", + "OT-CFM epoch: 7, steps: 276, loss: 0.1216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 277, loss: 0.1235\r", + "OT-CFM epoch: 7, steps: 278, loss: 0.1082\r", + "OT-CFM epoch: 7, steps: 279, loss: 0.1283\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 280, loss: 0.1211\r", + "OT-CFM epoch: 7, steps: 281, loss: 0.1273\r", + "OT-CFM epoch: 7, steps: 282, loss: 0.1217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 283, loss: 0.1181\r", + "OT-CFM epoch: 7, steps: 284, loss: 0.1226\r", + "OT-CFM epoch: 7, steps: 285, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 286, loss: 0.1221\r", + "OT-CFM epoch: 7, steps: 287, loss: 0.1145\r", + "OT-CFM epoch: 7, steps: 288, loss: 0.1097\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 289, loss: 0.1218\r", + "OT-CFM epoch: 7, steps: 290, loss: 0.1346\r", + "OT-CFM epoch: 7, steps: 291, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 292, loss: 0.127\r", + "OT-CFM epoch: 7, steps: 293, loss: 0.1268\r", + "OT-CFM epoch: 7, steps: 294, loss: 0.1288\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 295, loss: 0.1131\r", + "OT-CFM epoch: 7, steps: 296, loss: 0.1264\r", + "OT-CFM epoch: 7, steps: 297, loss: 0.1177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 298, loss: 0.1193\r", + "OT-CFM epoch: 7, steps: 299, loss: 0.1243\r", + "OT-CFM epoch: 7, steps: 300, loss: 0.132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 301, loss: 0.129\r", + "OT-CFM epoch: 7, steps: 302, loss: 0.136\r", + "OT-CFM epoch: 7, steps: 303, loss: 0.119\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 304, loss: 0.1162\r", + "OT-CFM epoch: 7, steps: 305, loss: 0.1239\r", + "OT-CFM epoch: 7, steps: 306, loss: 0.1158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 307, loss: 0.1309\r", + "OT-CFM epoch: 7, steps: 308, loss: 0.1284\r", + "OT-CFM epoch: 7, steps: 309, loss: 0.1202\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 310, loss: 0.1217\r", + "OT-CFM epoch: 7, steps: 311, loss: 0.1188\r", + "OT-CFM epoch: 7, steps: 312, loss: 0.1217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 313, loss: 0.124\r", + "OT-CFM epoch: 7, steps: 314, loss: 0.137\r", + "OT-CFM epoch: 7, steps: 315, loss: 0.1283\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 316, loss: 0.118\r", + "OT-CFM epoch: 7, steps: 317, loss: 0.1139\r", + "OT-CFM epoch: 7, steps: 318, loss: 0.1199\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 319, loss: 0.1181\r", + "OT-CFM epoch: 7, steps: 320, loss: 0.1297\r", + "OT-CFM epoch: 7, steps: 321, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 322, loss: 0.1283\r", + "OT-CFM epoch: 7, steps: 323, loss: 0.1319\r", + "OT-CFM epoch: 7, steps: 324, loss: 0.1195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 325, loss: 0.1182\r", + "OT-CFM epoch: 7, steps: 326, loss: 0.1234\r", + "OT-CFM epoch: 7, steps: 327, loss: 0.1154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 328, loss: 0.1213\r", + "OT-CFM epoch: 7, steps: 329, loss: 0.1201\r", + "OT-CFM epoch: 7, steps: 330, loss: 0.1254\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 331, loss: 0.1196\r", + "OT-CFM epoch: 7, steps: 332, loss: 0.1205\r", + "OT-CFM epoch: 7, steps: 333, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 334, loss: 0.1217\r", + "OT-CFM epoch: 7, steps: 335, loss: 0.1314\r", + "OT-CFM epoch: 7, steps: 336, loss: 0.1101\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 337, loss: 0.1143\r", + "OT-CFM epoch: 7, steps: 338, loss: 0.1225\r", + "OT-CFM epoch: 7, steps: 339, loss: 0.1194\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 340, loss: 0.1169\r", + "OT-CFM epoch: 7, steps: 341, loss: 0.1273\r", + "OT-CFM epoch: 7, steps: 342, loss: 0.1163\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 343, loss: 0.1246\r", + "OT-CFM epoch: 7, steps: 344, loss: 0.1228\r", + "OT-CFM epoch: 7, steps: 345, loss: 0.1239\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 346, loss: 0.1159\r", + "OT-CFM epoch: 7, steps: 347, loss: 0.1149\r", + "OT-CFM epoch: 7, steps: 348, loss: 0.1233\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 349, loss: 0.1193\r", + "OT-CFM epoch: 7, steps: 350, loss: 0.1244\r", + "OT-CFM epoch: 7, steps: 351, loss: 0.1245\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 352, loss: 0.1312\r", + "OT-CFM epoch: 7, steps: 353, loss: 0.118\r", + "OT-CFM epoch: 7, steps: 354, loss: 0.1283\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 355, loss: 0.1135\r", + "OT-CFM epoch: 7, steps: 356, loss: 0.1182\r", + "OT-CFM epoch: 7, steps: 357, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 358, loss: 0.1302\r", + "OT-CFM epoch: 7, steps: 359, loss: 0.1216\r", + "OT-CFM epoch: 7, steps: 360, loss: 0.1123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 361, loss: 0.1162\r", + "OT-CFM epoch: 7, steps: 362, loss: 0.1207\r", + "OT-CFM epoch: 7, steps: 363, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 364, loss: 0.1211\r", + "OT-CFM epoch: 7, steps: 365, loss: 0.1332\r", + "OT-CFM epoch: 7, steps: 366, loss: 0.1166\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 367, loss: 0.1137\r", + "OT-CFM epoch: 7, steps: 368, loss: 0.1266\r", + "OT-CFM epoch: 7, steps: 369, loss: 0.1191\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 370, loss: 0.1229\r", + "OT-CFM epoch: 7, steps: 371, loss: 0.1227\r", + "OT-CFM epoch: 7, steps: 372, loss: 0.1225\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 373, loss: 0.1221\r", + "OT-CFM epoch: 7, steps: 374, loss: 0.1191\r", + "OT-CFM epoch: 7, steps: 375, loss: 0.123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 376, loss: 0.1205\r", + "OT-CFM epoch: 7, steps: 377, loss: 0.1175\r", + "OT-CFM epoch: 7, steps: 378, loss: 0.124\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 379, loss: 0.1203\r", + "OT-CFM epoch: 7, steps: 380, loss: 0.1145\r", + "OT-CFM epoch: 7, steps: 381, loss: 0.1267\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 382, loss: 0.1148\r", + "OT-CFM epoch: 7, steps: 383, loss: 0.1216\r", + "OT-CFM epoch: 7, steps: 384, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 385, loss: 0.1141\r", + "OT-CFM epoch: 7, steps: 386, loss: 0.1241\r", + "OT-CFM epoch: 7, steps: 387, loss: 0.1254\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 388, loss: 0.1242\r", + "OT-CFM epoch: 7, steps: 389, loss: 0.1245\r", + "OT-CFM epoch: 7, steps: 390, loss: 0.1463\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 391, loss: 0.1179\r", + "OT-CFM epoch: 7, steps: 392, loss: 0.1239\r", + "OT-CFM epoch: 7, steps: 393, loss: 0.1137\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 394, loss: 0.116\r", + "OT-CFM epoch: 7, steps: 395, loss: 0.1148\r", + "OT-CFM epoch: 7, steps: 396, loss: 0.1349\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 397, loss: 0.1265\r", + "OT-CFM epoch: 7, steps: 398, loss: 0.122\r", + "OT-CFM epoch: 7, steps: 399, loss: 0.1203\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 400, loss: 0.1167\r", + "OT-CFM epoch: 7, steps: 401, loss: 0.1321\r", + "OT-CFM epoch: 7, steps: 402, loss: 0.1303\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 403, loss: 0.1142\r", + "OT-CFM epoch: 7, steps: 404, loss: 0.1286\r", + "OT-CFM epoch: 7, steps: 405, loss: 0.1373\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 406, loss: 0.1277\r", + "OT-CFM epoch: 7, steps: 407, loss: 0.1173\r", + "OT-CFM epoch: 7, steps: 408, loss: 0.1278\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 409, loss: 0.1186\r", + "OT-CFM epoch: 7, steps: 410, loss: 0.1242\r", + "OT-CFM epoch: 7, steps: 411, loss: 0.127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 412, loss: 0.126\r", + "OT-CFM epoch: 7, steps: 413, loss: 0.1171\r", + "OT-CFM epoch: 7, steps: 414, loss: 0.1235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 415, loss: 0.1201\r", + "OT-CFM epoch: 7, steps: 416, loss: 0.1281\r", + "OT-CFM epoch: 7, steps: 417, loss: 0.1225\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 418, loss: 0.1232\r", + "OT-CFM epoch: 7, steps: 419, loss: 0.1264\r", + "OT-CFM epoch: 7, steps: 420, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 421, loss: 0.1187\r", + "OT-CFM epoch: 7, steps: 422, loss: 0.118\r", + "OT-CFM epoch: 7, steps: 423, loss: 0.128\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 424, loss: 0.1332\r", + "OT-CFM epoch: 7, steps: 425, loss: 0.1067\r", + "OT-CFM epoch: 7, steps: 426, loss: 0.1059\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 427, loss: 0.114\r", + "OT-CFM epoch: 7, steps: 428, loss: 0.1121\r", + "OT-CFM epoch: 7, steps: 429, loss: 0.1248\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 430, loss: 0.1163\r", + "OT-CFM epoch: 7, steps: 431, loss: 0.1181\r", + "OT-CFM epoch: 7, steps: 432, loss: 0.1116\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 433, loss: 0.1239\r", + "OT-CFM epoch: 7, steps: 434, loss: 0.1299\r", + "OT-CFM epoch: 7, steps: 435, loss: 0.1165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 436, loss: 0.111\r", + "OT-CFM epoch: 7, steps: 437, loss: 0.1114\r", + "OT-CFM epoch: 7, steps: 438, loss: 0.1156\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 439, loss: 0.1272\r", + "OT-CFM epoch: 7, steps: 440, loss: 0.1194\r", + "OT-CFM epoch: 7, steps: 441, loss: 0.1254\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 442, loss: 0.1213\r", + "OT-CFM epoch: 7, steps: 443, loss: 0.1212\r", + "OT-CFM epoch: 7, steps: 444, loss: 0.1217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 445, loss: 0.1193\r", + "OT-CFM epoch: 7, steps: 446, loss: 0.1294\r", + "OT-CFM epoch: 7, steps: 447, loss: 0.1228\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 448, loss: 0.1189\r", + "OT-CFM epoch: 7, steps: 449, loss: 0.1186\r", + "OT-CFM epoch: 7, steps: 450, loss: 0.127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 451, loss: 0.1086\r", + "OT-CFM epoch: 7, steps: 452, loss: 0.1166\r", + "OT-CFM epoch: 7, steps: 453, loss: 0.128\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 454, loss: 0.1231\r", + "OT-CFM epoch: 7, steps: 455, loss: 0.1151\r", + "OT-CFM epoch: 7, steps: 456, loss: 0.1192\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 457, loss: 0.1306\r", + "OT-CFM epoch: 7, steps: 458, loss: 0.1234\r", + "OT-CFM epoch: 7, steps: 459, loss: 0.1152\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 460, loss: 0.1146\r", + "OT-CFM epoch: 7, steps: 461, loss: 0.1158\r", + "OT-CFM epoch: 7, steps: 462, loss: 0.1175\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 463, loss: 0.1264\r", + "OT-CFM epoch: 7, steps: 464, loss: 0.1272\r", + "OT-CFM epoch: 7, steps: 465, loss: 0.1165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 7, steps: 466, loss: 0.1194\r", + "OT-CFM epoch: 7, steps: 467, loss: 0.1234\r", + "OT-CFM epoch: 8, steps: 0, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 1, loss: 0.1333\r", + "OT-CFM epoch: 8, steps: 2, loss: 0.1187\r", + "OT-CFM epoch: 8, steps: 3, loss: 0.1153\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 4, loss: 0.1162\r", + "OT-CFM epoch: 8, steps: 5, loss: 0.1374\r", + "OT-CFM epoch: 8, steps: 6, loss: 0.1181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 7, loss: 0.1166\r", + "OT-CFM epoch: 8, steps: 8, loss: 0.115\r", + "OT-CFM epoch: 8, steps: 9, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 10, loss: 0.1158\r", + "OT-CFM epoch: 8, steps: 11, loss: 0.1295\r", + "OT-CFM epoch: 8, steps: 12, loss: 0.1191\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 13, loss: 0.1222\r", + "OT-CFM epoch: 8, steps: 14, loss: 0.1262\r", + "OT-CFM epoch: 8, steps: 15, loss: 0.1235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 16, loss: 0.1235\r", + "OT-CFM epoch: 8, steps: 17, loss: 0.1183\r", + "OT-CFM epoch: 8, steps: 18, loss: 0.1387\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 19, loss: 0.1268\r", + "OT-CFM epoch: 8, steps: 20, loss: 0.1214\r", + "OT-CFM epoch: 8, steps: 21, loss: 0.1189\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 22, loss: 0.116\r", + "OT-CFM epoch: 8, steps: 23, loss: 0.1141\r", + "OT-CFM epoch: 8, steps: 24, loss: 0.1305\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 25, loss: 0.1216\r", + "OT-CFM epoch: 8, steps: 26, loss: 0.1244\r", + "OT-CFM epoch: 8, steps: 27, loss: 0.117\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 28, loss: 0.122\r", + "OT-CFM epoch: 8, steps: 29, loss: 0.1128\r", + "OT-CFM epoch: 8, steps: 30, loss: 0.1129\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 31, loss: 0.1294\r", + "OT-CFM epoch: 8, steps: 32, loss: 0.1124\r", + "OT-CFM epoch: 8, steps: 33, loss: 0.1275\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 34, loss: 0.1072\r", + "OT-CFM epoch: 8, steps: 35, loss: 0.1137\r", + "OT-CFM epoch: 8, steps: 36, loss: 0.1105\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 37, loss: 0.1249\r", + "OT-CFM epoch: 8, steps: 38, loss: 0.1306\r", + "OT-CFM epoch: 8, steps: 39, loss: 0.1146\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 40, loss: 0.1237\r", + "OT-CFM epoch: 8, steps: 41, loss: 0.1267\r", + "OT-CFM epoch: 8, steps: 42, loss: 0.1164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 43, loss: 0.1252\r", + "OT-CFM epoch: 8, steps: 44, loss: 0.1129\r", + "OT-CFM epoch: 8, steps: 45, loss: 0.1206\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 46, loss: 0.121\r", + "OT-CFM epoch: 8, steps: 47, loss: 0.1164\r", + "OT-CFM epoch: 8, steps: 48, loss: 0.1179\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 49, loss: 0.1153\r", + "OT-CFM epoch: 8, steps: 50, loss: 0.1236\r", + "OT-CFM epoch: 8, steps: 51, loss: 0.1289\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 52, loss: 0.1331\r", + "OT-CFM epoch: 8, steps: 53, loss: 0.1178\r", + "OT-CFM epoch: 8, steps: 54, loss: 0.1161\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 55, loss: 0.1241\r", + "OT-CFM epoch: 8, steps: 56, loss: 0.1249\r", + "OT-CFM epoch: 8, steps: 57, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 58, loss: 0.1244\r", + "OT-CFM epoch: 8, steps: 59, loss: 0.1179\r", + "OT-CFM epoch: 8, steps: 60, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 61, loss: 0.1161\r", + "OT-CFM epoch: 8, steps: 62, loss: 0.1244\r", + "OT-CFM epoch: 8, steps: 63, loss: 0.1368\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 64, loss: 0.1178\r", + "OT-CFM epoch: 8, steps: 65, loss: 0.1093\r", + "OT-CFM epoch: 8, steps: 66, loss: 0.1317\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 67, loss: 0.1188\r", + "OT-CFM epoch: 8, steps: 68, loss: 0.13\r", + "OT-CFM epoch: 8, steps: 69, loss: 0.1309\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 70, loss: 0.1274\r", + "OT-CFM epoch: 8, steps: 71, loss: 0.1226\r", + "OT-CFM epoch: 8, steps: 72, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 73, loss: 0.1276\r", + "OT-CFM epoch: 8, steps: 74, loss: 0.1243\r", + "OT-CFM epoch: 8, steps: 75, loss: 0.1131\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 76, loss: 0.124\r", + "OT-CFM epoch: 8, steps: 77, loss: 0.126\r", + "OT-CFM epoch: 8, steps: 78, loss: 0.1235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 79, loss: 0.1216\r", + "OT-CFM epoch: 8, steps: 80, loss: 0.1159\r", + "OT-CFM epoch: 8, steps: 81, loss: 0.127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 82, loss: 0.1196\r", + "OT-CFM epoch: 8, steps: 83, loss: 0.1335\r", + "OT-CFM epoch: 8, steps: 84, loss: 0.1132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 85, loss: 0.1265\r", + "OT-CFM epoch: 8, steps: 86, loss: 0.1314\r", + "OT-CFM epoch: 8, steps: 87, loss: 0.1222\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 88, loss: 0.1067\r", + "OT-CFM epoch: 8, steps: 89, loss: 0.1168\r", + "OT-CFM epoch: 8, steps: 90, loss: 0.1185\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 91, loss: 0.12\r", + "OT-CFM epoch: 8, steps: 92, loss: 0.1237\r", + "OT-CFM epoch: 8, steps: 93, loss: 0.1266\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 94, loss: 0.1117\r", + "OT-CFM epoch: 8, steps: 95, loss: 0.1267\r", + "OT-CFM epoch: 8, steps: 96, loss: 0.1202\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 97, loss: 0.1168\r", + "OT-CFM epoch: 8, steps: 98, loss: 0.1205\r", + "OT-CFM epoch: 8, steps: 99, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 100, loss: 0.112\r", + "OT-CFM epoch: 8, steps: 101, loss: 0.1248\r", + "OT-CFM epoch: 8, steps: 102, loss: 0.113\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 103, loss: 0.1191\r", + "OT-CFM epoch: 8, steps: 104, loss: 0.1192\r", + "OT-CFM epoch: 8, steps: 105, loss: 0.1165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 106, loss: 0.1174\r", + "OT-CFM epoch: 8, steps: 107, loss: 0.1198\r", + "OT-CFM epoch: 8, steps: 108, loss: 0.1277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 109, loss: 0.1066\r", + "OT-CFM epoch: 8, steps: 110, loss: 0.119\r", + "OT-CFM epoch: 8, steps: 111, loss: 0.117\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 112, loss: 0.1245\r", + "OT-CFM epoch: 8, steps: 113, loss: 0.1163\r", + "OT-CFM epoch: 8, steps: 114, loss: 0.1133\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 115, loss: 0.1069\r", + "OT-CFM epoch: 8, steps: 116, loss: 0.1292\r", + "OT-CFM epoch: 8, steps: 117, loss: 0.1158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 118, loss: 0.1064\r", + "OT-CFM epoch: 8, steps: 119, loss: 0.1299\r", + "OT-CFM epoch: 8, steps: 120, loss: 0.1271\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 121, loss: 0.117\r", + "OT-CFM epoch: 8, steps: 122, loss: 0.1218\r", + "OT-CFM epoch: 8, steps: 123, loss: 0.1209\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 124, loss: 0.1207\r", + "OT-CFM epoch: 8, steps: 125, loss: 0.1255\r", + "OT-CFM epoch: 8, steps: 126, loss: 0.1199\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 127, loss: 0.1191\r", + "OT-CFM epoch: 8, steps: 128, loss: 0.1303\r", + "OT-CFM epoch: 8, steps: 129, loss: 0.1277\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 130, loss: 0.1181\r", + "OT-CFM epoch: 8, steps: 131, loss: 0.126\r", + "OT-CFM epoch: 8, steps: 132, loss: 0.108\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 133, loss: 0.1231\r", + "OT-CFM epoch: 8, steps: 134, loss: 0.1263\r", + "OT-CFM epoch: 8, steps: 135, loss: 0.1168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 136, loss: 0.1179\r", + "OT-CFM epoch: 8, steps: 137, loss: 0.1216\r", + "OT-CFM epoch: 8, steps: 138, loss: 0.11\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 139, loss: 0.1289\r", + "OT-CFM epoch: 8, steps: 140, loss: 0.1127\r", + "OT-CFM epoch: 8, steps: 141, loss: 0.134\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 142, loss: 0.1186\r", + "OT-CFM epoch: 8, steps: 143, loss: 0.1142\r", + "OT-CFM epoch: 8, steps: 144, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 145, loss: 0.1232\r", + "OT-CFM epoch: 8, steps: 146, loss: 0.1172\r", + "OT-CFM epoch: 8, steps: 147, loss: 0.1142\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 148, loss: 0.1263\r", + "OT-CFM epoch: 8, steps: 149, loss: 0.1238\r", + "OT-CFM epoch: 8, steps: 150, loss: 0.1279\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 151, loss: 0.1265\r", + "OT-CFM epoch: 8, steps: 152, loss: 0.1178\r", + "OT-CFM epoch: 8, steps: 153, loss: 0.1212\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 154, loss: 0.1272\r", + "OT-CFM epoch: 8, steps: 155, loss: 0.1186\r", + "OT-CFM epoch: 8, steps: 156, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 157, loss: 0.119\r", + "OT-CFM epoch: 8, steps: 158, loss: 0.1204\r", + "OT-CFM epoch: 8, steps: 159, loss: 0.1175\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 160, loss: 0.1227\r", + "OT-CFM epoch: 8, steps: 161, loss: 0.1097\r", + "OT-CFM epoch: 8, steps: 162, loss: 0.1178\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 163, loss: 0.1193\r", + "OT-CFM epoch: 8, steps: 164, loss: 0.1182\r", + "OT-CFM epoch: 8, steps: 165, loss: 0.1111\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 166, loss: 0.1148\r", + "OT-CFM epoch: 8, steps: 167, loss: 0.1208\r", + "OT-CFM epoch: 8, steps: 168, loss: 0.1217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 169, loss: 0.1191\r", + "OT-CFM epoch: 8, steps: 170, loss: 0.1176\r", + "OT-CFM epoch: 8, steps: 171, loss: 0.1154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 172, loss: 0.1114\r", + "OT-CFM epoch: 8, steps: 173, loss: 0.1185\r", + "OT-CFM epoch: 8, steps: 174, loss: 0.1165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 175, loss: 0.1249\r", + "OT-CFM epoch: 8, steps: 176, loss: 0.1188\r", + "OT-CFM epoch: 8, steps: 177, loss: 0.1259\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 178, loss: 0.1267\r", + "OT-CFM epoch: 8, steps: 179, loss: 0.1276\r", + "OT-CFM epoch: 8, steps: 180, loss: 0.113\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 181, loss: 0.1168\r", + "OT-CFM epoch: 8, steps: 182, loss: 0.1256\r", + "OT-CFM epoch: 8, steps: 183, loss: 0.1181\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 184, loss: 0.1232\r", + "OT-CFM epoch: 8, steps: 185, loss: 0.1196\r", + "OT-CFM epoch: 8, steps: 186, loss: 0.1194\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 187, loss: 0.1342\r", + "OT-CFM epoch: 8, steps: 188, loss: 0.1102\r", + "OT-CFM epoch: 8, steps: 189, loss: 0.1233\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 190, loss: 0.1296\r", + "OT-CFM epoch: 8, steps: 191, loss: 0.1284\r", + "OT-CFM epoch: 8, steps: 192, loss: 0.1272\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 193, loss: 0.1058\r", + "OT-CFM epoch: 8, steps: 194, loss: 0.1209\r", + "OT-CFM epoch: 8, steps: 195, loss: 0.1289\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 196, loss: 0.1225\r", + "OT-CFM epoch: 8, steps: 197, loss: 0.119\r", + "OT-CFM epoch: 8, steps: 198, loss: 0.1238\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 199, loss: 0.1134\r", + "OT-CFM epoch: 8, steps: 200, loss: 0.1223\r", + "OT-CFM epoch: 8, steps: 201, loss: 0.1174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 202, loss: 0.1081\r", + "OT-CFM epoch: 8, steps: 203, loss: 0.1264\r", + "OT-CFM epoch: 8, steps: 204, loss: 0.1155\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 205, loss: 0.119\r", + "OT-CFM epoch: 8, steps: 206, loss: 0.1136\r", + "OT-CFM epoch: 8, steps: 207, loss: 0.1162\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 208, loss: 0.1295\r", + "OT-CFM epoch: 8, steps: 209, loss: 0.1246\r", + "OT-CFM epoch: 8, steps: 210, loss: 0.1199\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 211, loss: 0.1127\r", + "OT-CFM epoch: 8, steps: 212, loss: 0.1192\r", + "OT-CFM epoch: 8, steps: 213, loss: 0.1168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 214, loss: 0.1164\r", + "OT-CFM epoch: 8, steps: 215, loss: 0.119\r", + "OT-CFM epoch: 8, steps: 216, loss: 0.1189\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 217, loss: 0.1249\r", + "OT-CFM epoch: 8, steps: 218, loss: 0.1163\r", + "OT-CFM epoch: 8, steps: 219, loss: 0.1221\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 220, loss: 0.1374\r", + "OT-CFM epoch: 8, steps: 221, loss: 0.1236\r", + "OT-CFM epoch: 8, steps: 222, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 223, loss: 0.124\r", + "OT-CFM epoch: 8, steps: 224, loss: 0.1236\r", + "OT-CFM epoch: 8, steps: 225, loss: 0.1172\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 226, loss: 0.1262\r", + "OT-CFM epoch: 8, steps: 227, loss: 0.1203\r", + "OT-CFM epoch: 8, steps: 228, loss: 0.1249\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 229, loss: 0.1167\r", + "OT-CFM epoch: 8, steps: 230, loss: 0.1163\r", + "OT-CFM epoch: 8, steps: 231, loss: 0.1086\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 232, loss: 0.1274\r", + "OT-CFM epoch: 8, steps: 233, loss: 0.1277\r", + "OT-CFM epoch: 8, steps: 234, loss: 0.1167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 235, loss: 0.1268\r", + "OT-CFM epoch: 8, steps: 236, loss: 0.1177\r", + "OT-CFM epoch: 8, steps: 237, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 238, loss: 0.1196\r", + "OT-CFM epoch: 8, steps: 239, loss: 0.1219\r", + "OT-CFM epoch: 8, steps: 240, loss: 0.1196\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 241, loss: 0.1148\r", + "OT-CFM epoch: 8, steps: 242, loss: 0.1273\r", + "OT-CFM epoch: 8, steps: 243, loss: 0.115\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 244, loss: 0.1196\r", + "OT-CFM epoch: 8, steps: 245, loss: 0.1261\r", + "OT-CFM epoch: 8, steps: 246, loss: 0.1165\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 247, loss: 0.1164\r", + "OT-CFM epoch: 8, steps: 248, loss: 0.1179\r", + "OT-CFM epoch: 8, steps: 249, loss: 0.1151\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 250, loss: 0.1068\r", + "OT-CFM epoch: 8, steps: 251, loss: 0.1142\r", + "OT-CFM epoch: 8, steps: 252, loss: 0.1161\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 253, loss: 0.1211\r", + "OT-CFM epoch: 8, steps: 254, loss: 0.1195\r", + "OT-CFM epoch: 8, steps: 255, loss: 0.1195\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 256, loss: 0.1245\r", + "OT-CFM epoch: 8, steps: 257, loss: 0.12\r", + "OT-CFM epoch: 8, steps: 258, loss: 0.1152\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 259, loss: 0.1173\r", + "OT-CFM epoch: 8, steps: 260, loss: 0.1231\r", + "OT-CFM epoch: 8, steps: 261, loss: 0.123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 262, loss: 0.1114\r", + "OT-CFM epoch: 8, steps: 263, loss: 0.1187\r", + "OT-CFM epoch: 8, steps: 264, loss: 0.1254\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 265, loss: 0.1257\r", + "OT-CFM epoch: 8, steps: 266, loss: 0.1267\r", + "OT-CFM epoch: 8, steps: 267, loss: 0.1108\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 268, loss: 0.1206\r", + "OT-CFM epoch: 8, steps: 269, loss: 0.1148\r", + "OT-CFM epoch: 8, steps: 270, loss: 0.1141\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 271, loss: 0.1127\r", + "OT-CFM epoch: 8, steps: 272, loss: 0.1167\r", + "OT-CFM epoch: 8, steps: 273, loss: 0.1206\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 274, loss: 0.12\r", + "OT-CFM epoch: 8, steps: 275, loss: 0.1292\r", + "OT-CFM epoch: 8, steps: 276, loss: 0.1239\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 277, loss: 0.1195\r", + "OT-CFM epoch: 8, steps: 278, loss: 0.1403\r", + "OT-CFM epoch: 8, steps: 279, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 280, loss: 0.1077\r", + "OT-CFM epoch: 8, steps: 281, loss: 0.1261\r", + "OT-CFM epoch: 8, steps: 282, loss: 0.1294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 283, loss: 0.1224\r", + "OT-CFM epoch: 8, steps: 284, loss: 0.1191\r", + "OT-CFM epoch: 8, steps: 285, loss: 0.12\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 286, loss: 0.1154\r", + "OT-CFM epoch: 8, steps: 287, loss: 0.1219\r", + "OT-CFM epoch: 8, steps: 288, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 289, loss: 0.1219\r", + "OT-CFM epoch: 8, steps: 290, loss: 0.1264\r", + "OT-CFM epoch: 8, steps: 291, loss: 0.126\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 292, loss: 0.1293\r", + "OT-CFM epoch: 8, steps: 293, loss: 0.1197\r", + "OT-CFM epoch: 8, steps: 294, loss: 0.1216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 295, loss: 0.1158\r", + "OT-CFM epoch: 8, steps: 296, loss: 0.125\r", + "OT-CFM epoch: 8, steps: 297, loss: 0.1046\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 298, loss: 0.1217\r", + "OT-CFM epoch: 8, steps: 299, loss: 0.121\r", + "OT-CFM epoch: 8, steps: 300, loss: 0.1145\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 301, loss: 0.1323\r", + "OT-CFM epoch: 8, steps: 302, loss: 0.1242\r", + "OT-CFM epoch: 8, steps: 303, loss: 0.111\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 304, loss: 0.113\r", + "OT-CFM epoch: 8, steps: 305, loss: 0.1128\r", + "OT-CFM epoch: 8, steps: 306, loss: 0.1192\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 307, loss: 0.1157\r", + "OT-CFM epoch: 8, steps: 308, loss: 0.1133\r", + "OT-CFM epoch: 8, steps: 309, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 310, loss: 0.1228\r", + "OT-CFM epoch: 8, steps: 311, loss: 0.1259\r", + "OT-CFM epoch: 8, steps: 312, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 313, loss: 0.1143\r", + "OT-CFM epoch: 8, steps: 314, loss: 0.1311\r", + "OT-CFM epoch: 8, steps: 315, loss: 0.1123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 316, loss: 0.1185\r", + "OT-CFM epoch: 8, steps: 317, loss: 0.1123\r", + "OT-CFM epoch: 8, steps: 318, loss: 0.1294\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 319, loss: 0.1238\r", + "OT-CFM epoch: 8, steps: 320, loss: 0.1187\r", + "OT-CFM epoch: 8, steps: 321, loss: 0.1173\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 322, loss: 0.1282\r", + "OT-CFM epoch: 8, steps: 323, loss: 0.1285\r", + "OT-CFM epoch: 8, steps: 324, loss: 0.1235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 325, loss: 0.115\r", + "OT-CFM epoch: 8, steps: 326, loss: 0.1215\r", + "OT-CFM epoch: 8, steps: 327, loss: 0.1157\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 328, loss: 0.1114\r", + "OT-CFM epoch: 8, steps: 329, loss: 0.1306\r", + "OT-CFM epoch: 8, steps: 330, loss: 0.1166\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 331, loss: 0.1114\r", + "OT-CFM epoch: 8, steps: 332, loss: 0.1191\r", + "OT-CFM epoch: 8, steps: 333, loss: 0.1184\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 334, loss: 0.1235\r", + "OT-CFM epoch: 8, steps: 335, loss: 0.1197\r", + "OT-CFM epoch: 8, steps: 336, loss: 0.1179\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 337, loss: 0.1213\r", + "OT-CFM epoch: 8, steps: 338, loss: 0.1129\r", + "OT-CFM epoch: 8, steps: 339, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 340, loss: 0.1263\r", + "OT-CFM epoch: 8, steps: 341, loss: 0.1234\r", + "OT-CFM epoch: 8, steps: 342, loss: 0.1226\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 343, loss: 0.1175\r", + "OT-CFM epoch: 8, steps: 344, loss: 0.1154\r", + "OT-CFM epoch: 8, steps: 345, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 346, loss: 0.1181\r", + "OT-CFM epoch: 8, steps: 347, loss: 0.1317\r", + "OT-CFM epoch: 8, steps: 348, loss: 0.1126\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 349, loss: 0.1108\r", + "OT-CFM epoch: 8, steps: 350, loss: 0.1209\r", + "OT-CFM epoch: 8, steps: 351, loss: 0.1325\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 352, loss: 0.1228\r", + "OT-CFM epoch: 8, steps: 353, loss: 0.1203\r", + "OT-CFM epoch: 8, steps: 354, loss: 0.1089\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 355, loss: 0.1153\r", + "OT-CFM epoch: 8, steps: 356, loss: 0.1162\r", + "OT-CFM epoch: 8, steps: 357, loss: 0.1202\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 358, loss: 0.1194\r", + "OT-CFM epoch: 8, steps: 359, loss: 0.1183\r", + "OT-CFM epoch: 8, steps: 360, loss: 0.1119\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 361, loss: 0.1158\r", + "OT-CFM epoch: 8, steps: 362, loss: 0.1241\r", + "OT-CFM epoch: 8, steps: 363, loss: 0.1235\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 364, loss: 0.1213\r", + "OT-CFM epoch: 8, steps: 365, loss: 0.126\r", + "OT-CFM epoch: 8, steps: 366, loss: 0.1174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 367, loss: 0.1296\r", + "OT-CFM epoch: 8, steps: 368, loss: 0.1265\r", + "OT-CFM epoch: 8, steps: 369, loss: 0.117\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 370, loss: 0.122\r", + "OT-CFM epoch: 8, steps: 371, loss: 0.1095\r", + "OT-CFM epoch: 8, steps: 372, loss: 0.1174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 373, loss: 0.1225\r", + "OT-CFM epoch: 8, steps: 374, loss: 0.1224\r", + "OT-CFM epoch: 8, steps: 375, loss: 0.12\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 376, loss: 0.1178\r", + "OT-CFM epoch: 8, steps: 377, loss: 0.1252\r", + "OT-CFM epoch: 8, steps: 378, loss: 0.1237\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 379, loss: 0.1293\r", + "OT-CFM epoch: 8, steps: 380, loss: 0.1156\r", + "OT-CFM epoch: 8, steps: 381, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 382, loss: 0.1178\r", + "OT-CFM epoch: 8, steps: 383, loss: 0.1249\r", + "OT-CFM epoch: 8, steps: 384, loss: 0.1149\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 385, loss: 0.1262\r", + "OT-CFM epoch: 8, steps: 386, loss: 0.1224\r", + "OT-CFM epoch: 8, steps: 387, loss: 0.1258\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 388, loss: 0.125\r", + "OT-CFM epoch: 8, steps: 389, loss: 0.1147\r", + "OT-CFM epoch: 8, steps: 390, loss: 0.1206\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 391, loss: 0.1121\r", + "OT-CFM epoch: 8, steps: 392, loss: 0.1368\r", + "OT-CFM epoch: 8, steps: 393, loss: 0.1082\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 394, loss: 0.1117\r", + "OT-CFM epoch: 8, steps: 395, loss: 0.1384\r", + "OT-CFM epoch: 8, steps: 396, loss: 0.1175\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 397, loss: 0.1125\r", + "OT-CFM epoch: 8, steps: 398, loss: 0.1155\r", + "OT-CFM epoch: 8, steps: 399, loss: 0.121\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 400, loss: 0.1301\r", + "OT-CFM epoch: 8, steps: 401, loss: 0.1198\r", + "OT-CFM epoch: 8, steps: 402, loss: 0.1098\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 403, loss: 0.1155\r", + "OT-CFM epoch: 8, steps: 404, loss: 0.1115\r", + "OT-CFM epoch: 8, steps: 405, loss: 0.11\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 406, loss: 0.1223\r", + "OT-CFM epoch: 8, steps: 407, loss: 0.1203\r", + "OT-CFM epoch: 8, steps: 408, loss: 0.1123\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 409, loss: 0.1251\r", + "OT-CFM epoch: 8, steps: 410, loss: 0.1111\r", + "OT-CFM epoch: 8, steps: 411, loss: 0.1146\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 412, loss: 0.119\r", + "OT-CFM epoch: 8, steps: 413, loss: 0.1284\r", + "OT-CFM epoch: 8, steps: 414, loss: 0.1199\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 415, loss: 0.1191\r", + "OT-CFM epoch: 8, steps: 416, loss: 0.1159\r", + "OT-CFM epoch: 8, steps: 417, loss: 0.1299\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 418, loss: 0.1229\r", + "OT-CFM epoch: 8, steps: 419, loss: 0.1148\r", + "OT-CFM epoch: 8, steps: 420, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 421, loss: 0.1054\r", + "OT-CFM epoch: 8, steps: 422, loss: 0.1254\r", + "OT-CFM epoch: 8, steps: 423, loss: 0.1112\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 424, loss: 0.1156\r", + "OT-CFM epoch: 8, steps: 425, loss: 0.1145\r", + "OT-CFM epoch: 8, steps: 426, loss: 0.1168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 427, loss: 0.1165\r", + "OT-CFM epoch: 8, steps: 428, loss: 0.1105\r", + "OT-CFM epoch: 8, steps: 429, loss: 0.1158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 430, loss: 0.1177\r", + "OT-CFM epoch: 8, steps: 431, loss: 0.1232\r", + "OT-CFM epoch: 8, steps: 432, loss: 0.1211\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 433, loss: 0.1194\r", + "OT-CFM epoch: 8, steps: 434, loss: 0.1172\r", + "OT-CFM epoch: 8, steps: 435, loss: 0.1167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 436, loss: 0.1225\r", + "OT-CFM epoch: 8, steps: 437, loss: 0.1293\r", + "OT-CFM epoch: 8, steps: 438, loss: 0.1108\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 439, loss: 0.1194\r", + "OT-CFM epoch: 8, steps: 440, loss: 0.1115\r", + "OT-CFM epoch: 8, steps: 441, loss: 0.1196\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 442, loss: 0.1305\r", + "OT-CFM epoch: 8, steps: 443, loss: 0.1177\r", + "OT-CFM epoch: 8, steps: 444, loss: 0.1158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 445, loss: 0.1117\r", + "OT-CFM epoch: 8, steps: 446, loss: 0.1183\r", + "OT-CFM epoch: 8, steps: 447, loss: 0.1137\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 448, loss: 0.1276\r", + "OT-CFM epoch: 8, steps: 449, loss: 0.1079\r", + "OT-CFM epoch: 8, steps: 450, loss: 0.1072\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 451, loss: 0.114\r", + "OT-CFM epoch: 8, steps: 452, loss: 0.1225\r", + "OT-CFM epoch: 8, steps: 453, loss: 0.1174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 454, loss: 0.1189\r", + "OT-CFM epoch: 8, steps: 455, loss: 0.1195\r", + "OT-CFM epoch: 8, steps: 456, loss: 0.1124\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 457, loss: 0.1153\r", + "OT-CFM epoch: 8, steps: 458, loss: 0.1171\r", + "OT-CFM epoch: 8, steps: 459, loss: 0.1104\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 460, loss: 0.1265\r", + "OT-CFM epoch: 8, steps: 461, loss: 0.1182\r", + "OT-CFM epoch: 8, steps: 462, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 463, loss: 0.1146\r", + "OT-CFM epoch: 8, steps: 464, loss: 0.116\r", + "OT-CFM epoch: 8, steps: 465, loss: 0.1097\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 8, steps: 466, loss: 0.1153\r", + "OT-CFM epoch: 8, steps: 467, loss: 0.1177\r", + "OT-CFM epoch: 9, steps: 0, loss: 0.1105\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 1, loss: 0.1109\r", + "OT-CFM epoch: 9, steps: 2, loss: 0.1161\r", + "OT-CFM epoch: 9, steps: 3, loss: 0.1152\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 4, loss: 0.1128\r", + "OT-CFM epoch: 9, steps: 5, loss: 0.1134\r", + "OT-CFM epoch: 9, steps: 6, loss: 0.1203\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 7, loss: 0.1183\r", + "OT-CFM epoch: 9, steps: 8, loss: 0.1247\r", + "OT-CFM epoch: 9, steps: 9, loss: 0.113\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 10, loss: 0.1157\r", + "OT-CFM epoch: 9, steps: 11, loss: 0.1199\r", + "OT-CFM epoch: 9, steps: 12, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 13, loss: 0.1184\r", + "OT-CFM epoch: 9, steps: 14, loss: 0.1258\r", + "OT-CFM epoch: 9, steps: 15, loss: 0.1116\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 16, loss: 0.1212\r", + "OT-CFM epoch: 9, steps: 17, loss: 0.121\r", + "OT-CFM epoch: 9, steps: 18, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 19, loss: 0.1203\r", + "OT-CFM epoch: 9, steps: 20, loss: 0.1194\r", + "OT-CFM epoch: 9, steps: 21, loss: 0.1135\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 22, loss: 0.1225\r", + "OT-CFM epoch: 9, steps: 23, loss: 0.1216\r", + "OT-CFM epoch: 9, steps: 24, loss: 0.1167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 25, loss: 0.1146\r", + "OT-CFM epoch: 9, steps: 26, loss: 0.1224\r", + "OT-CFM epoch: 9, steps: 27, loss: 0.1217\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 28, loss: 0.1181\r", + "OT-CFM epoch: 9, steps: 29, loss: 0.1245\r", + "OT-CFM epoch: 9, steps: 30, loss: 0.1238\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 31, loss: 0.1254\r", + "OT-CFM epoch: 9, steps: 32, loss: 0.1135\r", + "OT-CFM epoch: 9, steps: 33, loss: 0.1284\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 34, loss: 0.1315\r", + "OT-CFM epoch: 9, steps: 35, loss: 0.1164\r", + "OT-CFM epoch: 9, steps: 36, loss: 0.1266\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 37, loss: 0.1269\r", + "OT-CFM epoch: 9, steps: 38, loss: 0.1193\r", + "OT-CFM epoch: 9, steps: 39, loss: 0.13\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 40, loss: 0.1147\r", + "OT-CFM epoch: 9, steps: 41, loss: 0.1095\r", + "OT-CFM epoch: 9, steps: 42, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 43, loss: 0.1182\r", + "OT-CFM epoch: 9, steps: 44, loss: 0.1217\r", + "OT-CFM epoch: 9, steps: 45, loss: 0.1046\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 46, loss: 0.1222\r", + "OT-CFM epoch: 9, steps: 47, loss: 0.1132\r", + "OT-CFM epoch: 9, steps: 48, loss: 0.1126\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 49, loss: 0.1286\r", + "OT-CFM epoch: 9, steps: 50, loss: 0.1191\r", + "OT-CFM epoch: 9, steps: 51, loss: 0.1267\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 52, loss: 0.1207\r", + "OT-CFM epoch: 9, steps: 53, loss: 0.1145\r", + "OT-CFM epoch: 9, steps: 54, loss: 0.1167\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 55, loss: 0.1262\r", + "OT-CFM epoch: 9, steps: 56, loss: 0.1226\r", + "OT-CFM epoch: 9, steps: 57, loss: 0.1255\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 58, loss: 0.1201\r", + "OT-CFM epoch: 9, steps: 59, loss: 0.1088\r", + "OT-CFM epoch: 9, steps: 60, loss: 0.1168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 61, loss: 0.1167\r", + "OT-CFM epoch: 9, steps: 62, loss: 0.1164\r", + "OT-CFM epoch: 9, steps: 63, loss: 0.1199\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 64, loss: 0.1144\r", + "OT-CFM epoch: 9, steps: 65, loss: 0.1327\r", + "OT-CFM epoch: 9, steps: 66, loss: 0.1216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 67, loss: 0.1199\r", + "OT-CFM epoch: 9, steps: 68, loss: 0.1165\r", + "OT-CFM epoch: 9, steps: 69, loss: 0.1188\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 70, loss: 0.1182\r", + "OT-CFM epoch: 9, steps: 71, loss: 0.1206\r", + "OT-CFM epoch: 9, steps: 72, loss: 0.1188\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 73, loss: 0.1165\r", + "OT-CFM epoch: 9, steps: 74, loss: 0.1229\r", + "OT-CFM epoch: 9, steps: 75, loss: 0.1261\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 76, loss: 0.1215\r", + "OT-CFM epoch: 9, steps: 77, loss: 0.12\r", + "OT-CFM epoch: 9, steps: 78, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 79, loss: 0.1126\r", + "OT-CFM epoch: 9, steps: 80, loss: 0.1137\r", + "OT-CFM epoch: 9, steps: 81, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 82, loss: 0.1151\r", + "OT-CFM epoch: 9, steps: 83, loss: 0.1228\r", + "OT-CFM epoch: 9, steps: 84, loss: 0.1177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 85, loss: 0.1093\r", + "OT-CFM epoch: 9, steps: 86, loss: 0.1174\r", + "OT-CFM epoch: 9, steps: 87, loss: 0.115\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 88, loss: 0.1324\r", + "OT-CFM epoch: 9, steps: 89, loss: 0.1171\r", + "OT-CFM epoch: 9, steps: 90, loss: 0.1204\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 91, loss: 0.1201\r", + "OT-CFM epoch: 9, steps: 92, loss: 0.1131\r", + "OT-CFM epoch: 9, steps: 93, loss: 0.1136\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 94, loss: 0.1171\r", + "OT-CFM epoch: 9, steps: 95, loss: 0.1203\r", + "OT-CFM epoch: 9, steps: 96, loss: 0.1272\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 97, loss: 0.1129\r", + "OT-CFM epoch: 9, steps: 98, loss: 0.1199\r", + "OT-CFM epoch: 9, steps: 99, loss: 0.1238\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 100, loss: 0.117\r", + "OT-CFM epoch: 9, steps: 101, loss: 0.1189\r", + "OT-CFM epoch: 9, steps: 102, loss: 0.1198\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 103, loss: 0.115\r", + "OT-CFM epoch: 9, steps: 104, loss: 0.1242\r", + "OT-CFM epoch: 9, steps: 105, loss: 0.1293\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 106, loss: 0.1094\r", + "OT-CFM epoch: 9, steps: 107, loss: 0.1048\r", + "OT-CFM epoch: 9, steps: 108, loss: 0.1216\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 109, loss: 0.1227\r", + "OT-CFM epoch: 9, steps: 110, loss: 0.1191\r", + "OT-CFM epoch: 9, steps: 111, loss: 0.1201\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 112, loss: 0.1216\r", + "OT-CFM epoch: 9, steps: 113, loss: 0.1208\r", + "OT-CFM epoch: 9, steps: 114, loss: 0.1146\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 115, loss: 0.1162\r", + "OT-CFM epoch: 9, steps: 116, loss: 0.1317\r", + "OT-CFM epoch: 9, steps: 117, loss: 0.1228\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 118, loss: 0.1171\r", + "OT-CFM epoch: 9, steps: 119, loss: 0.1164\r", + "OT-CFM epoch: 9, steps: 120, loss: 0.1185\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 121, loss: 0.1213\r", + "OT-CFM epoch: 9, steps: 122, loss: 0.1296\r", + "OT-CFM epoch: 9, steps: 123, loss: 0.1172\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 124, loss: 0.1375\r", + "OT-CFM epoch: 9, steps: 125, loss: 0.1261\r", + "OT-CFM epoch: 9, steps: 126, loss: 0.1352\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 127, loss: 0.1218\r", + "OT-CFM epoch: 9, steps: 128, loss: 0.1219\r", + "OT-CFM epoch: 9, steps: 129, loss: 0.1168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 130, loss: 0.1241\r", + "OT-CFM epoch: 9, steps: 131, loss: 0.1144\r", + "OT-CFM epoch: 9, steps: 132, loss: 0.1194\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 133, loss: 0.1129\r", + "OT-CFM epoch: 9, steps: 134, loss: 0.113\r", + "OT-CFM epoch: 9, steps: 135, loss: 0.1228\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 136, loss: 0.1152\r", + "OT-CFM epoch: 9, steps: 137, loss: 0.1224\r", + "OT-CFM epoch: 9, steps: 138, loss: 0.1164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 139, loss: 0.1146\r", + "OT-CFM epoch: 9, steps: 140, loss: 0.118\r", + "OT-CFM epoch: 9, steps: 141, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 142, loss: 0.1072\r", + "OT-CFM epoch: 9, steps: 143, loss: 0.1166\r", + "OT-CFM epoch: 9, steps: 144, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 145, loss: 0.1183\r", + "OT-CFM epoch: 9, steps: 146, loss: 0.1075\r", + "OT-CFM epoch: 9, steps: 147, loss: 0.111\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 148, loss: 0.1193\r", + "OT-CFM epoch: 9, steps: 149, loss: 0.1187\r", + "OT-CFM epoch: 9, steps: 150, loss: 0.1209\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 151, loss: 0.107\r", + "OT-CFM epoch: 9, steps: 152, loss: 0.1144\r", + "OT-CFM epoch: 9, steps: 153, loss: 0.1233\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 154, loss: 0.1203\r", + "OT-CFM epoch: 9, steps: 155, loss: 0.1182\r", + "OT-CFM epoch: 9, steps: 156, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 157, loss: 0.1168\r", + "OT-CFM epoch: 9, steps: 158, loss: 0.1165\r", + "OT-CFM epoch: 9, steps: 159, loss: 0.1247\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 160, loss: 0.1191\r", + "OT-CFM epoch: 9, steps: 161, loss: 0.1259\r", + "OT-CFM epoch: 9, steps: 162, loss: 0.1308\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 163, loss: 0.1269\r", + "OT-CFM epoch: 9, steps: 164, loss: 0.1321\r", + "OT-CFM epoch: 9, steps: 165, loss: 0.1153\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 166, loss: 0.1306\r", + "OT-CFM epoch: 9, steps: 167, loss: 0.1187\r", + "OT-CFM epoch: 9, steps: 168, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 169, loss: 0.124\r", + "OT-CFM epoch: 9, steps: 170, loss: 0.121\r", + "OT-CFM epoch: 9, steps: 171, loss: 0.1182\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 172, loss: 0.1274\r", + "OT-CFM epoch: 9, steps: 173, loss: 0.1214\r", + "OT-CFM epoch: 9, steps: 174, loss: 0.1177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 175, loss: 0.1128\r", + "OT-CFM epoch: 9, steps: 176, loss: 0.112\r", + "OT-CFM epoch: 9, steps: 177, loss: 0.1248\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 178, loss: 0.122\r", + "OT-CFM epoch: 9, steps: 179, loss: 0.1105\r", + "OT-CFM epoch: 9, steps: 180, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 181, loss: 0.1201\r", + "OT-CFM epoch: 9, steps: 182, loss: 0.1119\r", + "OT-CFM epoch: 9, steps: 183, loss: 0.114\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 184, loss: 0.1271\r", + "OT-CFM epoch: 9, steps: 185, loss: 0.1092\r", + "OT-CFM epoch: 9, steps: 186, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 187, loss: 0.1139\r", + "OT-CFM epoch: 9, steps: 188, loss: 0.1222\r", + "OT-CFM epoch: 9, steps: 189, loss: 0.1179\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 190, loss: 0.121\r", + "OT-CFM epoch: 9, steps: 191, loss: 0.1239\r", + "OT-CFM epoch: 9, steps: 192, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 193, loss: 0.1242\r", + "OT-CFM epoch: 9, steps: 194, loss: 0.1179\r", + "OT-CFM epoch: 9, steps: 195, loss: 0.1253\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 196, loss: 0.1262\r", + "OT-CFM epoch: 9, steps: 197, loss: 0.1151\r", + "OT-CFM epoch: 9, steps: 198, loss: 0.1054\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 199, loss: 0.1201\r", + "OT-CFM epoch: 9, steps: 200, loss: 0.1244\r", + "OT-CFM epoch: 9, steps: 201, loss: 0.118\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 202, loss: 0.1226\r", + "OT-CFM epoch: 9, steps: 203, loss: 0.1234\r", + "OT-CFM epoch: 9, steps: 204, loss: 0.1157\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 205, loss: 0.1193\r", + "OT-CFM epoch: 9, steps: 206, loss: 0.1148\r", + "OT-CFM epoch: 9, steps: 207, loss: 0.112\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 208, loss: 0.1221\r", + "OT-CFM epoch: 9, steps: 209, loss: 0.1109\r", + "OT-CFM epoch: 9, steps: 210, loss: 0.1269\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 211, loss: 0.1207\r", + "OT-CFM epoch: 9, steps: 212, loss: 0.1272\r", + "OT-CFM epoch: 9, steps: 213, loss: 0.1154\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 214, loss: 0.111\r", + "OT-CFM epoch: 9, steps: 215, loss: 0.1247\r", + "OT-CFM epoch: 9, steps: 216, loss: 0.1208\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 217, loss: 0.1148\r", + "OT-CFM epoch: 9, steps: 218, loss: 0.1229\r", + "OT-CFM epoch: 9, steps: 219, loss: 0.1169\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 220, loss: 0.1126\r", + "OT-CFM epoch: 9, steps: 221, loss: 0.1266\r", + "OT-CFM epoch: 9, steps: 222, loss: 0.1158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 223, loss: 0.1279\r", + "OT-CFM epoch: 9, steps: 224, loss: 0.1252\r", + "OT-CFM epoch: 9, steps: 225, loss: 0.1112\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 226, loss: 0.1261\r", + "OT-CFM epoch: 9, steps: 227, loss: 0.1156\r", + "OT-CFM epoch: 9, steps: 228, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 229, loss: 0.1159\r", + "OT-CFM epoch: 9, steps: 230, loss: 0.1091\r", + "OT-CFM epoch: 9, steps: 231, loss: 0.1219\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 232, loss: 0.1112\r", + "OT-CFM epoch: 9, steps: 233, loss: 0.1166\r", + "OT-CFM epoch: 9, steps: 234, loss: 0.12\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 235, loss: 0.1252\r", + "OT-CFM epoch: 9, steps: 236, loss: 0.1073\r", + "OT-CFM epoch: 9, steps: 237, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 238, loss: 0.1189\r", + "OT-CFM epoch: 9, steps: 239, loss: 0.1235\r", + "OT-CFM epoch: 9, steps: 240, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 241, loss: 0.1197\r", + "OT-CFM epoch: 9, steps: 242, loss: 0.1402\r", + "OT-CFM epoch: 9, steps: 243, loss: 0.1282\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 244, loss: 0.1212\r", + "OT-CFM epoch: 9, steps: 245, loss: 0.1227\r", + "OT-CFM epoch: 9, steps: 246, loss: 0.1173\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 247, loss: 0.1137\r", + "OT-CFM epoch: 9, steps: 248, loss: 0.1174\r", + "OT-CFM epoch: 9, steps: 249, loss: 0.114\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 250, loss: 0.1296\r", + "OT-CFM epoch: 9, steps: 251, loss: 0.1185\r", + "OT-CFM epoch: 9, steps: 252, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 253, loss: 0.1168\r", + "OT-CFM epoch: 9, steps: 254, loss: 0.1284\r", + "OT-CFM epoch: 9, steps: 255, loss: 0.1278\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 256, loss: 0.1171\r", + "OT-CFM epoch: 9, steps: 257, loss: 0.1162\r", + "OT-CFM epoch: 9, steps: 258, loss: 0.1143\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 259, loss: 0.1097\r", + "OT-CFM epoch: 9, steps: 260, loss: 0.1188\r", + "OT-CFM epoch: 9, steps: 261, loss: 0.1307\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 262, loss: 0.1177\r", + "OT-CFM epoch: 9, steps: 263, loss: 0.13\r", + "OT-CFM epoch: 9, steps: 264, loss: 0.1281\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 265, loss: 0.1161\r", + "OT-CFM epoch: 9, steps: 266, loss: 0.1061\r", + "OT-CFM epoch: 9, steps: 267, loss: 0.1252\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 268, loss: 0.1128\r", + "OT-CFM epoch: 9, steps: 269, loss: 0.1124\r", + "OT-CFM epoch: 9, steps: 270, loss: 0.1222\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 271, loss: 0.1272\r", + "OT-CFM epoch: 9, steps: 272, loss: 0.126\r", + "OT-CFM epoch: 9, steps: 273, loss: 0.1153\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 274, loss: 0.1247\r", + "OT-CFM epoch: 9, steps: 275, loss: 0.127\r", + "OT-CFM epoch: 9, steps: 276, loss: 0.1212\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 277, loss: 0.1088\r", + "OT-CFM epoch: 9, steps: 278, loss: 0.1171\r", + "OT-CFM epoch: 9, steps: 279, loss: 0.1122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 280, loss: 0.118\r", + "OT-CFM epoch: 9, steps: 281, loss: 0.1203\r", + "OT-CFM epoch: 9, steps: 282, loss: 0.1227\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 283, loss: 0.1058\r", + "OT-CFM epoch: 9, steps: 284, loss: 0.1089\r", + "OT-CFM epoch: 9, steps: 285, loss: 0.1142\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 286, loss: 0.1176\r", + "OT-CFM epoch: 9, steps: 287, loss: 0.1145\r", + "OT-CFM epoch: 9, steps: 288, loss: 0.1075\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 289, loss: 0.1178\r", + "OT-CFM epoch: 9, steps: 290, loss: 0.1078\r", + "OT-CFM epoch: 9, steps: 291, loss: 0.1215\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 292, loss: 0.1165\r", + "OT-CFM epoch: 9, steps: 293, loss: 0.1204\r", + "OT-CFM epoch: 9, steps: 294, loss: 0.1107\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 295, loss: 0.1164\r", + "OT-CFM epoch: 9, steps: 296, loss: 0.1228\r", + "OT-CFM epoch: 9, steps: 297, loss: 0.1236\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 298, loss: 0.1214\r", + "OT-CFM epoch: 9, steps: 299, loss: 0.1246\r", + "OT-CFM epoch: 9, steps: 300, loss: 0.1177\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 301, loss: 0.1178\r", + "OT-CFM epoch: 9, steps: 302, loss: 0.1258\r", + "OT-CFM epoch: 9, steps: 303, loss: 0.1066\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 304, loss: 0.1215\r", + "OT-CFM epoch: 9, steps: 305, loss: 0.1245\r", + "OT-CFM epoch: 9, steps: 306, loss: 0.1103\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 307, loss: 0.1229\r", + "OT-CFM epoch: 9, steps: 308, loss: 0.1338\r", + "OT-CFM epoch: 9, steps: 309, loss: 0.1185\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 310, loss: 0.1095\r", + "OT-CFM epoch: 9, steps: 311, loss: 0.1211\r", + "OT-CFM epoch: 9, steps: 312, loss: 0.1163\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 313, loss: 0.121\r", + "OT-CFM epoch: 9, steps: 314, loss: 0.1211\r", + "OT-CFM epoch: 9, steps: 315, loss: 0.1186\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 316, loss: 0.1104\r", + "OT-CFM epoch: 9, steps: 317, loss: 0.1173\r", + "OT-CFM epoch: 9, steps: 318, loss: 0.1137\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 319, loss: 0.1245\r", + "OT-CFM epoch: 9, steps: 320, loss: 0.115\r", + "OT-CFM epoch: 9, steps: 321, loss: 0.1272\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 322, loss: 0.1202\r", + "OT-CFM epoch: 9, steps: 323, loss: 0.1148\r", + "OT-CFM epoch: 9, steps: 324, loss: 0.1207\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 325, loss: 0.1156\r", + "OT-CFM epoch: 9, steps: 326, loss: 0.1229\r", + "OT-CFM epoch: 9, steps: 327, loss: 0.1186\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 328, loss: 0.1182\r", + "OT-CFM epoch: 9, steps: 329, loss: 0.1263\r", + "OT-CFM epoch: 9, steps: 330, loss: 0.1222\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 331, loss: 0.1106\r", + "OT-CFM epoch: 9, steps: 332, loss: 0.1163\r", + "OT-CFM epoch: 9, steps: 333, loss: 0.1257\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 334, loss: 0.1155\r", + "OT-CFM epoch: 9, steps: 335, loss: 0.1174\r", + "OT-CFM epoch: 9, steps: 336, loss: 0.1193\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 337, loss: 0.1267\r", + "OT-CFM epoch: 9, steps: 338, loss: 0.1302\r", + "OT-CFM epoch: 9, steps: 339, loss: 0.1127\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 340, loss: 0.1327\r", + "OT-CFM epoch: 9, steps: 341, loss: 0.1067\r", + "OT-CFM epoch: 9, steps: 342, loss: 0.1038\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 343, loss: 0.1314\r", + "OT-CFM epoch: 9, steps: 344, loss: 0.1166\r", + "OT-CFM epoch: 9, steps: 345, loss: 0.1202\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 346, loss: 0.1288\r", + "OT-CFM epoch: 9, steps: 347, loss: 0.122\r", + "OT-CFM epoch: 9, steps: 348, loss: 0.112\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 349, loss: 0.1086\r", + "OT-CFM epoch: 9, steps: 350, loss: 0.1169\r", + "OT-CFM epoch: 9, steps: 351, loss: 0.1258\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 352, loss: 0.1167\r", + "OT-CFM epoch: 9, steps: 353, loss: 0.115\r", + "OT-CFM epoch: 9, steps: 354, loss: 0.1204\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 355, loss: 0.1156\r", + "OT-CFM epoch: 9, steps: 356, loss: 0.1252\r", + "OT-CFM epoch: 9, steps: 357, loss: 0.1234\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 358, loss: 0.1305\r", + "OT-CFM epoch: 9, steps: 359, loss: 0.1181\r", + "OT-CFM epoch: 9, steps: 360, loss: 0.1256\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 361, loss: 0.1198\r", + "OT-CFM epoch: 9, steps: 362, loss: 0.1243\r", + "OT-CFM epoch: 9, steps: 363, loss: 0.1168\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 364, loss: 0.1142\r", + "OT-CFM epoch: 9, steps: 365, loss: 0.1321\r", + "OT-CFM epoch: 9, steps: 366, loss: 0.1198\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 367, loss: 0.1213\r", + "OT-CFM epoch: 9, steps: 368, loss: 0.1144\r", + "OT-CFM epoch: 9, steps: 369, loss: 0.143\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 370, loss: 0.1229\r", + "OT-CFM epoch: 9, steps: 371, loss: 0.1089\r", + "OT-CFM epoch: 9, steps: 372, loss: 0.1164\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 373, loss: 0.1248\r", + "OT-CFM epoch: 9, steps: 374, loss: 0.1165\r", + "OT-CFM epoch: 9, steps: 375, loss: 0.1267\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 376, loss: 0.1291\r", + "OT-CFM epoch: 9, steps: 377, loss: 0.1263\r", + "OT-CFM epoch: 9, steps: 378, loss: 0.1185\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 379, loss: 0.13\r", + "OT-CFM epoch: 9, steps: 380, loss: 0.1335\r", + "OT-CFM epoch: 9, steps: 381, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 382, loss: 0.1182\r", + "OT-CFM epoch: 9, steps: 383, loss: 0.1125\r", + "OT-CFM epoch: 9, steps: 384, loss: 0.132\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 385, loss: 0.1169\r", + "OT-CFM epoch: 9, steps: 386, loss: 0.1168\r", + "OT-CFM epoch: 9, steps: 387, loss: 0.1187\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 388, loss: 0.1225\r", + "OT-CFM epoch: 9, steps: 389, loss: 0.1307\r", + "OT-CFM epoch: 9, steps: 390, loss: 0.118\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 391, loss: 0.1191\r", + "OT-CFM epoch: 9, steps: 392, loss: 0.1162\r", + "OT-CFM epoch: 9, steps: 393, loss: 0.1223\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 394, loss: 0.1317\r", + "OT-CFM epoch: 9, steps: 395, loss: 0.1222\r", + "OT-CFM epoch: 9, steps: 396, loss: 0.1179\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 397, loss: 0.1207\r", + "OT-CFM epoch: 9, steps: 398, loss: 0.1126\r", + "OT-CFM epoch: 9, steps: 399, loss: 0.122\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 400, loss: 0.1209\r", + "OT-CFM epoch: 9, steps: 401, loss: 0.1188\r", + "OT-CFM epoch: 9, steps: 402, loss: 0.1213\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 403, loss: 0.1215\r", + "OT-CFM epoch: 9, steps: 404, loss: 0.1164\r", + "OT-CFM epoch: 9, steps: 405, loss: 0.1158\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 406, loss: 0.121\r", + "OT-CFM epoch: 9, steps: 407, loss: 0.1128\r", + "OT-CFM epoch: 9, steps: 408, loss: 0.112\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 409, loss: 0.1274\r", + "OT-CFM epoch: 9, steps: 410, loss: 0.1227\r", + "OT-CFM epoch: 9, steps: 411, loss: 0.1205\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 412, loss: 0.1187\r", + "OT-CFM epoch: 9, steps: 413, loss: 0.131\r", + "OT-CFM epoch: 9, steps: 414, loss: 0.1298\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 415, loss: 0.1152\r", + "OT-CFM epoch: 9, steps: 416, loss: 0.1208\r", + "OT-CFM epoch: 9, steps: 417, loss: 0.1302\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 418, loss: 0.1202\r", + "OT-CFM epoch: 9, steps: 419, loss: 0.107\r", + "OT-CFM epoch: 9, steps: 420, loss: 0.1249\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 421, loss: 0.126\r", + "OT-CFM epoch: 9, steps: 422, loss: 0.1134\r", + "OT-CFM epoch: 9, steps: 423, loss: 0.1174\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 424, loss: 0.12\r", + "OT-CFM epoch: 9, steps: 425, loss: 0.1274\r", + "OT-CFM epoch: 9, steps: 426, loss: 0.1223\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 427, loss: 0.1258\r", + "OT-CFM epoch: 9, steps: 428, loss: 0.1205\r", + "OT-CFM epoch: 9, steps: 429, loss: 0.1202\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 430, loss: 0.1255\r", + "OT-CFM epoch: 9, steps: 431, loss: 0.1233\r", + "OT-CFM epoch: 9, steps: 432, loss: 0.1094\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 433, loss: 0.1246\r", + "OT-CFM epoch: 9, steps: 434, loss: 0.1225\r", + "OT-CFM epoch: 9, steps: 435, loss: 0.1273\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 436, loss: 0.1228\r", + "OT-CFM epoch: 9, steps: 437, loss: 0.1213\r", + "OT-CFM epoch: 9, steps: 438, loss: 0.1157\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 439, loss: 0.1077\r", + "OT-CFM epoch: 9, steps: 440, loss: 0.1176\r", + "OT-CFM epoch: 9, steps: 441, loss: 0.1183\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 442, loss: 0.1136\r", + "OT-CFM epoch: 9, steps: 443, loss: 0.1161\r", + "OT-CFM epoch: 9, steps: 444, loss: 0.1118\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 445, loss: 0.1154\r", + "OT-CFM epoch: 9, steps: 446, loss: 0.1159\r", + "OT-CFM epoch: 9, steps: 447, loss: 0.1214\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 448, loss: 0.1196\r", + "OT-CFM epoch: 9, steps: 449, loss: 0.1181\r", + "OT-CFM epoch: 9, steps: 450, loss: 0.1061\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 451, loss: 0.1208\r", + "OT-CFM epoch: 9, steps: 452, loss: 0.108\r", + "OT-CFM epoch: 9, steps: 453, loss: 0.1224\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 454, loss: 0.1102\r", + "OT-CFM epoch: 9, steps: 455, loss: 0.1178\r", + "OT-CFM epoch: 9, steps: 456, loss: 0.1126\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 457, loss: 0.124\r", + "OT-CFM epoch: 9, steps: 458, loss: 0.119\r", + "OT-CFM epoch: 9, steps: 459, loss: 0.1151\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 460, loss: 0.1227\r", + "OT-CFM epoch: 9, steps: 461, loss: 0.116\r", + "OT-CFM epoch: 9, steps: 462, loss: 0.1172\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 463, loss: 0.1277\r", + "OT-CFM epoch: 9, steps: 464, loss: 0.1211\r", + "OT-CFM epoch: 9, steps: 465, loss: 0.1106\r" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OT-CFM epoch: 9, steps: 466, loss: 0.114\r", + "OT-CFM epoch: 9, steps: 467, loss: 0.1048\r" + ] + } + ], + "source": [ + "for epoch in range(n_epochs):\n", + " for i, data in enumerate(train_loader):\n", + " optimizer.zero_grad()\n", + " x1 = data[0].to(device)\n", + " y = (\n", + " data[1].float().to(device).reshape((batch_size, 1)) / 2.0\n", + " ) # just to have a floating point label\n", + " x0 = torch.randn_like(x1)\n", + " t, xt, ut, _, y1 = FM.guided_sample_location_and_conditional_flow(x0, x1, y1=y)\n", + " vt = model(t, xt, y1)\n", + " loss = torch.mean((vt - ut) ** 2)\n", + " loss.backward()\n", + " optimizer.step()\n", + " print(f\"OT-CFM epoch: {epoch}, steps: {i}, loss: {loss.item():.4}\", end=\"\\r\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "96696c77", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T13:05:28.761859Z", + "iopub.status.busy": "2025-05-08T13:05:28.761622Z", + "iopub.status.idle": "2025-05-08T13:05:30.956777Z", + "shell.execute_reply": "2025-05-08T13:05:30.956077Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHICAYAAADujojbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfXd4VMX+/ru9pOymbHpPSAgJIRBCEwhVpYqVIoqKomK9XL1er14RxXrFq6IoogKiFEFFBaRK7xBaeiEhvfeyu9nd8/sjv5k7e3I2DRDu/Z73efLAnjIzZ86c+bzzaSPhOI6DCBEiRIgQIULEnwTpjW6ACBEiRIgQIeL/FkTyIUKECBEiRIj4UyGSDxEiRIgQIULEnwqRfIgQIUKECBEi/lSI5EOECBEiRIgQ8adCJB8iRIgQIUKEiD8VIvkQIUKECBEiRPypEMmHCBEiRIgQIeJPhUg+RIgQIUKECBF/KkTyIULEVeLAgQOQSCQ4cODA/6m6RThGdnY2br31Vuh0OkgkEmzduvVGN0mEiJsKIvkQIaKbWLFiBdasWXOjm9ErHDt2DK+//jrq6upudFNuKpSUlOD111/H+fPnr2m58+bNw6VLl/DWW29h3bp1GDx48DUtX4SI/3bIb3QDRIj4b8GKFSvg6emJhx56yO746NGj0draCqVSeWMa1g0cO3YMS5YswUMPPQS9Xn+jm3PToKSkBEuWLEFISAji4+OvSZmtra04fvw4XnnlFTz99NPXpEwRIv7XIGo+RIi4SkilUqjVakil/xufk81mg9FovNHNuK6wWCwwm83XpezKykoAEEmeCBGd4H9jthQhQgDnzp3DpEmT4OrqCmdnZ4wfPx4nTpywu2bNmjWQSCQ4dOgQHn/8cXh4eMDV1RUPPvggamtr6XUhISFITU3FwYMHIZFIIJFIMGbMGADCfhdjxoxBbGwsLl68iKSkJGi1WkRERGDLli0AgIMHD2Lo0KHQaDSIiorC3r177dp15coVLFy4EFFRUdBoNPDw8MC9996L/Pz8HvfD66+/jhdffBEAEBoaSttPypJIJHj66afx/fffIyYmBiqVCjt37gQAfPDBBxgxYgQ8PDyg0WiQkJBAn4EFKWPr1q2IjY2FSqVCTEwMLYegsbERzz//PEJCQqBSqeDl5YWJEyciOTm5Q9+dPXsWI0aMgEajQWhoKL744osO9VZUVGD+/Pnw9vaGWq3GgAEDsHbtWrtr8vPzIZFI8MEHH+Cjjz5CeHg4VCoVVqxYgcTERADAww8/TPulK9NacXEx5s+fDz8/P6hUKoSGhuLJJ5+E2WzG66+/juDgYADAiy++CIlEgpCQEPoeJBIJsrKyMHfuXOh0OhgMBvzzn/8Ex3EoLCzEHXfcAVdXV/j4+GDZsmWdtkOEiP9miGYXEf+TSE1NxahRo+Dq6oq//e1vUCgUWLlyJcaMGUMFP4unn34aer0er7/+OjIzM/H555/jypUrlFh89NFHeOaZZ+Ds7IxXXnkFAODt7d1pG2prazF16lTMmjUL9957Lz7//HPMmjUL33//PZ5//nk88cQTmDNnDv71r3/hnnvuQWFhIVxcXAAAp0+fxrFjxzBr1iwEBAQgPz8fn3/+OcaMGYO0tDRotdpu98Vdd92FrKwsbNiwAf/+97/h6ekJADAYDPSaP/74Az/88AOefvppeHp6UoH58ccfY/r06bj//vthNpuxceNG3Hvvvdi2bRumTJliV8+RI0fw008/YeHChXBxccEnn3yCu+++GwUFBfDw8AAAPPHEE9iyZQuefvpp9OvXD9XV1Thy5AjS09MxaNAgu76bPHky7rvvPsyePRs//PADnnzySSiVSjzyyCMA2s0bY8aMQU5ODp5++mmEhoZi8+bNeOihh1BXV4fnnnvOrn2rV6+G0WjEggULoFKpcOedd6KxsRGvvfYaFixYgFGjRgEARowY4bAvS0pKMGTIENTV1WHBggXo27cviouLsWXLFrS0tOCuu+6CXq/HX/7yF8yePRuTJ0+Gs7OzXRkzZ85EdHQ03n33XWzfvh1Lly6Fu7s7Vq5ciXHjxuG9997D999/jxdeeAGJiYkYPXp0t9+1CBH/NeBEiPgfxIwZMzilUsnl5ubSYyUlJZyLiws3evRoemz16tUcAC4hIYEzm830+Pvvv88B4H755Rd6LCYmhktKSupQ1/79+zkA3P79++mxpKQkDgC3fv16eiwjI4MDwEmlUu7EiRP0+K5duzgA3OrVq+mxlpaWDvUcP36cA8B9++23ndYthH/9618cAC4vL6/DOdKm1NTUDuf47TCbzVxsbCw3bty4DmUolUouJyeHHrtw4QIHgFu+fDk9ptPpuKeeeqrTtpK+W7ZsGT1mMpm4+Ph4zsvLi76njz76iAPAfffdd3btGz58OOfs7Mw1NDRwHMdxeXl5HADO1dWVq6iosKvr9OnTHfq+Mzz44IOcVCrlTp8+3eGczWazq+9f//qX3fnFixdzALgFCxbQYxaLhQsICOAkEgn37rvv0uO1tbWcRqPh5s2b1612iRDx3wbR7CLifw5WqxW7d+/GjBkzEBYWRo/7+vpizpw5OHLkCBoaGuzuWbBgARQKBf395JNPQi6XY8eOHb1uh7OzM2bNmkV/R0VFQa/XIzo62k7zQv5/+fJlekyj0dD/t7W1obq6GhEREdDr9XYmimuFpKQk9OvXr8Nxth21tbWor6/HqFGjBNswYcIEhIeH099xcXFwdXW1ey69Xo+TJ0+ipKSk0/bI5XI8/vjj9LdSqcTjjz+OiooKnD17FgCwY8cO+Pj4YPbs2fQ6hUKBZ599Fk1NTTh48KBdmXfffbedtqensNls2Lp1K6ZNmyYYvSKRSLpVzqOPPkr/L5PJMHjwYHAch/nz59Pjer0eUVFRdn0nQsT/EkTyIeJ/DpWVlWhpaUFUVFSHc9HR0bDZbCgsLLQ73qdPH7vfzs7O8PX17ZWPBUFAQEAHgaTT6RAYGNjhGAA7H5PW1la89tprCAwMhEqlgqenJwwGA+rq6lBfX9/rNjlCaGio4PFt27Zh2LBhUKvVcHd3h8FgwOeffy7YhqCgoA7H3Nzc7J7r/fffR0pKCgIDAzFkyBC8/vrrggLWz88PTk5OdsciIyMBgL6TK1euoE+fPh0cfaOjo+n57jxjd1FZWYmGhgbExsZeVTn8ftLpdFCr1dQcxh5n+06EiP8liORDhIjrBJlM1qPjHMfR/z/zzDN46623cN999+GHH37A7t27sWfPHnh4eMBms13ztrIaDoLDhw9j+vTpUKvVWLFiBXbs2IE9e/Zgzpw5dm0l6M5z3Xfffbh8+TKWL18OPz8//Otf/0JMTAx+//33a/cwDiD0jDcCQv3Unb4TIeJ/CaLDqYj/ORgMBmi1WmRmZnY4l5GRAalU2kH7kJ2djbFjx9LfTU1NKC0txeTJk+mx7qrVrwW2bNmCefPm2UU8GI3GXicJ603bf/zxR6jVauzatQsqlYoeX716da/aQODr64uFCxdi4cKFqKiowKBBg/DWW29h0qRJ9JqSkhI0NzfbaT+ysrIAgDrDBgcH4+LFi7DZbHbaj4yMDHq+K/SkXwwGA1xdXZGSktLte0SIECEMUfMh4n8OMpkMt956K3755Rc7s0l5eTnWr1+PkSNHwtXV1e6eL7/8Em1tbfT3559/DovFYicQnZyc/rQMoTKZrMOqd/ny5bBarb0qjwjxnrRfJpNBIpHY1Zmfn9/rVOFWq7WDucbLywt+fn4wmUx2xy0WC1auXEl/m81mrFy5EgaDAQkJCQCAyZMno6ysDJs2bbK7b/ny5XB2dkZSUlKXbepJv0ilUsyYMQO//fYbzpw50+G8qKUQIaL7EDUfIv4nsXTpUuzZswcjR47EwoULIZfLsXLlSphMJrz//vsdrjebzRg/fjzuu+8+ZGZmYsWKFRg5ciSmT59Or0lISMDnn3+OpUuXIiIiAl5eXhg3btx1af/UqVOxbt066HQ69OvXD8ePH8fevXtpyGpPQQT2K6+8glmzZkGhUGDatGkd/CpYTJkyBR9++CFuv/12zJkzBxUVFfjss88QERGBixcv9rgNjY2NCAgIwD333IMBAwbA2dkZe/fuxenTpzvktPDz88N7772H/Px8REZGYtOmTTh//jy+/PJL6hi8YMECrFy5Eg899BDOnj2LkJAQbNmyBUePHsVHH31Ew5Y7Q3h4OPR6Pb744gu4uLjAyckJQ4cOdegf8vbbb2P37t1ISkrCggULEB0djdLSUmzevBlHjhwRE4uJENFNiORDxP8kYmJicPjwYbz88st45513YLPZMHToUHz33XcdcnwAwKefforvv/8er732Gtra2jB79mx88skndmr51157DVeuXMH777+PxsZGJCUlXTfy8fHHH0Mmk+H777+H0WjELbfcgr179+K2227rVXmJiYl488038cUXX2Dnzp2w2WzIy8vrlHyMGzcOX3/9Nd599108//zzCA0NpYSgN+RDq9Vi4cKF2L17N3766SfYbDZERERgxYoVePLJJ+2udXNzw9q1a/HMM89g1apV8Pb2xqefforHHnuMXqPRaHDgwAH8/e9/x9q1a9HQ0ICoqCisXr26Qwp8R1AoFFi7di1efvllPPHEE7BYLFi9erVD8uHv74+TJ0/in//8J77//ns0NDTA398fkyZN6lHuFREi/q9Dwom6QhH/h7FmzRo8/PDDOH36tLj5102CMWPGoKqqSvStECHifxiiz4cIESJEiBAh4k+FSD5EiBAhQoQIEX8qRPIhQoQIESJEiPhTIfp8iBAhQoQIESL+VIiaDxEiRIgQIULEnwqRfIgQIUKECBEi/lT0iHysWbMGEomkV5ttjRkz5qo3ZOIjJCSk2/H8IkSIECFChIibA6LmowvU1dVhwYIFMBgMcHJywtixY3u0pXl6ejpuv/12ODs7w93dHQ888AAqKys7XGez2fD+++8jNDQUarUacXFx2LBhw1W3/+uvv0Z0dDTUajX69OmD5cuXd+u+AwcOQCKRCP6dOHGiw/XHjh3DyJEjodVq4ePjQ7c17y1OnTqFhQsXIiEhAQqFold7k3S3TSaTCS+99BL8/Pyg0WgwdOhQ7Nmzp9dtB4C33noL06dPh7e3NyQSCV5//fVu33sj+95ms2HNmjWYPn06AgMD4eTkhNjYWCxduhRGo7Hb5dyovs/IyMDf/vY3xMfHw8XFBb6+vpgyZYpgOnQh3Ohxv2rVKiQlJcHb2xsqlQqhoaF4+OGHe7Tgu1F9X1JSgrlz5yIqKgouLi7Q6/UYMmQI1q5d263U8ze671m0tbWhX79+kEgk+OCDD7p936+//opBgwZBrVYjKCgIixcvhsVi6XDd1cqVrvDWW29BIpF0e8H/+uuvC/a7Wq0WvL63coWFmOG0E9hsNkyZMgUXLlzAiy++CE9PT6xYsQJjxozB2bNnO2zDzkdRURFGjx4NnU6Ht99+G01NTfjggw9w6dIlnDp1Ckqlkl77yiuv4N1338Vjjz2GxMRE/PLLL5gzZw4kEglmzZrVq/avXLkSTzzxBO6++24sWrQIhw8fxrPPPouWlha89NJL3Srj2WefRWJiot2xiIgIu9/nz5/H+PHjER0djQ8//BBFRUX44IMPkJ2d3evdSnfs2IGvvvoKcXFxCAsLo5uKdRc9adNDDz2ELVu24Pnnn0efPn2wZs0aTJ48Gfv378fIkSN71f5XX30VPj4+GDhwIHbt2tWrMm5E37e0tODhhx/GsGHD8MQTT8DLywvHjx/H4sWLsW/fPvzxxx9dEsEb2fdfffUVvv76a9x9991YuHAh6uvrsXLlSgwbNgw7d+7EhAkTulXOjRr3586dQ2hoKKZPnw43Nzfk5eVh1apV2LZtGy5cuAA/P79O77+RfV9VVYWioiLcc889CAoKQltbG/bs2YOHHnoImZmZePvtt7tVzo3qexbLly9HQUFBj+75/fffMWPGDIwZMwbLly/HpUuXsHTpUlRUVODzzz+n112tXOkKRUVFePvttzvNXuwIn3/+OZydnelvod2Wr4VcAQBwPcDq1as5AFxeXl5PbuM4juOSkpK4mJiYHt/XGYKDg7l58+Zd0zJZbNq0iQPAbd68mR6rqKjg9Ho9N3v27C7vf/LJJzmNRsNduXKFHtuzZw8HgFu5ciU9VlRUxCkUCu6pp56ix2w2Gzdq1CguICCAs1gsPW57S0sL5+HhwU2ZMsXu+P333885OTlxNTU1nd6/f//+Ds/uCJMmTeJ8fX25+vp6emzVqlUcAG7Xrl09bjvHcVxZWRnX0tLCcRzHPfXUU1wPh2q323Ty5EkOAPevf/2LHmttbeXCw8O54cOH96rtHMfRb6SyspIDwC1evLjb997IvjeZTNzRo0c7HF+yZAkHgNuzZ881a9P16PszZ85wjY2Ndseqqqo4g8HA3XLLLV3ef6PHvRDOnDnDAeDeeeeda9am6zXuhTB16lTOycmpy3nsZun78vJyTqfTcW+88UaHPuoM/fr14wYMGMC1tbXRY6+88gonkUi49PR0euxq5UpXmDlzJjdu3LgeydzFixdzALjKyspOr7taucLiqsnH1q1bucmTJ3O+vr6cUqnkwsLCuDfeeKPDQCMdcebMGW748OGcWq3mQkJCuM8//7xDPUajkXvttde48PBwTqlUcgEBAdyLL77IGY1Gu+v45MNsNnOvv/46FxERwalUKs7d3Z275ZZbuN27d9tdk56ezpWUlHT5vPfeey/n7e3NWa1Wu+MLFizgtFpth/bw4eXlxd17770djkdGRnLjx4+nvz/77DMOAJeammp33fr16zkA3OHDh7tsKx/bt2/nAHDbt2+3O37s2DEOALdu3bpO72cngoaGBrsPikV9fT0nl8u5F1980e64yWTinJ2dufnz5/e47Xz0lHz0pE0vvvgiJ5PJ7CYxjuO4t99+mwPAFRQUXFXbr5Z83Oi+J7h48SIHgPvkk086ve5m6nsWd911F+fu7t7ldTdj31dVVXEAuJdeeqnT627Wvn/66ac5iURCFxOOcLP0/cMPP8wNGTKEu3z5crfJR2pqKgeA++yzz+yOFxcXcwC4N998kx67WrnSGQ4ePMjJZDLu4sWLvSIfFRUVXH19PWez2QSvu1q5wuKqfT7WrFkDZ2dnLFq0CB9//DESEhLw2muv4e9//3uHa2trazF58mQkJCTg/fffR0BAAJ588kl888039BqbzYbp06fjgw8+wLRp07B8+XLMmDED//73vzFz5sxO2/L6669jyZIlGDt2LD799FO88sorCAoKsrOlFRcXIzo6Gi+//HKXz3bu3DkMGjQIUql9Nw0ZMgQtLS2dmgKKi4tRUVEhuF/IkCFDcO7cObt6nJycEB0d3eE6cr6nIPfw609ISIBUKu12mQ8//DBcXV2hVqsxduzYDrbzS5cuwWKxdKhHqVQiPj6+V22/WvSkTefOnUNkZCRcXV3triV9f/78+eveXke4mfq+rKwMAODp6dnpdTdr35eVlXXZdhY3uu+rq6tRUVGBM2fO4OGHHwYAjB8/vtN7bpa+b21tRVVVFfLz87F27VqsXr0aw4cPh0aj6db9N7LvT506hbVr1+Kjjz7qkZ+Zo/nWz88PAQEBHfq+t3KlM1itVjzzzDN49NFH0b9//16VERYWBp1OBxcXF8ydOxfl5eV256+VXAGugc/H+vXr7QbVE088gSeeeAIrVqzA0qVLoVKp6LmSkhIsW7YMixYtAgA8/vjjGDp0KF5++WU88MADUCgUWL9+Pfbu3YuDBw/a2R1jY2PxxBNP4NixYxgxYoRgW7Zv347Jkyfjyy+/vNrHAgCUlpZi9OjRHY77+vrS53H0kktLS+2u5d9fU1MDk8kElUqF0tJS6pjoqJ7etF0mk8HLy8vuuFKphIeHR5dlKpVK3H333Zg8eTI8PT2RlpaGDz74AKNGjcKxY8cwcODAbj3n4cOHe9z2q0VP2lRaWurwOqB3fX+1uBn7/v3334erqysmTZrU6XU3Y98fPnwYx48fx6uvvtrltTdL3/v7+8NkMgEAPDw88Mknn2DixImd3nOz9P3HH39st7gbP348Vq9e3eV9N7rvOY7DM888g5kzZ2L48OE9cvLtqk1sf16NXOkMX3zxBa5cuYK9e/f2+F43Nzc8/fTTGD58OFQqFQ4fPozPPvsMp06dwpkzZyhJvVq5wuKqyQdLPBobG2EymTBq1CisXLkSGRkZGDBgwH8qk8vx+OOP2zX48ccfx5NPPomzZ89i2LBh2Lx5M6Kjo9G3b19UVVXRa8nW5fv373dIPvR6PVJTU5Gdne3QaSckJKRbntdAO4NnyRMB8QBubW3t9F4AXd6vUqmuqp7O6mcdWvnldlXmiBEj7Pp5+vTpuOeeexAXF4eXX34ZO3futGubo/b3pu1Xi5606Xr0/dXiZuv7t99+G3v37sWKFSug1+s7vfZm6/uKigrMmTMHoaGh+Nvf/tbl9TdL3//+++8wGo1IT0/Hd999h+bm5i7vuVn6fvbs2Rg8eDAqKyuxbds2lJeXd6u8G933a9aswaVLl7Bly5Ye39tVmxoaGuyuvdZ9X11djddeew3//Oc/YTAYenz/c889Z/f77rvvxpAhQ3D//fdjxYoV1JJxtXKFxVWbXVJTU3HnnXdCp9PB1dUVBoMBc+fOBQDU19fbXevn59fBAzcyMhIAKMvMzs5GamoqDAaD3R+5rqKiwmFb3njjDdTV1SEyMhL9+/fHiy++iIsXL/b62TQaDV19sCAhh52pEcm57tx/NfV0Vr/ZbBY8ZzQae1VmREQE7rjjDuzfvx9Wq9WubY7a35t6rhY9adP16PvrgRvV95s2bcKrr76K+fPn48knn+zy+pup75ubmzF16lQ0Njbil19+sfPi7wluRN+PHTsWkyZNwqJFi7B582YsWbIEn376aaf33Cx9HxwcjAkTJmD27Nn4/vvvERYWhgkTJvRKqP5Zfd/Q0ICXX34ZL774IgIDA3t8/43u+1dffRXu7u545plnenyvI8yZMwc+Pj52mpRrKVeuinzU1dUhKSkJFy5cwBtvvIHffvsNe/bswXvvvQeg3X+jp7DZbOjfvz/27Nkj+Ldw4UKH944ePRq5ubn45ptvEBsbi6+++gqDBg3CV1991avn8/X1peo0FuRYZ2FvRIXm6H53d3fKfn19fVFWVtZBI9Odejqr32q1diBrZrMZ1dXVvSoTAAIDA2E2m+lKrKvn7G09V4OetOlq3vGfjT+77/fs2YMHH3wQU6ZMwRdffNGte26Wvjebzbjrrrtw8eJF/PLLL1ed4PBGjvvw8HAMHDgQ33//fafX3Sx9z8c999yDwsJCHDp0qFf3/xl9/8EHH8BsNmPmzJnIz89Hfn4+ioqKALT7Kubn5zsUuj1t07Xu++zsbHz55Zd49tlnUVJSQttvNBrR1taG/Px81NTU9KhMgsDAQLt7r6VcuSryceDAAVRXV2PNmjV47rnnMHXqVEyYMAFubm6C15eUlHRQHxLnmpCQEADtH1pNTQ3Gjx+PCRMmdPiLiorqtE3u7u54+OGHsWHDBhQWFiIuLq5HCZ5YxMfHIzk5uQOJOnnyJLRaLdXGCMHf3x8Gg0EwudGpU6cQHx9vV09LSwvS09M71EPO96btADrUf+bMGdhstl6VCQCXL1+GWq2mq8jY2FjI5fIO9ZjNZpw/f77X9VwNetKm+Ph4ZGVl2alFgavr++uFP7PvT548iTvvvBODBw/GDz/8ALm8exbam6HvbTYbHnzwQezbtw/r169HUlJSr8phcaPHfWtrawdNMh83Q98LgWg8umq/I/wZfV9QUIDa2lrExMQgNDQUoaGhGDVqFIB2s2NoaCjS0tIc3u9ovi0pKUFRUVGHvu+tXBFCcXExbDYbnn32Wdr20NBQnDx5EllZWQgNDcUbb7zRozKBdh+Y/Px8OzPONZUr3Y6L4TqG2v76668cAO7AgQP0GpPJxMXHx3MAuP3799PjSUlJHABu2bJlHa41GAyc2WzmOI7j1qxZ0yEPBkFLSwvX1NREf/NDbauqqjrcc++993Kenp70d09CbTdu3NghHruyspLT6/XczJkz7a7NycnhcnJy7I498cQTnEajsQtb27t3LwfALsS4sLDQYZ4Pf3//Xuf5cHd356ZOnWp3fO7cuZxWq+Wqq6vtnik9PZ1rbm6mxyoqKjqUef78eU6hUHDTp0+3O3777bdzvr6+XENDAz321VdfcQC433//vcdt56OrUNv09HS7XCo9adOJEyc6hNMZjUYuIiKCGzp06FW3vatQ25ux79PS0jgPDw8uJiamy7j9m7HvFy5c6HAOYXGz9X1bW5tgf588eZKTyWTcAw88YHf8Zut7ob7jOI6bNm0aJ5FIuOzsbHrsZuv7s2fPcj///LPd38qVKzkA3EMPPcT9/PPPXF1dHcdxjmVI3759uQEDBtjN16+++ionkUi4tLQ0eqwncqU7qKys7ND2n3/+mYuJieGCgoK4n3/+mbt48SK9/sqVK3Z5RzhOuO9JCogPP/yQHuuJXOkKV0U+qqqqODc3Ny44OJhbtmwZ9+GHH3IDBw7kBgwYIEg+/Pz8OC8vL+6ZZ57hli9fzo0cOZIDwH355Zf0OqvVyk2ePJmTSCTcrFmzuOXLl3MfffQR98QTT3Du7u7c6dOn6bV88uHl5cXdd9993HvvvcetWrWKe/zxxzmJRMI988wz9Jq8vDwOQLeSk1ksFm7YsGGcs7Mzt2TJEu6zzz7jYmJiOBcXFy4jI8Pu2uDgYC44ONjuWEFBAefh4cGFh4dzn3zyCff2229zbm5uXP/+/TvEcr/44oscAG7BggXcqlWruClTpnAAuO+//17wHaxevbrL9pPBc88993CrVq3iHnzwQQ4A99Zbb9ldR2K82fc1duxYbvLkydzSpUu5L7/8knv++ec5rVbL6XQ6uw+J49o/XJVKxQ0cOJD7/PPPuVdeeYVTq9Xcrbfe2qFNALikpKQu256fn8+9+eab3JtvvskNHTqUxsq/+eab3LfffttlmT1p07333kvzBqxcuZIbMWIEJ5fLuYMHD3bZT47w7bffcm+++Sb38ssvcwC4sWPH0vbn5+d3WuaN7PuGhgYuMDCQk0ql3LvvvsutW7fO7u/YsWNdlnkj+/7f//43B4AbPnx4h7avW7fObvFys/V9bW0t5+TkxD3yyCPcsmXLuC+++IJ76qmnOK1Wy7m7u3NZWVldlnkj+/65557jBg8ezL366qvcl19+yb377rtcYmIiB8BuDnZU5o2ec/ggsoKf58ORDPntt984iUTCjRs3jvvyyy+5Z599lpNKpdxjjz1md11P5Mq8efOueWJPoghgodFouIceeohbtmwZ99lnn3GzZ8/mJBIJFx8fb0cQOa77cqUrXHWSsaNHj3LDhg3jNBoN5+fnx/3tb3/jdu3aJUg++EnGgoODuU8//bRDPWazmXvvvfe4mJgYTqVScW5ublxCQgK3ZMkSu6Q4fPKxdOlSbsiQIZxer+c0Gg3Xt29f7q233qJaFY7rGfngOI6rqanh5s+fz3l4eHBarZZLSkqyI0BsW/jkg+M4LiUlhbv11ls5rVbL6fV67v777+fKyso6XGe1Wrm3336bCw4O5pRKJRcTE8N99913Ha5bvnw5B4DbuXNnt9r/5ZdfclFRUZxSqeTCw8O5f//73x0SyAhNBB9//DE3ZMgQzt3dnZPL5Zyvry83d+5cu9ULi8OHD3MjRozg1Go1ZzAYuKeeespuVcJxHNfY2MgB4GbNmtVlu0nCIaE//kTiaHLpTps4rj2z4wsvvMD5+PhwKpWKS0xMFOzfv/71rx2yFToC+cCF/th+vtn6nnwfjv74383N1vdksnb0x85dN1vfm0wm7rnnnuPi4uI4V1dXTqFQcMHBwdz8+fMFhc/N1ve7d+/mpk6dyvn5+XEKhYJzcXHhbrnlFm716tX/FXMOHz0lHxzHcT///DMXHx/PqVQqLiAggHv11Vft5A9Bd+XK3XffzWk0Gq62trbH7e8J+Xj00Ue5fv36cS4uLpxCoeAiIiK4l156SXDccFz35EpX6FnOahE3HPfeey+XmJh4o5vRK2zfvp2TSCR2KsD/JiQmJnL33HPPjW5GryD2/Y2D2Pc3Dv/tfe/l5cW98MILN7oZ1wXixnL/ReA4DgcOHMB33313o5vSK+zfvx+zZs3qdfa9G4mGhgZcuHABa9euvdFN6RXEvr9xEPv+xuG/ue9TU1PR2tras83a/osg4bhuZtwSIUKECBEiRIi4BrjqJGMiRIgQIUKECBE9gUg+OsFnn32GkJAQqNVqDB06FKdOnbrRTRIhQoQIESL+6yGSDwfYtGkTFi1ahMWLFyM5ORkDBgzAbbfd1ml6dxEiRIgQIUJE1xB9Phxg6NChSExMpPsp2Gw2BAYG4plnnqGb7IgQIUKECBEieg4x2kUAZrMZZ8+etdsWWiqVYsKECTh+/LjgPSaTyW6zIJvNhpqaGnh4eEAikVz3NosQIUKEiGsLjuPQ2NgIPz8/SKWioeBaQiQfAqiqqoLVaoW3t7fdcW9vb2RkZAje884772DJkiV/RvNEiBAhQsSfiMLCQgQEBNzoZvxPQSQf1wgvv/wyFi1aRH/X19cjKCjoBraoa0ilUthsNkgkEqqd4W92JJfLwbUno6N/5HqJRGJ3PVsOHxzH0Wv512g0GrtjpA7yf9JWUr9UKoXFYoFEIoFMJoPFYoHNZoNUKoVMJoNMJoPNZoPVaqVlKZVK+pvcT9oilUphtVrt2t/a2trheVgLpaPjjp6dtN8ROus38q+j+4WOSyQSepzfl/w6+dc5AvteCKRSKVQqFSQSCX0PNpvN7l2R907+z3EcFAoFFAoF3UZcqC6O4yCXy+l7BQCLxULfHylfJpPZPRv//0LtdtRf5Fryr4uLC0aPHo2ioiIUFxejqqqqQ3+wfe1ojJDxdjOBP4bJyp7te0ftZp+ZBfudCl3naCwSKBQK+k2y3ykpG4Ddt24ymeimh+R9kDkNAKxWK50PyHkyXtgxyoKUT8a0xWKBi4tLJz0pojcQyYcAPD09IZPJUF5ebne8vLwcPj4+gveoVCqoVCrBczer2YV8jOykQ37zJ20yWZAPl0y6MpmMfuBEuNhsNvrbarXCarUC+M/k0Vl/kA+f1CGXy2mZUqmUkiG2zQqFgpIRcoydQFhhQkAmVkI6WKHDlu+orfzjjgQce1yIEHQFR2U6Oi90PVs/e39X9wpdJ0Qc2XesVCphNBrpvSqVCmaz2e4dkrKtViuUSiUkEgmsVitsNhvkcjndulwmk0Gr1dJxRAQRn1xYLBZKTvgksjNC7OjZyT1yuRwhISFYu3YtNm3ahE2bNtltC0/GV2d9KDT2bhYoFAr6XgDYLSbIO3G00CDXOAI5J5fLKel3dC9bPrt7MkvaybxExgbpV5lMZvddKRQKmM1mOv8A6ECq+POaEBnhE9qb8f39t0M0YglAqVQiISEB+/bto8dsNhv27duH4cOH38CWXT3YyQRo/1jZc4D95E4ENH+Vx59MrFYr2tra6LUWiwVms5kKJUf122w2tLW10cmFaC6IcGJJBNsmsjICQEkJ+U2EkUKhgJOTE0JCQuDj4wOtVkvLIXWSyU6lUtEJixUYvZ10+BP59QR/Bct/P51pTboDvkaAhclkoqtKi8WC1tbWDpO2XC6HSqWCVquFUqnssII1mUx0pW21Wun7JESztbUVbW1tANrHa1tbG+RyOTQaDTQaDSX9pB3XComJiZg1axY4jkNCQgL8/f0FCZqQYOUToJsRbW1tHQiFEDrTHjkirAREQ9Wd8slCgxwjcwr7HZH5gYwPAHSeIM9EtBVkUQSAzi2sRoTMTURjR0C0pgDsyJCIawuxZx1g0aJFmDdvHgYPHowhQ4bgo48+QnNzMx5++OEb3bSrAjuJEK0FfxXAqsn5GgGWTJBjQ4YMAcdxqK+vR15enp0Wgr+C4pt5gHaBwk7i7KTBXznyJzOdTod58+bh/PnzCAoKQt++faHRaBASEgKJRIK2tjYYjUY4Oztj/fr12LdvH2pra+1UsYSAdSVYOtNCOJqYfX194ebmhvT0dAwcOBADBw5ESEgImpqasGLFCjQ1NXUo31GdQoLCkWmF32+dERAvLy9ER0fj0UcfxQcffID8/HzU19c7rIslZmq1mmo6yHgimi9Wa0V+k+cgwoAQCUImWUECgJ4jx1m1eVtbGziOo9oTcq6z/uwK5J7IyEh4enrCbDajrq4OLS0ttD5+2T3VTt1MYNvJH198syw5369fP4wePRr33nsvSktL8dNPP+G3336jBJGPzt4Dq2Ulc4vQdWQcsYsWdsyRevjzGXsPq0Hhfx+kPHahcy2JrIiOEMmHA8ycOROVlZV47bXXUFZWhvj4eOzcubODE+qfBYVCgcDAQPTr1w8VFRVobm5GYmIizGYzTp06hZycnG6Vw18ls//yjzu6TyqVwsnJCRqNBrW1tRgzZgwaGhpw+fJl1NfXo6amxm5CYP9Y3wfyL+sXQCYF1g7L2nLZ6wIDAxEXF4eRI0fCyckJfn5+6NOnD/R6PQICAiCRSGA0GlFSUgJfX1+kpKSgsLAQeXl5qKmp6SBM2WcVIhWOBD0fMpkMer0eISEh6NevHwIDA5GYmIi+ffsiOjoaPj4+KC0txVdffdVBm9CdCU+oTd25x5FAjIiIwNixYzFy5EhkZmZiz549SElJQXNzc6dlEuJmMpnopE8mb74dnQgCVh3Ovlf2Hva98FX25P2Te1jhQsog5LezvuG/Qz5pM5vN8PLyQmhoKE6cOIHU1FTk5eXRa7oqn//sNyt68hwERDuVlJSEtLQ0HD58uAPR7W49/LHPX5jwtZ78xZDQ9WyZCoUC3t7eaGhoQENDg+C3zbadP3Zv5nf33w6RfHSCp59+Gk8//fSNbgakUilcXV0xduxYLFy4EKdPn0ZJSQkWL16M+vp6vPDCC8jPz4dCoUBra2unZbGrUfZDZtWRBHzhTCYCnU6HkJAQGAwGZGRkYPr06SgsLIRKpUJDQwPMZjOamproSoj1veDXAdhP5kLCWMhGK5FIEB8fjwceeAB9+/aFh4cHgHaTmU6no4KrpaUFJSUlMBgMiIqKQmNjI9RqNU6ePGnnGMmqe9l2CUFowmTvUSgU8PX1xdy5c5GYmIjIyEg4OzsDAHWSU6vV8PDwQGtrK9UcdDY5OyIojiZ8IaEqREC0Wi2GDBmCSZMmwdnZGfPnz0djYyMKCwsdkg+2TnYVabVaoVAoKJm0WCxUK0HOk3FEVOrEx4NoOPgkgDj+sj4dbJ/zhZOj/uC/S0fCkJiJampqEBISguHDh+OFF17Avn370NLSInh9V6S0twKMdfbWaDS0L+RyOR1PLS0t1Gm3N/XwtRoshL4JAKisrERmZiYkEglqamrQ0NBATZ2OzDiO2sYfj4ScsmSVPc+STXI/O2749wYEBCAhIQFZWVnIysqiJhn+c7KkmNTFzgsirj1E8vFfgICAAAwZMgTPPfccIiMjMWDAAHquqakJnp6euOWWWzBy5EgsW7bMYQQBADqJCQl4FvwPnHyIzs7O+OyzzzB48GAYDAY0NDTA2dkZ/fr1w8CBA+Hj44OioiIcOnQIaWlpsFqtdt7obF18QcOfQPjtIOfI6pZMIq6urlCr1SgtLUV5eTmqq6vRv39/JCcnY/fu3fjyyy+xbds29OvXD35+fjAajThx4kSHiYx93u6oyh2RhdbWVpw/fx7jxo1DWFhYB3uyUqlEdHQ0duzYgTfffBObNm2ifg89VdGzKzZ+5BHbRv4kT/5eeuklDB06FN7e3nB3d0d1dTXKy8tRWlra6XMTEtHa2mpHJkkECznW2tpKIxgsFgtMJlOHtikUCupQSpwgWTOMWq2m12o0Gjt1ulKpRGtrK9V2KJVK6s8j1E+kHNY/hL1WqVQiMTERCxYswIABA+g4Y80PRL3Pv9dRX/WWfMTHx6OhoQFNTU1YtGgRVq5cCYVCgcGDB+Prr7+GzWbDkiVL8MUXX0Amk6G6urrHwrI717OEEQDuu+8+/POf/wQAbNu2DSkpKQCEn5Vd7HQFcj9r3iLkg5zjR7MB9osZ1lwbFhaGgwcPQi6XY9u2bfjpp5/w66+/CmoOWbML2y83s8nsvx0i+bjJ4eHhAZlMhtbWVoSFhdFVPxHYXl5eWLhwIe6//35IpVLs2bMHmZmZgjZ7AFQwsCpvArJilcvl9KNj7bhSqRRqtRphYWHw8PCAxWJBdnY2iouLqXlh3LhxqKurw5UrV+ikxPp8EJUtCz4hYbUbjlTzcrkceXl52L17NyIjI7Fy5Ur4+vrCYDDgs88+g1qtRn19PWpra6FUKqlDqc1mQ0tLSwd1LWkbS7RYJzUhjRD/fg8PD4wZMwZTpkxBUFAQgoKC6OpVaAVnMBjg6+sLT09PFBcX07J7MuGx74/vtc8HeWYvLy/Exsbi1VdfxcaNG1FdXY2WlhZ89dVXWL16NbKzs7vUrpA6CLkkfUTeNfu8fJInFApN/ggJI+/AZrNRMs2aVRQKBdRqNdzc3FBXV0frFiK2LFgTH/ss5DpnZ2fMnDkTgwcPRnZ2Nvbv349Tp0518PdgSV9n6I1Zg+DOO+9EXFwcHSNJSUmQyWRwcXGhGp97770XgwYNgkajwZtvvonMzEzU1tb2qj5HbSfvGQAGDx6MmJgY6HQ6AMCkSZNQVFSES5cuOdSecBwHtVqNwMBADB06FBqNBqWlpdi2bVuH+si/5I8NgyfjhhBNco71GyHnvLy8EBERQTVv5eXl1DTNLm7YaBxSP3FoF4nH9YVIPm5yTJ8+HT4+PvD394darQbQTggaGhpw6dIlxMTEwNXVlU4GM2bMwMaNG3Hx4kXB8oTC3oCuQwI9PDwQHByMoUOHwtPTE1KpFLW1tThw4ABaW1vh7e2NiIgIBAYGwsPDA66urnblAo5NB0IQssfy21deXo4zZ85g27ZtOHz4MAwGAzw8PJCRkUEnTFdXV9x9993Q6XQ0twTJOssKPiGh3V3BotFoMHv2bOzduxcymQwGgwHDhg0Dx3G4cuUKysvL4eHhgdDQUOpcCwBqtRrh4eHo168fioqKOq2D///O+quz8wEBARg4cCCGDh0KiUSCzMxMBAUFwWAwIDs7G5cuXaLmls5ME6zWghXM7ETO5kpgHQHZlTC72pTJZPDy8sLQoUOh1+vR3NyM7du3Q6/XQy6Xw83NDQkJCfj9998xePBghISEoK2tDZs2baJlOnJ6JG3qatwRsuPk5ITq6mpcvHgRdXV1du11RGy6a/LpLurr66HT6TBw4EC0tbWhrKyMEq+amhrs2rULFosFHh4eGDZsGLy9vVFWVgaj0dil+bUr8LUdBAMGDEBYWBiUSiWA9minznKYuLu7QyaTwc/PD3fddRdiY2NRXV2Ns2fPdrhWqG9ZoufIDMT/blUqFSIiIpCYmAiJpN3pvKamBlVVVVCr1XbmQFZL3FW5Iq4tRPJxk0IqlcLNzQ1PPPEE+vbtC61WS8+1trYiPz8fX3/9NebOnQsPDw/odDoEBQVh9uzZOH36tEPywaqb+cKcCAKhHBm+vr4YPXo0nn76aeh0OrS1taGqqgq//vorQkJCMHToULoqI7bxzogHfxXJXsuuZPh2X1ZNWlNTg8bGRtTW1tLVFzlHBJqnpyceeeQRuLu70/pcXV071M/6f5DjpD6+xzyBRNLuMxESEoK3334bR44cQV5eHlJSUpCYmIi6ujocOXIE586dQ58+fTB37ly7Z5FKpQgPD0f//v2xe/duhyYgof+zYCdnofYTKJVKREZGYsyYMRg0aBB27dqFS5cuwWAwQKFQoKyszKE5gf8uyXm+wylZeRLhRSJaSN8Sgca2S6PR0H8TExPx4osvIigoCIWFhTh58iTCwsKgVqsREhKCRx55BJcuXcKsWbMwdOhQXLhwAWvWrKECkPiRCKEzUkBW1jKZDLm5uairq0NFRQVKSko6qOA76+NrCbK4IOaXrVu3UkfYxMREvPHGG/D29sbYsWMxadIkKJVKaLVaaLXaqyIf7DfJR3BwMAwGAx3HaWlpgiY6hUIBd3d3xMTEQKPRoF+/fnjhhRcgk8mwd+9eSj74hJDN80PA+hDxzTDkHnYhodVq0b9/f4wdOxYA0NjYiMbGRpjNZhgMBtTX18PT0xMqlQpFRUVoamqyI6eiw+mfA5F83KTw8vLCt99+i/DwcKjVarsPorm5Gbm5udiwYQPWr1+PsWPHYtq0aXj22WeRlZXl0OQCdNQkEHs7K7CFQm3r6+tRXFwMX19fmM1mtLS0oK6uDufPn6dph4mQnjlzJlXd81fBBKyJg12tEjU+qx4nqlV2QiQht21tbSgpKbFLQEVWhxzHoaKiAqtWrcLf//53NDQ04NixY3jllVcAgDqZsc/JwpGwYc8/8sgjWLZsGYB24Xnx4kUUFhYiJycHP//8M+rr62m/DB8+HH369KF+C21tbcjIyMC5c+e6GA1dQ2jVxkKpVGLQoEFQqVS4fPkyWltbUVdXB6PRiB9++AE//PCDQ7Io9JugqamJPh+rDSEaBDZDqUQigdlshlarpQ6nCoUCcXFx8Pf3R58+ffDQQw/B3d0d5eXlKCwsRFxcHKqrq1FbW4v8/Hzs2LED3t7eKCkpwdatW/HKK6/QevhmREdwpAEJCwvDiBEjMGvWLHz66ac4f/48KisrBe8nfcKO8c76qTcYM2YMpFIpVq9ejTVr1iAtLc1u/yhSH0mGmJaWhsuXL3fq88VHZyY1oWdZunQpWltbkZCQAIvFQiPH+IiMjMSOHTvg6+tL+1smk+HKlStYtWoVtm7dalcva6pjiQRJGEauEfLFYLMdk4zH/v7+GDRoECwWC9LS0qDX63HrrbfCy8sLZrMZd955JyIjI3HgwAE888wzgs7E/H4RcW0hko+bDK6urhg6dCgmT55M7aNSqRTNzc04ePAgXFxccOHCBRw5coR+GBUVFcjKykJ6ejp1BO0MfCHDX/UTgUzIiF6vx9ixY/HAAw9QW/2GDRuwdu1aBAcHw8fHBy4uLjRr6LPPPovVq1fjyJEjkMvlHVa+pA3sCpklV6zmg+M46kRI7iNCi7SfTGzkWUhZI0eOxOjRozFq1ChotdoOaZKJaYZdUfH7iCU8/InIYrGgoKAAf/zxB8rKyqBWq6m6nhAPq9WK4OBgbN68GeHh4TQhllQqxZEjR7B//36cOXOmwyqc1NeZyr4zcsRvq9VqRUFBAeLi4lBeXo5jx47hypUrditkoYmWn+2Wf42TkxOam5tpv6tUKnoNGQ+kD2UyGdRqNX3nxAzm5+eHqVOnon///vjyyy/h4+ODjIwMXLp0CRkZGR0STdXX1+Pjjz+GzWaDyWSifUr8Pgj54fcJAf8c+TcxMRGPP/44/Pz8cPToUeTk5AiaFLoyf10rgfXJJ5+gT58+6Nu3L+666y4UFBTYkY+77roLEyZMgKenJ8aPH4/Lly93ICddga9hYOcBoeeYPn06EhISALQ/q7+/PzX5EgwZMgTjx4+n44Joopqbm3H//fcjLS3Nbq5hzSl83yiymGA1lAAo0SA5gcj5trY2/OMf/8DYsWNhs9mgUCiQmJiImJgYOm8YjUbqs6bVau0SFJJ2sKZYEdcHIvm4yZCUlITx48dj7NixNJwOaLf/fvfdd9BoNCgvL0dxcTF0Oh1uvfVWxMTEICoqChqNhqrAO0NXPgSs4CcfJTHrEMHR3NyMyspKKBQKDBs2DP7+/mhra0NTUxOqq6tpVENnzn2OtA3sR8+uhvgg97LJiTiOo6tgvV6PwMBABAYG0syaQqpVfnns/zur12azIT09HevWrUN9fT3KyspgMpmojblPnz5wdXVFnz59EB0dTeskq/7q6mrU1NTYJRpj+6Uz00dP/AgkEgk0Gg1GjhyJ1tZWFBUVIS8vr4NjohB54U/AjuplV65s5ABJfe/I7CKRSDBs2DC4u7sjPz8fx44dg0ajQUVFBcrKytDQ0GCnnVMqlWhqakJDQwOAjomwWHLbleBgx59UKoVSqaT7DAUFBaG6uhplZWVdPn9X76K3Ph8lJSVoa2tDY2Mj9eUA2r8JT09PDBo0CKGhoTCZTLh48aJdWvveoDvCVq/Xw8nJCUD7c5F3RBAREYGRI0dizJgxcHNzg0QiQXp6OnJycqhplB3v/HHGX3jwfT/I+2ZNw+Sda7VaDB8+HMOHD0dAQADVbLq6usLV1dWOzNhsNlRVVSE1NdUucSGfgLFJzERcW4jk4yYBsVVOnjwZY8aMQWRkJIB2h67m5mZkZ2dj06ZNANrV+05OTjAYDFi4cCFiYmKg1+vR2tqKS5cu2U0GQvWwEPJn4JMP/mqjubkZLi4uCA8PR2NjI0aPHg29Xo/q6mrk5+fj4MGDKCkpAQA7R0P+Cppv62WFOmmrUHQCPx6fmGXYdnp6esLT0xOurq7QarWor69HeXk5KioqqB8JO7GxAr+7E7hE0u6wmZWV1aFf5XI5Bg8ejPDwcISHh9t55RN/meLiYjQ2Nnarvu6aQRyRJWdnZ0ybNg0//vgjjQ4hmgpnZ2doNBrYbDY7Hwd+eUJCmN2HhWg62PdAiAM7pog2gWg94uLiUFFRgUOHDiE1NRVGo9Eu2kmlUtmFIpP7SRr2trY2KohIfWwbhfqD30+EFLW0tECpVCIqKgolJSXUpCGU6bO7fd9bQkDMhhUVFXYOmiqVCtHR0ejfvz9cXV2Rn59P38PVgN9OobaTLRTI+draWrS2tkKpVMLHxwfDhw9HUlIShg0bBq1Wi5KSEuzduxf79u1DRkZGB/MGf3yR71hIU8qaXtnIKkJ8dTod7rjjDoSHh0Ov13cw4wCgmpjGxkaUlJTg4MGDVLPG13KyhFrEtYdIPm4SqFQqTJ48GZGRkdDr9fR4amoqfvzxR/z888/0GEk2FB4ejtjYWLi5uVE/jJ07dzqMnACEhRh/kiYmDGKO0Ol0sFgsKCkpgb+/P1avXo2IiAisW7eOOrmlpqbi0KFDWLFiBcrKygCggyqTv7Jhhb0j2zN/jwWimuXnDmD3e2lra8O//vUvREdHw83NDQDw5ptv4tSpUygsLATQ0amOJUOsAxsL/mTsSLgpFAqEh4dj7NixGDp0KCIiIqjQslqtaGhowOHDh/Hmm2+irq6u07LYPulMiHUlaInq2s/PD/7+/rBYLNiyZQv69++PJ598EpMmTUJeXh7Gjx+PqqqqbmsOiLAmZIHvv8O+L6LxIeTBx8cHO3bswAcffIDTp08jOzsb9fX1dmY2kseDCAJ+dAIxy5FEZa6url2GmvLfIRFsvr6+6NevH86dO4eff/4ZBQUFditivpmGbQNb1vVW1et0OjzwwAMYO3Ysamtrcfny5S6z0TpCZxo+oWOspo7jOLz00kvQ6XQ4cuQIdu3aheLiYvj4+NDsx3fccQfy8vLQ3NzsMCqGTSDHJqJjSQg5plKp0L9/f9TW1tKoNo7j4OnpidDQUDQ0NNBFEkFTUxNUKhWN0JFKpairq6Oh1CQxnlB4rWh2uX4QycdNAKlUChcXF0yYMAHR0dHw8PCA1WpFVVUVXnjhBaSmpnZwIm1tbcXFixdx8eJF9OvXD9XV1XjnnXewZ88eKtA6gyP1McdxdpoHq9UKLy8v9OnTB1FRUaiurkbfvn3R3NyMs2fPYsKECWhqaqI5QCoqKuzSZPO1DGw0DSEXJISY3EMSE/Htz0IrT75wcHNzw8yZMxEdHQ29Xg+TyYTs7Gy4u7vDycnJbkXN17x01T/s9UL28dtuuw0TJkxAfHw8fvzxRwwbNgwBAQF2+VOOHTuG33//HevXr0dTU1Onpq+u3p0jrQSLhIQE3Hrrrbjtttug0Wjw+++/IzY2FsOGDcPo0aMxYMAAeHl5oaWlBSkpKXTzN9Z3oLP6VCoVjUQg7504+7KOzOyqVSJpz9JpMpnwyiuv4P7774dKpUJlZSWcnZ3R0tICk8kEs9lM6yFEhoT2smSH3RmXb8LqDOx4nzBhAqKiolBfX48dO3agvr7ejlR4enrS/V4yMzORm5tLfZmEzFWO+u1qERQUhCFDhmD48OHYtWsXzp49i9OnT/e6PEdtczQup06dSpOvkQXQokWLMH/+fOj1erp5Y1FREdauXUv7qLNwXKEcOgRs9lGpVApvb29cvnwZgwcPxoIFC/Dbb78hOTkZAQEBuOWWWzBnzhxotVp6H8dxlAgZjUaaaj0tLQ0pKSmUkJAwbeIcTdoiZji9fhDJx00AuVwOFxcXDBs2jIaB1tXVYfPmzcjIyEB1dXWHj9LNzQ1Tp06Fn58fDb1NT09HdXV1lzZKRyt+co6FVCpFVVUVLly4AA8PD6hUKvj4+NAVLQD88ssvyMzMRGZmpl1kCgEbAir0MQuZfYSuIT4Ebm5uUKvV8PLygpeXF+rq6nD27FmYTCZaN3Eis1gsqKiooH3DNy2xApFvZ+ZDKpVCr9fD19cXCoUC2dnZaG5upqSnf//+GDBgAOLj42lYH3/XYA8PD5qPwVGfO0J3riPXqFQqTJgwAX369MGgQYMQHh6O2tpaSCQSpKSkoLy8HK6urhg5ciS0Wi0aGhrQ3NwsuNNpZwKVaKBIH7KbBJL3QIgJm3odaCcp/fr1Q1BQEMaPHw9vb29YLBacOHGC7sPDV72Tsc1fqbKRWl1pH4Q0WqGhodBqtaiqqoKTkxNtr5OTE8LCwjB06FD069cP3t7eKC8vx+LFi6nJjC9Ye+vj0RViY2NpLhtfX1/s3LkTpaWlaGxsvOqy+X3mqP9IEsOAgADMnz+f7qnk5eVF339jYyOKi4tx8uRJVFVV9cgJll24kN+kbVarFfX19TTSrrW1FQ888AAmTJgANzc3hIeHw83NzW5XbKlUisOHD9MEY/PmzcO6deuQnJyMjIyMDs/LamdFXF+I5OMGQ6FQwGAwoG/fvoiJiQHHcaiqqkJaWhq+//571NXVdfgQSLbA+++/HyEhISgoKEBpaSkqKyu79dHwP/DOJmviVHbu3Dm0tbXB1dUVc+fOpbH+ubm52Lx5M1JTU1FVVWXnAEjqYMtmd6wlEFo98m2vJKOlq6srBgwYAL1ej8jISPTp0welpaWorq6G0WiEu7s7tUsTfxmyqme1R0Iala4QEBCAiIgImrugsrISLS0tkMvl1AQWEBAAnU6HMWPG2AlOUpfBYEBYWBhcXFxofgHSz2y7OoMQGZBIJHBxcYFKpYLVaoVKpcIdd9xBCRkZHy0tLbh06RKqq6sRHR2NO+64g2bMVKlUMJvNduTV0dgg9bLZJoH/pFcn5JSdyIk6nFwrlUoRHR0Nq9WK2NhYDBkyhGrCampqcOXKFVo/qykjIKtUNuIB6F7KcBYkJwVRxxOBZzAYEBERgeHDh2PixInw9/eHu7s7tFottmzZQjdSrK+vd6j9uBaQSCRQqVQYPnw4XFxcaBI/m80Gs9l8Tfw9ukPYOI7DTz/9BI1Gg4iICNx3333QaDQ0aon4+5SVlSE9PR1ZWVmorq7uVOvRVTvY74I4icpkMlRUVCA7OxuTJ0/G7bffTveTKioqgqenJ03pz3Ec9u3bh8zMTOj1ejz00EPYvn07Ll26hJqaGrv3xv+/SECuL0TycYPh7++PmTNn4plnnqFCcNu2bXjvvfcc7lQbGxuLW265hao01Wo1ZDIZ9WfoDOy25kRAsOpncoxVm5tMJri7uyMiIgK///47IiIiMGDAAEgkEsyfP7/D6kZIm8JfVRGCwobIEiEmRAi8vb0REhKC2NhYPProo9Dr9XSCAdrTYoeGhiIsLAzHjx+HTCZDTk4OysrK4OvrS9vB+pjwNS184cU//tZbbyEpKQk6nQ5qtRqHDh1CeXk5nJ2dMWvWLCQlJcHLywsA7EKByb8WiwUZGRlITU1FUlIS9uzZQ/utOxOd0IRInkWpVGLy5MmIjY1FaWkpcnJyEBAQgKVLl6K2thZqtRrFxcV04z+5XI7Kykqkp6dDq9XC29sbQ4YMsdNMCEUECQkG4qza2toKrVZrl7GUjXQhe7uQ911eXo4lS5ZgxIgRmDhxIkaMGAGtVouhQ4fi1KlTkEqldnsROTIVknEkl8shl8vp7qXsu2Tby0Iul8PPzw+VlZVoa2uDSqXCsmXLUFdXh+eeew7PP/881Go16urqkJWVhYaGBowbNw5btmzBxx9/jI0bN3Yw0fD76WqFmFKpRFxcHCZMmEAzuwLAtGnTkJKSgvPnz19V+cB/knvx+4v/vm02G7y9vdG/f39UVlbS7R9Y89jOnTvx3Xff0VBzPvjmU1ZrZTab7bSRpExyHwFZpD366KN44oknUFhYiMOHD8NsNuOpp55CcHAwNeVlZ2cjICAAgwcPpia2lpYW6odCTL2kDSaTiUbMiQTk+kEkHzcIEkl7BEJ0dDQiIyNpbo7t27fj1KlTDjMUkg3kRowYgVGjRqGurg5lZWWCiX6EQAQB35bOZqNknb6A9g/y+PHjqKiowObNm6FUKiGXy9HU1ISHH34YH330Ed0vhW/OIGDLYoU7SXVMSAdxcmXbabFYsGjRIiQkJMDNzY2ushoaGmA0GhEQEIDRo0fTOhISEpCamoqNGzdi3759kEqldqppfvgc64/A7x/STplMBm9vbxgMBrS1tWH79u1UK2UymXDgwAH069cPP//8M86cOYOVK1fi73//O7KysuDm5oZ169bRtkVHR+Phhx/G4MGD7ZJY8QVYd+Hm5obY2Fj8+9//hkqlQklJCS5fvgx3d3cYDAb6mzj0Ae0CLSAgAIMGDcL+/fuxdetWpKamorq6mpbL+v7wfW1Ie4kPhlQqhbOzMzWzsHutkHsJ8SATe1tbGzIzM1FTU4PKykqUlZVhzpw5WLx4Mc1WazQa6f1CxIeo1tva2mAymezyvJDrOiMuSqUSQ4cOxaOPPgoXFxdcvnyZvuPDhw9DJpNh0aJFmD17Ng1vP3PmDP72t79h+PDhqKurQ05OTpeau95i0KBBuO222zB9+nRs27YNv/zyC4xGI4YNG4Zt27YhMzOz12V3ZWphTR+ESAJAQUGB3fxAvhe5XA6ZTIbHHnsMU6ZMwcGDB/HSSy/ZRd+x3xj5zSc8/O+RNa8R4kq0vRaLBf/4xz+optNqteL555+nCxOr1YrZs2cjKSkJsbGxqK+vp7uCsz47pE1sRmXR3+P6QiQfNwgKhQITJkzAjBkzMHjwYMq8GxoaUFtbK+g0KpVKERoairi4OERHR8NoNKK6uhp79+7Frl27ulUvX7AKHedP8l5eXnBycoKPjw90Oh1UKhUkEglaW1tRWFiI6Oho5OXl2fkx9MSGyk6C/PTJJI8Ix3EoKipCWVkZfHx8cOjQIQQFBdH9G7RaLZqamtDU1AQ3Nzf4+vrSdhcVFXUI3xUiWPxN+1h/ApVKBYVCQQlaU1MTfHx8UFNTg5qaGly8eBErV66kKblfeeUV7Nu3D9XV1dBoNHj99dexaNEiuLi4gOM4ZGVldXj2roSUoz60Wq10d9mvv/4aOTk5qKurg1wuR1paGmpqauycN93d3REVFYX58+fDzc0Ner0eOp2uQ5QUX1DwjxNzAJn0pVIpNduQe2w2G008RkgK3zRHNiLMycmB1WrFvffeCwB2ifTI90GcTVkSy9812ZHqnv8M5N16eHhQswvQThAJScvLy8M777yD3NxcSKVSGAwGTJw4EU5OTnBzc6P7BDkym13N6nnIkCEYM2YMBgwYgDVr1iA5OZk6vhJz69VsIscnRmyECf86lkhaLBa0tbXB29sbMpkMLS0tKCsrw6FDh+Dl5YW+ffvCycmJpl0X0jKyZbPgkzg2RB34z8Khra2N+iex2Y05jqMEmuwHFB0djcDAQLi6ulIiQ5ILstpX0gci/hyI5OMGQSaTISYmBmPHjoWvry+MRiNKS0vpRmRs6JxMJoNSqYRer0dsbCz69u0Lg8GA9PR0ZGdnY8+ePTh06FC363Zkn+ZHkchkMvj7+yMqKoqaPdjJnawyycZXxF5O1O9qtZrag9va2mA0Gh1G4rAfPyvwFAoFRo0ahdraWppoKSIiAidOnIDNZkNCQgKd/IkjmouLC3x9fREeHo7Q0FBUVVU5TJ9M6na02y7rwEpAHE8HDhwIk8mE2tpaFBQU0BUhAHz66af0GZRKJX744Qc88cQT0Ol0sNlsKCwspCtFMnk6EmBdqfBNJhMqKytx5MgRrFq1qsOutCwkkvaEY35+fpg+fTqam5shl8vtEto56iOh/5OoFUIG2JwerEmEjXph+5mE1dbX11Pz3ciRI3Hu3DmcPn2akiZCSgmBYckH60PCF6hdCX6JRAKdTkfL12g0GDhwIGw2G5qamlBXV4fTp09DJpPB1dUVfn5+mDhxIpqbm1FXV9etyLKeQqFQICwsDOPGjUNUVBSMRiO+/fZbGI1G3H777YiLi0P//v3puL0a8DU0jsxGQmZUYrIoLCzE8ePH8e2332LMmDFwd3eHr68vWlpa4O/vj6Kiom47xQqF5zv6HvhtZY+T/zs7OyM8PJyahxQKBVQqld1YEXo2tnwR1wci+bhBsFqtuHTpElpbW9HS0oKCggIsXrwYe/fu7ZAkjGQXHTt2LB577DG4urriypUr+Pbbb7F27doebSLFqjD5uTL46k+dToe//vWvGDhwIAICAqhpqLKykiaq+uKLL/Djjz+iqakJRqMRWq0Wly5dwoABAxAbGwtvb2/odDrU1NQgIyMDP/30k90kx19p8VOdy+VyDBw4EGfOnEFOTg4KCgqwZcsWPPfcc1Aqlfjtt98wZ84cSCQSNDc3o6KiAq6urvD09KTOnUVFRTRnA1n1kKgMoUgcPhHhOA5NTU124Z633XYb4uPjsXHjRuTl5VHzCVsWeUYXFxfcd9990Gq19P6wsDD4+vrSbJ1CxIe8B3blJyRMjUYj8vPzMXPmzA4TJn8ilclkKC8vR3p6OgCgqKgIu3btwo8//tih3K4EN8dxMJvNlFgQIsL6DJFNzliNEyF1KpWK7jJKHFGrq6uxatUqZGZmwt3dHWVlZTRdOiFpLJFhSTCpozN1Ob8/pFIpvLy8YDKZaORGVFQUHnroIWzatAk//vgjZs2ahfT0dGRkZKCgoAAWiwXnzp3DN998g507dzrUJvYGxLy3fv16yOVybNq0CStXroRarab+QXK5HEFBQfDy8kJ1dXWPwov5YPuKjVQj/coHec6mpiasWbMGjz32GH744Qe8/fbbsFqtWLhwIQIDA+Hj44PnnnsOsbGx+Oabb7q9OJLL5Xakg28KJSY9offNmmlI6GxpaSnVgJpMJtTV1VFCzA8BZ+u5Vu9ThGOI5OMGwNfXF4mJifjqq6+g0+lQUVGBwsJCuzS/BLNmzUJzczMUCgUWL14MZ2dnXL58GUeOHMHPP//c470cWOctvl8GOc5xHOLj4zF9+nRMmzYNOp2OqtSbmppw4MABHD16FHV1dVi7di3Gjx+P0aNHU1VoW1sbNBoNXWG0tbXRvCDZ2dlITU3tsLJi28NmyJTL5aioqKCb1e3duxcBAQEYO3Ys3NzcwHEcWltbceHCBWzevBnbt2+HVCrFzp07ERAQgKioKGzevNnOb4Cd4Mjzs33B9gm7utq8eTOMRiMmTJgAiUSC7OxsSCQS3HHHHZg/fz527tyJM2fO4OLFi8jPz7frT9Ypsa6uDj///DNNx96Zap6tX2hV70hb4gjEPyYpKQkXLlzApk2bcPLkSYdZcbsyGxBiwQpzYtJSqVTw9PRERUUFTRpGTDBEkDQ2NsJisWDSpEl49tlnYTAYMGPGDFRVVdH8FWwkC/EpYYUEMZnJ5XIasSO0Cub3p0TSvqX69u3b0dzcjISEBPTv3x/jxo2DQqHA3Llzcffdd1NhVVNTg4qKCvz4449YvHgxSktLO/3+erOCDgkJwZgxYxATE4NVq1bh1KlT1J+L49pzVsjlcvzxxx8oKCjodXIxAB0Et5BvDTlH3ivQrh3y9fWlDsLx8fG44447sGXLFrz11lt44YUXMGfOHPj4+MDJycnhLsN8ED8glmjzw/bZTSfJt8zOacS85+7ujrCwMMyaNQs6nQ4SSXvU3jvvvIP9+/dTEkL8flgfJRF/DkTycQPQ2tqKmpoa6PV6tLW1obi4GMnJyUhJSYHJZMKwYcOQlJSEyspK+Pn5wc/PD+Hh4dRfQK/Xw2AwoLa2tsdOUUKrCb4A5jgO4eHhmDJlClVJX758GcnJydi/fz/uv/9+zJgxA2azmYZykigH8gGTSaGyshKnTp1CZGQklEol1RA4mpDJxDJs2DB4eXnB1dUVMTExUKlUCAgIwMSJE+Hr6wtXV1cAoJtH/fTTTzRCYsaMGXBycoJGo4G3tzeN2uH3A7vC4adi5jsuchyHM2fOoKysDLt378Y777yDsLAw6PV6DBkyhKrJZTIZzGYz4uPjERERQUOEBw4cCKVSidraWjQ2NmLw4MH46quvHKrN+SRDaFJ0RAw6m0BHjBiBsWPHom/fvtizZw8OHjxI82l0BSFzButvQcYCx7VnHfX09MRDDz1EN0Pcs2cPWlpaaP4Vq9UKnU6HqVOn0lwNaWlp2L17N7KysiiJYMcnIRes5oyE8Ar1B1+1zr/GYrEgJSUFCoUCJSUlOHv2LJRKJW677TZUVVWhrKwMMTExUCqV1BSzatUqlJSUdEn8e0oMQ0JCMGrUKEyYMAEffvghdu3ahaysLLv7a2trkZmZiYqKCjQ3N1+VsBTqKyEThJAWRKFQoE+fPpBKpdDpdAgMDATQngE1JycHmZmZNNEf2UxQiNTwFyGsxpBtI5mb2NBulvCy+70A7dlz4+PjKUE6deoUDhw4gPz8fDQ2NlKCzGpT2LHCzoUirg9E8nED4OzsjICAACrkTCYTmpqaUFNTg9jYWEyZMgV33nknCgoKUF9fj5iYGMTExMBqtcJsNqOqqgolJSVXHd8vNBmQP3d3d/Tp04fundHc3EzzffzjH/9AcHAwgHb1q8ViQWVlJZqammAwGOhqtrm5Gfn5+fjjjz8wZMgQNDc3Uwc5/gqUbRNxrI2NjUVgYCBCQkLQ2toKNzc3eHp6Qq/Xo7i4mDo3VldX48iRIyguLobBYMDgwYOhVqshlUrh6ekJX19fO7MLmz3VkVASOp6Tk4OMjAxIpVLMnz8fCoUCvr6+8PT0hMViQVRUFBUIgYGBiIuLo173JPdAXl4e8vPzqQDuijw6snezfdgTEELm6+uLyspKXL58uVN7vKM+If+ypg+LxUKflyTOGz16NGJiYhAeHk4dgsnqlOM4eHt7Y8yYMVAqlTh79izOnz+PP/74A1euXKF9wxc4/D5hSWJPybjVakVZWRnS0tJQUFAApVIJjmv3MSkuLkZBQQEqKiogl8spQTlw4ICdNqY7WqvuQKvVIjg4GH379sXSpUuRk5NjR3DIxncymYyaf64G/PfZGTlgz5F3TTITu7i4IDg4GIMHD4bRaKSRaCScmmjHuiIffAhp+VgTm9A3K5FIEBAQgAEDBmDYsGEIDQ2FUqlEfn4+Tp8+jcrKSqo5I+Wxv8kxIa2wiGsLkXzcAIwdOxYrVqyARNLu/BcVFQWr1YrDhw9jzZo1CA0NhdVqhb+/P5ydnalGgUTCfPDBB/jmm296XT/50PjOnQCoLdRkMqG6uho+Pj40CRRJyx0cHExTcJvNZpSUlGDFihU4fPgw5s2bhxMnTqCwsBDl5eWorq6GTCbDhg0b7MpnhT+boAhoV81XVFRAqVRi5MiRsNlsdjtpchyHnTt3Amhfef/jH/+gE4XRaMTRo0cxYcIEqNVqeHt745577sGnn35Kw4EJ2EmXvzMuP7xPIpHQ0FqSC0IikWDcuHGYNWsWgHbhMXr0aIz5/wnGWAdMkvzrwoUL+OWXX5CVlWVnimHb1B3C0ZlK35GpQSqV4vvvv0dwcDCGDh2KW2+9FRs3bqTko6uyhdrF9htg7y9jsVhoqOyYMWMwfPhwuvcK0Y64u7vjq6++wnvvvYfDhw8jMDAQ5eXlNAQbAO1HskJlTXOkTvKOiKnPUcpuR2SKaH+I4Ll48SIlqcRsR/qDJR7d6a/uCrGMjAxcuXIFZrMZxcXFdvvkAO3m2ttvvx2zZs2CRCLB0aNH7fa6uRoIjTshIkfMr9XV1UhJSUFiYiIMBgNGjBiBWbNm4d1338WwYcMQFxcHo9GIZcuWITc3V9C8S8pj6yFzAwnvZRcK7LtnSRG7aLJarZg3bx5uv/12DBw4kC7Q9Ho9PDw8cPDgwQ55fNhIN3ZLAJF8XF+I5OMGYMuWLTh79iwuXLgAoD1Pw4gRI7B161Y4OzvTj8/JyQlNTU10H4Ly8nKsWrUKFRUVV1U/O5GSuvhkgGRSbGtrQ3Z2Ni5fvoza2lpMnz6drrguX76MCRMm0Bh7i8WCZcuW0dBL/kdOJnd2ZcGP9iBChtj2S0pKkJycjNraWpjNZshkMgwdOhQbNmyg2gyWMDQ3N2PPnj14+umnaWisj48PtRXzTSrsBMO3f7NtZ/vOZDJh/fr1kMlkqK2thVKpxLlz5zB//nz4+fnRBGNEA0DKqqyshFqthoeHB7KysuiKXqgeoXcmtAoVap8QfH19sWnTJvj6+uLMmTN4+eWXcfLkyauK1iDvj03JrtFo6DssLS3FE088gbi4OLpXESFxRJBotVrqNMlxHAoKCih5IEKGdbhlBQP7nRiNRpprpDfPJJRYrbNxQI51pvXo7LwQfvzxRwwYMABlZWWCxPThhx/G8OHDYTKZkJqa2oGc9BY9aSf7TZPkb35+fjAYDGhubsbixYuhVqtRXl6O9957D1lZWWhpaXFIqNlkXnwyyzqGs+YfkhcIaI9+YomMk5MTysvL6XzBcRx+/fVX7N27FykpKbR8Qjb45lW+I6qI6weRfNwAGI1GFBYWYsmSJXjsscfg7+8PAHQHVqA9fPLMmTPYtm0bsrKyUFJSgtbWVpSVlV3VpNNV1koiFFpaWlBdXU33AImNjYXNZoNOp0NqairOnj2Lo0ePoqamxm6FR1ahbMZSfkQJ3wbPtoGYI0gK8OPHj6OhoQH19fV0FXPs2DEUFRXRSY2v/m9tbcXhw4cxZMgQ6HQ6u5TuQtkS2QmItfuS61g7MAHZnfXs2bOora1FdXU1nJ2d6cr7ueeeQ3JyMlpaWqDRaDBo0CAcPHgQ+/btw8mTJx2+QyEhIEQ8upoY+Stzs9mMjIwM9O3bF4MHD0ZbWxvWr19vp7rvTOPCL5NveiHRLqzN3mKxoKamBmfPnqX2epvNRsOeSZ+TMUdSs7PvgoRH8jVJbN1Go5FmNyXvUsiXpjt9x3/PXV3PHxt80tEdvwGJpH1vIB8fH9TW1mLfvn2C9xC/KolEgrCwsG47cnYHPfVvaGhowCeffIK2tjb4+vrCxcUFQUFBNHTabDbTjebMZjM1bfAXOmQxwtbNmlXI2OCb3dj5he17mUyGMWPGICIiAkA7mUhJSUFmZiZKSkpoHex8w7aHPdeT/hDRc4jk4waArBp+/PFHjBo1in40EokETk5OaGtrQ1VVFQ4ePIiff/4ZJSUlneap6E39BEKqYqvVioKCAvzxxx8oLS1FeHg4nJ2doVQqUVVVhePHj+PQoUM4ffo0nTg6U9k7EqhCIOSjpKQEFRUVSEtLg1wuR2trK53A0tPTBVXC7MR05MgRmEwm+Pj4IDs7u0P+CX7bhGzIQuCvhktKSlBaWgqJRILdu3dTbcaAAQNw7NgxNDc3043b9uzZg1OnTiEnJ8eO5HQl7BwRIn4fCLWfjC2yHX1ubi6sViuMRmOnvh49EUaEfBDzGWkzx3HUH4iQE3Z1C4BuOkdynvA1D/w+FyIVLOFhI10cPZPQGOU/r1A/8s8LvT++OaC7ID4lFRUVDnep9fT0hEqlgtFoFIxKuRo4GjuO6mhtbcUff/yBkJAQREREICQkBIGBgUhOToaTkxNaWlpQVVVFy2HLZCGUuZb9Y7Wkjr4L0k6FQoG+ffuif//+8PLyouO8oqICVVVVdiHJjsYAf3EkEpDrB5F83CBYrVYUFRVRzYZOpwPHcejbty9qamqQkpKCH374AQUFBddk4ygCvmlBaFK12WzYu3cvTU3OTthqtZqGpfEnDiH1raNcAazdnLX78lc3xNmVXWEbjUaoVCraj+wzkWM7duzAzp076YRCVlBsVAS7+gH+o4rlO/I5EkqkPlL/4cOH6fFbb73VbsLkJ3BzVL7QbyHwzQSd3UNCIydMmICPPvoIZ86cQW5ursPrhYSFI6FN2kDem0KhoEnHyPMT0kG0Emq1mq6Ogf/sAUNCtNk8DkSAsH1JTHLEWdDZ2ZlmeSVkhi+wHJlB+ISus77o7JjQNZ2ZbPhtIBsjlpeX2+22ymLgwIHUZLdnz55r5u8BOPbv4G9DwF5nNpvx9ddfIyoqCiNHjkR8fDyefPJJ3HbbbYiKisKqVas6zB/k3bJaLyGw44X/jthvmm2Tq6srnn32Wbq5ZGNjI/UfImWy5bN/RDNKxquQRkbEtYVIPm4QOI5DY2Mjvvjiiw5hY6zg7an3fk9ABDr5ONkcDeQ8u7qTSNrzIrB7r7BtZn+TY44mF1IPqzomwoQIHTLBAO39FRwcjMjISOzevZvew/pxsBM+34xCohj46t2rgdCKje0roeuuVX0E3Rkfw4YNw+zZs+Ht7Y1Fixbh448/RnJyMj1P+oG/6uusXrZ+Mn7Y3U1Z2zqrOiflcRxH83KQXCessGPbBNgTPX6UEFnREnIphO5otBxdJ0So+e/Y0f1ChEcIVqsVt956K2w2m8PFxrRp0zBy5EiEhoYiLy/vqrOb8kEcPPnzAgF/rJEcPmlpacjMzMS6devQ2tqKlJSUDu+vs3LY8tjU+cRMwyaZI+1iFxIk6y0xvclkMnz77bf44YcfcPfdd+P333+3Mw+zIGWxmirWgflq5wgRjiHhRGp3XdDQ0ACdTgegdyGR1xvsKoLd54SNViAfOOsnwZITQHgi4WsXHKlvSf1kV1RCugDYtYHU6+LiAr1ej7KyMjtzDzshCWkayDX81buQ9gP4j1mMXMeWQ84LPYsjdGYG6M51BN0RNnzzDNC+I3BQUBB8fHxgsViQnZ1Nd0zmX9sd1buQuYIQSSIMyG8ioID/mNTY3YhZcxi5hu0PVv1N6iFjkqjaybgh75zvC8EKFiETltAY7YqMsCtyR2DLuNqwWAA0d4qzszPy8vKumcMpgSPziBCB6q5WR6hfhfqelEcy3pL3S0yG5B2zWjEAVEvBce3RU4MHD4anpyfy8/NRUFAAX19f5Obm2vUV/3lIhl1CXNm5QiJp38Oqvr6e5hYScW0gaj7+D8LRqlzIXs03FwgJN/7/+eUKTVRC6nz2uJBJqLm5GUajUXB1yX8mftscESB+u4SexRH4Qo2Pzurk1309CWpFRQUqKirs1Nhd9RlpU2ftFyJz7IqVJJrjk1l2Vcxe313TCIkmYskGIWZ8gtYVceoO+O+oq/uu13qOhLVfL/DnAr7/jdAY4aM7Y55vChMad6zmkq9p4o9bsmgymUw4ffq0nTmlpqbG4cZxbN388tm5UMT1gUg+bnJ052Pu7vVdrc75q0wC1szCJw2kPr7KlD9BsBoNViA5sq2y5IedGIg5hs0XQtSupC7SZvY3/1mJIOaHcToSfPz/80kH/5wj8wW//zojdOx9jup2RPq6Ipj8stjffELh6HqhSZp9XxzHwWg00nwdHMdRXx12jw6yUy1JaNfZjsNWq5WWR6IoWE0K3wFa6JmEnpu9rjOS3JkQdNSP/61gn5k1yZLjrFaURWfCmyU1fO0k0RARkiqR/Mf/ih0PbFl8HzbSTraNpC62bnaMsj5LQt+oiOsD0exynUDMLkIOgXK5nIakEV8EklSJ/TCbmprg6+sLi8WClpYWNDc302ukUimUSqVd9kepVAoXFxc6gUulUtTU1EChUECr1cLd3R15eXnX7YPqyYTLfuBCURuOBIFEIukwaZFy2DbwQ+g6CzEW0l5ca3v6tYBCobBzpiTCmmgZSNI3MoGyBE0ikVBnYXK8sbHRLvW12Wy2m5yF7P4cx9ExaLVar2kU1rUCeSagY0gl69PA19yQ6/nmAKHVNwv+mOSXx5YL/IdMseOTEHdyL1/w8wmk0POxbeRvjkjayLb/WpiCrjXIuAZgZ+LlkxnSP3xfLvY52ffFvkOWDAtlGWb7n/iaiGaXaw9R83Gd4e7uDolEQnd8NZvNdE8Um80GlUpllzaZpOcmUQEWi4Um8NJqtZBIJJRcEPIB/EelXVlZSYUU+XgtFguamprsHNmul5r/WpTraBUpNME4uoYvLIS0BEJtv9m5OOtgSwiSzWajTpvAf8YCO4mTaBCysRsZT3yCxk7EjgQu6aebkaABnfvp8J1rO9Ne8O/ja//IeaFj/PqFyA05zhIH9j6h9gkJVaFn5Ttc8/tF6PfNAJaECWlJ2eRgrPMx0byyz02enfUHYp1qyXdAnFQB2M2noubj+kIkH9cZ5KMg4Yb8iYMcI45T5Dj50AjRIGUJ/UvAprMW2v1TyF/iZoCQql9opSek+ibnyb3sMf7qlV+eEDG5mQkIn3SxWiMyzsiKmvzmPzfwHxU00b4JJYEj17POm+xYYsu7mSEknNlzQkJc6P+daeP4ZXXVFkdalq7a1VVZQhD6tjq7/lpC6LvszX38cUfO8UOB2ffj6B6gY1QXXzstpMkSce0hko/rjJaWFhoqVl1dTSMAVCoVzUtAmHdLSwsVGMSWTcwqRMUOtHu9k3LYyBK+9ztRv5JrgZ5vvHWjwBIE8gyAfX4L/gTDqqjZFQ/rLU+uY//lr15vVqFK/CMkEgn1cyBmFLLJF/GJYfuCjBMAdqtAcj0bFsv6wrATPCEorD/GzRqG6Ig8XG2ZQkSWlM36mvAJhaMxyh7n+0+w5h6O+4/vAv+5HIUkk3MsqXS08+/NBDayju8gTcCOb37+HrPZ3GGOY+c/frQe61vC91f6b5kr/1shko8/AYRMkJUkmUjc3NzQ0tJCBz2bDId8AGq1mnr319bW0qRLRJtCMlcSkwohLBzHQaPRdHDAuhknH/5EzU7EpK1CW2kLkQbyrKzvAvmXfW4itIVU0nzzw80EMhYI2SQmNkI8WT8PoD0TpUwmg0qloiY7MhmT9PQskSAb4JHjra2tlOySnWhvtvHTHQiRECENRGe+HUJlsmSNHBPqH/4YFdpgkYw7UqajdrAaMP7Knl3d81OTd6YFulrwv7PejhF2/gLsv0XW5ELOKRQKupeQUFskkvb9g4g/FCHiLNkwmUx2xIxNVPffONb/WyCSj+sMYo+3Wq3QaDQ0LJA4mLq6utoRCqIGl0jaHaPYSYSQFzafAolRJ8maLBYLFTQkMyj5GPnJnq4VrsXqkl25sft3AKAmK3ayZycnvlmGtesCHZ+brJRY8sJf9dyM4L87YlojmjG+KYlkwCREhVVTk7HEmlzUajWam5sBwI7cWiwWqqEj5bOJxG42ODKvCGkFWKFPjrP3OTk5YeTIkVAoFMjIyEBeXl4HLYMQAeAf45MavtM0qzlhtVSkTXxCQggFqZ+c5z8/v43XWrsXHh6OyZMnIykpCTU1NZDL5TAajbh8+TI++OCDHpdHBD8haWxbybEZM2ZAo9GgtLQU+/fvt9PUmc1mu2+BXXyR52f3ASLEg9VAkX9Jv9+s4/y/HSL5uM5gBScLjmuPLlCr1TSrIUs42D+z2QyFQoHIyEjU1tbC29sber0eJSUliI+PR3p6Oi5fvkwnMHZSZR22+JqP3pAF4l2u0+ng4eEBg8GAK1euUIFfUFDQ4zKFbNGdta2ziZNfVneekS+0b3byIaTFYk0i5E8oTJncR8w2jnYgJmCFMdGYCKXWv5nAf+984iH0LbLXsefJ6vq2226DWq1GbW0tampq7O4XEvZdtY/fNpYgCX2jnbVf6LyQBuJaLjrkcjkCAwNxyy23YPTo0UhISMD+/ftRUlKC0NBQxMfHIywsDPn5+R1MHY7Akih2zJK2kzGt0+moBpA9x4L/DfA1pPyFCNG2sO9AxPWFSD6uM9jwWaICJx8XWWUSr22ZTAa9Xg+bzQaj0Uh3+LTZbHBycsLUqVNx9uxZDBw4EOHh4bh48SJee+01fPjhh/juu+8A/IfU2Gw2ODs7o7Gx8ZoICeKn4unpCYlEgsjISMTFxSE+Ph67du2iG15t2rTJzlbd3UmHb7vmr+rYdgiRFfYZ+c+rVCppdBAxJfAhNDH1FCQaiTy7VquF1WqF2Wym/14NWMHEn9CJdgMAXdmRvmLNcxJJe0ZZnU4HrVaLqqoqSiZMJpNdeSzBIM6sQiGh1xps+4mvAiHxzc3Nds60QhvJ8X8L5aNgzU18Acc+s0QiQXV1NcaPH4+mpiakpaWhurrarixW+8a+f1Im+6+Qto11FOaPd7YO9n7AXlso5DTJ/32tzInElDF8+HDccccd6NOnD+rq6vDTTz9h586deOSRRzBhwgQMGjQIxcXFPdIcsP0D/Cf7KEsISkpKYLFYkJeXZ2e+4jvsE+0wCa0l17FmHXZMC/mT3azm1/8FiOTjOoOov8kKkzhOEoJAtB1KpRJarZaqsyWSdh8QV1dX9OvXD6NHj8bixYtRW1uLkpISmEwmzJ8/H/X19bjzzjvh7u6Of/7zn9BqtXQiIypFIlTIBN4bhIeHY9iwYXjkkUcQHBxMt44HgAkTJkAikSArKwvHjx9HQUFBt+vhT5Z851AWZALV6/VoaGgQzFPAF8hOTk6Ij4/HhQsXcOedd8Lf3x/Lly+nxI9tA//+nuKNN96As7MzSktLUVlZiVdffRVZWVn4448/kJaWhu3btwsSn+6C1TiQdhKbt8lkoqGz5LdarabCmQgeb29vxMfHY8yYMXj22Wexa9cu+Pj4oL6+HtOnTxf0I2HrZyf66zUxjxgxAv369YOvry/q6+sRERGBwYMHo7m5GU8++STCw8MRGRmJ5uZmbNiwocPuvKxzJhHyrGAhhIN1VmS/O3KfwWBAfHw83nrrLWzcuBE7d+5EZmamXdmkX9jf/P+T32zUGnvekSM0C0ek2NF45WvJ2HquFm5ubggLC0N8fDzkcjmSk5ORkpKCbdu2AQC2bt2KP/74A7W1tT0i3EQjx5pPFQoFJe8kt9G+ffvo9QCoEzYhpYRskG+F/9wmk4m+A3YMSKVSqo1mNz0UcX0gko/rjMbGRjr4/f39UVtbSz8WNhkSANTV1UEikcDJyQkRERF47733cPnyZUilUhgMBnAch7Vr1+LChQuwWCx48MEHYTab0dDQgJaWFvj6+qKkpITa8zUaDc0eCXQMu+OjMyEcExODmTNnIjg42C7RGbviCw4Oxueff46KigocOXIEWVlZUCqV2L9/v8N9KPgTuKPkTxEREbj11lsxfvx4vPHGG5g5cyacnJxgs9mQmJiIxx57DP369cO4ceNgsViwadMmBAUFYeDAgZgwYQJMJhPc3NzQ1taG4OBgrF69GtnZ2XTDKb7qvbtwd3dHQEAAwsPDMX78eHh6elJfCw8PD8THxyM4OJgK94qKCuTn5+Pnn39GaWlpjwQCm7WVFSiEwJJsomy+A3a1J5fLYTabER8fj/vuuw8SiQSJiYkAAKPRCA8PD1RWVlICw8+fQHyVWPPg1WhzVCoV4uLiUFdXh9bWVigUCowfPx6zZ8+Gr68vJeMqlQqurq7gOA7r16+nWVIrKirg7++P5uZmbN26FVlZWXZ9Qv4P/Id4Exs+X7XPj9yRSNpz87S0tMDd3R3bt29HVlaWoHmKdYRktXh8s4dQHXwi2b9/fyQkJODw4cPw8PBAUlIS+vfvjwULFqClpcWhCYMlN0QQ88n5tdJUxcTEYOLEiaiursby5ctRVlZmpw2qra2li4OeahL5zqB8sNFWRLPBmlbImGTHP5kD2e+CrY9oBwHQujtbBIm4NhDJx3UGcaAiNnbWc5tM5mwYmFwuh6enJ2JjYzFs2DCkp6ejpKQEWVlZKCoqwu7du6lmQavVQiqVIiYmBuHh4bj//vvx4Ycfwmaz2dnnCYRWaN1FU1MTysvLMWjQIABAXl4eiouL4efnh5CQEKoqJ8JYqVQiJCQEDQ0NOHToUKebYDkymbBEQCKRwNfXF7fccgtmz56N8ePH04ydffv2xYMPPojg4GAMHDiQChO9Xo+QkBD07duXTiatra0YPHgwvv322w7tELL5dwWpVAqdTod7770Xfn5+qKysRFpaGpqbm5GYmAhnZ2eoVCpERUXBzc0N9fX1KCsrg16vR25uLuRyOWpra+mqsTPw/QMA+038CFghyJKT8PBwjBw5EqNHj4avry8AUC1Sc3Nzh4yShMSyEzufdPYGpM8CAwNxxx13UJORXC7HoEGDEB8fDycnJ0q2WltbkZaWhqqqKgQGBiI3NxcmkwkVFRX0/11lWhUi3Z29Z4VCgYiICCQkJKC4uBilpaVUW8Z/biHS3plfhhC5lkgkVCs1bdo0hISEwNXVFXFxcQgNDcWjjz6KlpYW1NfXo6qqCpmZmaisrLQLLRXSpnTVpp6C49pT5Gs0GqSkpCAtLQ01NTWUcAPtmojebnonNBeQcc+a/ITmCUIiOI6Dr68v/Pz8oFAoEBQUBLPZjNbWVpjNZhw5coRqg/nRc+z7EMnH9YVIPq4zyAehVCrR0tJCfysUCvrBkg+AhDSGhIQgMTERVVVV2Lt3Ly5duoTKykpIJO07LJLrN2zYAK1WC09PTwwfPhxTpkzBunXr0NjYaOcxztqiO1MjdiZMrly5ghMnTuD222+HzWbDuXPncODAAYwaNQru7u7QaDRobW1FaWkp+vXrh8TERERGRuLChQtdqi6FBBmfeBByo9fr8fzzz9utqmw2G/7yl79Qv4rm5mbMmDGDrhSbmprg4uJC+8NqtaKqqor2P6mHH47YXcjlcowePRoSiQQnT57EmjVrkJ+fj0WLFqFPnz7w9/eHt7c3/P39KTkbNWoUcnNz4eLigrS0tG6RD9JXrEMhu+pWKBQ0AooQWfLOtVotkpKS8NJLL8FgMFBiwnEcqqurUVRURLemZ8+RRGSk3zQajaCfTXdBVOchISEYM2YM5s6dS7V6NpuN+g4RomwymVBcXIwff/wRFy9exOjRo3Hw4EFYrVbU1dUhOTm5QzuEzB98s4uQXwarxXNzc8OoUaMwdepUnDt3zs4fhpRD3gX7TtgFBjuGWcIhRFbkcjliYmIwfPhwjBs3DkOGDIFGo4HVakVbWxsWL14Mo9GIoqIipKenY+vWrUhJSUFlZSWNajOZTB18FdhviNUmXA0RIWa9iooKtLa22kXjXS2E/IlYkwprSmFJCbmOfANRUVEYN24c3NzcMHz4cDQ3N6Oqqgp1dXVISUmhvk6srxl5h6xvzPXwaRLRDpF8XGcQ34u2tjbo9Xq78Fm+6jwgIABmsxnDhw9HUlIS4uLi4O7ujsbGRjQ3N6OtrQ3Ozs4A/pMcymazYcOGDcjOzsby5cvx1FNPYcOGDbh48SKdIBUKBRQKBeRyOVpbW3v8QXEch5CQEIwcORIcx6GyshL19fUwGo1obm7Gjh07wHHtETC33347gPYVeVNTk11ooiPwzTekTgKFQoH3338fQ4YMoark5ORkuLu7IywsjE4gubm5OHbsGD799FNwHAd/f38EBQUhODgYTz/9NIxGI44ePYpHH30UDQ0NHdoltILsCh4eHnB3d0d0dDTeffddnD59GocPHwYAfPnll3j22WcxadIkAO0J5zZu3Ij09HQsXboUffr0AdCuReoOhDRnJISWCB/WVELCuSWSdifTJ598kqb4J9fk5ORg8+bN2L59OyUqZFwRrQcbakuco9nQzu5CKpXC29sbWq0W9913HxYtWgSJRILa2lpkZmaitLQUgwcPxnfffYf+/fsjODgYe/fuxVdffYXi4mK0tLRg165dXdYj1DbWFELGEGv3J/1L8PDDDyMpKQk6nY6SDz6BYFfcBI4cPvnn+Norf39/LF68GP369UNNTQ0++eQTzJo1CzU1NcjOzkb//v1RUFAAo9EIlUqFd955B5WVldi1axdOnToFrVaL7du30zT7LEG9Gi2VEIimcerUqViyZAnOnj2LwsLCDtf1huiw4eNsFAobkcV/Ln5Ul1KpRFRUFCZOnAg3Nzd89tlnSEhIQEJCAoxGI0aMGIHTp0+jqKhIkCiScF2ySGT9w0RcO4jk4zqDOD8pFArU19fbMXoXFxdotVoa2eLr64uFCxciOjqarsqLioqoj4inp6edLVWlUqGhoQEhISEIDAxEQ0MDRo0ahWPHjiE7OxsSSbtXemNjI4xG41U5nBJhRYRcYGAgamtrsWLFCnzyySdwc3Ojjopka+tjx45h8+bNHVaNjsAKVgIXFxesW7cO8fHxUKvVVHhERkaioaEBJ0+exLp16+Dm5oaMjAyqJfLz80NDQwM4jsODDz4IpVKJzz77DBs3bhRUSfd2RZifn4+ysjI0Nzfj7bffRktLC9RqNYYPH46QkBDq57N161ZUVFTg+PHjyMzMxKlTpxAXF4fZs2fDw8MDEydOxP79+zvd7Is4LROByWo32traaDIl0oeE5MbHx+OWW27Bzz//jHnz5sHDw4M617377rtITk5GSUmJXZgjEdZGo5EeZ7PMEq1LT9TrSqUSt9xyC5566ilERUWhpaUFe/fuxcmTJ3H+/Hnk5OTQcFa1Wg2lUommpiZUV1f3qB5Wg+XIP4KvESHHpNL2zRldXFyQnZ2NQ4cOYdu2bdRRmP1++QLeESFhr2XbQCCXyzF06FCoVCqcP38eO3fuxLfffoutW7fSd0s0QsS/KDc3F3PmzMGsWbNw6623oqysDGfOnEFZWRkN2+cL5Wuh9ZBIJDhw4AAkEgmeffZZvP7667BYLMjNzcX9998Pm82GQYMGITY2Fs7Ozqirq4Ovry8aGxuxYsUKh++E7SeSEZqkGCDtJeONzXdCTMvR0dFISEiAi4sLQkNDERAQgKKiIixfvhx79uyBr68vJk6ciKqqKiQnJ6OiogJA+yKOTdxH3sfV9pOIriGSj+sM1qbIrsgIebBYLFCr1fDy8kJoaCj1kzh9+jSdRNgtw9nJDmhPDGUymVBfXw+O41BYWEjV5/xt5XsbasdxHBoaGlBSUgKgXYgYDAaEhobCYDDA3d0dBoOBrpRTU1Nx8eJFZGRkUKHGlkWegw/+sxGicfr0aVy5cgWxsbEYPHgwnaAaGxuRmZmJAwcOwNnZGZWVlaipqYGvry8kEgl1jHN3d8cXX3yBnJwcuLq62oVn8lej7LHuwGQyUYFfXFwMJycnhIaGYtasWTAYDDAYDMjJycHRo0eRm5uLgoICVFdXo7a2FnfddRfMZjMuX75M31lnYEkBEf6sip1NykRCFBUKBTw8PBAeHo7AwEC7cGCg3ZE3OzubklOy6iT9wU+nzka89HRXVLlcjsjISPTp0weenp6ora1Fbm4ujh8/jpycHJSXl/eovK76SmjV78jvghVmKpUKISEhyMnJwaFDh1BdXe3wu3Hko9STMSSRSBAUFERD7M1mMyorK1FeXm73LjiuPdSY+H24urpi4MCBCA4OhsFgoIsWch9ph5BJs6dtZFFcXIyjR4+if//+MBgMiIqKQnx8PKZMmYLk5GQkJiZi/PjxsFgsKCsrQ15eHnJzc7tVNquxYk1b7PfJ+h4BgE6noxGBOTk5cHZ2Rm5uLh1bVVVVKCkpQWFhYYf9svjmKNYMw35vIq49RPJxnUHUh2yYLfmYFAoF6urq4OnpibCwMMTFxUGtViM3NxcnT56E1Wqlnv0kDwPJeUDMNlqtljoxSqVSqvFwd3dHfX29XcgYua83qK+vR3FxMQBQ34uQkBBMmDABOp0Ozs7OkEqlaGhowNGjR5GRkYGCggJaf1erHSHVNdDubLh8+XJ4eHhgxowZ8PX1hVwuR0NDA9LT03Hx4kVcvnyZtsvFxQVhYWGwWq0YN24cpk2bhpqaGnz44YcYMGAAwsPDcezYMcG6rhZ6vR7BwcFITEzEzJkzYTKZUFhYiPPnzyM5ORlpaWk0lFWv12PEiBGoqanB2bNncfny5S7fDSGyrIaIpDwnKmqiFSEmFIPBAF9fXwQHB+PWW29FZWUl3dFWKpUiKSmJ9iMxsZC8IPzoCdJfhMT21KlQJpMhODiYamuI30ZVVdU1VW2zGgi+4GKvIWDNH1qtlprqkpOTce7cOTufBolEYvf9sYSVzUzKbwM7xoUIuFwuR1lZGdWcsefZ62tqalBfX4/a2lqUlpaC4zgEBARAo9EgKCjIjsTx/SauFRoaGpCZmYlNmzYhJCQEHMdh+PDhmDdvHhQKBeLj4xEdHY2ioiI0NzfjwoULOHjwYLfawB/TLKEm74Ed/66urggKCkJcXBxiYmJw+PBhtLW14fz58zhz5gzdJbympgZXrlyBXq+nzvhsNlWWgAoRVBHXHiL5uM4gH4tKpYJaraamANaRj3hhz58/HyqVCjqdDhqNBmfPnkVubi61v3McBxcXFypoZDIZKisrYTAYqOrw7rvvxuzZs3Hy5Encf//9UKlUNDS2t57bEokEzs7OMBgMkMlkKCkpgUqlgr+/P5577jn6sVZWVmLDhg34448/kJubS8PvHKmbWTiylXMch/r6etTX1+Obb77B7t27MWzYMPz00092mSYlEgm8vLzg7+8Pm82GdevWwcPDA+Xl5Vi/fj2GDBmC5ORkuwysRKgS7QExK/WGoMnlcvzlL3/BbbfdRsNXly9fTp1gL168SJ9JpVIhIiICf/nLXxAUFASLxdLtVT/rEEeIAKvZYh1x29raMG/ePEycOBGDBg2CRCLBfffdh7vvvhvPP/88TCYT9u7dS8kb0cLx1c/suCGO0mTi7smYkkql8PLyopO/RqNBSEgIFixYgJ07d2LPnj3dLqurPgL+M4b4YZuk34igIc/g5uaGAQMG4JtvvsG5c+dQVVUFrVZr5+StUCjg5uaGiooKSvZIHaRPhMLF2XoA2BGY1tZWLFu2DDt27KAEvjNYLBYUFxdTR/a2tjYsW7YMv/32W4fsq/zkY2wfXA2MRiMOHDiAefPmwWQywWg0YtKkSRg/fjy++eYbPProoygsLERxcXGPxghJhEfIBtD+vRAzDFnMyWQy6HQ6LFq0CLGxsdBoNLh8+TI2bNhgF1ZN6o6OjsbAgQPx1Vdfoba2FgBoeDr/GyILPrJLuIjrA5F8XGeQCby5uRlarRYAqP2c4zjcfvvtGD58OAYOHIhly5YhKioKffv2RUxMDAICAlBeXk7DEMmERswbhMi0trbi1KlTmDZtGkaPHo3o6GgqzJycnGCxWOjGSuxmaj3BgAEDMHv2bEgkEkRHR9NnIKp/oiYOCgpCXl4e6urqAHRvxcVfafBt5mRiaGxsRHZ2NoqKiuwSS0kkEtx2222IiYlBdHQ0Ro0aBWdnZ6xcuRIbNmxAQUEBmpubqXlEyMTCN/n0BAqFArGxsZg0aRKio6PpxHfLLbfQKKe9e/dCJpPhypUrKC0txYkTJ8BxHFJSUrpdj0qloqGVQhkt+ceVSiXy8vKoOeqVV15BWFgYJBIJzpw5g5iYGBw6dAhlZWVwdna2C5Ek/UFIDisMWB+QO++8E4cPH6Ymuc5AzHe1tbVobGyk7brnnnvQ2tqK9PR0FBUV9ajvHdVDnoH8dkRI2HHm5eWFfv36wcnJCQqFgpozZTIZfHx8cPfdd2Po0KFITk7GqlWr7JyW+SGbQu+IbRPx42J/NzY2wmQy0VwrQpBIJHBxccHYsWMxZ84cxMbGQqvVYsKECdi0aRMV0Gxd/P/z23Q12LNnD1xcXBAYGAg3NzeoVCpMnDgRKpUKzz77bI+IB2suZLVt7KaJ5N9p06bhkUcewYULF/Dhhx+ivLycanrZPC5kHJeWliIlJQWXL1+2yw3CmqaJVqu1tZX2F9noTsS1h0g+rjPIipqomlkHQbVajZKSErS2tkKn0+HIkSNITk5GZGQkAgMDUVdXZxdeRspjJzey22hzczPkcjn69u2LkpISpKWlUWdWdnXWm4x9Li4u0Ol0NNGTRqOxO19VVYWCggJkZmZi//79aGho6HFKZf5vIdLCTwPOXjN16lRERUXBYDDAx8cHJ06cwKlTp5Cenk53Du6q/t5OyIQAEi0T0C6M+vTpA7lcDpPJhIcffhgKhQK//vorjh49Ck9PT+Tk5PRoZUVWcqSdZKIm54jPBgA4Ozvj/vvvx/DhwxEWFga1Wo0xY8bgyJEjUKvV0Ol0kEqlCAoKQkREBDw9PdHa2ooNGzbQ/mVXjqz5kJ2Yx4wZg9TU1G6RD6PRiJ9++gn9+/eHVCpFXl4eCgsLqbYvPDwcDz30ED755JMuV/9dgW9qEdJE8I81NDSgtLQUFosF586dQ3V1NYKCgjBhwgR4eXlBr9ejvr4eoaGhdBM+IZNKZ8SBXMMnBsQ00NbW5jBxm0QioZtRGgwGxMTE4Pz58zh58iRN1MaSdxKuX1VVRZ3dCfg5gHqL6dOnIyoqCrW1tUhLS0NqaiqcnZ2pHwvZ26U7YDVErA8OP/29h4cHjRz09vZGSUkJrly5QqNUWIdoJycnTJs2DRaLBb/88gtdlLHEmk1tT0w+BKLZ5fpBJB/XGWSyJvuLEAFB2HxLSws1u6SmpqKyshLJyckICgqiHtl8Oz6JdFAoFJDJZHSyCgoKwqhRo/DVV18hPT0dWq0WtbW1VCD2Fr6+vtDpdA6zK5aUlCA7OxvJycn47bffely+kH2coCvNiVwuR2hoKMaOHYvAwEC0tbWhpKQER48eRU5Ojl1iqM4mkquxjdtsNlRVVSE/P586mba1tVHHV6vVirvuugtarRbNzc1obGykWomeCABWC0F+s+moWec4lUqF0aNHIykpCa6urgCAOXPmIDc3F15eXvDz84NEIsEtt9yC4OBghIaGoqWlBWfPnkVdXR3Nj6LT6VBZWYmWlha73T+B9r7nb/LVGYxGI3755RfMmTMHWq0WxcXF1HSj0+kQFxeHl19+mUZIkRVqTyHkYMmPcBIiAg0NDSgqKkJLSwtOnTqFxsZGxMbGYsaMGXB3d8fJkyeRmZmJYcOGwd/fHyaTyU7Dx5LYrhwVhcgRKYs9xmbmdHV1hbOzM7y8vBAQEAC9Xo8zZ85g5cqVduY2mUwGZ2dnjBs3DleuXEFGRgbOnj3b4dmvBjKZDF5eXrjjjjuo03RKSgqSk5MRFRUFb29vxMXFoaioqEdjnJAN1gxK+oK03cvLC1qtFi0tLfD09ATQPt71ej2cnZ1RXFxM51eNRoN58+Zh37592L59OyXnrFmGRNeQY2z/iEnGrh9E8nGdYTQaoVAo4OrqSs0nZEJpbm7G999/j+joaFy5cgVVVVVoa2ujkxBJSkYm/YaGBqoeJ/Z5ADQ8MC4uDi4uLmhsbERVVRUVDr3d1Ix8hLfeeiv69+9PJwR2IpDJZCgsLMTx48dx/PjxbpXLOgHyJ2p2AmcJiVC7gPaU9UeOHKFmgfr6evzrX/+itvCu2kHKY+2+PV3tEPLx8ssvY8GCBXjssceQkZGB6OhoqFQqWK1W1NbWwsXFBY8//jhGjx6NWbNm9XjlyTraKRQKWjYAmj+GrPxqamowa9YsnDx5Ev369QPQHhn1z3/+k06yxM+IwGq1Yu3atSgrK0NRUREuXbqEBQsW4B//+Ad+/PFHun8MITwmkwkPPvhgj5/jqaeewqBBgzBx4kR88sknANr3cwkLC0NLSwuGDh0KhUKBwsJC1NfX96hswHEODqCjeY097+TkBHd3dxqhERUVheHDh+PHH3+EwWAA0J7XxcXFBQsXLsS3336LgwcPArCPwHCUrI4lB6QN7J+QmUar1cLd3R1arRZ33HEHXFxc4Obmhrlz56K6uhrBwcEYMWIEDhw4QJ9Hp9Nh7NixmDx5MlxcXHDmzBksWLDAbnxfrVB1c3PD0qVLcenSJZw9exZnzpxBUVERfv31V3h6etLou71793Y71B6wD3PlR+sReHl5ISYmBsOGDcOePXsQHh6OxMREDBo0CMOHD8dLL72E1NRU1NTUoKamBj4+PpgyZQo0Gg3eeusthxFcxIeGJLkTtR7XFyL5uM4gE011dTUUCgXdz4VMOK+88gqmTJmCSZMmYerUqThw4ACam5tRXV1NnfLa2trovh0tLS2Qy+XUKaqlpQV9+vTBsGHDcO+99+L555+nURVGoxGurq40u2dzc3OXaaiFMH36dERGRqK1tRVOTk4A2ieEqqoqrF69GocPH8aVK1dQWVnZZVlCWg12xcFfMbJEhY/JkydTD3u5XI4LFy7g+PHjMBqN2LZtW4eVpJeXF5ydnampo66uDi0tLXb1X82qMDs7G0uWLMGyZctgtVoxcOBAGj7dt29f+Pv7Q6lUwt/fH3/729+waNGiHglXdlVG9qtg7eFms5lquXQ6HVasWIGQkBB6jG8OU6vVHXwPAgIC4Ovri9jYWIwePRoHDhxARUUFHbdkDxZiU++NPby2thbJycmoq6tDQEAA8vPz4ePjg4CAABw7dgyvvfYaWltbcfbsWTz00EM9Lp+/cmXHlSOTHgBMnDgRixYtgru7OziOQ1paGmpra1FdXY2CggK4ublh4MCBmDlzJtasWYO8vDy7sUn6liXoLNisw+Q6ch+rnWF9NiIiIjBixAi4u7sjJiYGoaGhcHFxwcaNG9HS0oIdO3bgxIkTtI5hw4bhlltuwdixY3HhwgVkZmYiJSWF9gPfx6k3uPPOO3H//fejsrISu3fvRnZ2NnXA3bFjB6ZOnYrIyEhqNu4J2B1n2ezMrFnkyJEjqKqqQnp6Oh577DEkJCRAqVRCrVZDrVajqKgIEyZMwPjx4/H999/DxcUF586dw+nTp+3mE37ZJHMr0SxLpVL6jYi49hDJx3UGmYiIxoOdDMlqSa1WU80IOUYc3ojZgEz27IeiUqmg1Wqh0+mgUqlQVFQEvV5Pd7YlTqYqlaqD6rk7kEgk1L9DIpFQ9aREIkFhYSHOnTuHPXv2UAfQ7qyAhSZ+/kTdHc1IdHQ0EhMTkZCQAIVCgdraWrS0tMBkMiE5ORm1tbUdBGNoaCgGDRqE/v374/jx4zhy5Ajy8/M7bVtP0NbWhtraWupNb7VakZOTAw8PDwQHB2PAgAGUBPYm0yw7BvibdpH3wubpqK+vR35+PvLz83Hp0iUYDAbk5eXBbDbD09MTixYtgs1mQ0pKCoqLi9G3b194eXkhNzcXpaWlkEql2LNnD4qLi2ldxF+JZIDsDYiGKjc3F9988w3q6uqg0+kQFhaGOXPmUOHf27wfQoKfbxbhQyKRIDc3F/v27cO9996LgQMHoqSkBC0tLSgpKUFTUxPkcjmqqqqQkZGBzMzMDuS2s/rZeh1pX4SS3wUHB2PChAnw9PSEk5MT0tPTce7cOVy+fBlVVVXIzc2lZNrT0xPh4eHU7HHu3DmkpaUhPT29Qz/0dqz7+/sjPDwcQUFByM3Npd8ccYQuLS1FS0sLnJycEBYW1mPyQczS/L5gtRRGoxFXrlzBsWPH0LdvX4SEhMBms6G+vh4lJSWoq6tDamoqzGYzSktLYbVa4e3tjbCwsA79wG6gyEaRkf4RnU2vH0TycZ1BBAYhHiQcjwgIJycnmlHR09OTpk8nGUU5jqPaC5J8iKTRViqV8PT0hL+/P5ydnVFYWEg3MiMCm6TGJv/vLuRyOdRqNTw8POgHyvqOlJaW4vz580hJSbEjHb3xnXCkcuaXSaBSqTBs2DAMHDgQfn5+sNlsSE1NRV5eHsrLy5GRkdHBoc/Z2RlRUVEYP348pk2bhsrKSpw7d87ummuN8vJylJeXQ6FQ2E3Kzc3NuHLlSo/NFawDHmuCYTU3ZMVmsVioI+Lp06fxxx9/ICoqCufPn4fJZEJkZCSef/55AEBOTg5OnDiB8vJyBAYGIjk5Gbm5uVCpVDhx4gTdBwOwt5VfTZ+1tbWhurqahtdKJBLk5eXh0UcfBdAetn3lypVel8+ubLuL9PR0/PLLL5g+fTri4+NhtVqRnp4OjuPg7e0NHx8feHt7o7S0lObkEBrv3SEffDIkZGLkOA4eHh6IjIyEXC6HVqvFr7/+ik2bNsFms6GsrMxuDEVERKBv374ICAhAQ0MDrly5QjPwsria9zZo0CD06dOHJjdkfXM4rj0VgEqlojk4epqki5/bg9UCkXmzra0NDQ0NyM7Oxo4dO9CnTx86N2ZkZKCpqQkpKSnIyMiAXq+nCzUnJyfBPmYz+5Jj7Pwp4vpAJB/XGSRuXK1Wo66ujq5aLRYLnJ2dUVZWhoqKCsjlcnzwwQd47rnncPz4cZSUlMDHxwcuLi4YOnQo4uLiUFhYSJ3LNBoNPDw8MH36dPTt2xc6nQ7FxcXYtWsX6uvr7XxCjEYjrbcrkA/Qzc0NQUFBCAwMpPtxsKYJUl5X2pSunEfJh86uBNmNogD7FNhkH4wHH3wQ/fv3BwCa2vzChQt2ql4yeSmVSiQkJGDMmDFITEwEx3E4cOAATdJE6r1e2Qw1Gg1GjBhBSaRSqcSFCxd6rM5lQ13JuyTPSn4Tf4z6+nqsW7eOkl2ZTIYzZ87AYrHAxcUFBoOBmu6In9Bf//pX+n6J9k0ul1N/IdKfV6P1cAS1Wg2VSoWsrCz06dMHX331FT7++ONelcUKEQI+GREiDbW1tcjLy0NjYyN8fX1hMplQVFSE0aNHo0+fPhg3bhxiY2Op0OeTR0IE+XvFsNoGMt7YdpDffF8Rm82GxsZG5ObmYs+ePXjooYfoN1BUVNTh27r77rsxfvx4KBQKfPLJJ/juu+9oWnhSF38/m57268svv4zQ0FBUVVXB09MThYWFqK6upu168sknERwcjObmZqSkpPRqjBOzHslETNpK5lLSz83Nzfj999/x22+/UR8ospkkx7VnQe7Tpw84jsOePXuwevVqu74F2scdyfVB/si3dK2cc0UIQyQf1xkkv0Rrayv0ej2MRiNaW1up4C4rK8OWLVtw/vx5BAQE4KWXXoJOp4PJZKLCgTgYymQyzJ07F+fPn0d+fj48PDzQ3NyMvLw8FBQUYMeOHXY7gpIPhzhTkb1g+Jg8eTIiIyNhMBhgNBrRp08fNDQ0oLy8HHPmzIGrq6udB/rp06eRkZGBxsZGwYm+u+Crwcnk7CgyQa1WQ6/XIzAwEAaDARqNBiUlJZg1axauXLkCi8WCkJAQLF26FB4eHti+fTvy8vKwZMkS+Pr6QqPRQKFQwGw2o6mpyW6SuZokbJ3ByckJer0elZWVsFqtWL16Nb7//nucPHmyx07AxJlUKpXC2dkZzc3NdJM4lUpF+4511tNqtXQDOhI1QUKzW1tbIZfLkZCQAKvVih9++MHO4c9sNnfwCSFJyIj9/Vph8uTJeOCBBzBmzBi6h8mQIUNw9OjRa1K+kODnZ4wl5zUaDaKionDHHXdgwIABiI2Nxfnz53HixAns3r0b33zzDU3mxY4dNgyalCdk/iHnhNrItkMikeDXX3/F3r170dbWhk2bNsFkMjn02xo4cCAMBgPdgZrN2UJwNWNcKpXi8OHD+Omnn3Do0CFkZmbSfDsymQzu7u4AgI8++ggbN26ExWLpccg0CR9n+4dsLyGRSOjGeXyzrNVqpZooYh62Wq24fPkyamtrUVVVherqashkMprHg+ROImSMOGyzvjmi5uP64f8k+Xj99dexZMkSu2NRUVHIyMgA0K4p+Otf/4qNGzfCZDLhtttuw4oVK+Dt7d3jugiBIAm+yEqU5Mwg+x/U19ejsLAQgYGBiImJgbu7O3bs2AEA6NOnD8LDw+n24nK5HHFxcTAYDFi+fDnKyspQXV1NhRkhHxqNhn6sNpvNbhXEYty4cUhISIBarYbZbKYkiYRakvvJJFZeXo6UlBScOXPGTnMA9E6lK+QIJ7RKJanTx44dSzUxarUaM2bMoKsehUKBIUOGQKvVwsnJCQ0NDYiIiKBlFRYW4rvvvkNBQYFdf7DP11tHPD5IRs/4+Hg8+OCDyMnJQXFxMcxmc68zJ7ICjXVsJJMwu/Ms8QHhm7UsFgsKCwvx17/+FUuWLIGbmxv69euHuXPn4qeffrJzZiX38jOC8n1xrga+vr7o168fBgwYACcnJxw9ehTnzp3r9m6/3QXbfr7fBdDeN7W1tXjzzTcxZ84chIWFwcfHB4cOHcLu3bvR1tYGk8lEM/cS8M1QQtEufG0HaQ/5lwg7vrnQaDTSb5j4f/H9Rcjvbdu2QalUwsXFBbGxscjKyuqwh8nV9J2TkxPc3Nyo4/SpU6foOaVSifDwcBQVFaG2thZtbW0oKyvrVZ2s3wV/jPH3e+G/R5VKRcet1WpFY2MjjcThE2lWk0iOE60JqZs1A4m4tvg/ST4AICYmBnv37qW/WTXyX/7yF2zfvh2bN2+GTqfD008/jbvuuqtXqzCS34Nk3iOrEeJQKpFI0NLSgvr6ejQ2NuK3335Dfn4+/Pz8sG7dOnAch4SEBAwYMAANDQ2oqKhASEgI3b/k0qVLqKioEMzeyZofiKMWyY5KQOL1g4OD4eLiQlcAjlTWEokEly9fRnp6OnJycrp8/q7ICN8Gyyc6LEhq6yFDhlBHWCcnJ0yfPh3u7u40XwrxA4mOjqYrl6ysLDQ2NiI9PR3fffcdzSIptCK+FpBKpYiKikJcXByGDh2KESNGYMOGDcjLy+tR6KEQhIQXAX/VyEYMkGttNhtqa2uxZcsWPPXUU9Dr9fD29sbYsWPx66+/2vkl8cvvTn8pFAo4OzvD1dUV1dXVXSZ50+v11J+ira0NWVlZyM7O7lbiMkf9I+RDQdovZM4jx5qamrBx40ZERkZi1KhRNPnf2bNnqZaJX5dQvULX8Ek2e50j/w9HJiSh/s/IyEBVVRVcXFyof4MQertA0Gq18PT0hJeXl53WUKfTwd/fH8OGDUNycjKKi4shkUh6Hd4v9HysloPNd8MmvuOntidJxi5evEj9Xoj2lrx7NgCArwUjpiSRfFwf/J8lH3K5HD4+Ph2O19fX4+uvv8b69esxbtw4AMDq1asRHR2NEydOYNiwYT2qh9gQJRIJamtrqbOo2WyGWq2maj6JRILGxkYcP34cp0+fpgl2WltbUVZWhl27dtGVPt8OSiIQzGYztFotJRhWqxVKpRIWi8Vu62gWLi4uOHz4MFQqFcaOHSs4KbJCSKlUYtu2bcjMzOxRPwiBb2YRmozZ9rS2tqKurg7h4eFwdnaGQqGAQqGgKcP1ej29j9jvq6ur4efnh3//+984efIkCgsLBYX3tSYearUaS5cuRUJCApydnXHs2DFs3boVaWlpNHlcTyGU6ZYlhWSlTCZNIeFFJl6lUom+ffsiNTUVLi4ucHd3p1FRZMVHUkvzV5h8csqHh4cH/h973x0d1XV1v2c0vWjUe5eQECoIiSYQmN6MwQY7LjF2HJfEn9uX/OIkjtOcxHGKHZcvxYnjgnHBjWJjwDQbEEWIpoqEGpJQbzOjqSozvz9Y53Ln6Y0KIIck2mux0My8d1+77959z9nnnOnTp2PBggX46KOPUFZWxrKB8qDz5GvqtLS0wGg0XtHENdK94y1GYqJGwuDgIP72t7+hpaUFmZmZOHToEJvMxFyF9D/dH57U8tcq3If/nV8oCMO+hccUgtrOzc2FwWDAhQsXsHXrVqaZuBZ9WyK5JNrW6XS4cOECdu/ezfpKTk4ObrrpJqxbtw45OTlobW29okzKBGEf4y1DNF4Cl5Ps0f+UGp3Is16vR15eHs6fP4+Ojg5WT4f6NvU53uLBu9DELC8TuHb4ryUfVVVViIiIgEqlQm5uLp577jnExMTg1KlT6O/vx5IlS9i2kydPRkxMDI4dO+aVfPCl1QEwX+fAwADkcjkUCgUkEglLq24wGNDa2somUI1GA6VSie7ubrbCUqvVHr78/v5+ViROpVJBp9PBYrGwwlf+/v4wGo2sYqnJZIJGo2EvlUKhGOJ6MZlMKC4uRnx8PG644QbRa6MVAYnIeBfPtYAw6ZJw9U4wGo0oKCjAzJkzMX36dISGhkIqleKzzz5jmpbw8HA89NBDOHjwIKqqqtDU1ASr1cqKodH1AJ6rKb4exNVg7ty5WLFiBUJCQjB37lyWY2XhwoV47LHHRpULxRv4PB6USponBHQPyN8tJA2k+qfrPXfuHJ599lk8+eSTWLlyJS5cuMBcNTTQ8ytLErMKI26ECA4OxqxZs/Dd734Xt956K15//XWUlJSgoaEBZ86cgdt9KXokMjIScrkcr776Kux2Oz744ANUVFRg48aNQwqkXSloAiGNFU/U+Fwlwufe2tqKN99802slaG96Dt6qItaX+D7Hr675zJv0DvCfaR+hBYsglUqxevVqaDQaNDY2etw/ntzTccfqDnG5XGhoaEBxcTEaGhpw9uxZREdHY+HChVi6dCni4+Pxne98B8Ald++VjA9ut9tDm0T6Jj6yi78GOi8aV6muDSXco5IC1dXVMJlMaGlpYSUnyAJN94LICGlOhOLhCVx7/FeSj1mzZuGtt95CSkoKWlpa8Mwzz2DevHkoLS1Fa2srFAoF/Pz8PPYJDQ0dErLG47nnnhuiIwEur2j6+voYyVAoFJDJZAgICGAmaRI30QsmkVwSV+l0OvYb6RwoPTv55fnIB7KmAPBg8YB3X3FVVRV27doFm82GnJwcVqyKqmdu27aNEZwzZ86wPBbXAmL+W7Hf6DPF8xcVFUGtVkMikcBoNLLVusViweuvv46Wlhb09vbCZrN5DDQEfhK6Vli4cCFWrlyJZcuWQalUYt++fYiMjERoaCj27dvHCgFeKfikYqTv4JMyCVeM/KqNVnf0N/1Pg7LZbMbixYvx+eef4/z58yz5GfVNao/6J/VrMdHpunXrsHz5cqjVaoSEhODWW2/FDTfcAKPRyEi5Wq2GTqeDj48PmpqaUF5ejjNnzrAcLVcz6ItZMuj86Z3g+5pQo0G/0YJCzGLBT+LeXCjC8+Hb4cM7xdw/QsufmBtCzL2zb98+7Nixw4P8eGt3LH2RiEF/fz+ysrJYccmkpCSo1Wq0t7fjwoULsFqtVyzSFFoa+AgU6of0O08qheHmEsml/EQRERFYuHAhjh49CrPZ7OEKEhI63g0jjL6bwPjgv5J8rFy5kv1NPvnY2Fh8+OGHQ4qmjRZPPfUUvv/977PPZrMZ0dHRQ152PlEUZSyljk8vhtBvSQOHXC5nSneJRML2pW3pRaRjkEmSP74Yurq6UFxcDKPRyFISUxr3+vp6bN++HTabDUqlclQ6j7HCmx+cfuO/o7950R8NSCQwo0yG/PbDtcm3cSWQSC6J8RYuXIi8vDwkJyejr68Phw8fRmJiIpKSkrB169Yryi4rPA49TxKWCicnPi20cNLiP9Pg3d/fj8rKShQXF2PlypVQq9Wiaa2Fq+XhiBtZS8xmMzo7O5GUlISUlBT09fWxicliscBmsyE8PBwvv/wyTp06hcrKymvizhOCv2Zvv3kjDMK/+e+E98fbPmKkl3f7CH8HxPUo3o5F33V3d+PkyZMeZQ6Ez/5q4Ha7UV1djfj4eCxatIiF/HZ3d7PyEA6Hw6tVRew6heAtHbQN72bhIUaoCKT3SExMZBYMfozk2+ZJu9CidC0XJxPwxH8l+RDCz88PycnJqK6uxtKlS9HX1wej0ehh/WhraxPViBCUSiWLbOFht9uhUqmg1+tZenOFQgEfHx9WApoGGL6mAIVTknmdIlEoP4hCoWBpr+mFNZvNLN5dJpNBrVaz45EORFiKHrhc1MpkMqGkpGRUg8Rwk/towa88+QgK4SDOD0hix+UnEG8DtXCSEa5+eRfGWCGTyZCcnIw1a9YgKSmJCTpPnDiBxsZGNDQ04Msvvxxzu0LwKz/SDZE7D7hETin/hDBxEgBW74YsGMDlYm9VVVWYPXs2KioqYDQamQmarGhkQaNjikV0EJ555hmcOnUK3//+97F//35s2LCBFbKrra2F2+3G2bNnUVZWhrvuuguffvqpR9jm1UK46ucjfei+EITWNTHw/ZM/Bv0mtj21zR+Ht7bxokeCkHjw58dDrL+7XC6cO3cODQ0NbJUv3PZa4I033oBWq8XixYvhcrnwhz/8AXK5HFqt9qpcigSeDAitEPyCjP5WKBRwOp0sLw1ZhElg7+Pjg5SUFFRXV6OhoYEtzgBPsSlvHROKtCcwPpC4J2xLsFgsiImJwS9/+Uvce++9CA4Oxvvvv4/169cDACorKzF58uRhNR9CmM1mGAwGJoLs6+uDv78/bDYb8zmq1WrmX3e5XPDz84PZbGYmdYfDAb1ezwZ9p9PpQS6ozga9LNQemeJ5wSAAj7h1sZXZWF62a0U+xNwsYu4CsRA7Aj9I0T5CAsVPxsLBReiOAjAms79cLkdOTg7uvfde5ObmIjQ0FD/96U/x5ZdforOzE3a7/ZrkxKBS5TQ4U3+g6+MTNNG18oRWp9N5uOGUSqWHKJEIGPVJb/eBn0S9Re5Qka6BgQGkpKQgMDAQvr6+rBRAaWkpTp06BblcPuxq+UpA1kuxSVtoTRRO9GLXONK5Cd8BMauIkCjQM6LPQvciP8lShIZYv6XjSaVS/OxnP0N2djbsdjuef/55nD592mtfvxq3Ao1B1L8Ioy3kKHbP+O8VCgXcbjccDodHIU0aB3g9Buk7hIuXjIwMLF68GD/60Y8wf/581NbWor+/30N0T32d0iDwobVCkm8ymVh16AlcG/xXWj5+8IMf4KabbkJsbCyam5vxi1/8Aj4+PrjzzjthMBhw//33swJTvr6+eOyxx5CbmzvmSBfgMruWy+UsKZREImH1VygLKTF1GuxIdEq5K+hlJ+sHkQ2pVMpCTMmMTttTQi0iJGKhgsD4mBZHQ07EJn+xVaOQWIgdRzh48xDmdRCu2kda+Y6EgYEBnD9/Hn//+9/x8ccfQ6VSoaSkBJ2dnaxQ1bUAbz4GPEmVMEkaXSv9ToMuP/EIEzZRBWZ+X17kR6tC+m24yYZP619bW4uLFy8y4bVUKoXZbGYagvGC0OLlbeKmz7y1hDCafizsP8O5cITPjj9Pse35/YTvLn/uLpcLSUlJkEql6OnpYYUAxc5R6PoZK670uY30jlH/BsD6rDDbKL+IoN/5An20b0tLC4qKilBeXs4SCvLjDO9qIZE2MDTfz7UkxRPwxH8l+bh48SLuvPNOdHV1ITg4GHl5eTh+/Dgrm/3iiy9CKpVi/fr1HknGrgQ0gMtkMo8KpGSxEIYa8nUSSFBIrJzMivxKijetkwWFn1DGy3x4Ldv0tkIVOwY/UA9HSLyJCIXb8ffHG3kZzfmTVmY8wZujhedK/UsYgk1/U//iV4mk8ueJn/DaaV+e4IwUaiuE1WplCbK+DogRiZH662hIslj7VwIxwiO2jdCSN9Ixq6ur4XK50NTUhJ6eniHvyb8DeFJGglKx3Cr8GMd/T/26p6cH58+fx549e1jfo7bpf6Gu5lpYcycweky4XcYJ5HZRq9VMswFcNk2SFUMul7NS0C7XpXTr9MLx5INCcsm/SS+QRqOB0+lk+/CCqsHBQajVavaikamef7lGGghH2z3G6lfmTdC8H17MtUIEzpsJWmx/8qmLTURiEyw/ofMD0/UE0hQJTecKhQJqtRpGo5GF3PL6Dn4f3gJE+9LvRDL4LI/C+8e77pRKpdesuVeLKyWCANi7Ru0MZ+UQm3DEtuc/C/ub2LmLEV36je6jt4WBmCVFbCHh7dgA2MKG31/YF67HPs7rOej8iCDzRER4L3hSzhNwcsvw94V/B4RkR5hvhTRUE26Xa48J8jFO4MkH34mBSz5pvV7PwvgodJb3aVLsv0qlYr+rVCpYLBbmVlEoFLBarSxtsEajQW9vLxMhOhwOGAwGj5UtvwIVWgi8DYRCUzG/UqA26LNwQPMmvuN9qsI2xSA2GY1EePjr5j+LTSrCdhQKBSsT7uPjA41Gw6KL6BlR9tr+/n5oNBpYLBZ2LWq1mmWUlclkzH3Gm5YpHwJNFPz9o3Pmww3Ha6K/GkilUibMttls0Ol0rLgXDf6UY8PlcnlMIFKplOVd4P3tGo2GuQ06Ozs92iBdCnDpufE5Mog8eSt1/6+E0C12rSHmupkY2q8edA8nyMe1x3+l2+XrBLlXyLfIWyZI0yH0NxJRUSgUTAdCwkKKPiD3DHA5+Q4NxuTmkclkcDqdbCUoNnnxq2AhAfCm5Pe2shPzW/MEh7dK0G/CNngIfa/C8+NX52IQrnS9bSv2HT0nSrQFXCILlMxIKpWyZ0PEgJ4NPQeVSsVcZjSZElEkUR3dH61W6xE6zZ/XSPqKfyVI3EnnTUn1aLIlQkEi6a6uLrbP4OAgy/hL/ZX6NX0PgPn2qR3STdHx+NII1+NqHrg25zVcXx/pXZrABK43TJCPcQYNAjSR8Ss83h1CkxiBN/HylRbJncALD/nJlUJqqc3+/n6PdOti5yfmN+XNkUIiMRrw+1zpwDic6Xo4f7bQVSDWjpgJnt+W9BBEtvjMi7xLhxdi8kp6oS6Cd2fQZxLB0b0Wnhf/LMZ75XylICE0T6iAy8R1uIRTwudI1hJh9AJ/z4m88f1KaEmbwAQmcP1jInH9OINWcjQ4ktqfdBpCkgFcIiqUVp2v/cJbDWiQJSsJEQuyrjgcDtjtdra6pNU6WRHEJm+aRIS6gOG0EN5IBk2YQp+7sG3heYzk6xaKLUciN3z7I60axVxDRNocDgdzJ1B9HVqtk6WDro0KCdrtdhbtQtEfdP9494vL5UJvby/rD3xeCd6Ncz2C77NardaDZMlkMlbTZWBgADabzSMrLx+pQ9FYfOgkcNnfr1QqoVKpmCsLADuGkCRfa5DlSqVSQalUDlu0bTwxYc2YwH8SJiwf4wzySTudTpZojM/L4XQ6oVQqodFomH8buFy7w+FwwO2+lLMjMDAQdrvdgxCQMJXCbHlBlkKhYEJWspbQPvzgOVwIH/9vJJEdb3HhU3kPJx4UDuJiCnShZUhowRESnNHqWLxZFGiyo/vJCz1dLhcsFgt7Trzriz+ekMjx7hZ6Vkql0iMhGC+G48+Nf3bXG5xOJ4vAousi37jT6WT3hcJs3W43S67ndrtZkjyqY2Sz2Tw0HPQO0H3W6/XsneBF2XxV52sJhUKBSZMm4bHHHoPVaoXT6cScOXOwbt26cY9umsAE/pMxQT7GGTSxKJVKj0gVWg2SOdlqtbIV3ezZs7FkyRLodDrExsbi5MmTKC8vx4033oigoCCW38Nms6GjowMHDx5EYWEhampqAICREYfDAa1Wy8z7KpWKDdJi1gJeV0HwNrELQ9WE1ywkMPykLDwuj+EmD956IbadcOLnz19olRmuLYnEswYETbBUOZOsHGJhq8DlkFU+E6hGo8Hg4CAiIiIQGRmJsLAwZGVlITIyEl1dXXj++edhNpuZtkFoGbleyQdZffg+brFY2GciVyTeVavVLHKLXJFOpxMOh4NZiUj7QUJr3p3Du7fcbjdsNpuHe+ZaQa1WY82aNVi8eDGqqqqwaNEiKJVKdHR04IsvvrjmVXfF3IPXo2g0IiICM2bMwJw5cxAYGIjo6Ogh7kar1Ypz587hxz/+8b/wTCdwvWOCfHwNEIo4aeIiHQFwOQSMSsQvWrQIOp2OpaUmt0xmZib8/PxYhtOenh7I5XL4+vpCq9Wiv78fbW1tHimWiSTIZDI2CYjpC7yBtvXx8YG/vz9mzpyJ3t5etLa2ore3l9VUEatdIjagjva4/D7eIJVK4evriylTpqCrqwvt7e0IDg5mYk+1Wo34+Hj09PSgrq4Ozc3NrGgaf21CCCvrCsPwhiNNREaIWPr4+MBgMGDBggWIjo5GaGgoQkJCkJiYiNDQUHR0dODEiRPYtWuXR8ZR3uX0dU9CMpkM/v7+SEtLQ21tLVpbW0UnXH7S58kokWsAHi4pEukS8VAqlcyyISSN1K5Go4HBYICPjw+am5vZseme8Cmzr5akyeVyTJo0CfHx8ViyZAkWLlyIsLAwyGQy6PV6WCwWHDp06JqTDzH4+fmhr69vxBwpX1f/UCqVmD17NubNm4eMjAycPHkSWVlZsNvtMJlMiIqKglKphE6nQ3BwMKZMmYLz589fcaG5CfxnY4J8jDN44R1fY4VWbXykitvtRmBgIOLi4pCamgqFQgGLxQKtVgu9Xo9du3YhISEBTqeThdNqNBrccMMNmDJlCmJiYmC1WrF//35UVFQwK4dwYBeu+oVWAYLQHSGXy5Gamoqnn34aFy9exLFjx1BfXw+z2YyGhgY0Nzejt7dX1NXiTdgpPL43MiBmpSA3RkxMDB566CEUFRWhoKAAOTk5CAwMhEKhQEhICG655RZUVlbi008/xf79+1FYWOh1pUnXTSHOvPaDyASvzaB9+AmWJl5a/Wu1WsTFxeE3v/kNQkND2YTNR3rcdddd+OKLLzwmbD7B3NcFqlHk5+eHyZMn4+GHH8Y777yDr776yqOYH3/PSEBN/Y3uHYXQkgWIis2R9UOhUCA0NBS9vb3sPgQHB6OzsxMymYxFikVGRiI9PR0KhQI7duxg2hsAzIrC62quFERkb7rpJixYsAAJCQkICAhAbm4uSktL0dPTg5aWFuzbt++aW6LE+uKkSZNgNpvR2NgIHx8fZhmiPkY1ogAwTRefGp/aEWt/rKB7s2bNGqSkpMBsNuP3v/89ent7ceHCBVRVVWHJkiUICQlBXl4eIiMjceONN6K+vn7cyQe9i+SGk8lkTAdH/YzPT0PWsgn8azFBPsYZpODnUwWTKZ6iKOjlkclk+PWvf42cnBw4HA40Nzfjgw8+QH5+PoqLi9Hd3Y2PP/4YkZGRiImJQUxMDCZNmoSFCxciJSUF69evh4+PD1asWIGCggK89NJLTG/gdDqZABUYSgDoHPi6BnT+NMCHh4fjmWeeQUJCAmJiYpCdnQ2tVosvvvgCSqUS7e3tePTRR4dE7Yi5Q3gdidhgORJIJxAYGIiUlBTMnDkTN910E/udjwhyuVyIj4/Hj370IyxduhRLliwRJTn8gCSsm0KEggY1cikoFAoolUqPHB90/QEBAbjttttwyy23QKlUsto7ZKamSdnhcMBqtbKU+DSxEMnhrQjjjVtvvRX33XcfZs6cia6uLoSEhOD06dMoKysTJR/9/f0shJsscG63m4XDAhiS2tpms7FJ/Y033sBtt92Gs2fPIjAwEF999RXuvPNO1NbWwm63Q6lU4umnn0ZOTg5sNhucTie2b9/OQo/5XCtXm649PDwcM2fOxAMPPIDw8HAcOHAAmzZtwqpVq9DW1oY33ngDBw8eZMnVxmsCk0guVUl+7rnn0NfXh6KiIsTFxeHdd9/FxYsXWWr6efPmITY2Fj4+Pjh8+DCSk5Nx5MgRlJWVsba8kfyxQiqVIjw8HMHBwdi3bx/eeOMN9PT04Le//S1rt7CwEADw4x//GHfeeSdmzpyJ11577SruxOjg5+eH8PBwxMbGYsqUKZgzZw7Kyspw/vx5LF68GKtWrUJFRQXKysrQ19eHn/3sZ9esiOEErhwT5GOcQVoBrVbL/N+0QuN92XK5HGlpaYiOjoaPjw/a2trQ1NSEPXv2oLa2FhaLhQ3gra2tsFgsbBA6ceIEYmNj8eKLL8JisSA6OppZWE6cOIETJ06gubnZg3gAQ0NO6Vz4SdTtdiMkJAS5ublYsWIFUlNTYbFY8Pnnn+PgwYNIS0tDYWEhsrOzERAQgJCQEHR3dw+Z3HnTvFDwymtExPQXvNvHz88P3/nOd9Df34/Q0FDEx8cjNjYWAQEBQ/QqVFSNysR3d3ejubmZiRTFtCD8MfmVO02ovPaAkoNpNBrY7XYWwaFSqbBs2TLccsstmDZtGpKSkhhJoeul4587dw6VlZU4d+4cI36Dg4Ow2+3QaDQsCdnXhZSUFAQFBUGj0TCSRLlNxMCHcQ8MDMBqtTKLDZ0/tUHZdR9//HHExMQgKCgIKpUKL7zwAmw2G4sqeemll+BwOBj5CgwMxObNm7F37140NjYyXYgwDJcIqdlsHvN1x8TEICoqCv7+/uju7sbOnTuxf/9+nDx5Elu2bEFfXx96enpYVNJYJ/LRTP685cxms6GgoABz5szB3XffDZlMhoyMDI/yCwMDAygsLMSxY8fQ2NiIxsZG9Pb2soR4PK6WKGm1Wjz44IOor69HUVERmpqahrRLf58+fRoGgwHR0dHjStDIrfqb3/wGmZmZCAwMhFKphMFgQHZ2Nnp6eli01aRJkxAbG4uBgQEcPHgQJ06cYNcwgX8NJsjHOINEpMIaBbxLQ6vVIjQ0FCtWrEBwcDAuXryIgoIC1NXV4eLFi7BarWxwpYnLZrOhq6sLNTU1aG9vR09PDyoqKtDd3Y2IiAiEhIRg7ty5OHr0qEeGSdIgACOLP2nSnzp1KvLy8pCTk4OmpiYcOHAAX375JYqKitDc3AyJRMK0FStXrsQnn3ziNRsnHz1DEJIGMRgMBvj7+yMmJgbLli1Df38/DAYDQkJCYDAYWDsOhwPFxcXo7+9HR0cHJBIJli1bxqIpoqOj8a1vfQubNm3yqMgpBB9pQtln+fPmrTZkUZJIJAgICEBMTAzmz5+P3NxcREZGwtfXl91zp9OJ3t5eNDY2ws/PDyUlJUwsTNoHXh8kzHw6GqjVahgMBsTGxkKtVqOxsZGJkb2BiB1V4SXy+dZbb+HUqVNes4byRIrPzMu7n+jaFQoFZsyYgejoaJawbWBgAGq1Gj09PWhra0NJSQkAIDU1FUFBQTh06BCMRiP279+PM2fOeLgQabLmk5ONNdrFx8cHUVFRyM7OxqRJk5CQkICuri52vObmZg+dyXiCfydcLhcOHDjAssDGxsYy0bLdbkdNTQ0qKytRVFTErFK33347XC4XGhoa8MUXXwxp/2qsHwMDA6iqqkJYWBgrZCmGgIAAREdHw9/fHwcOHBg3bYxarUZISAjWr1+PzMxMOBwOFBYWwtfXF93d3bDb7bDZbOjs7ERQUBCys7ORmpoKX19f3HLLLeju7p4gH/9iTJCPcQb5ox0OB9RqtcfASSs4X19fJCcn49Zbb4Wfnx/279+PjRs3oqqqCnq9nm3Pr/AkEgkbhCgN+2effYauri6sXLkSU6dORVJSEurr62EymZg5mnd3CCEcuKVSKYKDg7FkyRJkZ2dDqVRiz549eOWVV9De3o6BgQG0trZiyZIliIuLQ05ODvz8/LBr164hIcHCgZWOx7sphNsRdDodwsPDkZSUhOnTpyM7O3tIKO/AwADsdjuampqwZcsW2O121NfXQ6PRYNasWdBoNPD398e0adMQFRWFjz76iIkf+eun+0P5IyhnB3A5nJYPr+3v72ftBAUFYfLkyZg5cyYWLFjAJgxqt7e3F/39/Wxyi4+PR0FBAY4cOYK6ujrYbDYPFxxN6ABYOOtIUKlUCA4ORmJiIpYvXw6VSoUDBw6MSD5UKhWmTJmClpYWdp7t7e14+umn0dXV5fXYFMkikUhYLg4iS319fR5JwVQqFdatWwcAaGlpgcPhQHd3N44ePYrjx4/j7Nmz6Orqgt1ux5133om0tDT8+te/Rk9Pj4cFiLcYAmD3is/6O1r4+PggKSkJCxcuRGpqKgIDA3H06FEcO3YMHR0dY2rrWmPfvn3o6upCd3c3li1bhvb2dtjtdnR1dWHHjh0oKChg1iSVSoXvf//7cLvdOHz4MPbu3Sta6kCY/G60cDgc+Pzzz3HfffcxzY6YiyslJQWLFi1CcnIyfvjDHw5L8K8UGo0G4eHhyMrKwq9+9SsUFBRg27Zt2LFjB+Lj41FeXg6TyeShQfrWt76F22+/HZMnT8bq1atx5MgRFBYWsjpIvb29bPsJfD2YIB/jDPJbazQaAPCY1AwGAwwGA4teCQsLQ1NTE7q6upi7xtvKgcgImfsbGxvxyiuvoK+vDykpKcjMzITJZEJHRwfLGcJrOoRuFgBDSEBQUBAqKirgcDjw4Ycf4rXXXkNTUxN6e3uHDGAUDZCWlsa0EmImWbHV13BFtlQqFTZs2IDKykrk5ubi4YcfFrXQVFVV4Z///Cc++OADGAwGdHR0wMfHB2lpacyCIZVK0d3djbffflv0vvL3ge6PRCJhz4zIIy/qo4RwQUFB+M1vfoO0tDQEBAQwcTFFF0kkEjz//PNYsGABIiMj8f7776OyspKRCmqPjkmaD7J+UAr3kbB8+XJERUXBYDAgNTUVL7zwAsrLy0fcLzo6Gn/961+RmJgIhUKByspK/PCHP4TJZBp2stJqtcza0dfXh66uLuh0Okgkl8KVKVkeEZLGxkY8/PDDOHv2LD7//HO88847ePHFF9Hd3c3q5eh0Ovzzn/9kkwFf84g0OPSc5HI5LBYL+vr6WKKzsUx4/f39OHnyJH7961+jo6MDmzZtwttvvz3q/UcLoaVvtATgzJkzOHPmDP7whz94fM+34evriwULFuDo0aOYNWsWUlJSmPtIzMJ4JeRDp9PhRz/6ERISEuB2u1FTU4MzZ84M2e6nP/0pcnJy0NnZidDQUFgslmvuNrzjjjtYxE1JSQkeeeQRVFVVYWBgAPX19UO2dzgcePXVV3Hw4EF8/PHH2Lt3L1QqFe69916kpqZi+vTp+M1vfoOdO3de0/OcwPCYIB/jDJqISR9gt9vZRBYcHIy0tDTMnDkTubm5KC4uRl9fH9ra2tjkSW4SfkKkv8ncT5YQi8XCVuKDg4PQarX4+c9/jsLCQhQXF+PkyZOiUSO0cqSVNi8yzc/PR3R0NGJjY7F8+XK8+OKLQ/QaRUVFTIdy6NAhZprlJy7h/zyEZEgYttrT04Pvf//7SElJ8Rg8adJ2Op145plnUFRUhL6+PrS3t2PhwoVobW2FSqVCYGAgDh06xFaLra2tohM5H+3C5+2giZMmNT7lOk2KarUaERERCAsLg0ajYeLHnp4edHR0oKWlBVu2bMGHH34IhUKBlpYWRoBkMhl0Oh17brzAlJ73SBEvMpkMc+bMwdKlSzF16lSEhITgrbfeQk1NDXp6eobdFwDa29vxwgsv4E9/+hOLoggKChrRjUE5UIhgUYQWnTflRQkPD0daWhruvfdevPTSSygrK0NLSwsOHjwIq9XK+kB/fz/z09N9p/otFM1BOUJIl8MnthtLUbns7GysXr0aCxcuRHJyMiIiIjA4ODgu5IPHtdBB8G3o9XosX74cCxcuxL59+/D555/DaDQOOc7ViJZtNhtee+013HHHHTAajdDpdJg2bRqzzOp0OixcuBARERGwWCyor69HfX39uOiVCgsLkZycjDVr1jDL72iujSJ2vvGNbzBXqkwmQ2Vl5YTV41+ACfLxNYBW3TSY0ktw8803IyUlBQaDAWazGSaTCadOnUJZWZmH4JPEjeQOoHbcbjeLjiBrisvlQmlpKRITE5GXlwepVAqLxQKbzQa1Wj3EauFtws/IyMDq1asRGhoKvV6Prq4uFBUVDYnooEmGLDGhoaFeC8cRhOJSb+4Zf39/JCYmYtq0aUhOTkZwcLBHVI7dbkdrays++eQTnD59Gl1dXfDx8UFYWBhCQkIwefJkREVFobe3F8ePH8eJEydQVlbmkUFT7PqBy4Xl+PwRRAL4DKrR0dHIyclBdnY2IiMjoVar2TPq7u5Ge3s7Lly4gH379qGlpYXlbCBiSYnLiJzSc+WPR33IG/R6PcLDwxEaGorU1FRER0fDbrfj8OHD6OnpGXECkMvl8PPzQ3JyMnx8fNDY2IiKiopRWVpo0OZT0fMp5Kl/+Pj4QC6XIyQkhFVjbm5uZv0pPDwcBoMB7e3tkEgkmDFjBsLDw7Fr1y50d3czQsgTRBK58qGWEolENN+MGJRKJQICAjBlyhTU1tairKwMx48fH9W+3kBCW2E0BS+c5q03o4U3i0VISAjS0tKQlZXFiB4tIK4lSPMhkUiQmZmJpKQk5koj62B4eLiHG228JvSmpiZ0dHTAZrNh586dHnl7vCEyMhIpKSmwWCxISEhgLtOuri7s2rULjY2N43KuE/COCfIxzuAtEyTE02q1SEhIwF133YWIiAjU1dXh+PHj6O7uxvbt25kJmgYrPkZdLpd7ZLykWhi0rVQqRU1NDcrLyzFv3jwYjUbU1tbi4sWLUCqVMJvNQwY+4aAOANOmTcMjjzyC3t5e2O12FBcX44svvvCwktCAGBgYyASdU6ZMYb5+YfvCaBICr0Hh2/b390d6ejqysrKg0+nYfZRIJOjp6UF7ezvKy8vx3HPPeSQVy8zMRFhYGBYvXoy0tDQ0NDTg2LFjaGpq8qinw4MnQPTc+O8prJZPCmcwGJCTk4MNGzZg/vz5LHeH0WiExWJBY2MjS262c+dO5p8nywZZmsilQrlb6J7xmo/hJquAgABkZGSwqJ/+/n7U19fj/PnzHsXavEGtViMqKgq33HILBgcHUVVVheLiYnR1dY04SZJVgp4LpVQXPmue5MXExCAwMJBNWF1dXUhISMCkSZNQU1MDt9uN22+/HVlZWWhtbUVpaSkTwvIWEBJS8/V1FArFqMgH1WmRSqUsN86uXbtw6NAhr/vQ+0VuVIvF4uHikcvlMBgMiIuLQ21tLdPO8PtTG8L7Opw7xJu7hMh+SkoKUlJS0NHRAY1Gg5CQkBGvf6xwu93M4kGWtb6+Pvj5+TGdT21tLU6ePIlt27Zh79691/wcCN3d3bh48SKqq6uRn5/PkjUOR7iioqKQkpLCyD9p5srLy/HRRx+hra1t3M53AuKYIB/jDBocKR26VCrF7Nmz8eSTTyI4OJiFhQUFBSEpKQkqlYrlLSA9AR+aSityhUIBh8OB3t5e6PV6lmtCr9fjrrvuwvr166FUKvHAAw8gPz8fJ0+eHLKKFmaFpGP4+PjAZrOhtLQUP/zhD1FZWcnOnZ+kaTUaGBgIjUbDUiu3tbUx8SS1y5MKnuzwK37e2gMAXV1dKCwshNPpxE9+8hOWQwIAfve736G9vZ21uXLlSlbIbdWqVVixYgXUajWsVitaWlpYnhQh+BUpgQgihXsSAeBTn/v4+OC+++7D0qVLMXPmTPT390OlUiE/Px+bNm3Cli1bkJycjPT0dAQGBsJkMjEXGukhfHx8GFGjPDBERngtCJ9dVQwGgwFZWVl46qmn8Otf/xoDAwNISUnB008/jXfeeQc1NTXD1iHR6/WIjIxEfHw8du/eDafTCa1Wy+7vcKCwZXp+fX190Ov1HuTZbrcjJiYGN910E2w2GyoqKhATE4NVq1bhvvvuwze/+U0EBwdj7ty5+OlPfwqlUsna27hxI373u99h586dzGoVHh6Onp4euFwupqUiN9do9R65ubm48847sX79erz00kv4+9//jvb29mH3IRdeTk4OlixZgo8//hgHDx5kvycnJ2PevHl44IEHsGvXLrz33ns4d+4cAE+3oxihG+4+8+SNR1BQEDo7O1FeXg5fX190dXXh9OnTOHDgwLDXcaXWF+CS++Wzzz7DkSNHUFRUhJ///Oe44YYbMHnyZEyePBmnT5++Jm6lkXDkyBG4XC58/vnn2LBhA44cOTJs9EpzczPq6+uRkZHBNFznzp3DnXfeOUQbM4GvBxPkY5xBAzIJD7VaLaKiopCVlYX+/n60tLTg888/H5KMh/znVOmT8oSQroMGEI1GA6fTybKlfvOb30R6ejrkcjm6u7vxy1/+EqdOnWLaCD6jKg1AvDUDuDTY7dixAwcPHkRnZydbvfGuEf5fdnY2W8G+/fbbQxJu8e4EPmpHTA/Ck4De3l7U1tbCYDBg+/btmDt3LqZPn47BwUE8/vjj2LhxI9544w3MmjUL/f39WLlyJRYuXAidToeLFy9i9+7dOHjwIGpqapgWQGj18KZBIZMxZdqke0QiR4fDgbi4OISFhbE2HQ4H0tPT8eSTT+Kxxx6Dj48PjEYjent7cfvtt+Po0aPYuXMnCgsLPcgEESDessOv5Ej34A1tbW04duwY+vv78Z3vfAcAWE6RFStW4B//+AdeffVV5Obm4ujRo8wy4OPjg3nz5uGuu+7CqlWr4OPjg7/+9a+MxFVWVo5ovqcU6RTdQtYhItCkCTh58iRaWlqwbNkyPPHEEwAuTeb9/f146aWX4OPjA7PZjN/97nd45JFHsGfPHlRVVeH3v/897r33XmbpMplM6OrqYveDLC/0fIYTaRPkcjmCg4Oh0+ngdDpRV1c3qpBQrVaLjIwMvPjiizhy5MiQvmS1WlFSUoJnn30WSqVyiOtFqG26Wvz+97/HlClTWB/cvHkz9u/fj9ra2mvSvhieffZZuFwu1keqqqqQlpbGfs/Ly0NDQwN6enpw6tSpcTsPivqhPtzb2wuj0cgsG9HR0Zg5cyZ+9atfwWw2Q6fTISAggBUqfOONN/Dxxx+jp6dngnj8izBBPsYZtEomH6NEImFx+IsXL8aJEydQXV3N3Ab84ORyuVjUhNvtZgSG2hW6KuhYLtelyqt1dXUoKipidV6Erg7eGiHUYVASM/pOzFWh0+kwf/58zJ49G+Hh4bBarTh48KBHdku+fTETPH8OtD3B5XLB6XTiwoUL2LVrF5qbm9HS0oIbb7wRYWFhWLRoETQaDSIjIyGXyzF58mRERETA7Xajq6sL9fX1qK6uRmtrq9fnI3ZcwNMaRBYI+pusEnq9Hi0tLTh16hT6+/vh5+eHqKgoxMTEsBTjNpsN/f39CAkJgUqlQl1dHS5cuAC1Wo22tjZGwqhvEDkksSZv8fKGsLAwzJ07F263m4lE6Z9er8fatWsRGBiIqKgolJSUwG63Q6VSIS4uDitWrMD06dPh7++PyspKmEwmpk0ZzYRMIZd8gjS6l3zKea1Wi4iICJZCnchKaWkpTp48iaCgIGi1WvT29uLdd9/F2bNnYTKZsH//fqSlpUGtVrMqzZSWnn9P6P5QXh1vkMlkmDlzJpYtW4agoCCcOHECp0+fHlHfsn79eiQmJiI2NhYNDQ04f/78EHFrT08Py69DaeJ7e3uZJuFaTXI+Pj4IDAxk+YEMBgMOHjyIffv24cKFCyM+t6s5j46ODvj6+iIiIgJJSUmYO3cuQkNDWZ8KCgqCQqEYdwGn1WpFa2srjEYjZs6cCavVCovFgqNHjyI3NxeZmZmYOXMmJk+eDLvd7qGt+uSTT3Do0CHU1dVdkfVnAtcGE+TjawDFkpMYr6amBlu2bMH8+fNx/PhxNDY2IiQkhJEMAExnoNFomEaAn4B4CwIA5ooh87PdbkdnZyfa2tpY3Qeha0FoeeDbBjCib9pgMOAb3/gGpk2bBrVajebmZpw7d85D0ClsU+x4QiGeMJqmubkZnZ2daG1tRU9PD1avXg25XI65c+ciLy/PY8Lr6+tDc3Mzqqur0dbWNmyyM2+RHEICRO4WWtHzYbsXL17EV199BafTyZKLhYaGQqVSsedOmTvT0tIwbdo0lmXVaDSy8vC8LoavU8G7obwN6MHBwZg2bRpcLhfa2togl8uh1+uZlSYvLw9z5syB3W7Hpk2bUFFRAYlEgrS0NCxatAhxcXGwWCw4cOAAXC4Xent7RxUhA4AVOKQIqf7+fiZ85OsY+fv7Y9KkSXA4HLDZbLDb7eju7sbhw4exceNGxMXFIS0tDf39/Xj33XdZTaOPP/6YaRjUajXsdjuLGAMuvyek5RnOPQVcIkvz5s3DkiVL0NzcjN27dw8biiyVSqHT6ZhFcWBgABs3bsTZs2eH5AGhfDpZWVmYPn06ampq0NnZibNnzwK4duRDqVQiOTkZwKVJ2GazYd++fTh16tSIRegIV3oucrkcUVFRyMnJweLFi5GXlweLxYKSkhIEBgYiMDCQaV8mTZqE2tracYl4cTgcaG1txalTp5CdnY2BgQGmt1qzZg3LLEwVkylKSiqV4vPPP0dZWdlEivV/MSbIxziDLBc0QFIoYXd3N9ra2lBcXIzTp0/DZDKxbYHL5cL5ejDBwcHMD0/Jybq6ulioZmxsLNLT0xESEgJ/f39MnjwZPT09TEugVCpFEwMJLSL8pCzMecHrQvR6PWbMmAGDwYC6ujpUVFSwUDuyFABDRYfCYwizePK/0/+kK6HQSiJqNLARuero6MD999/PUk0PpwHgr5u/NtJm0Dn19fUxLQ5P9p566ilGMBwOB2pra5kbIDk5GX5+fvjwww+Rn5+P3/zmN0hNTcVtt92GBQsW4NSpUzh9+jQrckVkhQgYuep0Oh3Lo+ENFRUV2LhxI7Kzs/GLX/wCwcHBuPnmmxEUFISoqCgmZNVqtfj888+xbds27Nq1CxEREUhMTITBYMCZM2fw2GOPISoqakz1UShcEQAjHkS4eKGu2WxGUVER8vPzUVRUhPPnz+P8+fOoqamB0+lEfX098vPzoVKpYDabIZVKYTKZ8Pbbb7MkcUlJSTh48CBUKhULSyaCTNc4GjfRjBkzoNfr0dbWNqJrQKfTYdWqVZg9ezYCAwNRUlKCv//9717zn5SWluLee+9FaWkp7rzzTmi1WkY+rgWkUin8/Pywdu1aLF26FOXl5Th69Cjq6uq+ljT8MTExuPHGG3H33XcjPT0dFRUVePnll/Hmm28iLi4OP/rRj5Cbm4t169ZBqVQiIyNjRC3NlaK7uxvLly9Hfn4+0tLSkJ6ejqeffpqR076+PpSVleHYsWMICQlBUlISMjMzERQUxMLgJ/CvwwT5+JpAoYb9/f3w9fVFZmYmgoODERkZifr6ethsNo+QXN6nTaBVMq2OAbBJkZh/Xl4eWltbsW3bNvzjH/9gx6Y04YBnRMlIEA6wNPnGx8cjLy8PQUFBcDqdaGhoQElJCaqrq5lLiI7Dm8jJeiC0ughFcMLzS01NxYoVKzB37lzcfvvtWLVqFWbOnOmRRMzHxwcxMTH48MMP0dHRwVxPf/nLX3Du3DkPczRvUeDvCZ2LXC6H0+lk1gOKVKF7QFlNaT+5XA6TyYR9+/YhPz+fTb4kLP3lL3+JN954A/7+/pBILlUsTU1Nxfnz59HT08NWaJS0i7Qy5MIabkXf0tLCRIA9PT3w8fHBpk2bEBERgX/+85+IiorC4OAggoKCIJVKsWLFCsyfPx8+Pj7w9fWFzWaD1WpFYGAgy1w7WjgcDuaG4p85kScS7ppMJrS1teHHP/4xS0hG95fXIZF/XiqVIiEhAc8//zxiYmJw4cIFyOVyliCK+orL5WKVeAcHB0eMdBkYGMDJkycxY8YMzJ07FzqdzkM0KoTVasVXX33FBOCpqak4ePAgFi1aNKTQHmlJZs6cCblcjv3792PPnj2jvpcjQSKR4JZbbsFdd92FGTNmQKlUoru7GxUVFfj000/H3dWhVCqRnp6OadOmIS4uDqdOncLDDz/MkuXV1dXhxz/+MdasWYPVq1dj1qxZePDBB/Hpp5+ytPnjgfXr12PFihVYsWIF6uvrYTAYcPjwYRw6dAgDAwN47rnnkJGRgfDwcDQ0NGDfvn0TobXXASbIxziDn9QoLbRSqWTCPL4wFyW1AjwTXvHp1PlVOdV8SUlJQWpqKnJyctgk2NbWhpaWFiaqE7pChFYJ/ruRsHjxYmRnZyM7OxtSqRSbNm3C6dOn2QQ/depUSCQS9Pb2orq62kObInTj0P2hbYSiVqVSifXr1yM2NhZJSUls1ULmZnIp8fcqODgYvr6+TGthsVhw7tw5HDp0CJWVlax9/n/htZNOR/gbkUg++yadP02qtCrmwz/PnTuHzs5OFiodERGBu+++G++99x6OHDkCAEwzAXimDB/JRE6TLj/x9vb2ore3F3/84x8REhLC+tyjjz6KgIAAlq3V7XajuroahYWFsNvtY64KS6Gn9LzsdrvHfaOQYiIXJPAjNyJFHtC9IjJN70VzczMmT57MLBwkUiVrC4mo+/r6WEbY4SwAAwMDOHv2LCwWC86fPz9iQjGNRoM5c+ZAqVSy+8WTWLVajcTERCxbtgwmkwlqtRpz585Fa2srysrKrqn4UyKRoK6uDseOHcPUqVOxe/du7N27F8eOHRMlXWLhuVcKhUKB6dOn45ZbbkFfXx9efPFFVhTRYrEAuHRvOzs70dHRAbPZDL1ejzNnzoyb5YPQ1taGw4cPo6WlBUajESqVCvX19bh48SIAsMUBkVaz2TyRVOw6wAT5+JrAZ4AELk0OUqkUYWFh8PPz81jxA2B+f14DQRMtrTD7+voQHx+P2bNne/j1+WJYpO4Wc2V4gzcRJmWqXLx4MXJychAbG4uuri58+eWXKC4uZgmiIiIiEBoaCpPJxBITUXti+pLhLDFyuRxLly6Fr68vwsLC0N/fD41Gg+7ubnR0dMBkMsFgMLCVMLVDdUbUajVuuukmJCcnM3JQV1c34vPi7zMfiUKEkQYvIlT88+NzdJD512q1orq6Gj4+PvD394efnx9WrFiB/Px8HD582CN/CACm3+GTjo0FbrebiTe1Wi0CAgIQFxeH+++/3+PeO51OlJWVIT8/f1RJxcTAF0/k3WB8LSKKGuKtYeSao22AS5M5RW653ZdyRyxatAjt7e2or69nRIN/DhSdRLqckQgU9bnm5macOXMGGRkZqKqqGuKi8/HxQUBAAG688UZWLbe5uRkFBQXw8/ODRqNBUFAQ5s6diwcffBAtLS0wm80wGAwoKipCZWXlNc8f0dXVxVxWX331FfLz81FWVub1OoFrozWRyWRITU1FXl4edu7cyUotiMFiscBkMrFqz2MltFeC2traIURPoVAgISEBvr6+6OvrQ2trKyorK9l4OIF/LSbIxziDRE5OpxN9fX2s7sjJkyehVqvx0EMPQaFQoLi4mA3+SqWSlYGnaAkiLpQPwuVywc/PD7/97W8xadIkNgEPDg7iwIED2LlzJxt8+AgAagsYuurnrQE8+aHvfH198cMf/hBJSUkICwuD2+3G9u3bkZmZiZ6eHnR2dgIAKisrsXDhQoSGhmLLli1DSAfv8uCjYHjwlp/Ozk7MmTMHAHDu3DkYjUZ8+OGHaGtrg16vx8yZM73qS6RSKUJCQlBbW4vHH38ca9aswbp167xeO3+fePcQJXPjCRLpDOh7SvtNxejIPaZSqZCUlIT33nsP69evx6JFizAwMMCIKACPvCKk0aFBe6TU6iOBXCoff/wxc/vQdfT09ODgwYPYtm3bFbVNkQR8lA5P1CQSCcsFYrPZWNQB7cPXHeKtG0SYkpOT4Xa7sWfPHmzatAkDAwPQarXMokLWRN51Mxx0Oh1efvllREZGIiIiAnPmzIHBYMANN9wwRHjq5+eHlJQU3HrrrVCpVNi7dy927NiBXbt2Yd26dUhJSUFsbCxSUlIQHByMhIQEHD16FHfddRcmTZqEc+fOjTrbKkHofhT+tmrVKtxyyy345z//CaVSOayL7FpGctBix263w2g0Dlt07+LFiygvL4dEIsHWrVvxve99D2+++eY1O5fRIjIyEh9++CESEhJQUFCAHTt24MUXX/zaz2MC4pggH+MMp9PJ8hBQ3YucnBw88cQT6O/vh0KhQHx8PObOncsSaonllSC9CGXCVCqVcDqdiIqKgkwmY2Wkf/SjH7H8DFRqHAAb7PkMn8Oxf16nQdtKpVJERUVh8uTJ8PX1RX19PZ577jmWQ4QGu+zsbMTHxyMlJQVvvPEGnnjiCQ9luXASJ4hZSGj1SVlAnU4npkyZgvLycvj7+2PmzJmw2+34y1/+AovFgvDwcHz7299m95Am7pycHDgcDnR2dmLhwoXYsGED3n33XeTn57MVL3983gpAglASDDudTuj1erZiJ40G1SQhIrJ+/Xrk5uYiPj4e586dw+rVqxEYGIjBwUGUlpbizTffREFBASQSCSM7RHjo/gsTwV0JYmJimL6B2uvq6sI///lPbN269apcA0R46ZlSjRrgMskk1whFfAGeUUQqlYoJbp1OJ+x2OzIyMnDDDTdg7ty5kEgkWLJkCQYHB/HBBx8wgSklY6MJXhjRJQaLxYLvfOc7eOqpp5CZmYmYmBj09/fjueeeY/VmZs6cifj4eGi1Wuh0OuYK8vf3R15eHu655x4kJiayuk0SiQQffvghamtrUVNTA61Wi4KCgita8YsR9YCAADz00EPIzMxES0sL9u3bh5UrV+Lpp59mLo1r6WIRg0qlwpo1a3D48GGcPHly2HDesLAwJCYmwu12Y/HixczV+XVi8uTJWLRoEeLj46FSqZgFcgLXDybIx9cAMhMDl90gdXV1SEhIQEBAACuD/swzz6CsrIwRCYlEgoCAAFRWVqK+vh5z585loreEhAQAl7Ic7t27F4WFhRgcHGQ1OcjiQlYSYGi+DmH4K7mBOjo6kJ2djZUrV0IikcBqtaKxsRFWqxWTJk2CRqOB0WhEY2MjdDod2tra2EoUANLS0tDS0oLm5uYhKbqFqzreciAcPLVaLcLDw1kSq/Pnz2Pr1q0oKSlhOUVosqqurkZ8fDwSEhLQ2tqKyMhIdl0AmJ4mLi4Ojz/+OKZMmQK3242QkBC89957Q+4L7w7gw6QJUqkUGzZsQHR0NCOVLS0tTF/T1tbGVsf+/v6sdgmt8BMSElh9Cr6GC50z7+q5ErcLj8zMTNx+++3MUlNfX48zZ84gPz8f1dXVVxVySBFU5EJRKpVM10L3klwklACMfqMEZaT7oOiun/zkJ5gyZQpCQkLQ3NzM3ELFxcWsPSJnQp3USKG2AwMDKC4uRklJCXp6elhGVr1ej9mzZwO4NHn6+/szSyNZbxISEhAaGoqAgABWuXdwcBBWqxXHjh1DY2Mj2tvb0dHRcU00BWFhYcjJycH8+fOxZMkSdHV1wd/fHxEREXjttdfQ3d3tUYBwPAkI1Uwi6+Zw6cx5EfGCBQtgs9lYptevCx0dHaitrYVCocC2bduwb98+HD169Gs9hwkMjwnyMc7gVzIDAwNQqVTo6urCiRMnEBYWhvj4eLjdbkyaNAl33HEHTp48iebmZhiNRsjlckRHR+PkyZMoKyvDkiVLmPArNTUVbrcbRUVFOHnyJL788kvY7XaYzWa2EifBHwC2uqZz4t0ddH4ymQyzZs3C6dOnkZWVhW984xtoaGiAwWBAQ0MDWltbERISgoqKCrS1taGmpoYJ8XjY7XacOXOGJdEazjQsHCz5c6PkWUFBQYy0dXR0sKRsFy9exKeffoqYmBhmIQkODkZbWxsCAwOZ+LC5uRnx8fGQy+UIDQ1FVFQUbDYbMjIy0NbWJup24i1PZEHiXQODg4NYsGABcnJyoNFoYDKZ0NjYCIfDwaJ/Zs+ezaw2BoMBVqsVnZ2dsNls0Ol0MBqNHlE05LYQksKrnVCCg4ORkpICqVSKixcv4uzZszh8+DDKy8thNpuvitjwYcBipIl3hwhdbeRKJKLn4+OD4OBgLF68GJMmTUJfXx8+++wzfPXVVzh79iwaGxuZ1aOvr4+RDyHZGQ5utxudnZ04ceIEIyCBgYGYOnUqIiMjERAQgIaGBjQ1NTFrJUUESSQS5hICwDJ9NjY2oqioCN3d3R5JxUbCSGQhKysLK1aswKpVqxAbG4vDhw9DJpOxvB5fJwYGBlBdXY2LFy9CLpcjKSnJq0VDpVJBp9PB5XIhPDyc3a+vC3q9HgEBATAYDLDb7SgrK8Pp06eHzecyga8fE+RjnEFmZb1ez7JG1tbWorW1FQMDAwgMDER2djbuueceuN1uzJw5E4Cn5mHp0qVQKBTo7e1lojqbzQaLxYLf/va3zP1SWlrqIfKiQZpefipdTm3T5EyfNRoNfvazn+GNN95AbGwsLBYL/vCHP+CXv/wlcnNzoVAoMDAwgCeeeAIulwv+/v64cOECO1/694c//MFDcwF4Tkz8Sp9yNdA2PHJzc/H888+zSTkvLw/BwcGor69HYmIiy3nwwgsv4OjRo5DJZFCpVGhuboa/vz/8/f3R3d2NF198EX/605+g1+vZMc+fP4+ysjJUVVV5HJN395ALhNwhVECL0tzTs9BqtSynBllI3G43qztCGhC5XI78/HwcOnQIBoMB586dYyG79LxIlEmh03QPeRfaWNHQ0ICjR48iKSkJGzduxOnTp1FVVcWe3dWAzolcXBTtItR1OBwOOBwOKBQK+Pv7MzO4w+Fg9zAyMhK33XYbDh8+DODSJPLmm2+iuLgYwGUCrdPpmBiXiBNZ3karj9m8efOQ7/z8/ODn58eElJQsa/r06Th58iRkMhliYmJw7733IiYmBg6HAw0NDdi9ezfOnj075uczEql8+OGHkZGRAY1Gg/7+fvj7+2Pnzp3YsWPHFbV3NTAajfjWt74FhUKBW265BU8++SS+853vDKnTJJVKERcXh4yMDNhsNrz00ktM/P51ISsrC/feey9uuukm1NTUICMjA4WFhWMKIZ/A+GOCfIwzKMFYT0/PkGyVBw4cYGnVp06din/84x+s0i2tcGhlSWGXa9euRXNzM3x8fJiQklwrlMWPJgKHw8FCE8VEeRSlIdRaPProoygpKcHmzZvxwx/+EPHx8SgtLcXevXtx/PhxnD9/3qNCK5+dk45DE7cwlFYMfBv8Pdq+fTvKysqwb98+uN2X0pmnpqbivvvuw6JFixAcHMwK6jkcDhw7dgyFhYWoqKgAcHll6XA4sH//fshkMmg0GkRFRbGJX1h1lP+b3C00oVKCMxrEHn30UcyaNQsLFy6E3W7Hfffdx7Jx8iGnREYWLVoEf39/BAYG4rPPPkNvby9zOzidTha5IbRY0bO/EsyaNQtLlizBvHnzmAXGaDSye3Q1kEgkzCpAWqLg4GB2LVarlV2fXC5nxIyIg0qlwvr16/HQQw/hyJEjOH36NO666y7I5XJs374d+/fvR2RkJCoqKpiA12AwoLe316NNCrMl98iVwmQyeVR9Jo3V7t27WfstLS04e/Ys66d0PdciokOhUECv17PaRBs2bEBAQADS0tJYyvkjR47gxIkTV32sKwW5kNPT09HQ0IBPPvkEwcHBkEql+MY3voEnnngC69atQ0REBJ599llWAPDrAumOaMFVVlaGp59+etgSCxP412CCfIwzSPhJ0RK0eu7r62Nppg8cOIDGxkY0NTVhypQpOHLkCBobG3HTTTehs7MT9fX1aGhoQHd3N+rq6uBwOCCVStlAyYd20gqbrAt8EToiQvwKiZ/wBwcHUVxcjL6+PiiVSuTl5bG8FhcuXMAXX3yB5uZmll2S9gU8V138MbyF0oqJWXm43W5kZWXhf/7nf5hf3+2+VCNkyZIliIiIQGtrK5qbmzFnzhz4+/tjcHAQbW1t6O3tHbIK7O7uZvfAZDLBZDINcTfwJIwPs+XzsfCuEavVirNnz6K1tRUulwvR0dHIzMyESqXCn//8ZyxduhQ6nQ5WqxVHjhxBZ2cnenp60NTUhIGBASiVSo96PjwRdLlczHJAlpArcY9YrVbI5XL4+vpi9+7dTJtwLbJhut1uD+JBFjm6f9TXSYxMadcffvhh+Pn5YXBwEFOnToWvry+mT5+OqKgoVFdXw2AwoKamhml7KCKG9CREyimKzO12M/ff1Ux0Yi4unvjRMxqvFbTb7UZkZCSmTJmCDz/8EGazGRkZGVi8eDEcDgcKCgrYYmMkjKf+49ixY7BarcwilJiYiClTpmDjxo2IjIyEj48PTp06xeo8fV1QKpWYOnUqJk+ejMDAQMhkMvj7+w9ZZEzg+sAE+fgawGc35Ytv0SBSU1ODCxcuQKPR4OjRo2hpaUFNTQ38/f3R3NyM8+fPo7q6Gl1dXR6rY6vVCrVa7UEexKwZgHhIqVBjMDAwgPz8fBiNRsTExCA9PR3nz5+HyWTCqVOnUFVV5SFgFYIIhjeBK09AvA2MvO6CSpjTREyZXLVaLbq6ulBaWori4mLI5XJUVlaiublZlHhQe0T6xMrLC/fhr4MIAFky+HvW1dWFjo4OSCQS7N27F83NzdBoNPj4448xMDAAnU6H3t5eHDhwgIVN81EyvGVIaEEShjtfCXx9fWEwGKBUKlFdXY3y8vJhwyTHCnIb0bUQMaYIr/7+fpb8i8JifX19mRDX7XajrKwMOp0Ofn5+2LdvH4KCgnDu3Dm0tbUxTQpFw5Bpn+9X1LZEIvm3jmigfkFJ24BLzy88PByDg4M4d+7cdbGCr6urQ1NTE+rr69He3s5qKK1fvx4dHR1oa2tjuUi+TlcHZTjOzMxEaGgo+vr60NbW9rWknZ/A2CFxj6ej8L8YlGxIrVazFS5ZO/ikShqNhpEHpVLJhG3kIuE1ERaLBb6+vmxipBUlWQasVisLCyQiolarh6zYvIUk8hYK2kcsJwefdVW4WhR2J36C5Sdw/njCNvjJNygoCEeOHEFwcDAcDgdaWlpw4MABtLe349y5cygqKmKpkkfTlYXHEbt+Hx8fqNVqRhSASyZ4MuXy1iR+Bc5XwiUXAeVG4LURlMODojYkEgmrW0OaD5rEeavIleCpp57CypUrMWXKFGzbtg0/+clPrmnGSboeXjTLR7iQtoOSvnV2dsLlcuHWW2/FHXfcga+++goFBQWYNGkSQkND8ac//QmBgYEA4FEPidLOG41Gj/wo/LsDXHJn/jsXDNPpdKxaMgBMmTIFS5YswU9/+lPMnj37mmZM/U+DRqPBypUr8cc//hHBwcGoq6vDgw8+iDNnzlwxKaXxwmQywdfX91qe7n89Jiwf4wwSDRIpADzFmcNFNtAkTBYK0nNQronBwUHmb5bJZGyy4zNukg+cBnJvLhCaMGiVKjZJ0//CcEahqJQHnYswnJTfz1vuEYpMmDZtmoePnc+FIcxHcjUQHoOeF4VbktWHVu+86JEvIEh1S/ioB41GM2QVSKGntA9fpZhfyVNUx5WYjl944QW8/PLLLOz6WqeVlsvlzKVItWnIRUWg+8SHVG/fvh179uxhIbYlJSVQKBSsSB8RdpvNxrK9ku6DF0nT/XI6nVAqlQgICIDFYhlX8eV4wmKxwGq1svdRrVZDp9Mx1xnl9wE8iz5O4NI7tnr1arzxxhuIi4uDUqlEYWHh16o5mcDoMUE+xhk0idCAQqZn3jVBq0M+YZVUKoXNZmMTG01u5MNXq9Vs0qasmCRy5Cuy8noBoQsGgMd58OdD8Ba6KBSSipEasTZ4y4rY9kKi43a7RcuE0748QRP+JgZ+e7H7Qd/zuVn4SAralixYNElQ1Abpe2jCpVBQeq5EYKi2ChFKAB5uCrfbzVwXVzPBUIG38QIRY7J+EEkijUZnZ6dHBJBarfawqJFVRCiy5TPrUlQR796h/SmhGV9Y7t99MqbzHxwcRF1dHbZv347S0lLU19d7ENiRJtXx1H1cjzCbzfjrX/8Kk8nELGUTxOP6xQT5GGeQGZ0GUL5gGACP1TsRBN69Qb/RPzLXUzvkcuGjSwB4uEVo8KeVOYGfvIGhxICHcDvhPsJtCUKdhzcLhzeyIHZ8HsOdx2jbFjsv/lhiAxi/+hY+O7r3vECVJ2q0D7XLW5qEbhb67XoWzPGWM7IYkYWCJ3HUB4ms0PbkniFiRvtTm8JIKCJyRNDINUmuyOsVI+mdhHC73ejp6YHJZEJZWdmI/fi/HX19fSgsLPxXn8YERokJ8jHOIJJAFg9eT0ErZspPQatlisrgsytKpVJmdqZB1uFwwNfXl4lYSVfCFyfj03RT0S4CP2HwOg7CWKwZPIQaEeF3wv2F+4q1zRMywNPkLDQ/Cy0bYpYOb4SD/qbnxt8//rwooojcWbxGhyxS9PzIFcZbpOg50CTs4+PDNDz0XPhic9eraI6IEZEDm83GyAQJrMlqB4C5C1UqFZRKJbRaLfr6+pgrkb/ncrkcSqUSdrud3YOBgQFmPeG1MvRMr2eSNpZU+fwigLYXc8kOB7Hf6RwmLAIT+FdjQnA6TiDBKb8SFoLM8PQ3Dbxikzb9LRT20ffCyVTMpUCfhfk+rkUXGE0b3iwT1+OE4ePjA41GA5fLBavVylbYCoUCGo0GPT09HlYtShBG2gT6m54LZeEkUiGRSDxqkshkMkYugUuTg0ajYRMun+SM9uHBkzDh9wTe0iV0m9HvwkgloQtOzJLFW+l414jL5WKp8emfUqlkLkjq/3yYrNPp9MggSnVhyOKh1+thNBqZ9YN0IbyV73oc0sQyAQsxGivdcPt6S9bnDbz1jiAcQ4ZrU0iAxAgR30eEbfJReQSyflE/IiLLW4HpO3rveN0X9SNyXVPuI2GoOr2DQrceFXyk49E+E4LTa48Jy8c4gycCQmIhNN0DQ02zYgRB+MIK3S38dkJrAe8S8NbeSMcT2260g+ZwFpPrCS6XixWXo8mPIiosFgvUajXTUpDOg0+uJhTRkruMLx5HYZVk9aCQbMrPQiJKCjMmCN1l9B39L2bhEZtkhJFMw/0vPA7fBn8fyFojnLjoOHa73UMLMzAwwPRORCZIM+Lj4wOlUskyo5LmSXhfiQTStV6PZHYki5/YtqOFkLSMZn8h8RS25W1xInx/vS2A+O2H+43/X2wM412W9F7Q92LjmDBjMq+zIpD4n/+O/1vowp7A+GCCfIwzxIiC2O/CCUNsH+GKc7iXYyRCIfzeG+kZbt+xDpJXuqr7V4Ef9PjVFS+GJNDqicDrFGhFxVscaAXHWzqoTVrl8wOiMA/IaHG199xbP6PvefGomPuKj/Di9RwEumf0Hb+q5fsi/c5bk/j7yBPs6xVXQ/JHs+3VvKPeLKzUxkgT8WisHqM5H74viVlweSJDfYrvd9QGfSbXqPC4QheY8PrHcu0TuDJMkI+vAWITubeXkH+RhB1/pAGC315sP3oZRzNwjeaFu5KX8t/lRaYS8LxpljQMcrmcVR0GwCJUhG4Kt/ty4TOqyyNcUZLbjY9cIosIWVfoO8BTSCwko0IIvx9ugBV+5w1iZnJKikViT+Gqkc/LwecEIauFTCZjZnEKP+YjfsjyJLQq8e4eseu6luCz7JKL7N9FNzGc5UK4nZiLRGyiF+7Dtz2aRQ5tL4y245Mw0rMWun54dw2Rfp6k8In5hFYcAB6WNepLYmPrWN6LCYwdE+Tja8BwoatiAxj/wvDbi01eowH/cl3PK8PrCRS+DFy6f1SzhDQdwOX77+Pjg6ioKDQ3N3uY/Pl7TcneyK1CuUCoLX7A5F0+VPuHBkR+UBWuCnmTM4G3UPCDqjDyRgiesPLCVzEiTS4j3pwtkVwWShNpUyqVMJvN0Ov1LOeIRqNh50cTAZE+eg6koSG3lcFg8CB8vMWJdwNdS9x3332wWCzo6+vDokWL8Nprr6Gurg5Go3HMbY12ch5vjORW4c9LaEUY7jx5a57Qeshb74T9kAfvIubdlKS94vMY8VYSnpyLLQhoH76fUmg8bwURWiQncO0xQT6+BozkFyUIGTvtw7+oZKrnV820ndgxhW0Nd348rhXbF177vxNotdvf34+enh4AnsX4eEIXHh6O73znO1AoFGhsbMTLL7/M8rdQhAbpOAAwLQM/yZMFgXQhvJiOXAtiOg3an9db0O/8wMyTGH47rVaLsLAw3HDDDZgzZw7ef/99HDhwgA3mBG/iQz6SRRhOrlAoPJLJUX4TaoMGfalU6kFeiJDQ5EP1XVQqlYc1SK1Ws+PSMa4lwsPD8Zvf/AazZ89m1+7v748ZM2bgxRdfxPbt20Xz0Agh9szE3svhxgdvlk3hyn20BEZoQfN2LP7ceLeIsP/xBEAsco63qvBuSf56hBYLvm0iPqSBon/8sYjs8ufKkx3+3HlSDVyOPCPySttcr5Fm/+6YIB/jDL7TCzu/t+1DQ0MRGxuLmJgYFBQUoLu7m62EAwICEB4eDrlcjsLCwiHpy4VtecOVDF4ajQZLly5FfX09fH19odPpcO7cOdhsNvT29nqE8YodR3hu15KMaDQapKWlITU1FW73pQya5LqgehjD1aURAz/Ri5lniQgqlUoEBgZi7ty56O7uRn19PQwGAyu6xtfcIQIhzBIrNB0ThCtNoXtNCG/us+H6QmpqKnJzczFv3jxMmTIFBw8eZO4PsTaFxIt3fxBJoj5OYcg0eVDIOYXg8qtNuVyOyMhIKBQKdHV1wWg0MnGq232pqOCsWbNQVFQEs9nMiAY/mV1LhISEICsrC4sWLUJkZKRHxdzw8HAsXLgQbW1t2L9//4htiZEO4efRPDtvz/5Krl1IZMTIgnB7sUlco9FAp9NBpVJBo9HAbDbDZDLBYrGIWujErpm/JnrvqG8IEzLyEWO8dZL2FUa18Hor/jr4CEPa15sofwLXHhPkY5wx0gQrfOH9/PyQk5ODVatWYfny5XjyySdx8uRJpvIPDw/HkiVLEBwcjMrKSshkMthsNpYjQezYI52Dt/3ob41GA5lMhqioKDz77LP47LPPkJiYiKioKLz++uuorq5GVVWVKPkY7TGvBBRlQud233334YEHHoDL5UJlZSX8/f0REhKCo0ePQiKRoKOjwyPl+XAQujh4USOdP0WqqNVqBAcHIzo6Gg0NDThz5gzi4+NRV1cHq9XK9CK0SuMr5NJELJfLWT0X3o3CZ6mlUFtvg+Jwz1GYyIwfXGfOnIm7774bCQkJMJlMLKMupXbn7wlPgogY8JBKpSzvhlwuH+JaIUsG+dwdDgcrjujr64t58+ZBo9Hg7NmzKCsr84gsCgwMxC233AKj0YiGhgaYTCaWY8QbqbtSSKVSpKSkYNGiRQgNDRVtd8GCBejv7x8V+aB7JrRK0d/8/6MlkCqVilmWLBaLR6I7b4sLMcsX/S2MTuIXNvx2KpWKPRO73Q6DwYDo6GiEhYUhNDQUVVVVqKyshMVi8XofCEJLL3DZAsxbsajvkRiZ3n1+USCRSODn5+dRT4lICu3Hu4L4e0Oh20Sg6Von3C7jhwny8S+CtwFl06ZNmDJlChO1TZ06Fa2trWhqagIAlJWVYdmyZVixYgUWLlyIgoICfPLJJygoKBgy+Xtzp4yW0dM5fu9738PMmTORkJCAoKAgbNiwga0+fve73+GOO+5gk8DX6VrJzc3FmjVrMHnyZEyZMgVBQUHsvI4cOeJhBgaAJ554Aq+99tqoQjEDAgJgNpvhcrnYpC8Mz6OqwsHBwcjJyYFGo8Gtt96KJUuW4NNPP8XPf/5zlg6f3AZkKhamYef1HsDlsEH6W1gvRYiRnqs3y4Cvry927tyJlpYWvPrqq+jv74fZbIbZbPYYoAnk7qDJgLd0kLBUpVKxbRwOB/r6+qBQKKDT6TyuUyqVIjIyEjNnzsSKFSswf/58yGQyOBwO7N69Gzt37sSXX37JEpPV1NTgf/7nf4ZEFQGXi/1ROPTVIi4uDuHh4dDpdF7brK6uRnFx8RUfYyzvi5i15I477sC6desQFBSEb3/726iqqrpiFwFvzRjp3O655x488sgj2L17N/7whz+gqakJra2t0Gq1MJvNAIbWf+IhHPuEpIesD/w29JtSqRxSLoJcmgaDAZs3b0ZhYSF2796Nw4cPw+VyYe7cubDb7ejp6UF3dzc6Ojo8CBaF49J7Sec0QT7GFxPk418AobUDuDRgL168mFkZ3G43Nm/ejM2bNzPi4XZf8qNv2rQJBw4cQHh4OJ599llMnToV+fn5eOqpp4boRoQrodH4kwkqlQrz58+Hr68vNBoNAgIC2MtK+0gkEjz33HN4/fXX8cknn6Crq8vjuoZr/2oRHh6OWbNmIT09HWq1mkVNtLa24sUXX0RGRgZSUlJQXl6Ou+66C4888giWL1+Ouro6/OQnPxnWUkNmfSIzvMCNT5xFJCEhIYGtsvr7+7FlyxZYLBYPYsGv5Kg2DD95UvtUrM1kMnmE6vIrMh7DudDoO+Fq19fXF2vXrkVgYCDS09ORlpYGqVSKV155BWfOnBE1O/NEjiBMK085Oeja9Ho9HA6Hh/hv5cqVmDNnDlJSUvDVV19h7dq1iI+Ph1wux+7du1FRUYHCwkKUlJR4JF6j4/HnQ0mklEolq4UzGg2GNyiVSmRnZ0MqlWLOnDm4+eabPY7f3d2NHTt2YPv27YiLixti+fGGK3U/Cp8BWc7UajXuueceJCcno6+vD9/5znfwi1/8gk3+ozkXYdu8i8+bm8jPz4+R8cTERI+IMD4CjO8T06dPh8FgwJ49ezyORy4U/vr5dPrCvDhEdmlfsspOmjQJISEh8PPzw9///nckJCSw/QHgRz/6EfR6PZqamrBz505s3ryZkWh6x3my4XJdqr0EXHsN0QQuY4J8fM0QmhdpMNVoNLjtttsQGhrKBtCGhga0tbXBarV6mE2bm5thsVjg5+eH4OBgBAcHo7W11cMMSduOFmITlkwmQ1xcHBISEhAcHMxefCF5SkpKQkZGBsrLy3Hq1CmPQUjY5mhWVqPF4OAg7HY7TCYTJBIJurq6UF9fj+LiYuzbtw9VVVVISUlhQsaEhATo9XrYbLYRo354PzEficFnTqQB0GKx4Pjx40hPT4dKpWLJwWgQFxPpCTNx0ioMADMRU1ZU2tebdWMs93LFihXQaDTQarVYsmQJjh8/DoVCAX9/f1gsFpw+fRodHR1sezGLidCMz98n/l7RdvS9QqHA0qVLsWDBAkyfPh1JSUmQSCQwm804e/YszGYzDhw4gPPnz+PixYswm83s/vHnQ+dAEwx/Lle7UnW7L0Xv3HzzzZg1axZCQ0PhdrtRVVUFlUqFzs5ObN26FUeOHEFTUxM0Gs2Y2h+N1VG42qfPQUFBkMvlMBgMWL58OZKTk+Hr6wur1YqMjAwPTYrYM+OvUQyjiYS74YYbEBISgtLSUhw9etTjXRdGQ0kkEkybNg1+fn5Ms0bfe3MPCc9R+I7wYbgajQYbNmxAREQEJBIJenp6sHXrVnR0dODixYusL6jVakRFRSEwMBC9vb345JNPmCiVb5PAu5smLB/jhwnyMc6gTi0WKcCvMNRqNVauXAmlUgmTyYTGxkYWYSE0iQKXVsgRERHM7K1WqxEZGYn6+vohxxa+1KN1u0ilUuj1eubSELZJK1mXy4WkpCTMmTMHVVVVrEaJt4FFeB+uFO3t7Th79iza2tqQmJiIc+fO4ejRozh8+DDq6upQWlqKU6dO4aGHHgJwucJwXV3diOZpOj+Xy8XCOil0lKIvaBuz2Yy9e/fijjvugE6ng9PpRHJyMg4fPgyn08lIBA3ORF6E4NOz9/f3s0gOYQigcHUJiPcR/looMuShhx5CWFgYO5c///nP0Gg0CA8PR1BQENra2jzSlXvrQwR6zpQGnqINKFsr5cOQy+UICAjA3XffjeTkZAQGBkImkyE9PR1/+9vf0NjYiK6uLpSUlKCrq4tdGx89I0y6RlYAukdXO1kolUro9Xo4nU5s2LABsbGx7LeSkhLIZDK0trZix44dcLlc6OzsvOJjiYH6Bu9yI6hUKsTHx8PX1xfx8fH4xS9+wYS4MpkMQUFBXp/RSO462oasDt7eTbfbjVtuuQVutxuHDx/GP/7xD6/tymQy6PV6LFmyBKdOnUJ5efkQYkLX6S3TKi8Epc9kIZRIJNDr9fjxj38MqVSK0tJS7Nu3D7W1taitrWX3Ui6Xo6qqCr6+vggJCcGMGTOgUCg88u7wolWJ5HI0zVgF6hMYGybIxzjDW1IvwNOEbDQa8etf/xr/+7//iw8//BC//OUvWc4CsfDbnp4evP/++/j1r3+NwMBAzJgxA++++y5WrFiB3t7ea3Lug4ODqKioYOmvCfyARd9PnToVCoUCW7du9TooX2u3y+HDh3H48OFht/Hz88P69euhUqkAXDKbf/755yPqPnhXC+kT1Go1K9tO0SwAEBkZiS+++ALA5VwblZWVHkX+VCqVh5tHqVTC6XR63EMqMiiTyRjh4Qc/fkXGWxaAoWJFYZ/TarW46667kJqaCp1Oh7KyMixatAh6vR5qtRoGgwH33nsvQkNDWSVVYOhqmO4FtU8JmxQKBStrT7+RFUQmk2HBggVYv349ampqkJeXB7PZjCNHjiA/P5+t5h0OBywWi0dtGNqf1wPwEySRkGsRarts2TI8+OCDWL58uYcVAQDy8vLwzDPP4B//+McVTUijIfwKhYJFkdEiwu12Q61WY/Xq1ZDJZFizZg1uvPFGjwgqh8OBlpaWMZ2XWD8ha583l5vb7WaWQ4fDMWz7YWFh+MEPfoD29nZ0dHSgvb1dVAcidLvwxxOG0ZI1lohmX18fCgoKkJWVhSNHjuCll14CcLnPKpVKZGZmoq6uDlFRUfD19YXZbGaaJLIuApcj14h0CDPpTuDaY4J8jDPELB1C10NqaioWLlyItWvXorW1FQEBAbj55pvxySefDElQJoy4+Oc//wmHwwGVSoXVq1ezJFbCgWg0L5GYfzk8PNwjXp6+l0gk6O3txY4dO3DzzTfDx8cHERER+NOf/oQHHngAnZ2dw+Yh+bpgMpnw2WefISYmBoWFhdi7dy8aGxtHHKh5MZpUKoXT6YTNZmODcG9vL1wuF5KTk7FkyRJm4SCySCLKPXv2YNeuXSynB/8PgIdOBPBMasRbV3hLBD+5A+JZT3nExsYiMzMTGRkZGBwcRElJCQ4dOsR89xEREZg8eTJkMhlCQkLQ0NDAkmcJV6tiuUQAsIgeKrAHXA5t9vf3R3x8PGbNmgV/f38YDAb4+voiMDAQWVlZcLlc6O3tRWNjI+RyOW655RYcPHgQhw4dQl9fH5qamjwsIWRh4UN6xdJkjwVyuRyJiYnIy8vzIB4mkwmffvoptm3bhjNnzlzVStgbAaHvp0+fjqCgIEilUgQGBiI4OBhhYWGIj4/HkiVLoNPpEBgY6EEIL168iIKCAjz77LNs0TGaeyB0nQHiRED4+eOPP4a/vz8jhUKyFxoaismTJyMmJgbFxcXo7u6GyWTycCnyeV+Ex+TfD97FyT9nl8uFiIgIZGdnY9KkSejq6kJ3dzfcbjdzsQKXRON33HEHgoKCEBwczKKqSB/GC8jp/aNFB58DZIJ8jA8myMc4gyccYkQkMDAQKSkpmDVrFlJTU/Hmm2+ivLwcDQ0NXiMU+Db37dsHuVyOqKgoGI1GyOVy+Pv7w+12M/Gnt/MiiPlXJZJLpeDLyspQWloKiUTCfKuktWhtbcX58+fZpKPT6TB58mSEhobCYrEMCbUbjd/5WkOpVGLSpEno6+tDQEAAwsLC0NPTM2ryQddL//OTLolPyV1CqdQNBgNyc3Ph5+eHlpYWVFVVobe3F62trR4iVZ7c0P0WuhboPEjkKoSQHIitaFUqFYKCgjB16lSoVCqcP38eBw8ehEQiQVxcHOLi4qBWq7F37140NDR4FG8bbsLkBbN0XH5AJ7EgTaIBAQHw9/dHR0cHyw1hMplgMBjQ29vLtBbTp0+HTqdDbGws2tra8Prrr2Pq1Knw9/fHvn37hlhj+NXxlZKDKVOmIDExkVUulUgk6O7uRmVlJbZt28by7UilUmg0Gg8d1mgh3F54b2NiYpCeno6IiAh0dHQgJCQE/v7+CAoKQlJSEiteSPvW1tay8PHa2tphj+utn4id03DWNYPBgKSkJJYs7tNPP0Vvby9r39/fH/7+/tBoNKzvk/uYv2bhWCPU7ZBFkC/WyO8TEBCAlJQUaLValJaWoqWlhe1L+9vtdpw4cQJ33nkndDodI6wOh2OIcJmOx2diFXtGE7h2mCAfXxOEVgvq1HFxcZgyZQpSU1MhkUhw8OBBnD592kPvQRAOrG63G4WFhQgNDYVSqURjYyPi4uLgcrlgs9lgMpmGJOEZLdzuS5E11dXVKC8vR0hICCIiIgBccg80NDTg3LlzaGlpgcVigUajYeZMX19fj3oefJtfJ3Q6HaKjozFr1iwMDAwgODgYMTExo3ZL0eRPrgV+wKI8FU6nE+3t7ejt7YVarWY5ELKzs9Hf34+MjAy0trairq6OTbCk/+DJB7lahOTG7b6UfEur1Xqct5i7RWxS8fPzQ1BQEHt+XV1dKC4uxrFjxyCRSDBp0iTExsZCLpdj3759qKysZHk6hBCbOPjEaXz0AP/bpEmTEBMTA5VKBZfLhYaGBnZNlZWViI+Px9mzZ1FdXc2yxM6YMQOZmZk4c+YM9uzZg1WrViE6OhonT55kqdnJLE8hkvSO8eLG0SIvLw+TJ08eYlU4ceIEioqKmA6GXCMAWBTPaDCS1koqlSImJgazZs3CtGnTmGuPd7VRDhaNRgOJRMLOi5/cxwP8eYeEhCA9PR3x8fFITExERUUFampqWEIxcr9JpVJ0dHSgurp6SMkBYa4NOoYYEeJrAfHfGwwGxMbGQiaTobm5mVk+eCuJzWbDiRMn8N3vfhcqlQp2ux3Nzc0wm80sNBu4vNDgiR1vfZnA+GCCfIwzvAm/qHNnZ2cjNzcXERER2LBhAzONf/XVVwA8ow2EkwsNts3NzXA6nQgICMCuXbuwadMmZuqvq6sbVkQmBjqOwWDAb3/7WyQmJiIsLIylB6+trcXrr7+OrVu3IisrCwcPHsSsWbOQmJgImUyGc+fOoaur61++arj11luxZs0aFBYWYsaMGfi///s/bN68eVT7arVa2O12RjgGBgZYdk5yJzidTlRVVaGrqwtz5szB7bffziZYh8MBjUaDlStXYtq0aXj55ZdhsVhQV1eHzs5OJiblLQcUrUTPnDf/9/b2iq5WxcKqaRu3240NGzbgxhtvxJQpU/DCCy9g06ZNMBqNbFXrcrng5+eHyZMn46abbsJnn33G/PneVuq83gIAE+LSYE3nQZah733ve8jMzITL5YJWq4XJZML777+PDz/80CPUUavVoqysDHl5eUhJSYGPjw/ef/99vPfeezAYDDCbzfjtb3+Lw4cP49ixY2hsbAQApqVRKpWMGIwVt99+O7Kzsz2+O3v2LI4fP44///nPbFFQVVUFs9mMZcuWobi4GNXV1aNqX2wC5f82GAzIy8tDWloaZDIZfH19PTJ9dnd3Y+PGjcjMzMT8+fOhVCqRn5+PL7/8ElVVVaydsbznwv7C55UBhkYWSSQSvPzyy2hvb8eGDRtw8eJFvPnmm3jvvffwxhtvwOFwoLS0FLNnz0Z6ejr+8pe/iFp+h9PBEREn0k+FB4m0kE6DshcrlUosXLgQ9fX1OHToEIDL7qO4uDgUFBRgcHAQRqMRp06dwgMPPMCiqIDLGiE+ARl/DyZCbccPE+TjawLfqXkysXDhQkRERODMmTNob2/HBx98AKvVOqSkOm3PgyYpEqVNmTIFW7ZswbRp05CZmYl9+/bh+eefZ/VERoJwQBwYGEBpaSlycnJgMBgAXHpJn376aZSXl7NJlo/IGG61IkbErsYaEhYWhqSkJMycORPh4eGIj49HUFAQzp49y847Li4O8fHx0Gg08PPzG3VopM1m86jWSpkTSYdB1hAy9QYEBKChoQH9/f3w9fVFe3s7oqOjIZPJEB4ejkcffRRSqRS///3v8dZbbwHwrODJrwjpHyU+Ai7XTyHzsJBkEOjvwMBAvPvuu4iKioJcLkdra6tH2/7+/vjmN7+JdevW4fjx49i0aROzYvHPiG9fzA1I1i76va+vj5EJIjeff/45LBYL0tPTUVdXh3/84x8oKipiEw356e12O44fP46ioiIPLcmGDRtQXV0NqVSKm266CS6XC3V1dWhubmbnQPdurGJrtTpOmbIAAQAASURBVFqNO+64g1lmeKxduxZLliyBwWDA3//+d6Snp+PWW29Fc3MzZs6cib///e+jipzi76cY3G43jEYjduzYga1bt6KsrAz+/v549NFH0dHRgfz8fBw6dAjz5s3D1KlTIZfLIZFI0NjYyITBI+lJxN494T7Cd5Efg+g3i8WCixcv4vz587Db7VAqlVi+fDnLJNzb24sTJ07gs88+G2LZEBJk3mrGf8e7N4U5PqhPFRUVoaenB+Xl5QgKCoJWq8XatWuxbds2AJdCgteuXctCvCsqKnDgwAGPPCi8ZYPeY+BS2gNeLD6B8cF/JPk4dOgQ/vjHP+LUqVNoaWnB1q1bcfPNN7Pf3W43fvGLX+C1116D0WjE3Llz8be//Q2TJk1i23R3d+Oxxx5jL9H69evx8ssvQ6fTXdW50UulUqmwatUqJCQkoLm5GVu2bEFrayurZ8G7aYSmdWF7brcbZrMZ+fn5+O53v8u0GQkJCUPMhmOZ9CUSCUvhXF1djTNnzsBoNLLVn4+PD1paWtDZ2QmbzcZWD4sXL8aRI0eGDfsdK+mYN28eent7UVNTg+nTpyMnJwfh4eEICQlBXFwcfH19WbhhRUUF9Ho9QkNDmWB227ZtOHXqFLq7u0d1PN7vy0dSuN2Xi7wRHA4HvvjiC+h0OjQ0NLCVcXV1NfR6Pfz9/REWFoaNGzeitraWZTYFLpuhSeTG+7qFRIS3hHi7fzTIKxQKBAYGwt/fH2azGc3NzTh27BizaqhUKmRnZ0Ov16OlpQWnT5+G3W4fQjDE+htPSnirB4XU8gQbuCTarKurg9vtRlpaGqZPn47u7m5cvHhxiGjRarWy1NiDg4NQq9XYvHkzoqOjERcXh9bWVqSnp+Oee+7BpEmT8M4777BwXD4UczSgc2xoaGDnQJYYskYYDAa43W7cdtttCAsLQ2RkJMxmM8LDw5GVlYWamhqUlZWN+ph0D/lzoHt35MgRFrmi0Wjw5ptvwmKxoLa2FjU1Nbj77rsREhLC9lm9ejUsFgva2tqGtayM9l3nU/B7WywMDg7i3Llz2LZtG+Li4jBp0iQEBgbihhtuQHR0NBobG3Hw4EF0dHQwa5Xw+EJdE38MMQ0Rr8mge2WxWNDY2IiysjIsXrwYCQkJiIqKQlhYGHbs2IHU1FTMnj0bNpsNKpUK4eHhSE1N9dCT8OfAi5eFhH4C44P/SPJhtVoxdepUfPvb38a6deuG/P6HP/wBr7zyCjZu3Ij4+Hj87Gc/w/Lly1FeXs5WP9/85jfR0tKCvXv3or+/H/fddx8eeughvPfee1d0TvykK5fLERgYiHXr1kGlUuHcuXPYvXs3y2/Abz+S64K2NxqNOHDgAL73ve+xlSBdi9BM7u3ceGi1WkRERLB8DOfOncPmzZvR3d0Nq9XKxG9msxm9vb1MxOV2u5GRkYHKykpcuHBhxNXVaLFy5UqYzWYcO3YMN998M2677TYEBwd7rFwkEgnLChoYGIjQ0FD4+/ujs7MTb7/9Nk6dOjWsCFcIiqrw8fHxKOGuUChYLR232w2Hw4EdO3YgOTkZzc3NOH/+PLKysnDo0CFMmjQJ2dnZ0Ol02LNnD0wmE2JiYlBVVcUmbjoW4OnK8EYERrqHCoUCWq0WfX19MBqNuHjxIoqLi3HixAmPPqBQKNDZ2YnOzk6mD9LpdNBqtSwS5uLFi14jSYQiQfKdC60yRqMRlZWVaG5uRnJyMiZPnozS0lJ2fZQXhO4zf44DAwPYunUrcnNz0d/fD4fDgVtvvRUpKSkICgrC22+/7XEfx+peJGEinSsf6cBvd9dddw3ZPyMjA1VVVUx0fTWQSCQoLS1ln61WK7Zs2QLg8jUZDAb2TrtcLmRmZjL3LN/OcJOnNzIJiFfVFhsbqqurcfHiReTm5iIqKgp5eXnIyMhAcnIyzp49i/r6ely4cAEhISEoKSnxuDf8+MZbzLxpYvhr4a0TAwMDsFqtaGxshFKpREhICHQ6HRYuXIiOjg5ERkZCKpWiqakJoaGhiI6OZm41sniQRol3K/HRNRMYX/xHko+VK1di5cqVor+53W689NJL+OlPf4q1a9cCAN5++22EhoZi27ZtuOOOOxgZKCwsxPTp0wEA//d//4dVq1bh+eefZ8LL0UC4epBIJIiKisL8+fMRFRWFnTt34vjx42yiE+v03lYhYnqQP/zhD/jBD36AmJgYnDx5kpk1hxuQxF78+fPn495772VEw2azoaOjA0qlkq0I/f39AVwSoWk0GjZo//nPf2YmcW8YjR6EXDhutxuLFi3CjBkz4HK50NPTw4qWkfCT3CAGgwH3338/uy6HwwGTyYSCgoIxJYWSy+VMf0GJrGhlL5fLmc6ABrGuri4899xzzF01depUSKVS/PKXv8TSpUsBAK+++iqMRiOKiorwwAMPsPOne0H1X2hC9PX1ZcXmKCJEuDoTm0yCgoKQlZWF5ORkvP322/j888/x1VdfeRCdlpYW/PrXv8aNN96IgYEBpKSkoLW1FdOnT8dNN92EadOmYWBgACtWrBAtxkfHJTcHJXSiyZuP4Nm2bRs0Gg0MBgO++OILXLhwgYWHU+VcOndybdExyOJz9OhR5Ofno6+vDytXrmRJ5DQaDbPmUI6G0UIikSAkJASHDx9m1zOWwnSRkZFITU1FeHi4R0bN0Rx3uM/e8MILL6Cvrw8JCQlwu9248847me5lLMcTWjeE2g7axhvZlUgkcDqdOHjwIFyuSyn04+LimOi9uroaFosFP/jBD/DDH/7Q43mK6T34z2QJIzcLcFmPQedJ/cxutzNBfHt7O/R6PR588EG8+uqr+OMf/4gbb7wRt99+O7797W+zcG56vjxJpjxGRL5oLCa36ATGB/+R5GM41NXVobW1FUuWLGHfGQwGzJo1C8eOHcMdd9yBY8eOwc/PjxEPAFiyZAmkUikKCgpwyy23DGnX6XR6aCu81ViIjY1FUlISoqKiEBoaiu7ubrS0tLDwz+FeeH7iEUbOSKVS6HQ6fOMb30BiYiIAQK/XA/DMBzFaBAUFYfr06ayOxPr163HDDTfgwoULKC4uZmnEf//73+O+++6Dr68vmzzGEhvvbTuVSoWlS5fi0UcfRXJyMo4cOYJt27ahrKyM1R6haweA//3f/8WiRYuQkZHBhGpkpQgNDR2zap2v30J+aODSQEX1RISrJWFNkSVLlqCjowOvvfYa7rnnHgQEBKCurg4VFRXsGBSOCoBZWegZU24QEswJ9UJCUgoAL7/8MqZNmwaNRoMvv/wSpaWlaG9vh0KhQHZ2NrRaLRYvXozFixfD39+f1WEhKwlZEex2OyoqKjyeJS+ApOPzReR4Kwa1Sedqs9lgsVjQ0dHhMdmRy4SuW6fTMdJBRIb6fVxcHB5++GEEBwczbQglZuOL9XmrpipEREQEZs+ePaZ+wSMoKAjR0dEwGAys/tJ44rnnnmNjktvtxuOPP44tW7bg2LFjw+43nFVB2I94V5/QiiUGyndDmZlnzJiBiooKdHd348CBAx7kkl9cUT/iyZ7b7fZwRwoXXPSekXWM+u4HH3wApVKJ2NhYrFu3Dnv37sWZM2egUCgwefJkBAcHw263o7OzE4ODg0xjxC/M6Pi8NWYC44v/OvLR2toK4FIyHB6hoaHst9bWVoSEhHj8LpPJEBAQwLYR4rnnnsMzzzwz7LHdbjdWrVqFGTNmIDo6Gt3d3SgtLUV9ff2QFZvQdM0PEmIDQUhICG6//Xakp6fj3LlzqKqqYmGJozHXk4LcYrGwOggDAwPQ6/WQSCTQarVQq9XQ6XSseiytEKZOnYrAwEB0d3fj/fffZ9aC0axCva36aFWZkZGB+vp6HDt2DGfPnkVtbS1aWlqGbL9161YEBwcjIyMDPj4+6OzshEqlgkqlglarxf/7f/8PH374IU6dOjXiOQHwyLkhXAGRS4vEp2L3VyqV4sKFC/D390dycjJbxUVGRiI3NxdPPPEEXn/9dZhMJq/uCl4PQrlUhMchaDQaPPLII8jMzERERATUajVMJhM6OzsxadIkFvFisVhgMpnw+eefIyUlBWlpaThz5gw6OjrwrW99i0X4GI1G7NmzZ0hIIl0bYWBggIVW0nXw29GkQSSGF9gCl1egZHonEsETbMr14HA40N7eDqfTie7ubvT09LAEcLz2ZLTw8fHxCAmnCclbBWGhS7S0tBQHDx5k+VvGC3Q8qipN95RCt0eDkTRX3qyrYveTnp9Wq8Xs2bMRHR3Nng1VlaW6VNR/+LFLSGaF+hTqG9QXeMstv49UeimVf29vL0sA+Mc//hHV1dWora2Fj48PwsLC2FhFRQrpneLPh85PGPEz4X4ZP/zXkY/xwlNPPYXvf//77LPZbEZ0dDT7LJFcqhkwa9YsZGdnw+l04ujRoygvL0dbW9uQ9sReSrG/yTwZGhqKVatWQaPRoLi4GPn5+SgpKRmSTMcbaCUBXKp4KpFI2CrVz8+Ppf0ODg5GYGAg2y89PZ3tbzQaUVJSwiwNJpNpSM6F0ZqYSUDq5+eH48ePs7LslECN0nCTe6Snp8ejimxhYSHUajXCw8ORnJyMNWvWoLS0FGVlZSOmhgYuZzwUO1/eX80PWMLf6+rqEBISwvIKkBVGoVBApVLh3Xff9SieJmbRGg10Oh3i4uJw//33M2uPUqlEVFQUDAYDoqOjsXDhQsjlcrS1taGgoABHjhzBtGnT0N3djV27duHixYtYtmwZ/P39IZPJYLPZcOTIEQ/yQZY5+sdHJvDnLiTMZOEA4JEvhZ+UeAsTP9kIV6MOhwP19fVob29nFg5ejDsWMzklbyPQqlqYWt0bWlpaUF1d7VGIbyQI312xCd8biBzRfWtoaGBFFYdrVwzChYxwsh3us4+PD1QqFbMchYaGorOzEydPnsRbb73F8o7w+1J/oe95Uspft9D1Izw29R/qE3z/MRqNePvttxmxiIyMZH25q6sLnZ2doveG76tCK/GEBWT88F9HPsLCwgAAbW1tCA8PZ9+3tbUhKyuLbdPe3u6x38DAALq7u9n+QiiVSo+BTAiJRILw8HDYbDbs27cP27Ztw5EjR1jHF0sgxjNyaoNvD7j0klDmyPb2dpw5cwZVVVXo7OwcQmp4140QTqeTmUjLy8sRHByMuLg4WK1WrFu3jqV99jZgud1uREdH47XXXsMHH3yAY8eOobi4GMXFxV7vCe0rhoaGBjQ1NUEqlWLNmjVYu3YtTCYTGhoasHXrVnz11Vcs0VBrayt+9KMfITo6GhaLBTabDQ899BCcTidyc3OxefNm7N+/H4ODg0hKSvIQ9nkDPUtKGy6ExWKBTqeD230pFJcsTCScJOvI2bNn0d3djRtvvBExMTFwuVxob2/Hxo0bPcJ1yZRMz4dStdMgLSzdzj/DzMxM3H///dBoNCx1tFQqRVBQEB5//HGcPn0ab775Jt566y1oNBo2WNfW1uLjjz8GcMlF9+STT+LFF19kCaIaGxs9njUvSKRnTu6pgYEBZukisSoRF7KMSKVSKJVKFkLMiwd5PQB9T4TXz88PAJCamorHHnsMv/vd71gmVqvVyq5prEJBf39/5qIELkUt9fb2QqvVim4vnLDz8vJgsViQn58/quNd6SqajvnVV19BIpEgLS0NCoWCJcwarl3hRO5tTKHJlyeGQvEp/a3X6xEZGYmlS5ciJSUFAwMDOHbsGB555JEh1yq0BvK/ixFFKpYHXCKHpIMi1xy1Q/dErVazBQ5v1SAXYElJCQDgzJkzTNtDhePI7UJkhq8pRNc8WgvuBMaO/zryER8fj7CwMOzfv5+RDbPZjIKCAjz88MMAgNzcXJaUJicnBwBw4MABuFwuzJo164qO6+Pjg6ioKGRnZyMpKQnz5s1Dbm7ukCRR3gYSMTMg7XP//ffjtttug0qlQnV1NUuJLsRwyX2obfp39OhRlnGSsk+WlpYiMzMTp06dQnR0NKsXEhkZ6UGGVq9eDZPJNKoETN7OJy8vD0FBQdi7dy9WrVoFl8vF0rc/8sgjWLt2LdRqNcu/ERgYCIfDgeLiYtx6663o6urCk08+iYcffhgqlQqVlZWMmI0GJGjl82zQwESTLoWmAmCCUN6tQPlaADBrh9vtRnh4OG6//XYMDg7i5MmTuHDhAgB4TOz9/f1DQhJ5csuTyJiYGCxbtgxarRZdXV2wWq3o6urCO++8g6CgIBQXF+Pw4cPs+Py+EomE5UuhTLAvv/wyPvzwQ4/74W2you8poVhfXx+cTic7X94yQhYrofmdXB06nQ5ZWVmoq6tDZGQkJk+ejLlz58JutyMmJgZSqRT/93//h/LyctTV1aGnp4cRQBIhjsaqRRBaPvR6PdOceAPVmgkLC8N7772HjRs3jvp4PEZr1eJB0VtERENCQqDVaoe1vIyG8BAR4Akgfc/X8qHv16xZgyeeeALBwcH43ve+h6amJo+iibxbhfowb1HgxwphhA1vBRP2OSILFIZNx+Kthvzf3d3d+Pjjj5lVNyEhAQcPHoTdbmfHFlpnhKToSp7TBEaH/0jyYbFYPCa+uro6nD17FgEBAYiJicH//u//4je/+Q0mTZrEQm0jIiJYLpDU1FSsWLGCKaf7+/vx6KOP4o477hhTpAvgaXJsampCTU0NZDIZjEYj7r77bhQUFKC5uZkJCglCksFbLeg3uVwOvV7PwswqKyuxb98+NDY2iq4qRhqI+N/7+vrQ3t6OTz/9FL6+vujp6UFXVxfOnz+PtrY2lJeX48yZM4iIiMAzzzzDIl9oNRIREeGRDlt4jJFe6tLSUthsNrS0tGDHjh247bbbkJqairCwMPj5+THBJw3Ecrkc+/fvx/vvv88GY6PRiLa2NkRHRyMsLAwqlWrUqxgSPPITJA10tBri7xdZLmg7Oj8AbHXs5+fHJrjk5GRERUWhtLSUkRnhuclkMjapivn26fgdHR04evQoTp48CZvNht7eXnR1deHcuXOMkNDqULgClkgkyMrKwvLly5GVlYVdu3ahuLgYZrN5yETEPzf+vhCEkS7U7/l2+EqiEsklwarRaMT06dOxcOFCpKamwuFwQKfTISAgAFFRUSgpKUFvby/a29tRUFCACxcuwGg0oq+vj9XVEbp+RoPm5mYcP34cjz/+OIDRCbItFgsOHz6Ms2fP4quvvhpT6LYYhO+BNzeMRHKpDpRWq2Xf8wRVaIUcq2ZB7Nq9aWioT7733nsoKirCpEmTsGzZMqxduxavvPIKi44Sklwh6eQtLfSZf+eAy9lKiRyRVcJbhWfSofHu6ICAAFy4cAH19fVDBKYAPFx2/OJhNO6rCVw5/iPJx8mTJ7Fw4UL2mbQY9957L9566y388Ic/hNVqxUMPPQSj0Yi8vDzs3r3bI8Phu+++i0cffRSLFy9mScZeeeWVKzof6sStra0oKyuD1WqF0+nErbfeCqVSicLCQpw7d44p9cU0BPz/fn5+8PX1hUajYanPTSYTSwFNqz/hyyMcmIY7X+ASASksLPT4rqGhAQDQ1NSECxcuIDU1VZRcBAQEIDIykhUPE3uJh3uxa2pqGHkoKipCZGQkC6ltbm5GYmIi5HI5zGYzmpqaEB8fj5KSEuzbt4+1QYWtpk+fzhKRjRZ8OXvh6oxquvA1TMRyGfCrMJPJxASqcrkcoaGh0Gg0rG3e3AyAmYLpe17cKiSpFy9exK5du/DFF1/A7XbDZrOJRluJmeB9fX0RExODKVOmID09HVu2bPFIPz0a8PoPlUrlsVLlJw7+2Hq9nj2P+Ph45ObmIjc3FyEhIYiNjYVEcincuLGxkYkXGxsbUVVVBaPRyFw1vJl8rBOFyWRCTU0NioqKkJKSArVaPez2DocDbW1tOHToELZt2waz2XxFoZijvbf88/bx8WEF2wgajWaIO240xxLeJzFNBuAptObHIAp3/+ijj+ByuZCWloYlS5agvb3d43yE/VV4XP7ZebP88oSePvPnLDx3Hmq1GtOnT0dsbCysViv0ej3UarWHlYa/JiExmgi1HV/8R5KPBQsWjOgH/dWvfoVf/epXXrcJCAi44oRiwmMBl140p9OJkydPorKyEoODg9i8eTMmTZqE7du345133kFgYCBOnDjhUVVU+DIAwOzZs5GXlwdfX1+sWbMG/f39OHbsGF544QUAniZObyspsXMcDmIWi8DAQPz85z+HXq/3mNDcbjf0ej3Cw8ORmJiIs2fPDnmJxXzCQnR1dbEaMYWFhejp6YFKpcJLL72EN998E3Fxcejo6MAzzzyD3/72t+jt7fWIXmhra0NtbS1cLheSk5OZdWY04LOZqlQq2Gw2dj/pb4JEIhliCSGXjUqlQkhICO68806WLbO/vx9arRZms5nlDyFXBb/S49X+YoX6CJWVlaisrPQ4n9FOxlOmTIHT6URFRQVmz56NFStW4Pz58x7t8YOycDVLlg7e7M2HKBNRo/0oZ0pmZiZmz56NkpIS/PWvf0VjYyMKCgpgNBpx3333QSaT4fz58/jpT3+Kjo4OGI1G2O12dj/omKQJoOdBYcKjAeWruf/++7F582YkJiZ6uBroeglUvn7Xrl0wmUzXXIw4nMtVpVIhMDDQg3zMnDkTNTU1qKmp8dhWrM3hLCxiFiPq+8KFj0KhgEQigdVqxYkTJ/D//t//w/Lly2EwGPDQQw8x4sq3L7Rm8P1FSE54MsETV9qe12AIrTVut9sje7C/vz/uv/9+Vjdn8eLFqKioQHV1tYeug9eJUAJBb/dlAtcO/5Hk43oCvVD0wn355ZdsMPnxj3+MBx54AOvXr8e8efPg7++PDRs2wG63Izw8HOXl5YiOjoZarUZoaCjuuece5OfnY86cOZg1axbTIfz0pz/F22+/zY4pfJlH6+oYy/W43W60tLTgu9/9Lh5//HHMmzcPKSkpbPCg6p9kkbjaFcTu3bvZpOBwOPDAAw+wic5ut2P9+vWs8B3h1KlTqKiowNatW7Fo0SJmtRkNdDody9pKZJAGfsr1QSGgQneJVCqFXq9nIsze3l60tbVBJpNBo9FAJpOhu7sbxcXF6OjoYP2BrAf8vSJRKu97H431irYVc+Xx/cNmszGB7J49e/Dmm28ykR4dSxgOKwQ/mZAAlK8LQonpEhIS8JOf/ATvvPMOpk2bhtWrV6OxsRH5+fnYs2cPDhw4AKfTiffee4+RNCISRMTonhOx4QW0vIh1NGhqaoLRaMTKlSvR3NyML774AidOnMDGjRs9XBsXLlzA4OAg/vKXv+C9996D2Wz+Wiclek4lJSXMpSmRXMrmO9pQWyHExgXhd3xUCX0fHh4OlUoFk8mEwMBAbN26FTqdDsuWLcOsWbNw8eLFIQJt2pfvw3QMflFF31P/5yvNUt/jQ3cBeIiyyX1C/bWtrQ0333wzPv74YzQ3N2P//v2oqqryEJbSedC+wtDyCbfL+GGCfIwzhB2ZIkoGBwexc+dO1NTUICgoCDqdDgMDA3jwwQcRFBQElUqFtrY26PV6KJVK6HQ6pKamwmazMR/mG2+8wcSyFHYoNinxDH8sGRy9gR8kOjs7kZSU5JF/wO12IyYmBh0dHSgsLBxWZzFaQtTf3+8xqAkTSYkVFKOJv6qqipnMRwta0fNWJD6TJg3O/ADGr8RsNhsbMDs6OvD888/je9/7HuLj41k0RX19PaxWKzPvUj4C3o3AayWE0QJCTQAPbwRFOPA3NDSwiU2pVDK3Bt+u0OohtFrxUTpEDvjjzZo1i2XEnT59OuRyOYKDg6HVarFlyxZUV1ejvr4eFouFETuaHIQaEr6P0cqYMlTS5DRauFwuVnadNE2U74QwODjIRLLl5eVeXYijgZj7Ybj+Lxw7du7cCZ1Oh8jISACX3MuU3EzYppiLY7jjCRcsQncH/ZadnQ1/f3/09vbiySefREREBPz9/dHc3Iza2tohLlihZUPY/7xZF+g3YcJCIsF8VBk/HtHviYmJmDp1KubMmYPi4mKUlZXh1KlTHhZKuk46ZzpPITmZwPhggnyMM4RmRMLg4CAzb/v5+SE4OBhWqxVLly5FZmYmNBoNysrKoFarYTAYoNfr0d3djY6ODnR2dqKrqwubN29mfufhzKsjTfCjXUkLr4sG++bmZrjdl7QM9OLKZDLU1tZ6FJcT23+84XJdKkJVUVExpuPx6n+6HmHiMX7C5SdHAB6ZHS0WC/bt24esrCxcuHABer0eTqcTHR0dTIDJh9qKXcPAwIBX14uYRWM0cLvd6OnpYWRjuP14i4twhcwP0kSgeDJmMBgQHx+PmJgYBAYGIiUlBZ2dnSgoKMBXX32FlpYWD8LizUXHH4vaptwcwyVgGw6Dg4O4cOECizgCgE2bNo2pjdFC7D0TurGEkz3/d319vUdhRI1GI9onRnMPhnPx8H/z7gnajzIyz58/H6mpqaiqqsKJEydw4cKFIRM5/7fwmGJjgFCAKrRQ0P98+0I3Tnp6OlJTUzF16lSsXr0an332GUpKSnD+/HmvBIg/prB/T1g/xgcT5GOcIeYrF8JoNLJol7/+9a9YunQpMjIy8Itf/AKhoaHIyMhAbGwsTp8+jW3btqGnp8frCo8/jlBAdi1ALyPf5hNPPOHxO+ApDBM7B+Hqebwx1uNYLBZWPM/lckGj0XiIUPlcFAqFgmVQpHwvRD5o1d7X14ennnpqiG9Zr9dDJpPBbrezgY8mcODyYMwL/4T3zttK1+12D3kO3u6NcIUqto3Y9yQCpmO53ZcjDsgUXlFRgeTkZKxatQomkwllZWX44IMP8MEHH7B2SLfBF5eje08uF4nkUk0RuVzuEaFAREciuZwf5XqD0GrkDcNtExERwdx5MpkMjz32GPr7+1FbWyvqXhO2OxL4hRKf+pwfU7Zs2QK32w2NRoOGhgbk5OQgPz8f+/btG6KDEl4Ln7iL3gMh4eZzbtB7wPc9t/uSroMWPnzfoD747LPPsiy9ERERMJvNuHDhAmpqaoYkD+OtasLzp0XF9dif/hMgcU/QunGB2WyGwWDweOmFZkKhqRO4nFiJEuwAl18QGti9+d69mTn5z3wIKI9rxfC9DXLDtX09vtykwSCrAxUwo0GL3AvCCVOhUEAulzM3EKXw1ul0LEcB5cKgOij8oEcRMOSO4eukkNiPVnmk+RFaJQhCwiDMayBm/hf2F+G2PKFxu93s/GjwpoRr9J1er8djjz0GmUyG8vJyfPnllywVNnA5vJF3L+n1elYjSKvVMoEvHZeIB52rr68vrFYr60fCGjvXA5RK5YguD4K3d1upVOKGG27AihUrsGjRItxzzz2ora0dEr0x3PhCn71Z2IQuB6GrjwevwfFmrRJeozeXk7fFibA8hNt9KZSfkv/Re0rb9/f349VXX8Xs2bPhdDqxbNkypgXjSTH/zpBlUyKRMNJPv0mlUvT19cFkMo0pWm4CI2OCfIwTiHwAQ0NlvblI6Duh5YIgZi4UmxiGWwmLkY/RDH6jwZUSmOuRfPCDFK2uCDRI0aBF4bD0jwgLPQtKuEXWDopwcblcLCMpTcgKhYL523nrlsvl8ggFp/Pw5nIRexaj2d4bieH/FiO4dL/oOsjqIZPJMHnyZLjdblZEUZiwjffh04qbJ3lE7Og+UIptiq6hyYjuqXAyvh4gfHaE0Vgk+PsfHByM0NBQhIaG4vjx47Db7WN+57yRD+E2Y3XFirVBGI5oCEkSvVvUz4ic8tWr+XYomR2JRadOncpqcx04cID1DXpfedEycIlE8QSGPz/6foJ8XHtMuF3GGWLm7OFeauG2ox0EhNt5M8972/da4Era+XfgvjQA0gQrtoqkAay/v99DdEf7EOGg34XhnLwlgP4WE/yN5B7ht6VzF34nvLbRTEb89jyIAPDt8+GwAJjehn4XrjxpYqHteRcTT/zE3gWyCtHv13N/Gs37521BQtt1dHSgo6PDI4Ox2DO+GuLgjcAOR1zFMNz33p6TmCVP7JnzCzQisERMi4uLh1g4hOctRrSJNPMak2tlEZ7AUEyQj38hhJ2af1mGe+npO7HtxEysBCE58XYe3jDSoDOWdngrwfUIyuIIXE62xIcAUr4BfgUuhMvlYhYPk8nkUayO6kvwWg+ySrndl3UTYi424UROxxL6rIX9gQZXvh0hERgJYmSFCJnL5WJuJyJaCoWCWSKIcFGCNiJsPHkhvQF/LqS3IXEu/U9WKYlEwrJ9jiZL6fWGsU5wV2uRoDaEQk7hOXh7N8UWRqMhJt4mfL493oUntO7yYlbaViaTweFweLRBZQSoz/DHdLvdTKPEt0VkRegWpzILE7j2mCAf4wyxQcXbQDPSRDzaAWq4VYXY4DyalfRoJyax8xBz8/Av/fWYRVCr1aK3t5cNcPQ/rdBtNhtb4UskEo9wT7o20u1QGnB+gHQ4HB4aDEq+BVwOASQhKxEcyh5JE3dPTw8UCgVb/avVaqYjkcvlbNIX5kBQq9VsUKVzIXM2H95K1h6KqKCcG3ymVqFmgwgBXQef8Iv339N1kU9dCH5SonTd1KZw4uBJHREgoSlfbHKkfihmieIhfD/4eyO2v5AECZNpieFK3q+RthmJGFCCNrFnJ2aZI0sU7S/UKxHo2dL7Qhog/r7xoezUtpAY8+RGeP/IWgYMTTbGJwkT+134WRhhw1/79Tg2/adggnz8l0P4go8Gw5mPvVlXhNvR79erSZPCann9Bj/RabVaNmkLrQw04PITFE1SpOkgX73YAE6TAJED4fcUWUNWAuCyAJaIAkVEEEHgy87b7XbYbDbmW6fJgLe2AJesP5QojY7NJ/hSKpWM4AhXtPQd/7/Y32N1lXhrS3gOwglXjAADw+e+Gc4FIhTd8uAjjOj+jvUdu5YYzbXzrivgcnI7IqREML1ZX+k+0P+k2+Ejl/jf6PjAZQGx2OJLSB7Ffh/uu7Heb7E+NYHxwQT5+C+DmHl9tCZ3fnvCSPsN1/b1/GLT6h6Ah9WBzL38dfFRAmIrXFqR82Zl4HImRkB8hSUmOOYtDbx4mFaVvIWFMrISieJXoWSWpomAVrXUFm/m5gu38dfkrR8JyaU3CxjtMxZ463verBXC78SOJ/xe7BqEbY6GOI/mnK4HUL/iXR3UV/ltxPQQ/LtA+/Dt8J+FRI8np8NZhq7ncWICV45/PwfpBK4Z+AnU2wpiLKvT4QaPsaxcRnMcuVzOcmqQG0KlUkGn041YFn004Au5EXgRpd1uZ8eVSC6nZ6bz41e7/EROVguKgKFjCXUOZEHhV8w8+aAwVJ488FECMpkMgYGBHi4IqrPChxOSpYTOgQiIy+ViIat0zmTtoGPyZc0Jw1kmRsJI/We0q1LhZCbmfhDea+G/4SC0cqlUKo9MrP8O4N0oYoUsiWjw/4hgA5ddeUJxMJERnmgLyQxvSSFrIlndJvDfgwnLx38xrnSg/FcOsFKpFMHBwbjpppsQFxcHpVKJjz76CH5+flizZg1WrFiB/v5+LFq0CC0tLVd1LH5yEyZ1o7wfRITIz8yLVHnNBnCpKBf5zFUqFUvXzq8GeauDcELkE2i53W5YrVYWmkoJ0YgU6fV6pKenw8fHB9XV1SgvL/c4RxLDOhwOyOVyaDQalsCLkjj19fXBZrNBpVIxER9vMveWb+ZKICRZwt/ErA/erBX8b/wkS/eaX7Xzz0ss+dVw1xcSEoLJkyfj5ptvxs6dO1FcXOw1hf/1SEr4e8pbJ4hU8SSBMvzy1j5y5YmRO94tJXwuPMngCQ2F0k7gvwMT5GMCY4ZUKkVSUhKSk5Ph5+eHbdu2Dam1Ml5Qq9W49dZbsWHDBoSFhUEikWD+/PmQSqUICQlBcHAw3G43VqxYgbKyMrS0tKCxsfGKjkWTlFQqZXoNWqnxWg8aMPkETSQCpYGVomPmzp2LBQsWIC8vDzabDWfOnMGJEyewZ88ej9WiMJeBRCKBw+FgJIMiRojc8NEgtG1RURGAS1YaSsZEEwslPKNjkBWEVqESyaUsrMLJhcgKRbSMRBboM38t/L0VIxDe2hR7PmKfhVYNcpuR5UjoYuLdC2LH9uY2ysvLw+rVqzF37lwUFBQMW3n4egRfIZb6Bd1/XgxN//OuGdrf7b5U72XWrFmIiopCZmYmlEolurq68NFHH+Gzzz5j+iZyDfLkhO+zw9WAmsB/HibIxwRGBX5gz8zMxKxZs5CVlYWAgACcPHmSFSgbbwwODqKtrQ0XLlxAe3s7XC4Xpk+fjoqKCjaoyWQypKenw2q1wmw2X/Gx+IFYmLyNLA40ofHuD6GgTugfJ2Ki0+mQlZUFqVSKL7/8koWLAmCERzgR8sehbYU+e1qxdnR0QCaTwdfXF4GBgXC73dBqtaxGkDBKhZ+I+RTXvMmciAnvkhqNm4IHWXF0Oh0mT56MuLg4KBQK9PX1sfLwjY2NaGtru+JQ7JF0JrxrRhhyKgZ+wg0ICIDb7UZCQgICAgJw5MgRdHZ2ekTtDKd1Gk+MRotCECOIQpch7zbhIZPJEBYWhoSEBOTl5WHOnDmIjIxEYmIiFAoFWlpaUFBQ4NEWkQ++PT4S6HoNu5/A+GCCfPwbgSaEsZYOHy2GG7Dpe41Gg/Xr12P+/PlIS0uDWq3G+++/j97eXtFsi8K2vAkGRwuHw4GPP/4YbW1tsNvtcDqdePbZZ/HOO+8gPj4eOTk5CAgIQHJyMtra2tDU1AQ/P7+rqkZK/m7eTE8hnbzJmHQRtCLkyQMNsjU1NbBarSgoKEBSUhIrJBgUFITOzs4hWU35vym0l9qiyY4mCMqgyvve1Wo1wsPDkZycDI1Gg6CgIBw/fhxNTU0YGBjwyC1C+/AROLwPn7ZxOBzM1SMGb/eZn9DUajWioqLwwAMPYNmyZdDpdDCZTNi+fTvsdjv27NmD7u7uIWGToyEIYn1QmMFSLBMwT0jEXD28O0smkyEkJAQXL17Er371KwDwILpjIWfDgbe+qVQqZnVTKpWskCNZKZxOJ/r6+kbtuhDWRRGKRYXg3SVKpRLZ2dm46667kJGRgZiYGCgUCtjtdkZQlUqlh0aEt6jw2iLe1XWlIP0XH74tlp/DWx8R2+5auRQnII4J8vFvAoVCgdjYWMTFxaG6uhp1dXXXrG1vL5rwe4PBgAcffBDr169HeHg4E0wGBgayyIqxHPNqYDKZYDQa0dDQgLVr17LBPiAgAPfccw+eeOIJLFiwAC6XCy0tLcjLy0NnZ+eYjsG7WYDLegEigA6Hg4UjUi4P+l5YWh64NEC2t7czLcr+/fvxxRdfsCKCTz75JNtWmPuCJheVSgWpVAqHw8GEjjRB8QnP6NkkJCQgMTERaWlpePjhh/Hqq68yoqJQKGCxWNgERtdA5m+1Wg273Q65XM5WrXRP+BXyWAdpEgcHBwfj7rvvxiuvvIL29nZoNBosWrQIf/vb3yCRSJCWloZTp06x6xsLxLane8XnG+G39UaciXhFRkYiKysLGzZsQF5eHt555x18+OGH0Ol0qKur8yCLfFE23tIyViiVSuj1eoSHh+P+++/HwYMHcfjwYdx1112YN28ekpKS2Lv4l7/8BVu3bsWZM2dGlZ+Cz+uiVCpZFl7eNccTWYr4GhwchEqlwoMPPojZs2czPZDT6URzczPUajWkUikWL16Mv/71ryzXi9CCwpM8cjVeqetlzZo1uPvuu1FVVYXw8HBs2bIFn3zyyRW1NYGvBxPk4zrHCy+8gICAAEgkEqSmpkKn08HpdKK3txctLS04f/48tm/fjlOnTl3VcYazdgCX1e202nU4HBgYGIBWq8UjjzyCwcFBXLx40SOpFA02vHjvWinaq6qqhkRbuN1uGI1GvP/++9iwYQMCAgKYPuFKJi8+oZLwN5lMBq1Wi4iICMTExGBwcBBr165FaGgoBgYGsHv3bpw/fx7Z2dmIjo7GU089xQR7REzcbjemTJmCrKwsVFVVMWsJP9jTqp3EfVRkTafTMfIDYMhKj3QOdrsdOp0O8fHxcLlciIyMhEajgdVqZatTmmjUajXTqbhcLqYVIWvL4OAglEole4bC8ukjWTwITz31FJKTk6HVarF582Zs2rQJXV1d8PHxwUcffQQfHx+PSs9iEFolRrKI0D3kiQy/2qftlEolsrKyUFJSgry8PGRnZ+Pjjz9GUFAQcnNzMWPGDERERKC2thZVVVWoq6tDW1vbEAuKMLHYlRCP+fPnIz09HVOmTMH06dMREhKCG264AWazGUFBQdDr9XC5XDCZTLBYLFi3bh2AS6T56NGjI7bPE1d6P4XVgskSxpOphIQEzJw5E+np6axvkMWPLIB2ux1VVVVDyARPVoUp0K8koZdEIsErr7yCnJwcBAYGQq/XY+PGjR7p56dMmQJ/f39ER0fjtttug8ViwVtvvYUvv/zSa7sTVo/xxwT5uM7g4+ODqKgoxMXFwcfHBzfccAP8/PwwODiIsLAwDA4OoqGhAW63G3PnzkVHRwdbkYwVI/nFCfR7X18fzp8/jx07diAsLAyRkZHIzc1FfHw8kpKSEBkZiZqaGo92RyveGyt4ksNjcHAQra2tOHHiBLRaLYKDg3H27Nkxq+h5Fb5wgKbPYWFhSEtLQ3p6OmpqamCxWBAXF8f83s3NzUhMTIROp8Ps2bPR3t6Orq4uVvEWAGJiYpCdnQ273e6R8VHod+erxwpX7bzIlSwTtGKdNGkSEhMTERgYCB8fH0RHR8PPz88j3wiBLCa8+I/PeCrMbzJWq4ePjw9CQ0ORkZGB1NRU9PX14ZlnnkFtbS0jQy6XC2FhYejr6xvTKpg/D7GkbXS+w30XFBSEmJgYds9UKhWamppgtVohl8tRW1uLwcFBFBUVwWq14syZMx6uIcLVmOxVKhX0ej38/PywbNkyBAQEYGBgAPn5+cjJyYHZbEZ7ezvKy8tZpWOlUgmVSoW8vLwxWQ/4Z8mHX/MaH6H1h3RDkZGRCAgIYMnuiMjo9XpWzr6goIC5HsX6Ne/moc9jgUwmQ0pKCrKzsxEaGoqenh50dHSgpKQEra2tbLuYmBhMmzYNWVlZmDt3Lvbu3euxCJjAvwYT5OM6gkKhgEajQU5ODlatWgWJRIKYmBjIZDJYrVY0NjbCaDTi6NGj6OnpwVNPPQWz2cxW1FeaqtybSZi+p8HDZrPh2LFjKCgowJQpUzB//nzMnj0bPj4+CAsLQ3x8PBMMEsQ0H1+HEG/Xrl2IioqCRqPBkSNHxlw5V1hvhBeAkmAyOTkZM2bMQEZGBmpra7Fjxw50d3cjICAAM2bMgJ+fH5xOJ9rb23HHHXegqKgIRUVFqKurY1aMwMBAxMXFwc/Pz8PKRGSDP15/fz8jmpQrhM6RVqhKpRIul4tpP/Ly8tjKTyaTITw8nFXnFCM7Wq2WERy5XA6LxcLcLvwkwvvoR0soZTIZi5CSyWTo6OjA9u3bPbYhi5NMJmPp4vn7zm83WvCkTSigpGvQarVISkpCdnY21Go1li9fjk8++QTvvfcerFYrmpqacO7cuWGJBT9Rix1vNOes1WoRHR2N6dOnIy8vDxcuXMDu3buxefNmPProo2j8/+y9d3xcxdU+/qy299Wq925JliVbtuXee8GAMaZDCCEkIQTyJhAC3+SFvCQhBJIAgZBOtelgDG7ghnuTLMmSi2R1adV3V9JWbfv9od8Zz16tZMklkETn8/HH2t175947M3fOM+c855ymJpSWlsLtdsPhcCA1NRXjxo1DXl4esrOz0dDQgMbGxhH1C/9+E1eCtybSnOL5S4FAACqVCjExMVAoFEGRLBKJBOHh4ejv70djYyP27dvHQA2fD4TapCyql7oeyOVyTJ8+HXq9HjabDTU1Ndi/fz9qamrQ09MDkWggYisuLg7z58/HnDlz4HQ6sX//fjgcDkRHR192OP6YXLqMgY+vichkMsyePRspKSmYPXs2Jk+ejMOHD6OjowMdHR0oLi7GK6+8ArPZjHnz5mHlypVwu9343ve+h8bGRtTU1CA8PByNjY1XhIzKk8NIvF4vmpuboVKpYDAYkJubC6/Xi66uLnR2dsJqtQa1EcqH/q8AHgCwf/9+LFu2DPPnz8cNN9yA1157bVTROLSr5F0OAFjdlNzcXNx+++1ISUmB2WzGkSNH0NjYiBMnTuAf//gH0tPT8cgjj6C1tRWdnZ145JFHIBaLUV5ejsbGRqSnp+P111/H6dOn8d3vfhdHjhwBAJYUjEJphZlReSXAh8vSrpNPY22z2TBhwgRGkPT5fDh27BiamppY6nVeKTqdTmb5IKWgVqvhcDjg9/uh0WhYiLEwRHUkIhINEJZlMhl27tyJjRs3AhgMSG+55RacOHECZWVlGDduHM6dO3dJVhCelyIEHfQ7MGBtuO+++yCXy2EymbBnzx50d3ejoqKC5U0RPkcoAMJHCoWyslxMCHjJZDL8+te/xgMPPIDKykrmfnr55ZeD7jsiIgIejwe9vb2QSqU4fvw4Kisrg3b9F+sn6iNh+QBhllJyyXi9XsyZMwf/8z//w861WCxwu93Izs6Gx+NBX18fzGYzK5pIbhvK40FjyVse+KRlI+0vcrPSNXp6evDSSy+x3xUKBaZMmcJC0bu7u/H222/DbDbj/vvvh0KhwE033TSia43JlZcx8PEVi16vx4QJEzBv3jwsW7YMx44dw6FDh/DGG2+gtrYWL7zwArxeL5xOJ7q7u+H1enH8+HFYLBZ0dXXhgQcewIMPPohVq1bh7NmzePLJJ4d0SYxWhgpB1Ov1yMvLw6xZs1joIV8YjV88eJNsKBfM1fKtPvnkk1i4cCGcTicqKysvicjGm5rpPhUKBRISEvCDH/wAM2fORF1dHb744gu0trYy60pfXx8qKyvx6KOPssV0586deO6559DZ2QmXy4Xk5GQ8+uijOHr0KHbt2oUTJ07A6/UGuYeE4bOUCAwAi3SgXB+UuZS38JCVRCaTQaPRIBAIYOrUqTh8+DAADOoTssbQs9MxtIOkMaR7FHI+LiZutxuHDh3CBx98gJqaGpw8eXIQVyIQCKClpQXf/OY3MXnyZPj9fqxevRqdnZ0jugYJH63D7+h5l5FcLodSqYRCocDUqVOh0+lw7tw5vPfee2hra2NJ5IQckaGAhdBFwV9rJH2UlJSE1atX4/bbb0dVVRWL3mhrawsJ5OVyOdauXYs1a9ZAo9Hg9ttvH2R5HEoIYPKWLJ7nwUcHEana5XJhzZo1mDJlCoAL4eZGozHICqbRaFjOHQqHp3YJwPAkU+ovArYjkdmzZ+Pmm2/GokWL8OKLL+LUqVNB+XyKioqQlZWFTz75BL/85S+hUCiwb98+7Ny5E48++ihSUlLgcrnw29/+Fk8++eS/JE3AmATLGPj4CoUInJmZmVi4cCGamppw+vRpVFRU4Pz580HVPHkxm82or69HdXU1zpw5A6PRiOzsbERHR0OtVjPW+mhkONcLELxoZ2ZmIikpCVqtFgBgtVrR0dGBrq6ukItkqL9Dfb4SEhYWxkzoGo2GEXMvxRrEm6BpV5aRkYHrr78eU6ZMYYROu93OspWSidrj8aClpYUpns7OTrz66qvw+XzQaDSYOHEi0tPT0d/fD4vFArlcHhIgCZUbLfLkBuJDGPkMlAQYtm7dykDH/v37YbVa0dLSwiwnfNtEFiSrB7VP1yDlwPvxR0MglkgkyMjIYNE6xPPglTYA1NfX49y5czAYDEhMTMS6deuwe/dunDt3bkRzRggOQvFbCgsLWeVfjUaDjo4OnD9/HiUlJXC5XIOI03zbPJCOiIjAnDlzcPr0abS1tbFke6N1EYlEItjtdqhUKqSmpmLLli2ora0dFH4NDFgMIiIisG7dOsTGxuL06dNoaGhAXV0dS4k/EuH7hjYIPAFUmEcGANra2rB37154PB7ceuutLPybQLBYLEZFRQX27dvHFDo/xjwIJGsHkaxHysGgueh0OpGSkoLm5mZUV1cHAdScnBysWbMGUqkUGRkZsNls8Hq9OHv2LNrb2xlnZfLkyUMWFhyTqytj4OMrkrCwMCQlJcFoNCIrKwvp6el49dVXceTIEXR0dAy7iLjdblitVphMJuzcuRO5ubnIzMxEfn4+IiIiYLPZmDIcrYQiWdL3tIBMmTIFSUlJ7JzKykpUVVWx1NL8eaGU09XifRBPISIiAjqdDj09PWhpaUFdXd2ouTD8IkyK3OVyITU1Fddccw2kUilaWlrYDplP2EWLNp9srL+/H//85z+hVCqRlpaG3Nxc+Hw+tLS0oK+vD2q1mpmpgdB1U0hJ0N8ej4eRQWlnSspAJBJBo9Fg//79SEpKQlZWFnbt2oX6+nqcOXOGuWZ4PoSwcBi5AGh3SnlMeMVEx/LzhL4TCrmrKAx4KDBaV1cHl8uF6upqLF++HDfeeCNMJlMQ+BiJxYyOERY0UyqVWLJkCfr7+3Hq1CmEh4fjxIkTqKysRHFxcdCc5ecquYxsNht0Oh38fj9SUlJw2223YfPmzTh8+DCcTmdQ3/CWs6HmvEg0kPeELFV2ux0nTpxARUUFLBZL0LFisZjNoW984xs4fvw4Pv74Y3zxxRej4jXxAIMHmMLxpbElYFxWVobq6mqcPHkSN954Y9B8Iw7HyZMnsXnzZnR3dwfxX4ALUTR0TQIfYWFhLGvuSMa2r68PJpMJYWFh0Ov1LNyXXHuUQycnJ4e5Dik7cHV1NWJjYwe5lcfkXytj4OMrEq1WizfffJORxD788EOUlpbCZDKFTI4jlL6+PuzcuRM7d+7EhAkTsGzZMvzf//0fZs6cCZfLhYaGhku6LyFBLtSCuXbtWsb3kEgkeOyxx3D+/PmQCn4o//jVACBqtRoGgwFRUVFISUnBP//5T7zyyisj9oHzQsRNWgypNPipU6fw1FNPoba2Fvn5+WhoaGBuDOCCORtASDeUy+XC2bNn8cADDyAzMxP/7//9P/zsZz/Dd77zHUYeHspKo1KpYLPZgurDUHQL7TppIVer1Zg2bRqeffZZJCQkoL+/Hw8++CBWrlyJpqYmFjLLczjIZO5wOBih1eFwQKVSQSqVQqFQwG63Q6fTsRTvBHKHI2KSOBwObNiwIcg6E0osFgsLJ6aoks7OzlFZWYRpvEmkUikWLFiAZcuWobi4GB988AG0Wi3q6urgdrsHHc/f4+LFi5Gbm4vXX38d3//+9+FwOODxeNDV1YVrrrmGhTubTKYR3ycwACimTJmCZ555BiKRCJs3b8YXX3wRsmRBeHg4UlJSWHp+ACz8frTCc4oIuNCcJ+BJwE0sFjPuj81mg8lkQmVlJcaPH8/Ok8lk6Ovrg8FgQFJSEg4cOMBABTAw9wlw8C48oTtvJDJv3jz83//9H8RiMR599FGEh4czvsf06dNhMBjQ1dWFnJwcnD59GkeOHIHVakV5eTn8fj/+8Y9/4KmnnkJTU9OorEVjcuVkDHx8BSKTyaBUKvHuu+/iu9/9LlpbW1FcXIyamppLKqy0fv163H333RCLxfjVr36FBx98cETg42K+a/pb6Jf/3ve+h3vvvRd33HEHlEolpk6dCofDEdLfLORM8DkVhNe9XMnOzsbSpUvxne98B/v27cOxY8cG7RxHKrzliJR0IBBAc3Mz82M3NTWxxZPImR6PJ+hcqVTKkpDx4EwikUCj0QRVtuVdIXxWVeojq9XKFm5ayHmQyCcB83q9UCgUcDgccLvd6O3txa9//WvmGiNTuU6ng9PpZHlboqOjWbjnjBkz8MADD+D06dM4fPgwNm3axBRTf38/uwfg4vwdcl3l5ORg8uTJqKqqwtGjR4d005F7yGKx4ODBgyyEe6iILuFcFkbiAAOA0mAwQKFQQCQSIS4uDlOnTsW2bduC3jshXyMQCOD666/H/PnzER0djZkzZ8Jut2PGjBkYN24cFAoFAOCzzz6Dw+FAVFRUSBfkcH1DdYhqamrwpz/9Cc3NzSGfc9KkSVi7di1WrlyJV199Fbt372Y1fEYrBHTpGSmiCrhQ90WlUjFgQLyfqKgoZGVlobS0FKmpqdBqtRCJBjLubt26Fe+99x52797NxoGfGwQKKS/IpVpoeQkPD4dWq2Uclu985zsoKipCbGwsAoEANm3ahEAggMTERJjNZiiVSsjlcshkMjQ1NY2ldf+KZAx8fAViMBgwfvx4LFiwALW1tTh06BBKS0tHHQ5KolQqWRn5Tz/9dNhQO17pj9QvLfwtKioKOp0OIpEIDocjqF6DcFcrNMMPxwm5FJHL5SgsLER2djYKCwsxceJEAIDJZILVar3kPiW3BJE9ySVBBdwIUNAz0O5RaK6mtqgN3tzd0dGBQ4cOobe3F2vWrMErr7wSpAQlEklQNIuQqOfz+ZipWyqVMmsGWaRyc3MZr6GrqwsdHR0s/wdZSFJTU6FQKFjW0YKCAqhUKuh0OmRmZiI9PR09PT2Ijo6G0WhkSc7IFRUqOiHUmJJLLCcnB7NmzYLBYIDFYhmSx+H3+2G323H27FksWLAAwIA7wuFwjAg0h5Jx48Zh9erVyMvLg9vtRm1tLc6fPz9ojtDY8e3V1tay9Oo1NTXo7OxkkRuLFi1CXV0dZDIZtFrtqAGvSCRCamoqPv74YzQ2NsJkMoXk/4hEIrS2tuLs2bO47bbbcPLkSdTU1KCvr++y3iMeGNB1aK7y90HHGY1G5OTkYPz48cwlx7tn7HZ7EPeFz7zLu8KI6yG85kju12Qy4fjx45gzZw76+/sRGxuLpUuXYurUqSgsLITRaITFYsGGDRuQnZ3N8qW8/PLLiI6OxrFjx1BbWztWRfcrlDHw8RWI0WjElClTsGbNGvz+97/H/v37UVVVdcnt2Ww29PT0QKlUYvfu3WhpaRnReUP554fz24tEIkydOpUlQXO5XOjq6rqo6XIohXE5olQqERsbi7lz5+K6665DYmIiJBIJjh07hvr6+suq5wJc4GzwFW2BC5kZgQv8DsqtIRSetMfXhwkEAmhtbcX+/fsRCARw11134b333kNHRwcjjvK8Gz7kl/J5EL+A2uavJxaLkZaWxnaXDocDer0eRqMRXV1dcLvdkMlkyMvLY+Q7rVbLgAHtDi0WC3MHkV+d2qdaHqPpz5iYGOTl5UGr1TK/vdfrhVarZbtXt9sNqVTKLElr1qxBe3s7KisrB80z4bwaylUIAHFxcVi0aBFSUlKwe/duFBcXs0yYw1n7AKC8vBw1NTWQyWTMAkVuqnnz5qGxsZFlgB1thWeRaCBh3aeffjokyRwAy2pLfdbc3Ize3t5LBh7CviOrBN+HfA4hv9+PiIgIpKens6RdfFs8d4jnD9Gcpz6j65E1kc4nt+HF7pfenWPHjqGgoAD9/f3IyMjA+vXrcdNNN6Gvrw99fX1obGzERx99hA0bNiAuLg5nz57Fm2++iYiICLS2tl6yVXRMroyMgY+vQOLi4jB79myIRCLs3r0bpaWll9WeyWRCdXU1jEYj3nzzTdxzzz3YsGFDyGP5BZp2JUJyqfBYEpFoILyPkmIBA1acM2fOoLOzc1hXSijFcDFT/cVkypQpWLlyJSIiIpCdnY26ujocPHgQW7duxf79+y/bpMunQ+fvlw/fHIogx+8maUcpXFgDgQDsdjt8Ph8mT56MdevWYcuWLTh//vwgkzRfBI5M1lqtFi6Xiy3kbrc7KD02kVmJA3PrrbciOzsbX3zxBU6ePIm8vDysWrUKqampCA8Ph06ng8FgYC4iqVSK8vJybN26FUePHkVNTQ3EYjHsdjtzC41m/DweD8rKynDHHXdg7ty5yM7ORnd3N0wmE9asWYMbb7wRUVFROHfuHOLi4hAXFwe/34/m5mZYLBZ0d3eP6DpD8YlKSkrwxBNPICsrC9u2bUNXV1fI+RjKZQMEW17Cw8OxePFiLFu2DPX19bBaraiurkZ1dfWowYDH48HWrVuD7gMYDIjmzp2LW2+9FatWrYLb7UZBQQF6e3tRW1s7quvxbZKrguYo5bYhSxufXE4sFuOb3/wmli9fjunTpyMQCLByC9RGeXk5q6bMF8AkYjQBS2p/NMJbWHw+H2w2G3bt2oUlS5YgMzMTgUAALpcL77zzDnp7e6HT6fC73/2OAVq5XI7c3FwcPnz4kjgyY3JlZQx8fAVy8uRJPPPMM1ixYgXGjx+PlpYWVFZWXnJ7e/bsQVhYGObMmYNf/epXw4KZkVgg+MWPX8jVajVWr16NyZMnIyIiAm1tbfjggw9gsViCdvjDXfdy3S5hYWGIiorCc889x/gKK1aswObNm7F582bs3r0bDofjiviSedABIMjELJfLGeGPFmhhxlC+7/jKneTK8fv9qK+vx8mTJ1FXVwev14vw8HBERESgq6srKOkScTRoTMgCwBdLo7wgfr8farUa3/nOdxjnJCwsDLNnz0ZRURFuvPFGWK1WZn0wGAzQarWwWq347LPPMH78eERGRqK8vBwvvPACGhsb0dvbGwSIqE3eLXSxsfR4PCgtLcUjjzyCO+64A3feeSdeeeUV+Hw+qFQqqFQqiEQiTJw4kSnFjo4OlrFyNCJU4CKRCGlpaVi/fj3WrVvHlCSJcHyEXAVqQyqVIjo6GnfddRcWLlwIo9GIQ4cO4YknnggCM3zq8EsF2EqlEgkJCUhNTUVsbCwsFgs8Hg8cDgc+/fRT5nK5VOFT55PVhk8yJpxzItFAVeaOjg72HfF+eFcccCE/DG/poHlM/atUKtm8DUUODiV0HxUVFaitrYXRaIRMJkNqaiqsVit+//vfo7i4mOXSKSoqglarhUKhQExMDH74wx+irKxsDHx8DWQMfHwFolQqERMTg76+PkRGRjIrwqVIfHw8CgoKkJKSgv3792P79u2jcrvwoGA4dwtwIZ1xREQEzGYzKisrsXnz5qAEPcLFNhRh9VJFr9cjPj4eubm5KCgogEQiQVNTE3bt2oX3338fZWVlMJvNl9S2wWCA0+mEx+MZREAjXza/C6RcKsLFVdh3tDAToZR33fAuGMpwW1VVBbfbzQAKfw+UXp12rMKU78AFvz0pDgoxVKlU0Gg06O/vh1wuR3h4OJqamqBSqaBWqyGVSmG321FXV4fTp0/D5XKhtbWV7eop+oUU1MVcHEOJw+GAXC5Hc3Mz9u7di5ycHLz11lvMfSCVSjF16lQUFBRAoVDgjTfewKlTp3D27NkRtc8DP6EQwfQPf/gDLBYLZDJZEG9HCByE74NarYZarUZYWBjLE1JZWYl33nkH7e3tQfVRhrKejER0Oh1++MMfwu12IzIyEgkJCdDr9ejr60NmZiYcDgeOHTuGxsbGUbt4eOFBFl/skJ/LgcBANd+srCwEAgEsWbIE48aNY32ya9culhI+NTUVLS0tzN0plUpZpl4CyPx6Q9YS+m40lpD+/n6W6+Mf//gHDAYDXC4XiouL0dXVBZ/Ph4aGBvzpT3/CM888wwrdvf3221csCeOYXJ6MgY+vQCIjIzFx4kTY7XbEx8cjJSUF586dG1XJd4pUSEpKQlFREXJycnDixAmcOnVqxC/XUJwOklBkPiI3Njc348CBAyguLr7oAjuUJUV4jYuJTqdDVlYWli1bhoiICDgcDjidTrz33nvYs2fPqBbiqKgo2Gw2+P1+6PV6REdHQyKRhDRjC3fARC6lZxL2o9DKI8wbwR8TGRmJxMREKBQKaDQa+P1+lu+Dz8FBpmaqHEo7SLoPnvNBoOTYsWOIiIhgACMiIgJ+vx8ejwdWqxWHDx9GXl4e9Ho9I/HV1dWhvLwcLS0tDHBR9lTiefDKabidfSgwS77/mpoatLW1Yc6cOXjllVeYqd5oNEKlUrGsmR999BHOnTt3UWKg0MIUSihT586dO2G324PGRQhYhM8UFhaGxMREJCQkMGtRY2MjDh8+jJ07dw4653IsHgqFAitXrkRjYyMSEhKQkZGBuro6ZGRkQKvVore3F263G2az+bIsfHzkGW/FomfhwcfChQshFouxaNEiVrm5paUFO3fuRFxcHAAgPT0darWaVUrm33ehJZDmcyjgPBJAy3NSeJcV/7vNZsOOHTvw5JNPoru7G/v27cO77757yf01JldWxsDHVyCJiYlYvHgxAGDOnDkwGo2IiIjAH//4x2HP4xc0nU6HFStWwOfzIS0tDYmJiSNy3QzlDx8JgLBYLHj00Ucxa9YslJaW4qOPPhq0YAt3nsIFJ9SzjFTEYjH0ej2+9a1voa2tDSdPnsSWLVtGvaCIRCLccccd2LdvH3p7e3HNNdfA6/Vi7dq1aGpqwje/+c2gXRlvpaDaLmS2pc8AmAmZt1h4vV7G1+A5InTM9ddfj3Xr1sHr9eL73/8+Ojo6gn7nC8nxpmlKuU+Jk/jMpyKRCN3d3Vi2bBmef/556HQ62Gw2zJs3DxkZGaiqqsLWrVvx29/+Ftdddx3uvPNO5ObmYuvWrfj8888ZgKEkZjSmlMeBnnu0SZro2G3btjHuymuvvcaUDoXirlu3DnV1ddi5c+eIE8TxAJHPvMrf3+HDh/HUU0/hrbfewu23347u7m5GAqZ5EYrnJBINJGxbt24drr32WlRWVuLYsWP4+OOPcfz48ZDWrqHm/Uikp6cHP/vZz7B3715861vfwn333Yfly5fjtttuw7XXXosZM2bg0Ucfxd69ey8rRwVxvkh4wMDP46ioKMyYMQMxMTFITEyEVCpFW1sbnnzySVRXV6OwsBBZWVkQi8X43e9+h1//+td45ZVX0N3dzVw6xCHiwSHNKbKkkZvxSolarcbChQshl8uxe/duvPbaa1es7TG5fBkDH1+BlJeX47e//S2Kioowb9485OfnIzs7Gy+++CJ+/etfIxAIoK6ujuVbIJ/4ddddh29+85uYNWsWli9fjvj4eMTGxmLjxo146aWXUFZWdlGrx1C7ipGYidVqNe644w4YjUZMnDgRq1atwhtvvDGo/eF4H0NZCUYinZ2dqKioQFhYGBQKBaxWK3p6erB9+3YcPnwYpaWlzG0RHR0NnU4HpVIJsViMVatWIScnB93d3Xj00UcxdepUiMViOJ1OzJs3Dxs3bsT3v/99mEymIMVPLhc+8yMlo+KBBG+yJqHaHORP59OfBwIBfOc738HUqVOhVqvR29vLirrx5D9eCahUKgaCRCIRi0jxer1BIag87+QXv/gF+y48PBwzZ86E2+1Gc3MzvF4vbrvtNowfPx4ajQbf+ta38OGHH6Kvr49ZUvhMq2SRoT7la4GMROg4PtsoPZtSqURcXBzmzp2LyMhIVm2UqqaORIQWFv47GieRSASj0YgtW7agsrIShw4dgslkwubNm2E2mwdZ5fR6PW666SbcfPPN6Onpwf79+3HixAl88cUXQZEm/D0Kw6pHkxwNGACaBw4cgN/vx1tvvYWPPvoIDocDFosFVqsVdrudcSsuRyhjbSgLBbliAoEADh8+zHgmXq8XFosFZrMZKSkpaGhoYDVygIGxjYqKQmJiIgMfwo0IvStD1ZIZrStvKJFIJIiNjYVYLMa1114LvV6PH/zgB1ek7TG5fBkDH1+BmM1mnDx5EjabDWfOnEFCQgISEhLw7LPPYubMmbBYLKxeCyVEkslkSEtLw+OPP46EhASkpKRAJpPh6aefRlVVFaxW62X5f0Mt8MLF3O/3M9eA0WhEWlrakMeHctlcrkRERCA5ORl///vfsXLlSsycORNJSUkoLCxETEwMpkyZgvb2dsjlcmi1WrZA22w2Znbt6enB7Nmz8fnnn6O6uprxHM6ePYu2trYgEilfdEvYP/wum3zVwsgX4mMAYFwSUmhz587F7NmzWYn5np4eOByOIL+30AdOXA8CcZToi9818vfAZ6Ukd87hw4fZPWdkZLDy9qQQiFRLuUJ40zifW0SYspzvE7rXiwFN/nilUon4+HgsW7YMdrsdR48exZ49ey5ZKfFEU7pWb28vKioq8LOf/YztiNPS0jB37lwUFBTg6NGjKC0txfjx45Geng6r1QqXy4VFixYhKioKZ8+exfHjx1FdXY3e3l7mphBaS0Klnh/tO0DuNKfTyTYUpaWlSEhIQGRkJJKSkpCYmAi73Y7e3t5RtU3CgyOpVBrEH6LPvNDcOHr0KD755BN4vV7cfPPNyMnJwbhx4wAMcHrsdjsD2vyz86Re/h5GSjYdrUgkEsTExEAqlaKurg4nT5684tcYk0uXMfDxFYjT6YTJZILL5UJJSQn0ej2ysrLwv//7v4iMjGSVNoGBTJuUBMputyM3NxdGoxFKpRINDQ3YsGEDSzA1EhnJQhhqsZdKpdDr9UhMTAQwoNCtVutFzwvFC7hUkzSFkb799tswGAyIi4uD0WiE0+lEWloaYmJi0NPTg/7+fmRlZbGibU1NTdi/fz/KysrgcDgwffp07N69G+3t7XA4HCEzRPIFr4h/wUcv8KCEcm8In0Xow5bJZJDJZEhKSsK1116L/Px8REZGwuFwoKSkhBW/onNCXZN2qnQMLfJk0uZ3mtRfPKGPit2pVCrk5eVBpVLB4/HAYrGguLh4UG4GfhzpGalfRqowLgYewsPDMW7cOBQVFSEjIwP79+/HwYMHcerUqWGB33CcpVC/OZ1ONDU14c0334TVakVBQQHGjx+PKVOmYOLEiUhISEBERASmT5+O/Px8dHZ2oqurC3l5eZDJZDCZTDh16hS6u7uDLEKhXDWXyvcYTurr61FWVob4+HikpaUhMjKS5fq4HCHlz983gW++P+k5rVYrGhsbMXHiRCxbtgwJCQlQqVQAgFOnTrEcO7x1DLjA9+HdLkI+2JUSeifi4+MZMb2iouKqjc2YjF7GwMdXJIFAgOUt6O3tRVtbGx555BH8+Mc/Rn5+PmJiYrB06VLYbDZERkYiJycHd911F9555x0sX74cOTk5ePrpp+FyuWA2m6+orzQUKTQmJgbTpk3DHXfcAZfLhc8//xzPP//8kLtZ4QLDK1CS0e4Ga2trGRl07969EIkG8i185zvfYfyXxsZGvPvuu3jppZfQ0tKCkpISlJSUYNu2bbBarfB4PCguLr7otchlwovQNUU7QaGJnxZyshqIxWIYDAYYDAakpqZi2rRpuP322yEWi9HZ2YkjR47g29/+dlA7FGpKrh+KriHrhsfjgVwuZ6CDABABBLJiUOQMWS3EYjEUCgXCw8ORmJiI8PBwlsL8kUceYSDW7x8ohkehuvTcdD8EQni5FAuXRCLB7Nmzceedd2L58uU4deoUHnroIVaPJ5QFhWS4ucQrTt5KQ+ds3rwZXV1diI6OhtPphMFgwOrVq7Fq1Sp2bkZGBvx+PxwOByQSCaxWKyvKR8LPCTqP55Hw93q5FkCv14vTp09DqVTirrvuClLkoxUCHAQyiLhKHCP+/qmWC1l6lixZgunTpyM5OTkIuPj9fjz11FMoKSlBV1cXC6Xl54kwfJyeazRgdiQSFhYGlUrFsvz6fL5B4b9j8tXKGPj4mojH40FJSQnuvfdetlD29vYiEBioJ9La2oqDBw+iv78fu3fvZnyF0SbqGYnwfl9a3OLj41n56YaGhqCKlUNJdHQ0rrnmGmzYsCFkATIhGBmtBAIDJNg//OEPrKgUKc3JkyczpUwl7kdzLXJh8XkQ3n77bYSHhzPg8/bbb2PSpEn49re/jfz8fNx2223o6upCXFwcxo8fj9bWVpjNZgQCAcyZMwc333wzNBoNqqqqkJ6ejszMTJhMJrS1tQ0Kq6XPbrc7CNCRwqCib3z4LwEmmUzGCuNRiC8BKarfYTKZ8N577+Ghhx6C2WxGS0sLU2ZUyZY4AXQvRBCk4mBarXbERftCuWCMRiN+8IMfYN26dXA6nXj//ffx5JNPBtVFGYoEOtRY0u6ad5nxSo0/99ixYzCZTFi/fj327NmDyMhI6HQ63HHHHVi5ciWUSiUcDgfq6uqwf/9+WCyWQRY8AjY8X4K/9pVyOdK9t7e349y5cwAG3i+1Wn1JbfH3DoDxmviIF+IYLVy4EPfeey9L928wGBAREREEIIgLVVNTA6vVyoCwQqFgvCfiDdH8JQB7Ndwu4eHhyMrKwoQJEyAWi9He3o6GhgYoFAoolUrY7fYrkgtoTC5dxsDH10goa59QyAROC8OVrkcgtFYIF3baORMhMi4uDosXL4bb7cZ777036FiS3t5eHDhwICi+nz/mSizMgcBAoiPhQjLapFRCIZ83Kd6EhAQ4nU6kp6fjhhtugEgkQk5ODqKiopCXl4dAIICpU6eioaEBbrcbra2tmDNnDqKjo1k12meffRYSiQQOhwPt7e1wOp1wu91BCY9IkfFmfeFvwGBOCpm4afdNioJPy05cD5FIBL1ej0WLFkGpVKK2tpZZg0hp0HwjCwopDAJyPJ9lJCIEEFqtFgkJCYiLi0NPTw9Onz6NvXv3shwN/HkkPHAQzlXhXAqVp4PnOJDia29vx4MPPgidTsfcT+fPn8cnn3zCXG99fX2sLg4vQpci//lKAw8AWLFiBaupAmBQZNWlCD9feBIoD6QqKirw5ptvIicnB7W1tUhKSsL48eMRCARQVVWF3t5edHR04JNPPkF3dzeblzwnBghOxjdc310JycjIwKxZsxgInz59Ojo7O/HBBx8EvddDyZiF5OrLGPj4L5NLIe0BAwQ4q9UKk8nEom+io6OHPJ52OcLCYVfC/PyvEFLAtMBLpVKUlpbC4/GwcMPw8HAEAgGcPn0abW1tLEmZxWKBzWZDYWEha6+xsRGbNm2CSCRiu0GLxRIEKAAMWviF3/Of+b8JsPB5PijjKW9hot2uXC5HTk4OJBIJlEoldDrdIIUtVA5isZilXufdDKNdpEWigYgZSqDV1dWF06dPs/4NZekAhidF8wpf+PdwQhaX8ePHo6enhyXo45OajeT5hDymy0kyNpQkJydj/vz5KCgowMmTJ2EymYIS/AGjU5o8r4jAK3/PtOkhXskXX3yB+vp6ZGZmwuv1IiEhAWVlZWhubkZtbS0++OADuFwudg98Yj4aj38F8ADAEutR25mZmZgyZQree+89uN3ui7qpx4DH1Zcx8PFfLEO9YKF4HG1tbTh+/DjbIRYXF+P48eMXvYYQeND/X3cAIjRJ19fX4+9//zvzj0dERAQt1r29vUHZRX0+H+rq6uB2u1m0glQqZbVR+OuQYudBAmUS5SMQQvUluUr4XTDtYHkOCJ1LLgm3243Ozk44HA6sWrUKmZmZ2Lt3L1wu1yCF5HK5IBaLoVarg8i11EehSJfDCfFgNBoN8vPzsWvXLpw7dw6nT5++5PGidkmJ8Qm0+NBjYaQFfS+89sWUDz9WPIDk5/iVFkpzb7FY8PDDD6OqqmqQFXS01ijhOaHGMBAIwGq14pFHHkF4eDjCw8OxefNmfOc738H27dtRVlaGuro6VtWZ573w3BuyogFgUVP0TpCLkMDJxe77YsecOXMGWq0W9913H3PFyeVyRpL/uq8//w0iCoxBvKsivb290Ov1AL5eE52Pihlu6IWKjpQREQ7JjxvKfDnc4sBn7aRjL7Xs/b9alEplUJ4PUmRkCSCLBi2qfLRLKJM9v/MjLgbvdlEqlcydpFAoWD0Zv9/PwoipHQID5MKRSCQsfThf3E6lUrG8IwsXLoTFYkFzczM6OjqYS0YqlbIkY0IXC+UekUgk0Gg06OnpGUS4FUqo+UDAiAizdJ1LlVBWB+BCmnm+SODFuEa8a2Yo4SOR+O/46w7lMrsUEYlEyM/Px+LFi5GWloaf/OQnQXyg0UogEGCpzwEwKxk9B40x9RUP3qhPFQoFAxw+ny8ojw0ANv/4sVEqlUEWOo/Hw7LmEjl6JOCD+mQoCQsbqAF133334a9//Sv6+voQCASYpWg0QNnn86Gnpwc6nW5E54zJyGQMfFwl+XcAHyRCch/9HUqGM4EL2xrJ7/8u4IMUF/URz7EgpUM7OKGZmV/U+eP5/qYdIRAcvsmTPWnBJwXKKx+qHyM0YZMPn5Q99btUKkVMTAycTid6e3uDKtXy1hQ6h/KE0Pwh8qnD4RiSlzGSPuWPvxT3DZ3H/83nHxECiVDzV3g+/U3/87t34fX5sRI+C3/O5YKPQGAgP0xUVBTUajUqKioum+/BJ6YTiURBtW5oLvNWLp6vwQMS+ptAOIFXfnNCc5CehXgmZFUDcNnPIxTKjVRTU3PJwHYMfFw9GXO7/JdJqF1oKP/6cOcPJxc7f7QLsEgkYunBr2Q48UivDQztwxfuoHlLB+8CADBk+XlewVG2UmqHtxLR7lIulzNlwEcK0D3ylimhu4FcLnRfra2tEIvFzDfP5/ig6xJoEfIByKfPP8NQMtRzC/touDEYqp2RXJ8P4xyuDeFvw1nwhrpvISC5ktLT08OI1Feibf4+eTeVsP1QLj+ag/x3PL+DwIewn/g5OZLxvxShNt1uN6qqqoK+G5Ovj1z5tHJj8l8tV3rBFYvFSE9PH3EStSspvNWCLA8i0UB1Tp60JiSCCi0ddJyQZc/vmAl88MqLvy612dfXh56eHtjtdgYaaDeqUqmgVCpZvRcKmaV7IdM6PUNfXx9zqYSFhbGCYHRN+kz3Clzw1fPVf3nT/HDgjH9m+pt2y9R3/LWGayeUMgylFPk2Q90j38ZQ7QrbELbHjzc/bsLjhrrfkRwT6n5H8k/4fPxvwnc1EAgwqxdZQHh3GAEGcuMRcCULCSVDpDksl8uDLCU8WA0EBqJh+OP5ucDf81D9KDxmqLEUjttwMgZQ/nUy5na5SkJuF0qPTjKc2yLUYjDcMSMdulAmZeFnUprCsFihyZqUGCnNUGCDD9fjd7j0G7VF3/HuDL/fD5VKxRYqYVbNQCAAtVqN7u5uyGQyKJVKRuikiq+8u4B2QGTmpX98VdP+/n7IZLKgRVAYRXC58p+68+LBllCx8W4jsqD09/cHcWPEYjGrC0LcD95ULxKJGKmSzw9Bc4HcAzwACJWtcygXCT8mQ72bwu95KxH9zs9xYcIsut+h3t1LAey89WAoIDHU/dNng8EQZCHjAYXT6YRKpWK8EAL/CoWCjRPxPWgMY2NjUV9fz/LD6PV6uFwuOJ1Oln9GoVBAJpPB7/fDYrEwDggw8P5S4UIS4dyivqa5QPfMv8t83/O5S0L1s7B9+pvmtVgshtvtHnO7XAUZc7v8C2Qof/Fwx4ZaUEbaxsWOFy6Wocyq/P+hQjyFix79z1sIgAu7f2Ebwnb4fAN8CXdaZIjfIJFIGPeAdvBSqZQthLSD58NNeX4GZVwURoJQLRO65ystlwI8/h0ACz9HaJyG8+FT/hHeakKkWgITNH/oH+9ekkqlcLlckEqlEIlEjGDLKwwSYZjxUMID7FAWkKGemY4TvquhvhOed7F2eRkKFAmtaCNtl+6NCKMej4e59Miix2fHpQgvg8EQpMhpQ0DvTVtbG9xuN9sEWK1WBlpEIhFLfudwOBhAoaRj/JjzY8mPH/3Gk2R5S0yoc0L1Bb/+8GtTqE3iv9rV+98kY+DjayZXQtkM5b8e7vhQxwzXDr8LEYIa4fH8caF8ysR6J16CzWYL2pHQ4kiLCx1Lv1MEBp9DgI/G4RclYehfKAA1WhnOmvXfIEKLAv8dcGFe8Dts/nvgAkgVzhHeCsInVhvqO+K1kISycND9Ce+BPyfUMwq/H+lxF5OvwhXAjwf/NwBGOibQx4+B0DXCK3G73c6ACwGKQCDAUraLRBeS4VHqfj7VOr+BCfVOkaVDCDBCWXRJhorECgUgh3quMbk6MgY+vgZCLyWVXb/czIXDoX7+mvTdUJYO/njepC40IfM7Tr6QFP0mNIHzyooAB/mY6W+VSsV2OHa7nS1itCMjKwifxpnal8vlrCw8fU8LHrVD+SzoHLqPoZRMqMWKfz7heIVSanw0zEjk3wHM8M9OikEIEIBggipwwUJGfn8+coh3nfC8GrJ0kCuG3hmn0xlkiufnaiiAwt877eD53S9dV2gRJOEBtfAZ+f/547+O4nQ6mRuVr0NE4AMAe0+oz6lcAX1HkS2U+ZafD0ajEVarlXFBeAsX/c+vNTTGfGVlklAbBOG6EsptLBwr/vp0Xqj38lJA5JiMTsYIp18DiYmJwZIlS7B79248+OCDKCwsHJG5+FJF6BPnd0D8ZxJ+MefPJ1OqcOcQ6t550yq/4Ph8PtjtdmaS9fl8LPeD0GrBL3CkNJxOJyst73a7YTQa8cwzz+D+++/HG2+8gZMnT2LPnj24/fbbkZiYCJfLxRQe5ZlQq9VBSZHIpM8/Py/Cvhkq14lQ5s+fj7S0tJEP1L+BCKuUkmtkqNBhEgJ7pJSE/U5zkLJUUhs84OS5CHRN3toVSjkJ2+fBCXBBoQlzeAyliEIBbeHnryv4IMKxRCJhCeQoWspms0Gr1QIYIJ263W4Wjk3uS4/HA41GA5VKxSprazQa6PV6qNVqlkzP7XbDZrMx7gS9fzqdjnHiyA1Elk0h8OAtZjz4od+Jh8KvVUIwSNcRvttUtJE/Zqj3ekyunIxZPr4GIpPJEB4ejrS0NNx9991ITk6GTqfDnj172DFhYQNVGp944glIJBJYLBaYTCZMnDgRe/fuxZEjR1hq6KEklLWCt1TwIZW8CF9moXkdGNj1pqWl4YUXXoBYLEZdXR0qKipYSmY6T2jupkWeAAbvZ6ZdDEVv0PVIaVF2xO7ubqSmprIdbEtLC26++WaEh4cjLCwMRqMRjY2NcDqdLDkXALbAUXZFUmw8B4Dvr8tRImFhYVi/fj0OHDgAh8MBr9fLivP9OwuNDy3+AFjxORpHYZgugU9hFAV/LA8weSUi/J24A7zfXzhWwtwr/HvAJ9fi71EikWD+/PmYNm0aGhoa8PHHHzNic1hYGBYsWIDMzEyIRCLs2bMHNTU1Q5r4hQTVr4uQe4S3MlAxOa/Xi9bWVpamnJQ95XWRyWTMbUIbCyKKkxVFWBSRAD6BTKrJpFKpWM0jOjaUpYK+F252huN5DLWm8W0ISfX/7u/kv4uMgY+vgdCiKpfLkZKSgnHjxiE9PR27d+9mi6VEIkF4eDhmzJgBrVYLm82Gjo4OjBs3ji2uxcXFaG5uHhFJaigTYyjFCwy98+MXVbVajfnz50MkErFiaikpKWhqahpkXeGvwefAoN2sUGEJQz7p2mKxGElJScjLy4Ner2e7rpiYGMbcV6vV6OrqYplJyWRPQuZkWhSHWnxC+aFHI3FxcZg7dy4UCgWOHDnCdoF8+wqFAvHx8ZgxYwbefffdq1K1OJQYDAasWLECdrsdlZWVaGxsHNG1eUuWMF8IEFwAjxeeYByKozHc9ehcUpJ8ezyQEAo/z4cbSxqHjIwMTJs2DVarFWFhYVAqlcwduHDhQojFYjQ3NzOXodANQ999XZUZkUXpnQAuAEI+yRgJT9DmI8t41xhvlSDwyCcdI5IrXx+I3j0io5KE6k/hb/S30JUSasM0nAitcl9HsPifJmPg42sg/f396O3thcfjgVwuh1KpZNlRAbC6GhkZGVCr1YiNjUVYWBji4+NhMBgwd+5cGI1GKJVKfPDBB8MifSA4iRS/CPOLMw8S+AWb3zHw59AOiVIlU/RJWloaDh8+zBabUL5UWizCwsKYG4fPo8H7huk+yPcskUgwb948FBYWoqCgACkpKaitrWWmVFpEuru74XK5EAgMRFfI5XJmBeFDccPCwoKKYw0nowEjgUAAFosF8+bNw+zZs/Hk/186vqenh3FRVCoV4uLisGDBAvzf//0fNm3a9C8DHwkJCXj66afR1dWFF154AZ2dnYPCHkcifGgjuVZIkQGDw3GJ2AgEW+P4XSm/4yWeAZnrhSZzfqcrNMuTshO6VISk1vDwcERGRiI2NhZqtRrNzc0IBAKIjY1FUlISFAoF5s6di927d6OkpAQNDQ0h+0KoAEfbj/SMgUCA8TP4tnkZLT8hEAiw1OYUpeTz+dDX18esipSKn68vBATzJHhXFxFLCYQS34pSDjgcDqjValZTiOeVSKVSGAwGmM3moPkRak3inzeUe4QHvEIXXCgwwke88GvN1xU0/qfIGPj4mohIJILNZkMgEMC5c+ewa9cu9ltsbCymT5+Ov/3tb/jb3/6GqKgouN1u3H///aisrERycjLi4+Mxc+ZMbNu2jSmzoSQUm1wIKngZatfK7zBmzJiB1atXs0gUvV4Po9GIysrKkIsG//LzOyoCDBSOKRKJoNFoGJMeuFDuPjs7G3PnzsU999yD5ORk5v/XaDQICwtDRUUF9u3bh5deeolZPSgnAe3GaOHSarXM/UK+4+H6INT4DXdMIBDAfffdh5/+9Kf41re+heeeew779u3Dp59+isOHD8NkMuHmm2/GHXfcAY1Gg5///Of/0rTzHR0d+OMf/4jFixczF99IwAcpMRo/umeaYzKZLMj8LrR+8SCTt1zwBEJSInTu9OnTcdttt0Gj0eDPf/4zTpw4wXbcfA0XugYpF5qvw+WpiYuLwxdffAGtVov3338fjz32GNra2mAwGHDffffh9ttvh0wmw1133QWHwzHIchVKudG8HqmEhYUhJiYGP/rRjxATE4POzk785je/QXd39xUP/aRQZRoj6iuZTIb29nYYjcYgiyDVIOrr64NIJEJ6ejpSUlIQGRnJ3DQajQYSiQQdHR2IjIzEypUrMWvWLCQlJeEb3/gGTpw4wcinEokEBoMBIpEIdXV1bP0Qggt6d3nLDG9p4UXYRzTuNC94dx9/DfpOGNEzJldHxsDHVZaR7EisVivq6uqg0WiCLAd0rsFgQFxcHNra2vDZZ5+hs7OTJe45cOAAI2zedNNN+OlPf4qNGzeitLR00HVCuTyACy8nn0+BBwmhzJr8882cORNr1qzBkiVLGAGxtLQUmzZtQklJSZByIoUvNM1T/g0CTpTMiBZFIqESiIiJiUFERATUajUSEhLQ0NCAs2fPoq6uDmKxGDfffDMz6brdbjgcDkZKpGeVy+Vsl8fvssg0fLFxHe0C5fF48Oqrr6KsrAw/+tGPMG/ePERERGDu3Lmw2+2orq7G/v370dvbi82bN//LrB5Tp07FvHnzsH79ehQXF6O+vh5ms3lE5/JjKwSWlB9CaCkj4fuQrE7EvQEu1I+ZNm0aCgsLkZGRgYiICEaUPHXqFM6ePRvktw8ELlRO5V12vIIR1uAhyczMxOzZs1kemMzMTGbheOKJJxAbGwuTycRcU729vSFBBSnLS1VgBN6nTZuG1NRUdHV14eDBgzh48CDmzp2LuXPnorKyEmvXrkVzczOam5sRHh6OgwcP4tixY4xjNZyQa5RCY41GIzo7O9n7SWsKgUsidZMrRq/Xo6CgAD/96U+Zi5OUOz+WUqkUWq2WXctms7E5Q4CCLI1kBQu1ThFopL9515tarUZSUhKio6Nx9OhRjBs3Dmq1mhFgdTod5s6di4kTJ8LtdsNkMiEiIgIGgwGBQAC7du3CBx98gPLy8mHn6JhcWfmPBB/79u3Ds88+i+LiYrS2tuLjjz/G9ddfz36/++678frrrweds3z5cmzfvp19NpvN+MEPfoBPP/0UYWFhWLduHV544QVoNJpR3UsoN4NQoqKikJ+fD6lUivr6ephMJkZuCwQGylmfPn0ar7/+OqqqqtDd3c2iPrZu3QqdTofMzExIJBIUFhZix44dI7qucOcXyhoi/I3/TC9qbGwsUlJSkJiYyCw4bW1taGpqQldX16D+CGVV4HkBwrBLAiRkxvd6vUhJSUF+fj4KCgogFotx4sQJlJeXo76+Hm63G9deey1UKhWMRiOzagjdTGQeFhbPuhThzcTDSXNzM9xuN95//3088MADSE9PR0REBNrb2yGTydDQ0IAzZ86gs7Pzku7jUkQulyM8PBzp6ek4evQo3G73oFLtQ0koRUHKn8CT8BgaB97KQb/zu1SNRoPZs2dDqVQiKysLGRkZaGhoQEFBASuGFx0dzfLCCBXUUPc51LynCA6tVgupVAq73Q6n04nrrrsOUVFRaG5uRk1NDRoaGmA2m+F0Okf0zlzKnPL5fNDr9YiIiIBcLseaNWuQmZmJ7Oxs5ObmIjU1FdOmTUNGRga6urqgVqtx4sSJUblfNBoNbDYbvF4vAxpE4uaT7tG74fP5oNPpoNVqERsbi9WrV6OwsBBqtRp+vx8ajQZ+/0ABQspsSpsRr9cLhUKB5cuXw2w2s+ym5J6l/uffISH3gsZt3LhxEIvFcDgccDqdKCoqwoQJE5CamorJkycjMTERCoWCuY6USiXy8/ORkZGB/v5+mM1m6HQ6qNVqBAIBNDY2IiYmBhqNhll0Qs2TMbmy8h8JPux2OyZOnIh77rkHN9xwQ8hjVqxYgVdffZV9FtYOuf3229Ha2oovvvgCHo8H3/zmN3Hfffdh48aNV/x+k5OTsWDBAojFYhw/fhynT58OMnk3NTWhqakJu3btGmQu3rRpE+bPn4+8vDyIRCJERkYOWblWaBYWWiFC5WgItYgLv4+NjUVkZCQDZr29vbBYLOjt7WXH0P0K66HwYIRM4+T6oAWPKl+SH9zpdCIvLw8zZ87E5MmT4fV6GfCwWCyora1Ff38/NBoNs5AQOZH+AWAmXj60N1SYpvB5hwIZI1U2nZ2deOWVV7BixQoUFBQgPDwcNpsN06ZNw9mzZ1FTUzPs+VdSwsPDWbZYhUIR0ow9UqHnpnBNCqkUugHJZE79rNfrGXiQSqWMd5Camoq77roLu3fvRnh4OEQiEb744gssXboUMTExcLvdyMrKQn19PZtPQgBJu2N+zEIBc7rPnp4eREREwOFwoK6uDjU1NXjooYdw8OBBHDlyBMXFxSgrKxsEqAg48XMnlNVwJOL3+9HX14f+/n7GR1q1ahWuv/569PX1wel0YsKECRCJREhISEBiYiL8/oF05bRpuZjQeJMlgq5D4EPYR+RCi42NRWJiIsaPH49169ZBo9Gwd9Rms0Emk6Grqwvt7e1obW2FQqGA0WhEVFQUUlNTcccdd7A1jtK30xgJXS68NYvnmcydOxdhYWGor6+HTCbD3XffjUmTJiE1NZX1NR8erNfr4Xa70dnZyZ6BfzbKK6TT6Rj4GJOrL/+R4GPlypVYuXLlsMfI5XLExsaG/O3MmTPYvn07jh8/jqlTpwIA/vjHP2LVqlV47rnnEB8ff0Xvt6KiAm+88QbuuOMOHD58GGVlZeju7ma/X0ypKZVKaDQaiEQiWCwW5scVCg9aeB86/z2fbCmU8OdQBM4DDzyApKQk9ntMTAzsdjtaWlqC2gm16AcCgUG1XWi3JJVKIZPJ2A6T/qlUKqxfvx4AcOjQIaxfvx4PPfQQ5HI5XC4X/vGPf0Cn07EF0Gq1MhY9ubQor4hINEBa1Ol0QS4fylEQqg9DfebN+iORQGCgqmx6ejoSEhIwbtw4bNq0CSdPnkRdXd2I27kcEYlE+NOf/oSZM2fCaDSivLwcf/3rX9HU1DTiNohwyM9N3qVBbjIe2PJ/x8TE4JVXXkFubi70ej1EIhE+/vhjxMbGIj09HXFxcVi2bBnbUT/66KPo7u7Gpk2b8OWXX+LkyZPo7+9nRfAo/JMfFx4Y8N9RHwDA+PHjceedd+Luu++G3+/Htm3b0NDQgLCwMPztb39jLp7m5mb2nHwbPMdkKPfmSMXn86GlpQW7d+/GkSNH0NXVhcjISFx//fXQ6XQwGAxMGdNzeb1ezJw5Ey0tLWhra7voNfx+PxoaGpibxOfzQa1WQyQaCIHt6elBdHQ0c3HJZDLMnj0bKpUKy5cvx7p16xAREQGn0wmbzYaKigqsWLECDz/8MCQSCRobG/H2228jOTkZhYWFmDx5MubPn48vv/wSZ86cgdvtDlrjxGIxtFotyyVC/cenAyBrVGFhIcxmM5qamvDxxx8z8OJ2uxmXpLy8HHv27MELL7yAF154Abt27cKRI0cwd+5cPPfcc6xOSyAwECVYUVERlKrgcqxWYzIy+Y8EHyORvXv3Ijo6GuHh4Vi0aBF++ctfIiIiAgBw+PBhGAwGBjwAYMmSJQgLC8PRo0exdu3aQe253e4gpU+7/ouh6EAggGnTpuGb3/wmGhsbYbFY2AskPH+oF0KhUECtVgMYSBw0lMmc340N1W6o3WEowAAMkPNeeukl5vP1+XywWq14+OGHceDAgSBzLrUjNKOSIqKQPQrH4+s28PdE9/Xoo4+isLAQs2fPhsViQUVFBerr6+FyuXDTTTchLCwMR44cwaZNm2A2m5lyokUqPDycJSiTSqVwu91McQmBh9D3PNRvIxWNRoMpU6YwM7/L5UJjYyNeeumlIOV2NWTevHlISUlBWloa5s6di97eXrjdbrS2tuLnP/85mpqagubfxUTIseBBJM0bPg8IjbFer2cRJdHR0bDb7WhsbITZbMahQ4fQ2NgIlUqFBx54ALt374bZbIbdbkdvby+zcNlsNrhcLpZzgqwtfOg2EDp0Ujinw8PDodVqEQgEcOrUKezYsQNlZWVobm5GWVkZHA4H468I3wshmBnqfRmpUB9u2bIFS5YswfTp0/HJJ59g9erVQZWVz5w5g9jYWMTExCAQCKC0tBTd3d1D5rYQXoPeR7I0KhSKoGehuivx8fFITU3FpEmTcOONNyI5ORlisRhbtmyBVqvF7t27sWXLFgDAtm3b4PF4YLPZoFKpoNVqIZfLYbVa8fHHH2Pfvn1oampi775CoWDvJc07ni9Dz0GF6TZu3IjGxkZkZ2dj/fr1QZsSn8+HM2fOwGq1YuvWrdi2bRucTieeeOIJREREIDU1NSiyiQpI6vV6thHhLWVjcnXlvxJ8rFixAjfccAPS0tJQU1ODxx9/HCtXrsThw4chFovR1taG6OjooHOIlDXUruLpp5/GL37xi1HfS2ZmJiZOnIisrCx8+umnqK6uRk9Pz4jPDwQGQjg7Ojrg8/nQ0NAAm802ovNIhObh4fzjtDDk5ORg/vz5mDJlCnPzOBwOVFRUoLi4GB0dHYOUEF2L/he6YgAw9whvgeEBDFlF6urqmLKx2+0oKytjijMQCODGG29EZmYmpk6divLy8iAuAJ9GnecYUB9cjRj/sLAw5rNPT09HYmIiCgoK0NzcjMOHD6O0tBSNjY1DWq0uVeRyOeLi4hAXFwe73Y7169cjNTUVkZGRyMrKgslkgkajgcvlQnZ2No4cOTIqZSm0fAjdK7zwY09Ex1WrVqG2thatra2oq6tDR0cHWlpa0NTUBK/Xi40bNzI3JHFRurq6mIuMLGd8VEyoXB8X4+Po9XqWTVUmk6G5uZnxbrKyspCbmwu/34+2tjZs3749yEIndCuFAtkj6VOaj3T/BoMB4eHhiIqKYlYH4lK1tbVBq9VCr9eza6WkpODcuXNoa2sbUVQMjQdvMXI6nYxQSuDD4XCgp6cHmZmZSE1NhUqlQnNzMzZu3AitVouqqioGKNrb25m7SCqVoqCgAIWFhdDr9SgtLUVXVxdcLhfCwsLYukH9F2qdAC6AO7fbjaNHj2LKlCnIzc1Fenp60O/9/f2ora3F0aNHcezYMZhMJgZqiCOTmprKQuzb2trw5ptvorS0FFarddAmY6TjNiaXJv+V4OOWW25hfxNpMSMjA3v37sXixYsvqc3HHnsMP/rRj9jn3t5eJCUlhXQ18DJ58mRMnDgRer0eX375JWpra0fsd6QXo7u7GyaTiUUAWCyWId0D9HcoYBDKT00KhFccRGxds2YNwsPDAQyQxXp7e1FSUoLOzk4WLcLnVRAqexKKLqBjaBdGx5I/njdvezweVFdXo7Gxkf1P0Qd9fX247rrrMHXqVCiVSmzYsAEOh4OZb6m0O/1NvmZhOffRLDx0vFKphFqtZiGJLpcLXq8X4eHhLCpoypQpsFgsSE9Px9///ne89957OHny5IhJnqMRnU6HSZMmYc6cOWhvb8eCBQsQHh6OQCCArq4upKSksJ3ntGnT8Pbbb4+YNwBcCHvmC34BF3gdNJd4Xk9cXBzkcjkMBgOmTZuGDz74AKWlpTh//jzMZjNiYmJgs9lgs9nw1ltvQS6XMy4K72oALhCHQymOUO9AKJcLMFCHRKVSob+/n2XxNBgMMBgMWLt2La699lr4/X6UlZXhyJEjDPDQ3KVIkIu97xcbKyJ0ikQiTJs2DWlpadDpdFi5ciVEIhEqKiqwZ88enD17FnfddVeQ+3TixIkoKytDVVXViK5H75JEIoFCoUBfXx/LOEr8B7FYDIvFwqyYxOWqr6/Hhx9+CLlczqwXwIXQXZVKhejoaMyePRvZ2dnwer3MRUbXlEqlcDqdjPdBeU1CSSAwkOvkL3/5Cz777DNkZmay+UUEfIvFglOnTmHr1q1ob2+H1+uFUqlEREQEJk2ahFWrVmH8+PEAAIvFgpKSEvzqV7+CVCoNcssCo8+bMiajl/9K8CGU9PR0REZG4vz581i8eDFiY2PR0dERdIzX64XZbB6SJyKXy0MSPS8mU6dOxbhx46DVavGLX/wCt91226iTO1E9BY/Hg08++WRQhIlQeAXLL8g8wKCdJZmweWCSnJwMmUzGfLY+n4/5YE0mE1PmQuVDyj6UUiCQQgsQn7yIdskAGMNdIpFAJpPB4/Hg/PnzzFecmpqKN954A0ajEefPn0dxcTFsNtsgJcmb0Ik5z6ebHq3QOfPmzcMtt9yCcePGoby8HHv37kVNTQ2+973vITw8HNnZ2ZBIJDhz5gyam5tx4sQJ1NTUXBXgAQA5OTlYs2YN7rrrLvT29uKee+5BZ2cnAoEAamtr8Ze//AUTJ05Ea2sr7rnnnlG3z/cj/aOxI5cWD+RkMhlee+01pKeno6mpCffccw/a29sZSBOLxWhvb2fzhy94RgnLyH1D7fHXEYZIh1Imwmy5IpEIKSkp0Gg0qKqqwooVK/Dyyy9j/PjxiIqKQmxsLJuLubm5uOmmmzB58mRs3LgRJSUlmDFjBvbv3x/kKuDBz8UsaXTcrbfeiuuuuw5LliwJSu7ldrtRVlYGi8WCt99+Gx9++CFEIhG+/e1vQy6XM/ekw+GA3W4fsdssIiKCua4cDgc0Gg2USiXcbjdaWloQExPDlLLf78f999+PoqIi5OXlwWg0spw5BF4pGi0nJwezZ8/GI488gvr6emzatAm7d+9mRF2tVguxWIze3l7mNqN3ksaFd6XQeInFYuTn56O7uxudnZ2Ii4sDAPzsZz9DV1cXxGIxPvjgAwADIFetVmPy5MkMLGZkZLC2n3/+ebz66qsMaPLjRfON1oJ/Zb6d/yYZAx8YCH/s7u5mk3nmzJmwWq0oLi7GlClTAAC7d++G3+/H9OnTr+i1Dx8+jIiICGi1Wjz77LMXBQ68iEQirF69GjfeeCPmzJkDpVKJtLQ0VsBpqHNCAQoSqpVBiz9ZK3jJz8/H0qVLsWTJEgBgsfaBQAAbN24clG56qJTX9DtlOKTEX/w9EFjhw28pCyz5q6lmi0ajQVRUFMLDw1FRUYGtW7diz549rE3erM1XyqXaFXSffNbNkYwB7yduampCcXExVq1aheTkZCxZsoSFb8pkMgauJk+ejFtvvRV1dXVDusku1ewbHx+PwsJCPPzww0hKSkJ/fz+L1jh+/DizLjz22GMoKirCpk2b8Pbbb4/6OgAYOOCVO1+VmY+mUiqVWLFiBfbt24eqqioGNul8Mv2T641vj4BhqARRwIUstUJLHt8GzSeekKpQKDB//nwsWLAAJpMJR48exXPPPYesrCxERUXBYDCgu7sbv/zlL1FbWwuDwYAnn3wSBw4cYBEoqampOHHiBNs0hLK6jESuv/56TJs2LShrK7kWe3p68NRTT6G2tpZ9/+Mf/xg/+clPmAXk3LlzLEPoSK5vNptZSC1FXFHODaoMrVAoWG0ll8uFlpYW9PT0MLfJ0qVLcf78edTW1mLt2rWIiYnB7NmzkZWVhV27dkGpVKKyshKnTp1iXBW73Q6JRMJ4WJRoTiqVBoXeAsE5WQKBAE6cOIHHHnsMt956K37wgx9AqVRi9erV+OCDD/Dpp58iOjoaBQUFLLrmu9/9LpxOJ6vzRBuQjIwMTJ06FSaTKai/CHiQRe1quGDHZED+I8GHzWbD+fPn2ee6ujqUlpbCaDTCaDTiF7/4BdatW4fY2FjU1NTgJz/5CTIzM7F8+XIAQG5uLlasWIFvf/vb+POf/wyPx4MHHngAt9xyyxWLdBGLxRg3bhymT58OtVqN4uJinDhxIih3wEgkNTUViYmJCA8PZy/wcMo+lG+VlCe9ePxv/DlKpRJFRUVYtmwZ8vLyWNXL1157DWazmS1MQvIdf81QhbzI186DDD7hGQmf5ZDPdOjz+bB27VokJSWx9NeVlZU4c+YMWlpaGMigZ/F4PAy8iESioHA/anM0wvMd2tracPToUWzevJnlF5HJZJg5cybMZjNTshEREVi7di2LcBlKLgWAZGRk4JprroHRaMS2bdvQ2NiItrY21NTUwGw2Mx87EYXVanVQOv/RihAICHf9vEWNiH9yuRwdHR2wWq1M4RDYDfW8BGKEqdP5v4U8Hv53vm06XqPRICkpCStWrEB8fDx8Ph+Sk5OZC6aqqgq1tbWor6/H/v370dXVBY1Gg9dffx3nzp3DjBkzkJSUhObmZkyYMIHl4Bkt8KB7raurY3OYat4cPHgQ27dvR1NTE2pqauD1eqHVatHb24uJEyciJiaG9bHQ/XQxIWsSMADeCOBRf1FKd9oMKBQKxrsRi8XIysrCzJkzkZSUhOzsbNxwww0sxXpVVRVKSkrQ0tKC8+fPB7lZ6N3WaDRBtVxofHiLKd8/5Hqpq6vDkSNHMG7cOFx33XUoKCiA3W6H0WhETEwMUlJSoNVqYTQaWRQeDyTee+89nDhxghV2FALWMcDxr5H/SPBx4sQJLFy4kH0mLsY3vvENvPLKKygvL8frr78Oq9WK+Ph4LFu2DE899VSQ22TDhg144IEHWLrpdevW4cUXX7wi90c8hilTpmDBggVwu93Yt2/fkDUihpPU1FQGPPjMp8Ndm4RXCvS3sNAXvYwqlQoxMTGYN28e5s+fzxY9h8OBd955B7W1tSxKRGiG5y0stOvkFxjKZkqmZoqMoNwePCggs3tUVBSrHdHb24ubbroJOTk5MBgMEIvF6Orqgtlshs1mYwqfgIfP52MJkSirKl2H3AYjkVCK0mw2w+Fw4M0330RkZCQ8Hg9UKhU0Gg1MJhMUCgViYmIwY8YMrFixAidPnhwSfPD9OBqlEhERgYyMDJw+fRp//vOf0dDQgP7+fmaR0ul0iI6OhlarhdlshkQiQVRU1IjbFwqNJW890mq1MBgM6OzsZDt5ciFkZWVBJBLBbrcz4Mkv+qGsFwRKeYAhVFb8fObP5fuQB0M0FgsXLoROp4PRaER8fDxqa2uh0+lw+PBhbN++HWfPnmWZdq1WK55//nmIRCJERUUhKioKra2tyMvLQ2dnZ5BCG82Y+f1+HDlyhG2QCCRu2bIFL7zwArtnrVYLhUKB3t5elrKc+kCj0TDlPxKRy+WM62S326FUKplljt4TcmURB4bcg2q1GnPmzMHkyZORm5sLh8OBJUuWoK6uDgcOHMDx48fR1NSEQ4cOQSqVspIGHo8nqFo1kU9D1fMZKs250+lEc3MzKioqsGbNGqSkpECv12P69OmIiIhgzyAcA8rc+vbbb4fcKJEI18hLsT6OycXlPxJ8LFiwYNgJs2PHjou2YTQar0pCMRKxWIzp06ezpDerVq3C//7v/46qDXK7xMfHo7W1FW+88QYqKiqY6TTU8UIRmjh5Swgt1FKpFNnZ2Zg+fTp0Oh1b5Ox2O7788kukpKSgs7MTnZ2dQeZiuiZPOOUTGNEC09nZyUywofggfDpmSrn9hz/8AdHR0Whvb8fx48eRlpbGLDEulwsrVqxAY2Mjzp07N6jfKXcIgRm1Ws0ql5L7ZySLzlC/u1wu7Nu3L+i7d999FwAwZ84cXHvttZg/fz7uuuuui+b0uJSF78CBA6itrYXFYmGh17zfesqUKVi3bh3mzZuHDRs24O233x50vyMVMk/zoM3n82Hx4sX46U9/ikcffRTHjx9nZMZdu3ax5GrLly9HQkICfvjDH6KxsZFl7eUtT/xungcVPMCmSsjkn+d5AjQfhYBcJBqIzAgEAkhKSoLb7UZlZSXeeecdbN26FePHj4fZbEZra+uQz/7hhx+itbUVGzZswBNPPMHu7VLl4MGDrC7RPffcA5vNNogU3tfXxwjpe/fuRWZmJvLz8wEABQUFOHTo0IivFwgEGM9Cq9XCarUy6wfl/YiMjITb7YbFYoHZbGYFJGNiYvDEE0+gv78farUaKpUKLpcLb7zxBiPE0trh9XrR19cHpVIJu90OhULBShhQLh9K3w5csKTx7jsS+jxjxgw88sgjsNlsLOqHuCShhFytO3fuxJkzZxhJle8LIWC5FNfZmIxc/iPBx7+DSKVSzJ8/n9VtOHDgwKjbCAQCeOaZZ3DLLbcgLy8Py5Ytw5/+9KchCWe8KTOU1YP/nd9Zrl+/HsuXL8e8efOgVquZxaGzsxP/+7//i/b2dkb45M/j2yPhzfH8tWjRIwsIKRi3243+/n62WKnVauzevRu9vb0sfHX8+PEsIqK5uRk//OEP0d7eHpQq2ePxsGynGo0GdXV16O7uhtvthkKhYLtAkUgEp9M5rBK5nN3QiRMn4HA4MHPmTCQkJMBsNl/xVOpmsxk9PT2sj4ULeFZWFubNmwe5XI7MzEwYjcZLvhbl8CDQQBaCjo4OnDt3Di+++CIOHDiArVu3YvPmzWhtbcX+/ftZrhO3240777wTn3/+OQ4cOMDAIeVAATDI1UIZaXlLBkUq8SRpOof34/PjVlBQgBUrViAQCKC5uRmnTp1iVqjq6uphLYhhYWG46aabsGLFChw7dgzvv/9+kMslVKbc4UQkEqG+vh5vvPEG3nvvPeaOCKUAiStz3333obCwkPXD5s2bGSdkJMKTur1eLyIiIuDz+ZjVg0jlfKQRkX6JJ0IkYYo+27FjB6sC7HK5WP4h6nutVstCenmuk1QqhV6vR2dnZ5DLdSgXyPvvv4+Kigr85je/wRtvvMEi/FpaWnDfffehoKAA0dHRqKqqQlFREaRSKeRyObKzs5GYmDiImCucG5dicRyT0ckY+LjKMhx69vl8CA8Ph1qths/nQ1RUFAtrG0m7crkcUVFRKC4uxqFDh1BXVzeigmj8PYUKh+RdJVSd0uPxICIiguXIOHfuHA4ePMhMmcJdRKiQVaFpkyca8m4a2gnR/ZEpmXZcYrEYRqMRDocD7e3tMJlMqK+vZ0qJkk5NnDgR6enpSEtLw+7du1FYWIjs7GwWnXPixAmcP3+eVQulex6Oe0D3fqkybdo0LFu2DEajETqdjuUcuJLCkzxDSX19PY4fP46cnBwGHC/nWvz84RU9JQVrbW2F2+1GZGQkuru7cfDgQdjtdtTX16OoqAhyuZxVPyagSJYu/jrAhWJzvPmez4IpTHgmdMEAF+ahTqdDcnIywsLC0NnZiY6ODkbUvth7tHz5csyYMQNGoxEHDx5ET08Ps9zQNfi/LzZniLNBlo3hRKfT4YYbbkB2djZ0Oh2LdJk+fTpqamrQ2Ng47Pkk5PKgPiMQJxKJWKI/3kUqk8kwd+5c5ObmIj8/n/E3yHWp0+mwdu1a7NixAydPnmTuFnL5kfuNn5888TRUXR6+7/jvLRYLysvL8eKLL6KsrIzxtsxmM958800kJiYiMzMTN998M/u+r68PMTExUKlUQa5VniMk/H84ADQmlydj4OMrEp/Ph+rqakRHR0MqlSIuLg5JSUkQiUSsfsNwolKpMGHCBEyaNAnl5eU4fPgwDh06FMTkF0oon3iol5t+F4vFSE9PZ3H8fM6P7u5uNDQ0MI4I31Yoi4dQQrll6DvyDdM90G9GoxGZmZksh4rdbkddXR327t2Ljo4OFvGSk5OD5ORkjB8/HpMmTcLkyZOhUCgwefJkZGRkoLOzEwaDgaWTpnwG/HMIQVOo50lISGAM/c7OzouGy8pkMhQWFmLZsmVQqVRs0f1XilqthsPhYLvTU6dOob29/ZLbC0UMpEgItVqNsrIyFBcXs6RYZrMZlZWVMJvNMJvNuOaaa1i0E3ABOPHRVvycovkSikAKDI6OGMqXDwyMB+XUAAY4IDqdLogEyQsBfiKpUv6K0tLSkG6dUH9fCVEqlZg2bRoiIiIgk8lgt9tRXFyM8PBwqFSqEbfjcrmg0+mC6ilR9AtFhvBWpISEBMybN48BkMrKSoSFhTHgVVRUhNWrV6O1tRW1tbUs0RhtRohYTH1FJFTKLsqveaH4Orx4vV709PTgvffeC8r94vF42Jz2er2ME9Pb24uuri5EREQwEETjwqf7H5N/nYyBj69ARCIRHA4Hnn76aajVakyZMgVz5syB2+1GWloazp49i8rKykHn8YtpWloaS/Izfvx4xMXFYf/+/SO6vjDFMLXNXwcY8AP/7Gc/w6JFi2AwGNi1fT4fioqKoNPp8Ic//AFAcNlynjTG74SFyp2/Hr9AGQwG5tqhBYVMpitXrkRMTAzkcjnMZjNLuvTYY4/B5/Ohp6cH+fn5mD59OttF9/f349vf/jZaW1tx7tw5nD59Grfccgsjp7W1tbFFUbgzG04efvhhxMfHo7GxES+88ALa29uHBSC0ENbV1aGpqSkopFIoV8vkO3nyZNx000245ppr0N/fjw0bNlxWSndyt/Bzw+v1Ij4+HgsWLMA999yDI0eOwOl0QqFQsDBmcqdJJBKWZIyfL8IibcAFfglf64ein2huUTRVKKUlBAF0vEgkwuzZs6FWq6HT6fDb3/425LOGhYUhLS0NL7/8MpRKJZRKJerq6nDmzJmg94ieQch/uhJC+TC++OILrF69GjKZDGfPnmVJ0EZ7La1WC6/Xy0L8NRoNAoEBYi0f+qxQKHDjjTdi3LhxUKlUaGlpwU9+8hNERUXh3Llz8Pl8OHDgAAKBAAoLC+HxeLBlyxbGrVIqlcwi2dPTw+rxUPbioZL7DfU8fL0gPidKWFgYbrnlFqxduxazZ89m46tQKOBwOPDuu++ipKSEWX2oDZ5sTvOC5tuYXB0ZAx9fkfj9fpSXlyMmJgZqtZqFHk6aNAlOpxNnz55FXFzcIIWWnZ2NzMxMTJ48GYFAAL/4xS9gMplgMpkuek3hiyy0VvCcDWAgoderr76KyZMns0ymPp8PR44cwa5du7Bnz55BhDj++UgB8GbxUL53cruQL5knHYaFhbH6I3v27MH58+exaNEiiEQinD17Frt378Ytt9yCwsJChIeHs1TRgcBAWF5bWxv279+P++67D8XFxdi2bRu2b9+OZ599lpX9drvdLJcBgEEAItQCSAAyJSUF8+fPh1wuZ2nSz5w5E7L/KdolLy8P8fHxeOihh4Yct6u1C1u3bh3mzp0LqVSK559/ftQJ7YRChEJa+Gn+fPrppzhw4ADa29sZAZTP0aFQKKDRaNDf34+VK1fCbDajuroaAFguBj7KibeQkdBnyqpJxFPK6UJCc1Fo2auvr8euXbtwww03QCwWIyUlBatXr4ZSqYTZbGZVbIGB8OXbbrsNy5cvh1gsRlJSEnp6emCxWFBdXR30HozE6nKpkpGRgfnz5+Ppp5+GSqVCIBCARqPB0qVLsXv37lElxJLL5WhtbUUgEIBcLofH4wmqJk1l6f1+P5RKJQoKChhIM5vNWLRoEd58801YrVZERETgtddew6233gqDwQCNRoOtW7cCGAjjJfcMWTXFYjEjqfJh8yMF3fwGgbce+v1+3HnnncjNzQ36zefzobW1FX/9618HJTPjgSO58kjG3C5XT8bAx1ckNNGpKFpnZyeioqIwceJETJgwAXPmzMHx48eRnp6OkpIS1NTU4Bvf+Ab0ej3i4uKQmJjICH719fUjDtMNZc7kF0v+RZNKpSgqKmKkMWDgZSwrK0NJSQmLJBECEH4B4f2pQh94KLcGPRMtSMQJuf3225GcnAyDwQCJRILS0lJoNBrccccdKCwsRGxsLCQSCVwuF86fP4+PP/4YMTExUCqV+Oyzz9DQ0ICmpibU19fDZrPB4XCwBYxIdNQntAAP5XumfkxMTER0dDTUajWWLl0Kg8GAoqIitLS04He/+x0AMDKr3W7HT3/6U0yYMAGNjY145513YLFY/uWWj+LiYmRlZSEtLQ0zZsy4pKy8QqFdPikXr9cLm80WZEbnM5WGhYUhPT2dlUb//PPPUVFRwUCfcO7wlhVSDkIrmvB3XkK5QAKBCwnment7mcJMTk7GsmXL0NHRgZycHCxbtgzNzc2QSqWYMGEC4uPj0d3djd7eXnz++efYsWMH46iQCPPYXEkJDw9HSkoK43oQsbeqqmpE9Vx4EYlEDMCQhZAfA94yJBaL0d3dzXLt0PpFFiw6XyKRQK/XB4XlUjFBsmySG5eAL80Nnuc1nOuWzyvDryFarRbXXXcdoqOjg9zBxcXFqKysxNGjR+FwONj5/LsnBI4kY66Yqydj4OMqi3AHRELfUcx6e3s7Jk2aBKlUikmTJmHGjBlQKBSYNWsWYmJiUF5ejjvvvBM9PT1MOZ89e5b5Pvny1BcTIQlP+LLx0QtZWVmQyWRB/nXyzxI5LxS4oP9DAY3h+omId/w5EomEFbHT6/UQi8WwWq2Ii4tDUVERIiMjGUu+r68PX375Jd5//31kZWUhLi4OZWVlKC8vD3p+UoK8uZf/J1x0Qn3X2dmJmpoaWK1W5Ofn4/z58zAYDEhMTGTHSKVSGAwG5OfnY9myZejq6sKhQ4fw5ptvDpsG+2qBj9raWrS1tTH31uXyEfg5RJlIhWPHu7Jo4dfr9UhKSoLX68Xx48fR0NDAlCfvNqG5KEycx89TPpW/sCgh/R/qPSSiZk1NDXPlUVh5dHQ08vLy4PV6cf78efT09CAuLg5+/0A23+PHj2PHjh1BadWH6psrJWTliIiIYIqVqu7W19ePeodOFigaG+F7SrwPslyWlpZiyZIlkEgkLCspWUncbjcjbhMBlSJkhBYgsnT29PSwKDMCJkMlSKR74seR/1ulUiExMRGrVq2CUqkMmpddXV0oLS3F0aNHWTtDuahG6vYZk8uXMfDxNRBSuCUlJXj//ffhdruxZMkS3HnnnfB6vbjrrrsY4bOhoQEff/wx869GRkaOuJYDv0PkwxKFLzOvgKlgHUkgEMC9996Lzs5OFu0iVNxChUGKif4WCn9dilbh8zS43W709fXB6/UyU+2cOXNYOKZIJMIHH3zAFN/vfvc76HQ6NDY2or6+nu2e6XeqDcMz/akWCV83hO+XUAv7ww8/jJiYGEyZMgUbN27Em2++CbvdzvINkDKMiorCjh078Nprr+Gjjz7CwYMHB42ZcIG+WqbehIQE9Pf348SJE/jwww9HVAF5OOH97cAFlxWNP5+sSiQSMZdIW1sbKioqEB0dzcaBr+EBXJijpAB5tx39zbtk6Hie90EKVZiFFRhwu3R2dkKlUrHqsSkpKVi2bBkiIiJYu4mJifB6vaivr0djYyOmTJmCefPmMaKuEGTzkTn0HFdCRKKBLMM6nY5ZKyoqKrB///5LuoZarWah0UT45dcDuVyO3t5eAAPRJX/5y1+wdOlSjBs3Dk6nk5VUoHfqiy++wPe+9z0WtkzRLjTXyYpJuVjoehTtx5dlEFodhRsm+p7mQ1paGubOnYuMjAwGbmhOzJkzB9u3b0d5eTlbY/hcInx7vCt6TK6ujIGPr5H4/X4cOnQI6enpmD59OjQaDSQSCaskqdfr8c477+DAgQM4f/48eyFHa24FLhC2gODcG/wiTjUleODQ19eHF198ETt37gzp1xYqbGqPX5z5xYSuS6ZZSm5Ez0ULVWlpKWJjY5GYmMhcBadOncLx48cRFRWFzz77jJXzpjTQpBT7+/shk8nYTo1cA/wO2+l0sgRjPOFM2GfChbGjowNffPEF0tLS8Mgjj6CwsBBRUVFYuXIlrFYrcnJykJGRgX379uH06dOsiJpQQi12oczLlytUa2Pfvn346KOPGF/iUoWKCNKiTv0LXKjJAgT76NVqNcLDwxnfgwijNFdCVamlf+Taoe/9/oFaP7x1RZjlU5iin1fUdrsdGzZsYM+QkpKCJUuWYPv27UhPT0d+fj5cLheef/55HD9+HDU1NbBYLLBarYPuj0TIL7lSymzv3r3IyMhg+TnefvttvP/++5ecII7vc57/QK6V7u5u1reBQABr1qxBWloakpKS0Nvbi5MnT+KGG27AhAkTkJ2dDbFYjPj4eGzcuBF//etfYbFYIJFI4HQ6GUlYq9WyPDo6nY4BfgKIoawS/LpB903f80nMenp6MHHiRPa5vb0dH3zwAd588020tLQAuGD1GGrN5O/jSr53YzJYxsDH10D4xclkMqG6uhrl5eXo7e1Fe3s7mpubYTKZ4HQ6UVZWho6OjksCHMIFUqhMaSGixdrj8WD79u34xje+gZiYGLb4Hzp0iCUzEppCaTfC7/5CvcT8ZzK30qJHip/aIBJhSUkJGhoacNNNN0EkGiCcbt68GXK5HC0tLbDb7fD5fKw0eiAwkMZeq9UG5WDo7++HUqlkJDheaYXKskoSandJO1CLxYLU1FTExcWxYmXt7e0QiQYSHx0+fBj79u1DU1PTsGMk9D1fqcVPKpUiPT0ds2bNQl9fH8xm82UDD2qXLy4ndIfwkSjAwHzIzc1FWloa9Ho9YmNj0dLSMqgYHQlv2QAuRGjR7pZM/Px84eewUGEJSasAgvqhsbER3//+99HS0sJSrvt8PpSXl6Orq4tVYuXbBkIn6KPvr5T84Q9/wK233oqVK1fCbrfjk08+YVyZS3Gf2Wy2IFcXuSIJhPf09LCkbyKRCGVlZfjTn/6ENWvWYMGCBfjud78LrVYLtVoNjUYDrVaLv//97ygvL4dWq2XWSn6s+HIHfCFJhUKB7OxsVFdXB21Q+H7l/6c54fP58NhjjyE3NxcJCQnMEkLh3hkZGbBarXA6nUHuOb4NajMU4BmTqydj4ONrJjabDVVVVdi1axc6OjpgMpnQ2tqK9vZ2mM3mS25X+OKShNqV0QtJL7fH40FnZye6uroQCAyEiloslkHn8xYNIUdE+Dt/X7RY8Mx0fjcWFhaGtrY2lksjPj4eIpEIJ06cQEVFBbs+r8B45a1QKIJIpMJ/lM+Af/5L2a02NDQwRUDERLPZzIrNVVdXj9hFRs9wpUQkCq5USgXUrFbrZbkFhDkSeADL9yEPBkiZUQg1KQQeNNCxQjegcF4Jx1Ko9IXzTXgNOpaOs9lsePfdd4Ny2tB5wnco1Lzn7/1KKrBAIID29nY4HA7Go+nq6hoyJ8lI26R3hhSzRCKBTCZjrk/aTIhEIjQ2NmLXrl2Ii4vDxIkTMXnyZKjVavT398Nms6G1tRU7d+6EyWRibk4+hNXv97MK1ARM+XlAYb7CzcxQViWaN7Nnz0ZRURH0ej2zatCzEb8p1LoXqs1Qn8fk6sgY+PgaiHDiHzt2DMeOHbuk3czFRLjw8lwL4eKuVqvx/e9/H2FhYdi9ezf27t2LCRMmoK+vj/FFQj0D3zbfLn3Hn0OmU2Ldu93uINM47Yz27dvHkhIdPHgwKMafFkwSimAhE77H42HmX3LrOBwOVmOCFkdy+xA3JJSE2pGRPPbYY0Gf+bDikSxmQoV2JRfA/v5+lJeX4+c//zm+/e1vY/Xq1Thx4gQOHDgwKkAkFL5KMYXU8tENFDrNW51KSkrg8/lgs9lw5swZKJXKoAyXvAhdA2TN4nOyUDp2YHCFXeCC9YTaoDZ5RSfsbx5sCOcs/S8cH6HV6kq6XADg97//PfLy8iAWi6HRaDB//nw4nU5UVFRcUnt6vR5OpxMulwsul4sBQfpHJQtocwAMhN+fPn0an3/+OSZPnozMzExIJBLYbDY89dRTMJlMaG9vh9VqRSAQYNFrFF5LYEMYIeR0OtHU1MTGkd+U8H1I84Qfk/r6eiQnJ0Oj0cDj8cDpdMLj8aCxsREPP/xw0IaEJ5gDg6ts89yi4dwzY3L5IgqMQbyrIsTRUCgUwzK4hTLUju1KidDHSwuEkJNB90CuCOCC3z5UKnV6aflQR3qJheGPwh0rnx+CX9zJLRIVFcXyAfA7GzqW2O2k9IjoRscQk554HjqdjiU/IiVICozu51+RXEiomPjsnFdTpFIpJBJJEPHvckQ4tkJLCvFoeBM8zTmXy8WAIs+zIRcAgVMADEzS3zRXKReFkPxMIlQwoaxvoZ5H+C7Sc/Ggkq7Fc4iE5/FK73IkLi4OP/rRj/CDH/yA9efjjz+OF1988ZLWC5lMBp1OB2AAVGg0GvT29kIikbBEf+TiDQsbyGSq1+uRn5+PadOmITU1lZV3+PLLL1lEmUwmg0QigcfjgUKhgM1mY64VIcndbrezjQNZKC4mfL+GhYWhqKgIERERiIuLw8MPPwyHw4F//vOfeP3115llaLgNAA9EeR4YcKGwYU9PD+urMbkyMmb5+JrJ1QIdJELlxr94/A6HjuUrTZK/nb9PHizQcaGuF+q5yKXCW1CoSBWvoPhoCR6s8AsKmXlJKKqCFmk6hgdIdF9Ux4KIrBdLk36pEmoXzH8n3G1fLRBCO88rJbxlgY80AS5YQwig0vjy/AxhaDUvVOCMgAkfugsgyHwfyv0BDG9iDyVC900oVw9/LK+0+O+vtNA7QRuIbdu2oaqq6pLb83q96O3tZW3a7Xb2fpjNZmi1WlYhmwcIDQ0NcDqdOHDgAJRKJaxWK7q7u6FSqYJye4SFhcHtdrNKvXa7HWq1elBYL73PPD+It8gK+0BoKT537hzkcjlUKhXa2trgcrlQW1sLh8MxpEUtVN8Cg8d+bG9+9WQMfPyXSKiXSOi7Hup4/iUMdc5QC7WwnVCuF+BCLgj+fPI/8+CBP0/IEyAgIwQcAIJcRARmhBYXcvdQ21+F/DsvdKQYefDBm7vpd/pM5wCDibx8iCo/7wjICPuJJ7iGArqhLB2XA/JHcg3h8ZcrNKfPnj2Lbdu2we8fqGJbU1NzWW2S+4PSj/NZfnkLD9V8CQQGIt7cbjd6e3tZGQSyoBIBORSRld453srFbzykUikj/4bqs1B9LhKJ0Nvby+aXyWQKCvfmN1bDtcX3yVDnjMmVlTG3y1UScrsolcpBCpkX4fehdr6hUDl/LH9MqHaEn/lFnwcEwu/pHkihEAGVf6mF4XF8HoahdvrCnYVarWYptQOBAd4HFV2j3RPP4eBNuD6fDxqNhnEAeFcP3RO5Yvh7pBBN3rdLtVbEYvGwhf2E4ZrC8RqpCMd4OKvI11VoLCkqwuFwBLlZSIiXQ3k/+HnD70wJdPIKjAjDoXawocaCz1Y7nKWCPtN98NY94RwNxZUaTkEKwRf/rtF3F5Oh1gVh/pCLtTWUG0kkEjEelVQqhdVqZe8PvRfU91SEzuv1shotHR0diIyMRH9/P3tfKPNqf38/XC4XIiMjWRZU4udQATuKTCPLlUKhCAph5oVADFnJqB9CEZT5eSJ0n9Kz8+PPz5+hLLpjbpcrL2Pg4yoJgY/ExERWJluv1yMQGPBhKxQK9PT0wG63M6a32+2GzWZjv1N4mEajgUwmg8lkQlJSEnw+H1wuV1A1VrFYzFIaUwlrl8uFuLg4OBwO5la41LC8i0koS8dIj7fZbINediHg4gEREFwcj0ARfR4K5NHvQykN/hiVSgWn08lIk3ylXeGCRyZjHsj4/X5otdqgMF5alAOBAAtF5BdMmhsikSgoNwndF0+qpJ0kEWSJHEifpVIpHA4HqxgKDChlhUKBQGAg94nFYmGJogh8Ubv88QQonU4nSxoVFhYGrVbLdp08yOPJoDTnaHx4DlGohZ9M/ERSpM90DaqUylvKCJhSG9QPFDYaypRP40V5IqivaYfPzxsiLFP7MpksiJ9AdVCE7iCap3y7NNYjAa8ymYzdayiLIs91Gc085zcPfFQLJR0jsKDValm+HLI6UXgsAMbpIKBI5G3eRUaAnsaA3C70fLxbzul0BvXrxTZg/DwNBfD4Y4RC34ciKAvHxO/3j4GPqyBj4OMqCYEPqjMQCATQ3d0NrVbLFnIiU3o8HvT29gZFb1Cdkvj4ePT398NutwMAAymUG4OUlFgsZhkC6WX3+/2IiopiZbbtdjsza14NAHIpQmZc4YIj3HkKQQWvbC62C73Yb0KLEu3+aLfFm5J5hcmXCw91HV5p0nH8ro0UMq9geBM1LwQuKb2+z+eDVqtlSpYIfmRxIIVB841Xfry1gZKE8W4syjZKzyx0aRHYJQDNt8s/G4VQCnerQosdT/Kj5+HBKB8KCoABB75v+XvjwSFZLQjIkFVFOF78/COgwbdN5/M7cB4I84nNeAsbr4x58MNHf1C/8Tt2mjv0HvMWR+EcFt4//5nnOQnPMxgMLBrM4/Ew0rVEIoFCoWBrC1kbaU7w4bhUmJF/Hro2gQ+qXisSiRjYo2eVy+VsfrpcrqAsp6GeV2iVDSXCvhZGNo1U6FifzzcGPq6CfDXO7f8yoZ0pmRt55UURMV6vF3K5nC3kwMCLSbtlIlCSeZNKUdPiyhf3ol0RlcsmpUQuIKHivZL4k29T+C/UsRdrh2Q4MCIEJrziEh57MVP5UCZq/jyeW0ALnNAszpvdafHnQQpvgRKakHmwwitzHmjQrpcWYd7NxINY4AK4obnARwvxwIHfDVNmS1KKPEmU2qRnCAUAqJ8IqFCEDZ0rtBDwfSzMLsvPBZ67wysgfp4NNcf5fuX7OxTRl9rgx1MsFiMiIgIrV67EhAkTYDAY2DnCe+b7gr//ocCDUEKdywt/n3yf8BwLvp+E7wetEfRPIpEEgQKeqEnn8nwNml88d4P+58eQLF10X8I5QlFovJtNeJ8XWzuE7+qVkiu9No5JsIyBj6ssQtKk3W6H1+uFXq9nnBDaRURFRUGhUDDlYjAY0NXVBZvNxqwcNpsNcrkc4eHhQZkZRaKBug9hYWGQyWTQaDSIiYlBf38/WltbmdVlJC/oxV46mUwGlUoFtVo9qhd+uEVkKGVCv4X6bqiFVfgcwmOEx/LEOhIaN/J3kwImhS10AxEw4C0XoZQyb4bnn4VP7BQIBNiiTO273W60tbUxkKpSqdDX18dSV/f19TGXGyl8cqnQzpZPKCWVSuFyuaDVatlulI6hyKH+/n7mtqEKpny/UI0cHigRKCFrAPUXKTkgONsonyOEf176zIfJCgEIgSreakP3wJ8r5AAIx4r6i7dECMO/FQoFdDod8vLy8PLLL+PGG29ESkoKG19h+DdZy0JZo/hcFvyc4IXnRfAgUyh8lBdZrPispNR+KBI1WTmUSiU0Gg0DMjT//P6BukpkkaC23G43W8fIVadSqSCXy9l8ovvRaDTMUkT9QfNDIpGwjLH0vEMBtVCfhSLsI97SIVwDhtqMCKPoxsDH1ZOxaJerLA6HA1qtlr2c9MISb4NScIvFYpa8i3YibW1tMBqNcLlcjMinUChgNpvR0dHBrkHnREREoKamBmq1GmFhYWhubmYLndPpRF1dXZBl5VLl29/+NlasWAGDwYAFCxZcVq6IUDuyUL+FIoXROaEqmZIliPc30+88cZY3d/PH8O4GcmnxVgLyVxNwsNvtQXk6+IUfQNA16W/+vvv7+5k/nNrgQQ7xIAhs0L2SC0KpVEIqlbL8JcQjslgsQUCJlCEPkuh3vV4Pm80Gi8XC2qfCYjxgIeVPJnJSNqTM+LEirkwgMGChUygUjMtACojveyA43Tn1OQ9S+D7mOQh0T/QdH9pL7dCzC++R7p1AF5Vep36aOnUqEhMTMX78eMjlcrz11lswmUzseFL8gUCAFWujeUhuDL7eEAkfZioUao+3qvDH0xzkozvoGfk+FPJL+L5yuVysbXKzUH9qtVo4HA42/4iASuNltVoRHh7OXCY09wjMiUQilmeDgBy5Z6iwI12P5nBPT8+gTQYP4unavHWRt2ANt8kQSigLGb8uDHfumFy+jIGPqyyE/MliwaN7sVjM6o44HA5WS0GlUkGj0cDv9+OGG25gu4P77ruPmUddLhe6u7vxyCOPsMqkVLCLdie8spRIJNDr9ZeVjhkYeME3bNgAtVqNlStXYvHixdi3b9+gehehrBahRLjD4Hcq/KLD70LpeOGCxAuv6IfihwiBDr9wkdLiTc+82djtdgcpUaVSyXaBfPggDyQABBVRA4LJo3a7PcjEzxMfSQGQOZwUPy3eBIhoV0kKiXbCfJ9JpVLI5XK4XC7Y7fagnB/kzuPDm3ngQnOYBw68O4iAG0845cEBKShq0+VysRwSIpGIuSd54S0R9Ax8X/D3Si5MHqyQouNdLvy4kguL+oiP7pLL5UhLS8N1112HnJwc+P1+3H333TCZTIMqwvJEUgKFdF1S8vz8468TSoZy5ZB1Ssil4S0qJPzfwiR2ZCGh8dZqtWxO8hwi+o7Ghp6RMpvSfcpkMhiNRmYZcTgcg4AEgWgaB7qOx+NhljI6liQUZ+NyQMFwltRQx44BkKsjY+DjKotwN0D1CwAELVw8b4OUnlwux/z58+F2u2G1WpGUlASv14vIyEhoNBq0t7cjLS0Nra2trJIjXyyNbzcsLGzYQmKhXvpQx4hEA4XSzGYzs+KEEh48XKzdkd5PKJfMUG0Pt6gMBXR44cMtee5DqJDLsLAwxMTEQKfTQavVQqvVQqPRMJKex+NBeXk5UlNT0dLSgpaWlkE7YOFuSyS6QI7kd/l0P/yz8ORRasfv97NCewRoaKcsdAcQ2KG/hUCPd0EQF0TIBxD2J/3Ng79QQjv49PR0pKWlQaPRQC6X48yZMzh//jx8Ph/jOfHggXdlCcdaOJ6824aej87lj6Hz6BiJRAK1Wo2srCxMnDgRgUAAZ86cQXl5eVB2WGE6fuov/rpCy12o+StUssMpWmFfUDt8f4Q6h78mP5d5KwsJ8cyEHCapVAq1Wo2cnBy4XC6oVCpIpVI0NTVh8eLFEIlEMJvNOHnyJDIyMtDR0YHW1lY0NzezuQYEg1aaC6MRftzVajWUSiU6OjpCWjSGO1cIbIR9NSZXR8bAx1UWs9kMmUzGyJ7h4eEQiUTMBEsvikwmg1qthtVqhcvlglQqRUxMDIqKiqBQKNDY2MgsDDNmzEB+fj6MRiOKiopw9uxZmEwm1NfXB+1IaTdMCsNsNjPG9lBgYCiLBf9CG41G6HQ6BAIBnD17dkSLxsV2LcL7IYVPu1veesGfM1SbQ30v/CwkeZIQ+59XnhQZQhwGuVwOuVwOtVqNvLw8FBUVITExEbGxsUhOTkZfXx80Gg0cDgeeeeYZrFu3Dvv27cOePXvQ3t7OwAFdl7cqEGjkFRclYeKBJQ9iKE08LahWq5W5EvhwbjK303Pz0VIEVPmdLwEfuVweFK1A6dJ5BQgEJ43jFRwBKn58RKIBrtKsWbNwww03IDo6GikpKfj73/+OjRs3wmq1MjBO/3iLE1kYeCBCY0bWRd7SEcoyxUfY8BsCIoRTDZNPP/0UmzdvZrVoeMsADyDIRcW7/Qi8kjLnlTydy4dqUzuh+CB03zww4C0HQylO4Tl0Hj+3+I2Ly+WCWq1meT1ItFotkpOTceedd8LtdiM2NhYqlQrbt2/HQw89BLVaDZPJhLfeegt33HEHSkpKsGfPHnz66aeMRxQIBFitJY1GAwAsx0coa0+ov0lkMhkSEhKQmJiIo0ePBpFcyUpJmzKyVvHAmt/UDLVRGZMrL2Pg4yqLwWBgC7nVag3KFOj1elkuD4psUSqV0Gq1yM3NxUcffYQtW7bAYrGgubkZzzzzDKZOnYqjR49i0qRJeOyxx7B06VLU1NSwEvcENqi+Au1YQuUKGE6Ge+n+9re/oaCgAGKxGP/zP/+DZ555hlW5HUmbwh2+0C0CXFgUeIDGy3DPIHzO4cCOcFcu3DGRwiTFTO4QuVyOgoIC3HTTTbjzzjtRXV2N1NRUKJVKAANAIDExkS3cb7/9NgKBABYuXIhbb70Vf/vb37B582bG3xDyRXglz4f5kp+cFDyZzWmBpYJ5KpUqKL+ERCJhPAY+YRuBF7J89Pf3s50sKSYaAwqxpP7kQ3J5yww/Bi6XK4hzQvwIpVLJeFA33HADUlJSYLfbkZ2djY0bN8LtdmPKlCnYsGFDkAsDuMA1oXuidkUiEUtaxYdFEyATRlXw5/PgRK1WM55VIBDA/fffzyyYYrEYjY2NLNSd5i8P3Eip0zPzHBOhdYHOJU4Ijb+Qh8SPB2+94V1O/O9C4YEYnUf8C7pnyt/C36PX68W4ceOwZMkS/OhHP8LGjRsRHx+PGTNmIDExEQ6HA42NjTCbzfjFL36Bzz//HKdOnUJnZyeSkpIQERGBa6+9Fnl5eXC73fjss8+CLHV6vZ6lcA8PD0dXV1fId5DvCx64AsCkSZMwf/58zJw5E7fddhvy8vIQExMDg8EAlUqFDz/8EFVVVTh9+jTefffdQe//mGvlq5Ex8HGVhaICRCIRDAYDc1MoFAqWnpgiXNra2vDoo49i2rRpyMjIgNfrxc6dO1FfX8/yhtTX18NkMjGl9Yc//AGNjY2IjIxkCoaKqpnNZgDB7graZQjlYiZHvg3aDdntdhw/fpwpg9G2SS+9MDqEJ4+GMk/zAIWItjKZDLNmzUJRURG6urowefJkfPTRR9ixYwekUina29txyy23ICkpCb/73e8GVdXkd8u0uPNRFeQCkclkiI6ORkFBAb71rW8hLy8PAJCWloZ//vOfSE1NxZQpU7Bjxw68++67iI2NxbRp07Bu3Trs2bMHCQkJMBgMmDNnDo4ePcq4A0Tm5BW6kGzJZwilz3wfEt8hEAgEJSkjYEKWC1JuSqUSBoMBaWlpUKlU2Lt3bxBQ4IGFzzdQgI+sDLybgt9h0v3z981zTqRSKaKjoxEdHY309HR861vfQnJyMiNZi8VivPrqq2hubmbvijCsnIAEH91Cc4LeC165UCQFDySpjk8gcIGPA4CRQ6dNm4Z58+Zh7ty58Pl8uP/++9HU1IS+vj42D3iLHG/p4Em3dN+8G4+uwwMHnqRKzwyAjTUPWIR9Qc9JbYUC9HQPvNXM7XazwpfUZ9TXxO8RiUSYPHkyvve97yEQCGD16tUsOsZqteInP/kJRCIRtFotHn30URZ1JRKJoNPpUFRUhMzMTMTHx+P+++9HIBDAkSNHYDKZWNE53lrFR56NZJMkFouxfv16zJkzh62ZZWVl2Lx5M1pbW/HMM88gLS0NXV1dw7YzkmuNyZWVMfBxlYUWcHrB+H+08NHuJyUlBSkpKcjMzERGRgYsFgsjdbW0tDD/96RJkzBlyhRmMgcQRDQkxUHhmGSO5XeM/P9A6PwDQ4GQ48ePQ6lUIioqChERESEJc6HMo/xvQvcJfccvPPxxkZGRGDduHHJyclBWVsZMvUqlEgkJCZBKpcjPz0dOTg56e3uRmZkJu93OOBgdHR1YunQp5HI5oqOjYTKZht3t8PwK3kSr0WiQkpKCa665Bvn5+fD7/aioqIBOp8PBgwdx8uRJVFRU4OTJkyguLobBYEBnZycsFgt6enrgcDiQmpqK2NhYpKamwm63s4WR73dS4CTkYhFaQeg8YQZWHiTwlgoeXAFAdHQ08vLyYDAYUFxczCKueCBGoIDnI9Hc5a1XdH9ChShM2pWfn4/x48cjLy8PU6ZMQX19PcxmMywWCz777DNUV1czS5owURef04LvG17B8gqMd8eQ8JEvwAViJ3/+okWLMGvWLCQmJmLbtm0oLS1FX19f0HMM5eKgNuhYHpDQ8Tw44d8Jvl2RSIS0tDTEx8ejtLSUuTtVKhUkEglMJhO6u7sZ4VzIbaFIFHKzhXJZEhmXIoL4CC2yvqlUKsTExMDpdKK6uppZeaqrq3HgwAFIJBJotVqUlJQwy6BUKoXFYsGmTZtw7bXXYuLEiUhPT8f48eNx7tw5tLW1DZqn/P2HEuFaIpFIkJGRgUmTJiEjI4NleKZs0Pv27cPf/vY39PX1oa6uDtXV1ezcodanUBueMavI1ZEx8HGVhcIeiaBGLyYtTvTi+3w+LF68mKUrdrvdMJlMbFdvs9lY1cmioiKsXbsWfr8fCxcuRE9PD9ra2tj1KKtgbGws293wJtqLSShQQgrLYDBgz549iIqKQmxsLHJzcwelox6JDOUWCfXyGwwGjB8/HjfddBNuuukm/OUvf8HkyZNhNBqh0WiQlJTETPwejwcpKSnwer0oLCxEWloaoqKiGDehqqoKsbGxaGtrC9od8rtnXpnTMRS5ERUVhYkTJ2Lt2rXo6enB6dOncfLkSRgMBpSVlaGlpSVIMbe3t6O1tRU7duzALbfcAoPBwPg8CQkJaGlpgdVqHbTr49OC0+JMCoQUGlnUyM1G0TJkEeJDTOVyORITE2EymYJcWRkZGSxhVmxsLEvFT0qIIiJojCkzL0+Q5oEiD1yIu8AfIxaLMWvWLCxYsAB5eXmQy+XYv38/zp49i9raWuzZs4dxUEj4NqmP+B09H3VDLppQhF4SYd/yLhLasS9duhTx8fFobm7G66+/DpfLxfgydC1+/vAp2IlEyx/Hu1Xoe+E7wwPFiIgIBAIBzJgxA4sWLcKf/vQnjB8/HomJiYiJiYFSqcSePXtw7tw5mEwmNj+pDzweD/Lz8xm4ra+vD2ofCI52cTqdrDYPgSXqx76+PrS2tiIhIQE7duxg+WZ27doVlNyOHy9KjPjWW28hJSUFubm5UCgUyM7ORmRkJBsDuj7NWbvdHrTmDAUSCPAsWrQIWVlZMBgM8Pl8aGtrg8fjgdvtRn19PR5//PHBiw8nQ4GL4TZPY3JlZAx8XGUxm80sQRGZezUaDbRaLdrb29HV1YXIyEjk5uZizpw5WLZsGcLDw9HS0oLvfve7OHXqFPNn+/1+xMfHo6KiAh999BEKCgrwve99Dx0dHWhuboZEIkF6ejpqamrQ0dGBuro6REZGsh1bVFTUsBEvJEJFTC9idHQ0Xn75ZfT29iIpKQn9/f04ffo023Ff6g4hlImYFIxGo8Hzzz+P3NxcJCYmIjw8HA8++CCcTie7rlwuR1NTE/70pz/h888/x0svvYTm5mYcPnwYFRUVkEgkePnll3Ho0CFs374dp0+fHhStITTV89wcn8/HCmxNnDgRjz/+OPx+P2699Vb09vYiOzsbn376aZBVixJ+0c5SLBbjtttuQ0FBAcLCwrB161bs3bs3yDVGFis+pFcYKkv8jbCwMPT19bFEb+Ru8Pl8sNvtcLlcDHQaDAYUFBRgw4YNWLt2Lc6ePQsAmDJlCp577jn09/ejuroaK1aswGuvvcbGw2w2M9BDQiRTPhSZDxsm4MZbBXj3TEFBAXJychATE8Oselu2bMHp06fR19cHpVLJ+p+37PGgi59nZNETuj94HgrPheAtOiRknSQwfd111yEiIoIlzUpOTsaJEydYKDUlEOMtfrwbhMaP6r3wWYaHEj4pWHh4OHbt2oWmpiZERUUhOTkZ1157bdC7olarkZ6eDr1eD4PBgN7eXowbNw5+vx+NjY344IMP8N3vfhcikQh79+7FLbfcwjY/NI5UmZbmGPGB6FlofLds2YLGxkZs2bIF69evx8aNG7FhwwbW3wSwxGIxy0UEAB0dHcjMzITX60V7ezsyMjJw3XXXYdu2bejv72eAjcKxh1L4vPuTJCkpCfPmzcMLL7zAju/u7sZDDz2E3bt3s3IUQhGOAbUpJCaHuo8xubIyBj6ushDZ1GKxsMWop6cH3d3d0Gg0zCxqsVgwZ84cRnSTy+WIi4vDmTNngnZMHR0dzMzqdruh1+uRmZmJ7Oxs1NXVoby8HCLRQOiZz+eD1Wpliwqfi2M0QIFeQpvNhvfffx/f/e53ER0djfb2dpSWlg7Ky8CfE+p74bVDLeKkIPr7+/Hqq6/id7/7HVQqFRobG/HUU0+hsrKSKXdaSCkb7L333svIl3K5HPPmzUNERAQKCwvR1dWFjz76KOh6QtM3+eD5SA5yOezcuRO33347MjIy0NraCqvVivb29iCzNbVBu/6IiAjcf//9yMvLg16vR2NjIzZu3AibzRbER+B5J7STJeuLSCRCVFQUy/kCDOSQIaUWCASgUqlYO3TPUVFRiImJQUxMDLxeL2bNmgW3242WlhZMmDABPT092LBhA9555x2Wm4HapCgp6h8KsaR6HgCCCs/x6daBwblSAoEAqqurkZCQgL6+Ppw7dw7Lly/HPffcA5PJhMbGRvz1r38NMsHT85BiIKsLz0uhtknRAwiyhtBcJJeAWCxmZFJqn7gPUqkU11xzDZRKJbZu3YqPPvoIe/bsCQJ3pJh5iwVP3CQ3Dp1DNU6Geg/oHNpcTJ48mRHHKysrsXPnTuh0OlxzzTXM4qVQKPDOO+9g8eLFWLJkCcuUDAxEo0RHR+P8+fPYtGkTdu/eHRTeStclDhC1SaCJwIjNZoNIJGI5hWw2G+rq6tDR0cEAeV9fHxsfekaazyqVivExEhMTEQgE8MEHH6C2tpZtLBQKBRwOR9D1aTxpHIWAc+LEiZg6dSrmzZsHkUiEkydPMqC5du1aHDt2jK2Rw609/GaHt6zxmXbHXC5XT8bAx79IaNEUJuMSiURMUdIiTv5JeoHoWNrl9vf3w2q1wul0QqvVsp0wAReNRgOpVMrSsgsrpV5MQr2kwMAim5qaCr1eD5lMBq1Wi9WrV6Oqqgput3vEO4WLHcdf2+fzoampCTt27MDs2bMRGxuLEydOoKamhoW+CneVFPkjkUgQHx+P8ePHw2QyoaSkBKWlpYMWFP55hb53+p2UmMViQUlJCdra2mCxWNh4UvinUCHRLtzhcEClUsFms6G7uxspKSmoq6sLSlvNpyqnSAQ+9JasMZRkjFdavKWE2hCJRFizZg1SU1MRFRUFi8WCmpoaBkj5KrUEoHjlyXMpyG1Hv4eFhUGpVA6qQspbF+i+SWQyGcaPHw+9Xg+5XA673Y6mpibI5XIolUooFAokJiaio6ODWT6EERk0rjw3gre88FajUHNN6Gah7/x+P2JjY1FYWAiDwYCOjg40NDSw/iLlbTAYsHr1ahiNRrS2tqKurg6lpaWsHfrHK/mhFBhPtA4LG8gVk5SUhLi4OMZnamxsxI4dO6BUKtHc3Ay/fyCBYHh4OA4fPsxcagsWLAAAVFRUoLy8HGfOnEFZWRmOHz+O2trakPcg5DXxwJXmFa0XZPEiKwWfbp/mOK1DlEpfrVZj0qRJMBqNzIq1f/9+tLa2svnEWzWEPJih+s7v9zPSd3V1NQ4ePIhAYCAF/pEjRwYlUuTfaRIh/4XGge+LMb7H1ZUx8HGVhX+5CACIxQN1N2jX4Pf74XK50NLSgqysLNTX12Pnzp1oa2sLMuPq9XoAQF9fH6vZolaroVAoWIQLABY54Pf7WU4CUljDgY/hQIFCoUBsbCxmzpzJSmcbjUbce++9+Otf/4qenp5L7qNQiw3vArHZbNi5cyerV0N+XSGHRbhYqFQqxMfHY+rUqSguLsamTZvYQiV8XuEiw2fhJIBDYIKsD8TBocWWN/9TeXLyTXd0dEAsFqO5uRnNzc1YsGABiouLGceCrDg830JY78LhcLAaMLzFgwcnNJ+8Xi/UajVuvPFGZGZmwu12o7q6GocPH4bFYkF0dDSrzaJWq6HX69HT0xOUbpvADo0DKRkAzCVBc5SPDuIJnDx3Q6FQYOXKlVCr1dDpdJBIJDh8+DCamppYbpsZM2agpKSEWbHIHUJWGeBCpAjdD58Zkw+9pevzIIhIsTzplCwqSUlJmDVrFnw+HxoaGtDW1sbCkyMiIiASDRBA77//fuTk5KC8vBw7d+7E6dOng1xTBMBoXg3FKRBGDOXl5TECt8PhgNfrRWNjI/bv3w8ALBqJwJ9cLme1V5YuXYqOjg7s3LkTu3btQkdHByoqKgbdDy9kTQoFmHleD9VyUiqViIyMhFqtZmHaarWazVNKoBgREYGYmBhERUUhKysLgUCAuZ+PHj2Kzs5Odg2+n4T3yINo/t12Op3QaDTIysrC/v37GRnY4/Hgk08+GfRuU1s84OS/5/8W5lQZAyBXT8bAx1UWQv1yuRyNjY0wGAxBuRnoZejt7cU///lPPP7444iIiEBCQgJMJhNUKlXQrrevrw9utxvt7e146aWX8NOf/hSrV69GRkYGfv/73+OLL75gCkUikbBdxkgklFKmvxcuXIh169axrKqUgCvUCz1aEVoahG6Yjo4OPP/888jLy2M5BfiFaqjrT506Fddeey1mzJiBxYsXo6qqKsgcy/t7hTVGiPjL9wkfQsr7x4l3QIulQqHA4sWLcfToUcyaNQtr167F6tWrEQgEUFJSgqNHj2LdunWsTgtZcKgNXmnz7gUCqeRfJ+VDfxPhlBRGdnY2U6Q1NTXYtGkTenp64Pf7oVKpcMMNNzBugVarhdlsZhEO1DfCOixisZi5Wggw8KCDIj14Hz49k0KhwDe/+U2mXNva2vD73/8ebW1t+OEPf4jHH38cTqcT5eXl+Pvf/44tW7ZAoVDg/fffx8svv4x3332XAUEenArL01O+CpEoOPcFv7PnQ29p7A0GA+Lj4+FwOPDll1/i8OHDqKmpgUgkwkMPPYSkpCRER0dj3LhxkEgkKCwsBAD84x//YERJqVQKpVIZBI74LLKk4PhwaoVCAZfLhfXr1+P8+fN49dVX0dbWhsTERJw5c4bNV7K+UTtLlixBY2MjswL+z//8Dw4fPoyWlhYAYKAsVJIyYMCNSvwMskLw1iWdTge73Y7U1FQsX74cfr8fKSkpiImJgUwmY4Uu6Vrh4eEwmUxYtmwZ7r77bkyYMAFOpxMnTpxAfX09FAoFampqWH0guVwOp9PJ5j0PqnkRWpBycnKQkpIChUKBpUuX4ty5c9i0aRP27t076Bl5a6Dw+6EsIbz7c0yunoyBj6ssBDAoRbTL5WJRGVKpFDKZjC1UJpMJHo8HJ06cwKuvvgqpVAqr1QqNRgOdTofOzk4WZme327Flyxb09/fj2muvhUQiQXl5OXw+H7q7u2G322EwGKDX62G325kVJJQI0X0oEEJclQ8//BBtbW2YPHkyxo0bN+TOjm9H2Fao40g5kMlXeM6PfvSjoNwKQpO5sP3Y2FiEh4fDZrPhzTffREtLy6DdKV0XQJCfV/ib0JTu9/sHFTSTSqWYNm0adDodIiMj8cADD7BwZ41GA4lEgrq6OhiNRmRkZGDXrl0srDUU2COhHTplICVTuEajQU9PD7uH/v5+5oKjuXXnnXdiwoQJzHp09OhRLFq0CNnZ2cjNzUVubi7efvttHDt2DI2NjUEgRyKRICYmhpGV+XlAXAaelMvvXGnx5iNASPFTVILP50NaWhp+97vfobOzExkZGXC73fB4PMjOzsYTTzyBRx55BD6fD9u2bUNLSws0Gg16e3sHRW3QfdF1iLTKW3D4EGUCHDSmEokEM2fORGJiIiwWC+Lj4yGRDFRkpcrSc+fORUpKCht3shClpqbi3XffxZNPPomKigp0d3czcMS7EnjXHZFLATCXnEgkws9//nM2vxMSEjB79mz4/X5UVlbC4XAEKeno6GiW4XjcuHEAgNTUVJw+fRotLS1B7jPgAqmWhFewUqkUWq0WNpstKKU6nVNTU4N33nkHFRUVePjhh1FUVITbb78dr732GoqKimAwGBAXF4dvfOMbLHeMTqdjXLX8/Hzk5eVBKpVi8+bNqK2txenTp7Fjxw7U1tYGWfp4GYp3UVpaiqlTp7Lfi4uLUVdXF/Tu8hLKRRfqWP4zHRfKYjQmV0bGwMdVFkqH7ff7YTAYGNCg1Nz0t1QqRX19PTweDxISEjBx4kTs2rWL7UycTifb1dGC3tnZic7OTrhcLqSlpeGmm27CP//5TwZ43G43S4Pu9XpZEipgaJ5DKAkEAmhoaMD+/fvR0tKCrq4utviSAh2JDAdGhPfCHxcIBNDa2jrkucJdi0wmQ2xsLPLz81FQUICSkhK4XK5B4Y082YwHHvwx9BtvIgfArA+8SViv12PKlCkoLCxEamoqUzL0T6/XY/z48YiNjYXZbEZERAS2bt2KkydPBikseg6ey0E7U5/PxwoR+nw+NoeImMq7fpqamgAMuJ8iIyMxd+5cXH/99UhOToZcLseXX37J5iO5A2mu0vyhdklR8yngqb9CRZDw/cL3QXd3N3NVyWQy5OTkwGazsZoplOE3LS0NycnJkEgkOHToEHQ6HSs/wM83Amf8ePFWI+pHXoR5abRaLZYvX45JkyYhPj4eUqkU586dg1KpxPLlyxEXF4fExESoVCp2HafTiZaWFlgslkEcE1J0dH0SAgM0D4Ucoc7OTohEF4iYlLtCr9fj2WefZW1qNBpcd911mDNnDnp7e9HZ2YmqqipUV1cz96dwUyC0FNI/AmZAsJWLv1eKHCHgQ5YfvV6PvLw8KBQKaDQa5OXlISwsDFarFU1NTWhpacHEiRNZegGDwYDc3FzExsZCJpNh+/btQZwSfgMgfE/5z263G2fOnMHmzZuxZs0aBnYo8ka4keL7QrjG0RjxYzYUIBmTKytj4OMqS39/P3upNBpNkHmWkoAplUro9Xr09fVBIpFg/PjxWLVqFT777DNERUUxZQOAgQgilMbGxkKtViM6Ohp33nkn3nvvPbbgOZ1O6HS6QZU+Q8nFXrCGhgZ0dXUFLZj9/f2ora0NWU1zNO4YodtFeO5QC4DwO0r/LZFIMGHCBEyYMAGJiYn4/PPPhwx15H3uodrnXSmhFjHeWuP3+5GUlITp06ejsbGRRVGoVCq2sMtkMsTExGDatGlYsmQJ/P6Bmjvnz58PAjvEa+B3yEqlklUA5V0NofgMlDHX4/FAq9UiKioK69evx+LFi6HT6dDV1YUNGzYgIiICWq2W5QHxeDwsVNdms7GxpWuQW4b6TAiY+H7lzd2k6I4fPw6FQgG9Xg+9Xg+RSISzZ8+ioqICLS0tiImJgUajwZIlS6DVaqFSqWA0GhEXF4eoqCiWR4X6iUiTdB8830ToaqHjCJAQUElLS8PChQuRlZXFnu/MmTPIyMjAypUrsWTJEjgcDgaA4+Pj4fF4UF9fj6qqKjidTnR3dweRb3nwwfMWeN6McB7yYJjGNysrC2FhYXj66afZsVRResaMGfjkk09w+PBh2O12lJaWoru7e1Dbod4VGh8eSFKEHM1lXvGHhYUhIyODRdIkJCSgsLCQRVGRCzEsLAyNjY2orKxEcXEx5HI5C6fNyMiAVCqFRqOBSqWCw+EIygw7lAgtIIFAAOfOncMnn3yClStXIi8vDz09PSzDc3d3N0vf73A4WG6bodo2Go3MVUZjPAY4rr6MgY+rLLyfl+oWyOVytlugrJdGoxF//vOfkZ2dzdKtq9Vq5mpRq9Xo6elBdHQ044wYjUb85Cc/gU6nY6FqfX19kMvlEIvFMJvNqK2tRXR0NKRSKTo7O6HRaAbt8oezeNCi6HQ6mS89JiYGKpUKbW1tePHFFweZ5kcrQjeP0OVxMRBDi3ZsbCwiIyNRXV2NX/7ylzh16hT++Mc/4q233gq5+Ah3VCS8ouUVGe3OfD4fq53CE+aqqqpw/vx5lJSUYOnSpdBoNCgqKsKMGTOQk5ODM2fOYN++ffD7/dixYwd8Ph++//3vY/r06bj22muDSJJCpUUkZWDAdUegtq+vj/nPKXW4UqlEUlISfvzjHyMqKgpyuRzJyclITk5Gc3MzgAEu0iOPPIJdu3ahpqYGPp8Pn376KRoaGrB9+3bs3bsXR44cYcCJ+oQiGvgQVt4NQscROKES6rSw33777YiJiUFsbCwMBgMqKytZhWSJRIKoqCg0NTUxsNXX14fTp08jOTkZCoUCZ8+eZcnVaEyACwRhYR0VSgrGc3r4flWr1XjwwQdZinc+/4Ver0dWVhZkMhmeeeYZNDc3Izo6Gr/61a9gMBgQFhaG2tpabNiwIQiE8UqSlDg9H/G3hPOQ/87j8aCkpAQOhwPV1dU4duxY0O6cQFNYWBja29uxb98+/POf/2Rt8WBdmCGWn+MKhYJZVGleiUQDIbI6nQ7Nzc0wGo1QKBQwGo3IysqCTqeDRqNh90OWkfr6erz22mtYvHgx9u7dy7hEJSUlLFV7YWEhbrnlFhw7dgxHjhxBb28vKz/Bu1r5dYd/x0g6OzshFosRFxeHtrY2fOMb38C9994Lv9+P7u5u/OY3v8HcuXOxdOlSHDp0CHfffTc6OjpCAjCJRII1a9bgmmuugcViwb333hu0NoyBkKsnY+DjKgstxkqlkuVIcDgcLAcF8RB6e3tx5swZTJo0ifn37XY7wsPDmWlZr9ezxau/vx/d3d1YuHAhfv7znyMrKwt33XUXy6bq9w/klzCbzXA4HJBIJMxsLJThXrRQ3AeZTAaFQgG1Wo38/HwcP348ZPKy4dwswuvzx5ICCaXQeDDAtxsWFob09HSsXr0a69atYxUyk5OTB2W7HE74dnkFR31KRFO6Ji3qMpkMjY2N+Mtf/oI333yTFSc7fvw4KioqGEnV5XIhKSkJp0+fRmJiIurq6lBSUgKtVstM+HQs5fmga/T29sLtdrNoB6FCTU9Px7lz57Bo0SL8+Mc/Zs9eU1ODhoYGZGdn45e//CVycnIwYcIEvP/++3jooYfwyiuvsLTzMTExsNlsMBqNuOuuu/CrX/0qKOskEVyJaMoXcSMiJe/a45UuuXc6OjrQ3d3NckMQkPH5fOjo6IBUKsWHH36IAwcOYObMmcjNzUV4eDg0Gg2WL1+OHTt2BPEDeP4G/ROCILIkkEtGLBYjNzcXs2fPRkpKCnuviCD63HPPISIiAtHR0RCLxXjooYfwm9/8BsePH4dMJkNnZycaGhrQ0NAwKJ07b3GhOQJgkMWDJ3jyaeFp3pSVlTEwRO0SEXTChAmQSqVISEhAdnY2zp8/H5TzhMaLrslbf4ALxfmo8CFdQywWw+l0sjD9+Ph45ObmYsqUKbjttttw9uxZ9Pb24v9j773D4yrO9uF7e5F2V9Kq92rJkmxJLrLlCu64gGkBgiGNQPwSkkDeBJKPFHiTEFIggRBIIJQQTMeADRhj3KvcZPXee1t1aVfa3e8PXc8wOzq7WtkyEH66r8uXtbvnzJkzc8489zw1PDwccrkcBQUF6O7uRlVVFd58803s3bsXw8PDGBwcxNjYGNrb25m/SmVlJQ4ePMicTAFMeDfF9YZ/F4HPogY7Ojpw8OBBrFu3Ds8//zzmzJkDHx8f+Pv747777sPhw4fx0EMPIT4+HrfccgsOHjzI8oHwcDgcSE5Oxt69e5Gfnz9hHZghH5cPM+TjMoP8OUg4k5p4bGyMaULIIZBC0Kqrq7F//34WM0+LNx/WRqaAWbNmwdfXly2mJSUlLEWyj48Py6Egk8nQ39/PtCaindoTxAXh3LlzCAgIwOzZsxEREeFiY3dnW52sTQKNh6iGljLj0GeVSoXU1FQsX74cK1euRExMDH7961+zMbrvvvvQ0NCAnp4etLe3o6CggAnMyMhIbN68Gc8995yL+Yi/Nq8G58MR+SgPMpH09vayUvYk9EiokQ9Id3c3nnrqKfj4+ODKK6/E3LlzsXz5cnzwwQcuphZeiNOuns/jQQTH6RyPJElMTMTVV1/NUt7/7W9/Y8/E6dOnERMTg7y8PDQ2NiIvLw+nT59GZGQkjEYjdDodwsPDcfbsWRb629jYyASF6P1Pvid0n/QbCRN+5yr6QfB+Bvz9AZ/5JgwNDWFwcBDBwcEsvLu1tRUXLlxgycvoXF4LI5JH8dmheXM6nUhKSsINN9yAsLAwl4genU6HuXPnMiL/3HPPITIyEnPmzEFWVhbTQrW1taGiooJpNsRcJNQmXZM3ZfDPNf/c879T0TVCYGAgFixYgCuvvJIVSywrK0NZWZnL2NGzwo8xEWeemBAxpI0JJRWj6C+73Y7AwEAEBQXBaDSivb0d1dXV8Pf3h0w2Hs5MfmwymQyDg4OMTJL5j9Y96k9TUxMjZbzJk/5NlgmW3k+7fbzOVU1NDZ566ilcccUVyMnJQUxMDMxmM9LS0qDX6xEdHY2MjAyW50fUdpJ2LDU1FWFhYfD19cX+/fsnaGJmMP2YIR+XGeQdT+GUtHuhJE/kwEcx8wBYLQY+wyQtoLQTVigUTHCazWYMDQ0hKSkJZWVlLnZb0bNfyozBt0+f3cHpdOLChQtITk7GrFmzXDz3RUiZNbx5mcU+Smk6gM9UxykpKVi8eDEWL16M2bNnY2BgALW1tWyHeOONN6K4uBhtbW2orq5mIaIOhwOxsbFYsmQJXnjhBRfBCXxWl4P3IxD7wAtZisbhQyL5vtJC29vbi7feegtqtRoLFizA4sWLkZ6ezkwxwGd5NWgHTdfi/Sh4wU9Cc82aNSzy6bnnnsOKFStQWVmJ3NxcBAQEMAFgt9thsVjw9ttvAwALzf3ggw+QkpICPz8/nDx5kvWDV+PTZ7quOA58UjB3IYvu2qP7kclkrAYOOTJSYjP+WeXNHTQ+fO0a/h+9A3QNX19fREdHw8/PzyVZnNPpRE9PD0ZHR9HX14e8vDwMDw9j+fLlmDNnDnp7e9Hc3MwqTPNklJ9n3hdG6h3hnyn+eBL+vHZHLpfD398fS5cuxdatW1n00pkzZ1BZWekyptSGlG+JlHmRxo1fn0gDEhoaioiICBgMBhw6dAhVVVWsWOLY2BjWr1+Prq4udHZ2TnDcpEg+Is2kQaTr0lzwvkuetJRS34+OjuLtt9+GzWZDWFgYNBoNoqKiMGvWLMTGxsLX1xdDQ0MIDg6e4NdFfa2trUV2djZiYmLQ3NzsYvqZweXDDPn4nBAYGMjSg9vtdhgMBoSHhzNfCqPRiG9+85uw2+1ISEjAbbfdhvfeew/Nzc0s1TJV+tTr9YiIiMA111yDb3/72zhx4gT27NmD3bt3M8dUu92Ojo4OF3szH30hvsjesnun04mOjg5mk8/Pz3dZJC9mp8Cfw0d4iL+Li4FOp0NycjJ27tyJ+vp6hIWFwel04sSJE3jiiSeY9zslqiKHtI0bNyItLQ02mw1nz57FQw895HIPtBviBS8VBiOSQSYDEjTURyJ7Q0NDLPEb7TpF23tWVhbMZjOGh4fR2dnpEm1ABQFJy+VwjCc3I3OHUqlEZ2cnS6ne19eHjz/+GP39/ejq6sL58+cZCaMxpJwi/DjSrhkAioqKAAAXLlxwEYxUr4M0b7Q7FW3yvGYI+Exzwyfao/HgzRTAZ5EgVMadnKxpN01OijRGZIoksiMSZ14bQn2g65EW6+TJk3j00Ufx+9//nmkYacf/7W9/G1VVVUhKSsKBAwfQ2dnJBNnhw4fxm9/8hu3ieTMPHy1CUR4qlYqlc+f7KJ5D3/GaHZo7vV4PrVYLf39/VkH5nnvukSwVT/foDkQ2KAcR5eswmUzMnwgYF+yZmZlYtWoV/P39MW/ePBiNRqbpM5lMWLp0Kfbt24c//elP8PHxmWB26uvrc4mo0uv17B03Go0ucyNGfPH9JUiFWVMlW61Wi0OHDuGGG25g0S/9/f04c+YMOjs74ePjw+aBn4vnn3+e+cwQCeTNdjO4PJghH5cZtBANDw+znB1Uy4WSQtHCe+LECSxZsgQBAQEwGAx44IEH8NhjjzFnqbS0NJSXl8NsNiM5ORnZ2dloa2uD2WxGYmIi2tra2MItk8lgMBhcdqBkr79Y0IsYEhICg8EAACwUWDzGE6TsrvwO1VM7KpUKSUlJaGhowPz583HttdciNDQUnZ2d+Nvf/obc3Fz8/e9/x7Zt27BgwQJkZWWhvLwcfX19iI6ORkxMDGJjY7Fy5Urk5ORArVajoKBgQigiZc7kd+9E3sTIIZEYkUaGJy+8pkAuH08oVltbi9bWVsTExLBFmVf3iknOeM3AyMgIW3Bpx9jb24u9e/cyTRrldSHTD6/GVyqVMJvNrForX8iNrsXX6nA4xjNSEgGgY/r6+tg90bV4TQSND5EO3iFU1Orw48WPGxGJ0dFRVFdXM2HOm3ToWuQrw9d4od/pXSBiqVAooNPp0NXVxarIVldX4wc/+AHWrFmDm266CX5+fti/fz8WL17MHEB37tyJlpYW5qBJpIWuSeYa6juvceTNP9QHSthFc0vCnxAcHIznn38e8fHx8Pf3h0KhQEhIyIREdKLQ5tOni87RZFqj34kAUL/JyTQuLo4VAVy6dCnOnDmDvr4++Pn54f7774evry/mz5+PW2+9Fe++++6EUGhKdkjkg4rz0XySaYaK7/GCn9rh2+OfH7oXuVyOgYEBdHZ2Ii4uDiqVCm+88QZee+01dHZ2orKykvlLedp0zWg6Pl/MkI/LDHLcokWPFhiNRgO9Xs8W+dHRUbS3t6OiogLx8fEsdTUJB2DcHJOdnc0SVWVkZLCy2iUlJS62ZzL3UAQEVVmlBYlwMZqK9PR0hIeHQ61WIy4ujqneRUhpL6Q0GCLhkFoQDAYDli1bhrVr16KkpATJycmIiYlBYGAgnnnmGVgsFpw/fx5VVVXYuXMnCgoK0NTUhBMnTqCnpwdWqxUGgwFGoxH+/v6oq6tji5/ofwB8tnDz5itecPBEgMgTn4SM/5+/J/qOzGYmk4l56ZOA5LUpdI6oXQDAwn9tNhtLXEdp2nnyQ+dRP3hCzLdHzw8JM7EiLAkKnkyJJgUSbHQO/U5/i+YY3txAY0jHmUwmLF++nJkjh4aG0NDQwIQmPVOioyWREv6Z4wUv9aGtrQ2nT59Gc3Mz9u7di6SkJKSnp2Pbtm0s+kWhULC8Gw0NDSguLkZeXh7TMPImBH6+ePAEi+6NF/z82PEg8qtUKtHV1YW5c+eioaEB58+fxyeffMKizMT3hTcxufudSDSvWQM+I2sAkJOTg/DwcJSVleHQoUMoKytjxRCHhoZw9OhRrFmzBuHh4UhKSmJRK2q1GgrFZ8X7SGNIJI2eP3K6p+PJ9MUTbhH8O8WPd1FREV5//XVkZ2cjMzOTJWY8cuQIy+orta5ItSU1FzOYfsyQj8sMsnnybJ9CIym0DwCzkVKtBrlcjoqKCpYZlZzCsrOzYTabER4ejtDQUBw5cgTnzp1jWQ3F4k+kzuR3pHQ9/m+eFIgvnrgIxMbGIiAgAEqlEjExMW7Jhwh3BIQnQFIvvUKhQHh4OJYtW4bbb78dL7/8Mq666ioW6vjqq69CJpOhoaEBfX19+PDDD9HR0cHCSt2BCtBJ3SdppGhhFtW9JMQMBgP8/PwwOjrKEso5nePOglFRUejv74fFYpkwvnK5HGFhYczZMygoyMV8QEJZFJ4UaUJ2ebouEUvyLVKr1SwTKU8AeMdZXnPAzwOp/skvhu87H1HicDhcEm+5m0N+1y/6YIjChDdJkKlIJpNhaGgInZ2daGlpcck9ImpTSOjyWiu+f7wJrKenByUlJTh16hT27duHpUuXIiIiAqmpqdDpdKxSrN1uR2FhIfLy8nDmzBk0NDQwUyZPOolY8OPAazvEZ40nS/z3vCnHx8cHZrMZdrsdIyMjqKiowIEDB/Dee+9N0JDwz7CUJkQ8jneIJc0WkVaFQoGUlBSYzWZUVlaiqqoKzc3N0Gg0MJlM8PHxQUFBAQv5ttlsLFEd5doh7RT5qVFiRT55nUajcdtH/n6kni3+u/r6evT39yMmJgZ2ux1hYWFITk7Ga6+9NuH58qThEH+fISGXDzPk4zKDBNPQ0BBL9+10jicZowJlMpkMfn5+WLx4MZKSkmCz2VBWVobi4mLY7XZWc2Lz5s2YM2cOUlJSEBYWhr6+Phw9ehRNTU1sMYyKioJSqcTw8DDLcEmLIq/1kHqpJiMdBFL1y2QyREVFSdZOkGrb00LML5SiY5hGo8GiRYswa9YsOBwO+Pr6oqKiAqWlpTh06BBOnTrlIvxyc3Ml2+eFnqdxIC0V9Zns9qQFIJJgs9kwZ84cbN26Fe3t7WhoaGDJlk6fPo0f//jHOHr0KHbu3AnAtRqrTCZjRQFjYmLw05/+FC+//LJLxAEfZsuH32o0GmbyIBOCSqVCUFAQ88ehNNnkn0LagdHRUZb4DAAsFouLiYIcV8nxkiJ9HA4HBgcHYTQamYpczIpKgl00u/DClRwPaQyo2CFfwI7IQ319PbZu3YqCggL09PSgsLAQ7e3t7Bmhf6JDLE/ipJ5D/v/+/n78/Oc/ZyULLBYLGhsbERkZidWrV2Pu3LnYu3cvHnroIXR2djLSRSSDN6vwfRAJKzmA0thI1TGhdYFqnoyOjiI0NBQrVqzAli1bUFtbi+rqatTW1roQD3peSItBn/lnTTQTjo2NQa1WM78kSslPY0t+Znq9HuvWrcOcOXOwf/9+pKWlIS0tDVFRUThw4ABGR0dx4sQJVneHzLH0TNHmiebDaDSiu7ubmYDNZjN6enpYvRdPobdS80j3RRo7ioxKTEzEsmXLJuQykdJ4iBsiTxuxGUwfZsjHZQYt/AaDAZ2dnYiIiMDY2BgTEgCYOvuvf/0r/vd//xcxMTGIjo7GvHnzWBTLsmXLsH79esyaNQsffvgh/vSnP6GoqAhNTU1st6tSqWCxWJiXuVwuR1RUFDo7O1n9iOkAOdL19vbij3/8I/r6+i6pPdHBi18o1Go1Fi9ejB/+8Ic4c+YMFi5cyDJv8mHHUuAXGDF1uLgoiwSIdrx0Ll84jnZsCxcuxLJly7B48WIkJCS4JEuicMwlS5bg+uuvZ87CFosF9fX1LA+BwWBwCVHk+8c7sspkMgQGBjJi4XCMh2eTrwidbzAYmEAkzQcJd/pM4bMkoIiUkcBxOp2sT+Q3QoRgcHCQtcf3VSSPvGAWyQC/2JMGh76jeRobG4PBYMDatWuhUCiwd+9evPXWW2yuePMKORyK/iR0HO3OeRJGx5CWgZyPaTevUCjw73//G0qlkpka+OPpuaA2+fT9pLGw2WxsTj0Re+onjSm9q1SWnnKc/Pvf/8aBAwdQUlIyIVyVhC+No5iZluaBB/Wbxp0yjpLWlNK19/T04Ny5c7juuuvwrW99CzExMdDpdPja174GhUKBrKws3HLLLfjjH//ISAyRSd6XaWRkhDlW+/v7AwDLikrmYVETJ77H/Gfxb41Gg8WLF0Or1SI/Px+HDx9m98eTQ6nxl/qbxs+TBmkGF48Z8nGZQQuJXq9n4Wu0aANw0UiQf0J4eDh8fHxwxx134Oqrr2YpjSMjI+FwOFhiKgrzI4c/WgwpKZTJZEJ3dzdMJhNLYiUFURsg9ZLz34WGhkIuHw8f/trXvob8/HyWE8IdPBEfXsCKfXE4HGhpacHQ0BDmzp2Lu+66C7/85S8l7dn8IsVrWcT7ELUwUqYg3oZPeSloISeb/apVq7B8+XKEh4dDr9dDo9G4+IjI5eNJmoxGIxNElIr6yiuvhJ+fHxQKBRoaGvD4448zPwJS5YvOd0QyALhkNKXfKLstLfT8vVB0Q29vL7tf2j3zfhtWq5URAp1Ox/rNO9HSseJuXhQSvEMk/U8aHdKy8Lt/nlCkpKQgOzsbN9xwA1PZ+/n5uRAA6rv4fPHtkGCjY8UQWCI+dC9UhFGlUrkUcuPvj4ghmRSknh2eoBDx48eBNgxS59D8P/zww0hPT0dISAgzO/X397N7559RXvsoZcaiZ0jUgNDcqtVqFklEz9ecOXMgl8tZpt6oqCiEhYVBp9OxCKgdO3aguLgY1dXVbAxpjSOzMtXx4avskr8JT5ZFEx8Pd0SER3d3N+6//3489thjzDdGykdECrwmhT9+hnhcPsyQj8sM3tGKSmfzDzQ5tVH0Q25uLiwWC/z9/ZGVlcWKx3V3d8PX1xdVVVUoKipCc3MzW9B4VTO/69FoNOjv70dAQAAUCgXL+glM9LMQX0xP6sa6ujpWSpsyQIqmEnHh8wZSphmHw4G2tjYcO3YMsbGxrCoq30cpU4qU3daTKlXqGL4NUciR1sVisaCyshJ1dXUICgrC8PAw+vv7YTKZEBQUhP7+fvT19bEaO3a7Hb6+vkhPT0d5eTl6enqQn5+P9957zyUXDL9bo3+0g6Q+8OSDQn9JdS1WlJXJZCyMlW+TF4h0DRIWAFwIEe/YyQtJHmJ7UvPA79ppjvl+mUwmxMTEID09HQsWLMDx48dZxWd3Knjxnvhr86SR96eQehb48+mf6O/D91tU51MbNJei9oon2Hw7fNv0+6pVq5CWlga73c5CqIngi++u1LiIJimpZ5zXCBAZpPsaHBxEY2MjK6dAZRr6+vowNDQEvV6PgwcPorCw0GVjQ88fEWFxHHmiQeRW1J7xmIw00O82mw0FBQWs8CVPHqZqRpkuLfEM3EPmnDFqXRZQbYiAgABWy4XMLXwqcrPZzJIZAWAFkRISErBjxw68//772L17N4qLi/G9730P77zzDpqamjAwMACVSoXh4WFGbnibKe1mRkdHmX2fMpxO9iJKEQfxOz5qwRui4W734XSO+y5MtrMRFxH+mvxu1tM9SQlCOl/0S+B37ZQjhVTrJFy0Wi0CAwMRGhoKu92O66+/Hm1tbSgpKcHChQuxbt06nD17FmfPnsX8+fMRFhbGkjFt27YNv/jFL3D48GFUVVUxx2TqI+0GSZ2uVCrh7+/v4jhMBIhAQpWEh06nm2BmGBgYYPdKeVCIvGi1Wshkn1VVdTqdaG9vZ7t3p3O8ijGp5nnnTRIqfJVSXgDTmPPOrmQK4YWgSqVCZmYmZs+ejXnz5uHWW2/Fxo0bUVtby0xB9HxTu1arlfm20PNIf/PmB3oGeH8Mcq6kSDQaLzK9kJaLdxonrR+f5I3un/pGzwf9TcSJ/lFoLk8OyIGV+rVr1y7Mnj0bwHjU3PXXX4/q6mqXZ5X6JJJAACw9Py/U+ay8ZFqk78nPh9dKXHfddayir0ajwaZNm1BTU4P8/HxcffXV2Lx5M6qrqxlppXw4RD7oXaHrmEwmRqD8/f3R2dnJNCJEnnkNiEhgPW00AgIC8OCDD7ICgXV1dbjrrrvYefzx3oo9mtve3l6Wl2QG04MZ8nGZQOSDHlhy1iNHPbKNBgUFQa/XQy6Xo7y8nL2Icvl4rZKGhga2a6VaMKQ9oZwhPPno7Oxk2oj6+noA4y8eVdHlcSnkQ8pE4gmeyEd/f/+E33nVOH8+TzjoM3+ulEaH9/cAXJNe0Wc+PFT8jfIwUAQFXZ/3TwDA/CNIyAKfkQhS/1OfiDiSNoP3KRC1EDKZjAlzUctFobpUiZa0K3wNFt4BVRxDntRRMUN/f38sXLgQjz76KP70pz/h2LFjqK+vh8PhYDZ0ckTV6XQugpy+p/bpvnmtg5i/hIdMJsNNN92Em2++GQkJCXjkkUewe/duZg6heSIBReYGMfKESBsvVKU0SU6nk2US5oUeT+J4Z1i6lkga6Fi6P71ez4QujS0RFCmiwBMnvV6PjRs34qGHHsKpU6fwz3/+EwUFBS7kFwDb0Lir2Mq/J1JaBao2K5rpaB7I8ZjXbFI/iTwqlUqMjIywTZBWq2X3rdPpMDIywuaGEpPR807PKz8nvOlWSqvEa6Wknh/S7gFghIY/TwoiwaHv+L9nyMf0Y8bscpnBO50NDg7Cx8eHZaW0WCzo6elBX18f5PLx1NG0cOl0OtTX1zMBR86ClHeAdhQymYwtSvSCkxMXwWAwQKFQMAdFXntAmIxsiMdLnXOx4NXlfLvu+iD1Pb8DpTZE0wCv9uU1ISLxAFyzdfLH0XkULcBfX/TsJ9JBDnw0X06nE0NDQy6OlrxDIF2XfHdot045SUhDQEXHSOCT5oK0XrTIk1Djbfo0TrxmhOzzq1evxuLFi3H48GEsX74c5eXlKC8vZ4JTq9UywsYLPyJV/HyKEVZ81JE49jQ2x48fR2NjI3x8fFBYWMj8pnjSKOVPQvdOETTUPk9YxLBW0hbyzyFpJag9GhciNXR9mgueLPJaDf4Zdics6Tt+XuRyOWbPno3nnnsOJSUlqK2tZWZO/hxRq8H/xo8nHcM/P/ScUf/5PlPEjUioKBSXQmv5Z4fMx2JkFV2T1kAiOvTcEgnnE/d5GitPawNPNtydJ/W9uA7yz+fM3vzyYYZ8XGaIuyfgs0WPdtT0wBsMBrZj5ckI/bPZbCxrqd1ux8DAACtvbbPZWFIf3rlNVHu7g7tF0R08LRDetj/V/ojneqt94RcYXhiIqlgA8PX1RUREBKqqqtyalvidGn8ffLvu+sXvuonYkJDjjyGB4SmShxcOJCCpr3xoMN8P0fzAJ1OjHSuZB/Pz8zF//ny2K6b2eHMLry2g55oXcvx48/dN/eKjR6i9hoYGFiZO1+NNPaKA4MeEv0/A1VmYrs8LXSmTBT+PvAaEP4e/Pv0uCn06n49ior558m9wOp1oaWnBmTNn0Nra6uKrxUN0ppQi6p4cJvnoIJ7Y8eMiahj5f6RVo00RbzKhueXv3+FwsHwgRHT438S+ShEA8V2eKqS0HCJBdHftGUwvZswulwlkdqGoBHo5yWQil8vh5+fHdrcKhQJGoxFWqxWDg4Ow2+3Izs7G2bNn2a5geHiYRbwMDw/DYrEgLi4OWq0WNpsNdXV1E1SwpAYlNaroGPpFw+kcN7vwC7moxZDaEfGLJO/F705Vyx8vkgT+t+TkZNx000149NFHmVDiVfi8PwXthMn0xe8EecdGXtjxQpg348hkMrZr44U0b36ikFLqs91uZ3k3+DEkH6Oenh6mXaF2tFotM4Pw0QZWq5X5BNE5IyMj0Ol0MBgMcDrHa/rw4NXxND68hkDK6dJmszFVu91ud0mMRhol0bGV6tzw2XpJsPO+JzT/PGngo4+oDzzhEckBfz+88KR3kM/Syf/jTWI0NtQf0lCIWjSppZfasNls8PX1xdjYGHOeFIkGL+ylzJA8pAiP0Whk6xHlsuFDvuk8/p75a1AODbo+JUmkNcjPz4890xQFI4KeRTJfSmkdxPsW321xMyGe4+k4+s2TmdfpnDG7XA7MkI/LBCIf5HRG8MSupdR/Iuvn2+IXXfpd6uXiQep9d8dIaQnEhdnpdLIMrZTiWUqwS7XJf6bjxaJuUouPp92OlPrVG82J1LzQYuspbHgGn4E3HQFwMVkQWeAjW0TiB7jutukYHvxc8c+81LNGz6mUVos/xpPGgD+O74P4ndhHT+dKZSP9MkFqHPjSAzQ/pF2jdYTXCom+VfQuiZoNnvSL5BhwdYp1N1e8OdPTvUiRDxHiZkfEDPm4PJgxu3zO8CQUpYSsFMunv6U0AlIvHh0j7pA89UPqb36BoB2o2L7Uee6uJ0XEeEgJDXd/e6MyFcdHqm2RDM3AM0SyyIcCS6ntpQi3SBSk5lMUQLwQcqeWp+P5/8XvpX6TgqfzvSG7X0aIGwZRCIvaGd78SNot3qwrpc3htSg8USWyQn2QyWQu5jFgokM032fqj5RGh+8D3x6vOXG3rrlbO2Yw/fhy6eCnAY888ggWLlzIEnNt3brVpWw4AIyMjODuu++G2WyGr68vC5HkUV9fj02bNrH49p/85CcevcrdQdzxEaSYNv9i8/+8uYa3C+hUFklPuz3ReW+quBz3NxW4a++/UYh8GSA1R7yfgxQmI6T02R2p9dQ2L9Skdr3uPnv7/oWGhrIMt+Hh4ZIayP8WAeaOlEuNO08GJhsr0mh4Ip7evv98P931UQqTPTsz7/sXh68c+Th06BDuvvtunDx5Ep988glGR0exbt06DA4OsmPuvfde7Nq1C2+++SYOHTqE5uZmXHfddex3u92OTZs2wWaz4fjx43jppZfw4osv4pe//OWU+3MpCxBvdhDV1eJ37kLqpnMRvFwLqieVKH9tqb7wi9tkQmMygSN1na8qpnPRdSd4xH+8syt/nNR3nq4l9n+qhHqyTcBkUCgUWLBgAbZv344HHngACxYsYA7l/03PD70/wETzmTvQXPH5RfiIIk9zwZte6Nq8wyl9z5tl+Ovy5/Hvq/j8iKSTjhOP9caE9t80n/9t+Mr7fHR0dCA4OBiHDh3CihUr0Nvbi6CgIOzYsQM33HADAKC0tBSzZ8/GiRMnsHjxYnz00UfYvHkzmpubERISAgB45plncP/996Ojo8MlxNIdvPH5ALxn/54QHh4OnU6H6urqCex+st3nVOBJE3IpcOd85821Pe3WPJlmpCCaD2YwOcR6KoC0GhtwdeYTTTPu5seb50IUKFI+TZfyjvFtaTQaREVF4Xvf+x5ycnIAAE8++SR27tw5IVcGnet0fnl9PsiBWSrVvpiPhQikt4RNNIlImUioDhX/DBER4gnNVNdNT/M/mXOu1HkzPh/Tj6+8z0dvby+A8ex3AHD27FmMjo5izZo17JiUlBRER0cz8nHixAnMmTOHEQ8AWL9+PbZv346ioiJkZWVNuI7VanWJMReLrXkS3O58FvjzRKhUKpjNZmY+qq+vx6OPPuqxrcng6bzo6GikpqYiMzMTx48fR0VFBZqbm6eFiIj3yBMmd+0HBgaysNgHHngAZWVl8Pf3R3BwMOx2Ox599FH09vbCarWisrJySsLnq6SKnQ5yO9VriLto0fQo+nDQb+7a5n8Xd8W8MKTv+WiZi7kX8VxqOywsDKmpqdi2bRtSU1PR1NSEs2fP4tNPP/VY3v7LDF7A8++d6OxJkAqHdTfO4rG8jwaRDF6LwYdSi+1LaXw9wZ2GTKo9KfDrj6dw5RlcPL7S5MPhcOBHP/oRli5divT0dABAa2sr1Go1/Pz8XI4NCQlBa2srO4YnHvQ7/SaFRx55BA899JDkb1JqPG99DqQWQ7l8PBV2fHw8MjMzYbfbWalxsY2pOFB5ehljYmKwevVqlvehv78fLS0tk7bpDaRUp+76p1CMl+FOSUlBZGQkUlJSsHTpUkRERMBoNMJsNsPhcKCsrAylpaWoqKhAZWXlpO1+lTEZAaHEUE6nE4sWLcLo6CgsFgsqKiombVvcGdPfU32+gfFdcExMDDIyMlh2zOLiYpSVlU1wbpZqYzpIlrs2li1bhpSUFKSlpWHhwoWw2+0oLi7G4cOH2bv3eRC96Ya7SCPScvCQuj9KYKjT6ZCdnY3Ozk7odDqMjo7i6NGjE/zkRDOISAQuZQy98VuRMtF4Y+abwfTjK00+7r77bhQWFuLo0aOX/Vo/+9nPcN9997HPfX19iIqKYp/pZRZV1N6aMvjftVotQkJCsGDBAmg0GpSVlU1wqp1OyOVyREVFYcmSJZg9ezYqKipQXFzsMVnSpV4PcFWLEvHQarWYNWsWrrjiClYDRCaTITo6mi0kCoUC3/3ud/HJJ59MyHjoaZy98T35b4MUORBhMBjg6+sLALjzzjsxODiIvLw8r8gH37Zoh5fqgzuioFAo4Ofnhw0bNuDee++FyWRCS0sL/v73v6O6unpCFlLR1OItgZXqu9hPsU2dToc777wTWVlZCAkJgdVqxZkzZ3Do0CEcOXJE8vz/FvBaB36X762GNjg4GCaTCbGxsfjNb36D8+fPs4KK5eXlaG1tdVkj+PP5ujIy2Wc5XkSfDqn/pfpGOVkmu1+RVHky9/03zul/C76y5OP73/8+du/ejcOHDyMyMpJ9HxoaCpvNhp6eHhftR1tbG0JDQ9kxubm5Lu1RNAwdI4Jqr7gDvcxipsWLwaZNm3D99dcjJycHeXl5OHLkCA4cOHBRbbnrJw+73Y5PPvkEHR0deOaZZ/Cvf/0LpaWl06Yx4AWSpzZJ06FQKHD99dczwgGMjyslOPL19YXVasWiRYug1WrxyiuvsDa80Tz9Ny44ojlChKd7uummm3DTTTfB19cX4eHhGBgYgFarxT//+U+vrk1t84m1+OdbNKGJ+R5kMhkiIiKwZMkS/PnPf0Zvby/+/e9/4+2330ZpaamLL4W3GpVLAd9WYGAgfvzjHyM9PR0GgwGdnZ348MMP8fDDD08wrXrC5SLq0wGn0+ki+GlOeEEuknK5XA6z2Qy5XI6bb74Z3/72t6FUKhEREQEAGB4exmuvvYatW7eiu7vb5TyCFCnhk78pFAqPGi8Cbypy97sU6RH74825M5g+fOXIh9PpxD333IOdO3fi4MGDiIuLc/l9/vz5UKlU+PTTT3H99dcDAMrKylBfX88cyHJycvDb3/4W7e3tCA4OBgB88sknMBqNSE1NvaS+EUQ1ozuhKLVzTUpKwuLFi6FUKlFYWIja2lqXFMyT7XY97fDd7XgGBwfR0dEBpVKJv/3tbygqKsLJkyfx7LPPTuui6qlPZrMZ2dnZ2LRpE8LDw5mpABg3h+3duxfl5eV4+OGHWZ8tFoukjwF/relU2/MIDw/H8uXLkZGRgZKSErS0tKCsrMwldfh0wM/PD7NmzcIjjzyChoYGfPTRR3j99de9Oveqq65iFXcNBgO0Wi0uXLiA8+fPT7kf/PPMk6HJtHzf+973sGTJEmRkZEAmkyE/Px+FhYWorq5mPlsEKS2HeA2+7ovUOyf2WWyfQCUQyAR09OhRnD59Gjt37pxQa2UyTMVR0x0yMzNhs9nQ3d2Njo4OLFmyBD09Pejp6YG/vz+ampowODjIMsB6mxqAhD2vFZDqJyWQ02g0iIiIwP/+7/8iJSUFKpUK+fn56OnpwcKFC2EymaBQKNDT0zOBsFDb/LMikgYp8iPVZ74t+k6tVmPz5s2YN28eYmNj0dPTg9raWtTU1MDhcGDbtm34zne+A4vFAkC6fAFPiqX6N4PpwVeOfNx9993YsWMH3nvvPRgMBuajYTKZoNPpYDKZ8J3vfAf33XcfAgICYDQacc899yAnJweLFy8GAKxbtw6pqam47bbb8Ic//AGtra148MEHcffdd3vUblwsPLHruLg4REdHIygoCL29vSgqKoLRaGT9iIuLQ2hoKHx9fd3WgBBxMQvg6OgohoeHodVqkZqaCq1WO+UF2Js+ebLHKpVK6PV6+Pj4oKenBzabDcPDw7DZbKioqEBZWRk6OzvZOT09PWhtbfXatOXtMZ7g4+PDopyWL18Of39/9Pf3Iy0tDWlpaTAYDACA5ubmaVvUaJdotVoRFBQEf39/r3dsy5cvR3JyMiMecrkcpaWlOHPmzKTnymQyhIeHo7u720U74W43Sf1JT09n2sfAwECsWbMGCQkJkMlkbNOQl5eHnp4eyYRvUnZ7vn13mOpzHx8fjwULFiA2NhZ6vR5VVVU4fPgwqxY9lfYu5p2Ty+WIiIhASEgITp8+DaVSibi4OBgMBjQ3N2P16tXo6elBb28vzGYzqqqqmJYhOjoaL7/8sttCawBcyLu7/orPkUqlQnBwMFJTU7FkyRIA48S/rq4O5eXlSExMhFarhcViwZ49e1yuz2s2eeHu7tpT8VMzm80IDQ1FQEAAli9fDp1OB4vFApVKBbVajbCwMPj5+WHevHlYt24djh8/PmETIJryvO3DDC4OXzny8fTTTwMArrjiCpfvX3jhBXzzm98EADz++OOQy+W4/vrrYbVasX79evz9739nxyoUCuzevRvbt29HTk4OfHx88I1vfAMPP/zwRfVpMoEmOkWpVCqW4jsnJwdr1qxBeno66urq8Morr0Cn06G7uxtmsxnLly9HTU0NWlpacPr06QntenqJ3Nm7pSBWsvTz82Mq1ktVTUrtUMX+A+NZVbu6unDmzBno9Xr09fWhq6sLAwMDaGxshNVqRVhYGDu+ra2NhR9LkRpxbKaj7k1gYCBSUlIQERGBjRs3Yv/+/Th48CDuuOMOLFiwAAaDAUqlEvv27ZuwM7xY0Lh88MEHyMrKgkwmg5+fH9vdeUJOTg6SkpKg0+mYuaS+vt4rHyKZTIbIyEgMDQ25NY3wu125XI7g4GBs3LgR/f39qK2tRXJyMnJyctDd3Y3jx4+z8vFWq3XCe8G3yTssujNpTDa27p47AOzd2rJlC0JCQmCz2VBVVYWCggKP2hIpB0dv+qJQKODv74/R0VEMDAzAbDZDo9FgyZIlyMzMRENDA3Q6HbKysrBo0SKUlZUhMzMTw8PDjHR2dXWhu7sbarUaS5cuxe7du9HR0eGW5PKVeT0VuuP7HxwcjPT0dCxduhTh4eHYu3cvGhoa0NLSgpKSEpZioKWlBS+//LJLmQJeYyVFQnjS4Q2RJI2NVqtFcnIyFi1ahICAAMyePRsHDx7EgQMHkJiYiL6+PkRHRyMyMhIqlQqbN29GW1ubC/mgtgBXbciX1VT2VcBXPs/HFwV3eT6kIE7BnDlzkJycjB07duDIkSOYNWuWS+w7Vbu85ppr4HA40N/fj1OnTuFb3/rWRfXVm7h3mUyGkJAQvPjii1iwYAG0Wi1KS0uRnZ19yepkWgD53ZYoGPjfqfgWL4C2bt2KnJwcLFiwAHPmzAEA/Otf/8Irr7yCCxcuuMyBVNvULn2+2BTry5cvxw033IDbb78d9957L3Jzc9HS0oLAwEA88cQTSE1NxeDgIH7729/i7bfflswNMVXI5XL4+/vjz3/+M6688kq0tLRgz549+PWvfz3puRcuXGCO0Q6HA729vbBYLMjNzcX//M//THq+Uql0mQdRdc/PZWhoKAoLC1llZh7PPfcc/v73v6OwsJB9JzX/nmoZ0bXIgfFSyMeuXbswZ84c9Pb24s4778SFCxcYIfKWfPDXGB0dddsfuVyOkJAQvPvuuzh79iwef/xx7N69G2azmRXE431o6uvrsX37djQ3N2NgYICRjd/97nesWFxTUxOeeuopHD58GHV1dR7HQepexL4ScfzDH/6AxYsXIzQ0FPn5+fj973+PvLw8OJ1O/PWvf8WyZcugVCpx4cIFrF692u016DpkynHniO8J5CS7fft2rFq1ComJiXj99ddRVVWFkpISVFZWYnBwEDKZDJs3b8a1116Lq6++GitXrkR1dfWE+k1STqvUj5k8H9OPr5zm478VFEKq0WgQHByMhIQEHDx4EPHx8S6L6bvvvosLFy6gqqoKTz31FF577TV0dnair68PGzZswP79+ydNaCQuut6we1rkiUy9+uqreP7556fFIUvKDi9qKwBI7kzo+LCwMCQlJSEpKYntjMlUJF5Hqm1P/ZkKhoaG0Nrairy8PJw4cQK1tbUYGxvD4OAgXnjhBSQlJcFsNiM5ORkajWbCDv9iYDabkZ6ezp6fwsJCvPjii9DpdLjppptQU1ODI0eOSM7zoUOHsGzZMsTFxTHzzRtvvIG3337bq2vzkQm0k5YK36R/CoUC9fX1MBgMCAwMZO1otVoYjUbodDpYrdYJzoiiQ63UDpqO9RZSz11gYCB+97vfISUlBT4+Pujs7ERxcTF7pzwRFk/XdvebTqdDeHg4fvWrXyEoKAgbNmzA4sWLYTab0dDQgLy8PJSVleGKK65AZ2cn7HY72trakJ+fj5GREdjtdoSGhiIjIwM+Pj5QqVSQy+WIiYlBWFgYAgIC0NnZ6ZLheSpjQveoVqsRHx+P3t5etLa2YnBwEH/84x9x8uRJ+Pn5ITMzEwkJCdDpdHj22WfxwgsvAJD2deF9dURSJkV63K1ParUaGzZsQGhoKDNJNzU14ejRo8wUSGS0oaEB+fn5WLt2LX71q1/hH//4Bz799NMJbc5oOj4/zJCPLwHCw8ORmJgIPz8/prKPiopiO3hg/KW0Wq3w8/NDf38/SktL0dLSArvdDl9fX0RGRmLp0qU4d+4cLBaL2/j6S4HD4cDg4CAcDgdiYmIwf/78CVFBlwJ3GgkpG794nNlshslkgkajYf3L7RpXAACwbElEQVQcGBjA8PCwR4JEgu1StTeE7u5u5Ofno7W1FS0tLS4lxRUKBYKDgxEeHj6todG+vr6Ijo5GbGwslEoloqKisGXLFmi1WuTk5KCiogIajQZ79+5l55DvTkhICLRaLQAwcpmcnIyMjAxUVVV5dX1vzFdGoxHBwcHYu3cvMjMzXeapo6MDYWFhuOWWW7B8+XK88MIL6OrqYs+wFMmg64mfL2UOMzMzsW7dOuTk5ECpVKKgoADHjh3DwMAA007o9XqXvDGXcj29Xg+TyYSgoCDMnz8fWq2Wadz+9a9/sVwiRUVFaGxsRH9/PxwOBwYGBjAwMMAE5djY2AT/K4fDgcrKSvT09LgVqKL2EHBP4jQaDVavXo3w8HAA4ybNc+fOYWxsDOnp6di4cSMCAwNhs9nQ3t6OpqYmdi5PFIlASm0EPJleecLCH+Pr64uEhAR0dXXh2LFjKCgoQGdn5wRfk/j4eKSlpaGiogJVVVXo6+tzu97M4PPBDPn4gqFSqRAdHY0VK1YgLCwMq1evZuo9PubdZrOhpqYGAQEBcDqd6OvrQ2BgILMV6/V6GAwGvPXWWxgeHvboDDrZDs2dVsDhcKC7uxt2ux2LFy+GyWRiPjaTQVzceIjfeasup776+voiNDQUBoOBfd/c3IzOzk4MDQ15fR2eiFwsOjs7ce7cOckEbOHh4Zg3bx6ioqKQn5/vVVp5b+Dj44OoqCjExsbCbrcjIyMDKSkpMBqNsFqtiImJgb+/Pw4ePAiDwcAI66ZNm5CRkQF/f39m0hgaGsL8+fNht9vxzjvvTHptqZ2/KEx0Oh2ioqIwe/ZsHDlyBPPnz4darcbQ0BBqampQWlqKiIgIbN26FSaTCSdOnEB+fj5znuTJDK/9Es06Ux1Lvu9kuvje974Hk8mEnp4enDhxAq+++iocDgf8/f0RFRUFHx+fSZPWeQuz2Yzw8HDMmjULoaGhcDqdaGlpwcmTJ/Hb3/4WSUlJ6OzsRF1dncfoo9HRUTQ3N2NsbAxOpxMjIyOoqanBuXPn0N7e7lYTSuuLmGVUHEu5XA4fHx+sWrUKAQEBGBwcREtLCzMtL1iwAFdddRV8fX3R1dXF3knyaRLNYVJZTAni92RuEvOQUCSSj48PYmJiUFVVhY8//hitra0s2oeODwwMxJIlS7B8+XJ8/PHHePfdd1FTUzMtWtsZXDxmyMcXDFK/V1ZWYvv27S5lpoHPXsbW1lbceeedkMvlMBgMWL9+PW644QYYDAao1WoEBATAYDAgNTUV3d3dFxWJMplZwm63o6urCw6HAz09PWhqapoWjYEnYjLZ8QaDATfeeCOWL1+OkJAQVuBr586dyM3NZQLME+mZzt1Pf38/+vv7JX+jdO98GfLpgL+/P2bPno2xsTGmvaD6QxcuXICPjw/mzJmD9PR03HXXXaivr0dnZyd++MMfAvhsHMbGxvDII4/AYrGgo6PDq2uLmiOpBX3VqlXIyclBTk4OVqxYgaKiIhQWFqK/vx9PPfUUBgYGoFAoEB0djd/97ne499578eyzz2L37t0AXEu5E8TdsGiGmSqSk5NhNBrR1dUFk8kEHx8fWCwWlJWVQSaT4eqrr0ZxcTGOHz8+qdnOW6SlpWHr1q245ZZbGPmrrKzEG2+8gYGBAZw9e9ardmQyGZRKJRPqFRUVuOuuuzA4OOhS9E0EFXbzRDyAca1VeHg4mpubERkZibq6OhQWFuLrX/86ioqKEBgYCJPJxDZJAQEBiI6ORmNjo0t7nvohajb5+eaJJsHf3x9paWm47777UFhYiMLCQnY94DMtmEKhwN///nekpqZidHQUbW1tKC0tZb4g7q45Q0ouP2bIx+cAXliKgragoAA33XQTfvKTnzCHx9raWpSUlKCsrIyF1C1evBjf//73cerUKRQVFaG+vp7Z6flaCbQ7uxyQyWRssdJoNCwr5qXuIKQWHxFSBGX9+vW4/vrrYTQaERgYCI1GA5vNhvr6ekRFRcHf39/lfHcCw5Mdfzrg6+uLlStX4oc//CH27NmDBx98EBUVFV7b4SdDY2MjPvjgA5SUlOC2225DWFgY5HI5hoeHYTQasXv3brzzzjtob2/HokWLsHHjRgwNDU0Q4DabDQaDAfHx8ejv78ehQ4cuqj+8MPPz88PSpUuxcuVKzJkzBw6HAzt37sTRo0dRWlqK3t5e5rdgNBqhVquhVquRkJCAzMxM5OXlTZgPKROMu8/eaNECAgLwzW9+E8uWLUNCQgL6+vpwxx134MKFC3A6nfD19UViYiJSUlKQlZU1IbeNeA1vn59FixZh7ty5jDCfOHECBw8exLlz56bke+Dj44PFixezInEmkwlLly7Fq6++6tH/a2xszEWrwNd54ZMhDgwMoLu7GytWrIBcLkdmZiZSUlLQ2trKzJ0DAwNoaGjA3XffjdraWpfND1/ojwgyjZtSqWRrikh+yPmTH09a74aHh2GxWKBQKGCz2ZjWRwSVnoiKioJGo4FWq3W7vkiR5xntyOXDDPn4HCGqMmNjY5GSkoJly5YhNDQUDocDFRUV6OrqQl9fH/bs2YO+vj50dHTgzJkzjHDExMTAbDYjICAAn376KZKTkxETE+PivHUxu7PJjlcoFAgPD2cRDtPZtrtz3F1HLpfDYrGgsbER119/PTQaDaqrq1FUVITz58+zxHHuFhp3NuXpRmJiIjIyMpCdnY2IiAjIZDL09PSgq6tr2q7R3d2NCxcuAABGRkbYmCkUCgQGBiI1NRUtLS04f/48jh49ilmzZsHf3x+1tbXIyMiASqXC4OAgzp8/j7Nnz8Lf39/rBFWAe82VUqlEZmYmMjIyEBsby3LDnDt3DgUFBWhra2Nz3NXVhcbGRjQ0NCA2NhapqalobW1Fa2srOjo6Jg2l5YWH1O/ufBm0Wi02b96M+fPnY2xsDPv378fZs2dx4cIFdHV1QaFQwGQyIS0tje3sjUYjent73ZqZvNXknTx5EgEBAQgODsa+fftQU1ODkpKSKZHSJUuWICcnhxH4/Px85ObmoqamxmOEDT9G4q5fJHdjY2Po6urCk08+ieDgYMybNw/z58+HXq+Hn58fmpubcf78eeTm5qK0tBR9fX0u1xU3F/x1PJE4T98TMbLb7bhw4QKMRiO2bduGkpIShIaGwmw2Q6FQYP/+/YiOjkZJSQkKCwtx5swZ5tDsTpM24wfy+WCGfHyO4F90pVKJ1NRU3HTTTUhOTobNZkNLSwuOHDkCu90Om83G7LzV1dVMs/Hwww9j6dKlSEhIADCuOTEYDAgICEBvby/a2tomhJBN1h9voVAoEBoaCoVCgeHh4WkJEwWkX3ypolY8YmJioFAo0NjYyIR6fX09Dh8+jA8//BDNzc2SOxl3C5k74TQVUMirn58f+vr6oFAokJOTg/Xr1yMmJoZFtkx3orq+vj5UVVWx0gF0D0qlEgEBAUhJScHIyAg6Oztx6NAh9PT0YPbs2WhqakJqairLKVNSUoKzZ89CLpez3fhUII61QqFAcnIyEhISEBgYiLGxMZSXl6OsrAwdHR0uQm5gYABNTU0oLy/H6tWrMWfOHHR0dKCwsJCZ+nhICXhv5k7UsGm1WmRnZyM6Ohr5+fnYtWsXdu/ezfwV1Go1EhMTMWvWLJZPRqfToa+vz+soMXfYv38/gHHfj3/+859QKBRoa2vzWuuh0WiQk5ODa665BlVVVZDJZDh37hx27dqFoqIir5LYuRtH8XNvby/+9Kc/YeXKlfDz80NOTg4CAgLgcDjQ0NCA48ePY/fu3cwhXbyGu3GYjHx4MoWMjY2hvb2d5YtZsWIFPv74Y8yePZutDwMDAwgODsbBgwfx6quvorGxUXJTIxKwGVx+zJCPzxG8QFUoFEhPT0dycjK0Wi0KCgrw05/+FDU1NS6qUnopVCoVwsPDERcXBz8/P6Yavffee1FdXY2jR4/izJkzeOONN2C1Wl3U6aRWvdQXy+FwYGhoCE6nEx0dHaisrJywe7lYiH2brMDV008/jeTkZADji5DdbkdwcDBSUlLw7LPPSrbrbqcqXuNix8nPzw933HEHvvvd7+Ltt9+Gv78/0tPTkZaWBh8fH/znP//B0aNH0djYeFHtuwM5GZ44cYKZU3jitW/fPjzxxBMIDAzEihUrmI0+JiaGESG9Xo/s7Gyo1WqXWhzeQHT45PN8tLS0MJW6xWLBvffe62KbJ1Dky+nTp7F8+XJkZ2dDr9fjySeflHwWeOJit9snOCSKx0vNNYWlvvLKK1iyZAn6+vpQV1cHi8XCjjebzXjwwQdhNBphMBgQFxc35WrO7p6n0dFRfPzxx/j4449Zf6by7CUmJsLpdGJgYADXX389nE4n6uvrUVRU5JVmjUKr+XFzR8KJkK5duxZz585l493U1MSymxYVFbklEFIkgnwy6Np8jg2n03Na8+HhYTQ1NeGll17C5s2bMWvWLERGRiIyMpIlRBwdHcUDDzyAEydOoLKykl3Hk2aK/436PBN+e3kwQz4+R4i+HxSHXlxcjFdffRVVVVUT1N0ymQzz5s3D8uXLsWrVKqSkpECn0wEYX7xGRkawc+dOfPDBB8z2yYPsqN70ydN3wLh6/4EHHsDf/vY3dHd3o6mpCcHBwejo6JiSml6E1K7LnflILpcjPDwc/f39zLnN6XSitbUVr732Gv797397vM5kvh2XQtJ6enpY0qcNGzbAaDSisbERH374IXx9faFSqTA2NuZV5tGpQqvV4pvf/CZUKhX6+vqg0WigUqmgUChw6623soR0tbW1TFjHxMQwwUPhmtOx0FIbDocDHR0d+P3vf48NGzawUHAKJxXnlgrK7dmzBz/60Y+wYsUK3HDDDXjxxRcl87XQ3/wzPhVH3gULFuCmm27CqlWrcPDgQezduxdnzpxhbWVmZmL16tVITEzEO++8g3379k3IIuwNvNUuuvNbkGpPq9WisrISN910E+bPnw+5XI7jx4/Dx8cHGRkZTKviCbyAlyIGPAIDA3H06FGWi4WcN+vq6pCcnIzIyEh0dHTg9OnTLnPF+47Qhok3efBkhycbPLl090yOjIzg4MGD2L9/P+x2O3Q6HbZu3YprrrkGQUFBkMlkqK6uxsmTJ1FUVMSKg/L3L36e0Xx8fpghH58DpASaSqVCTk4ODAYDQkJCsGDBApSWlqK/vx9WqxU2mw0jIyPYtm0bMjIykJSUxJL40Attt9vxwgsvsHTUlIRIFOCTCVR39k4RY2NjqK6uxnPPPYecnBwsXLgQe/bsmRb/BU/qc15IqdVqzJ07F6GhofDx8cHY2BjKyspQWFiIkpISWCwWJoD8/PxgMBjgcDhYThRPgoDXGFwMHA4HiouLsWvXLqSnp6O/vx9nzpxBeXk5Nm7ciMTERFx77bUIDAzESy+9dFHXcIexsTGcOXMG/v7+iI2NRWhoKLKzswGMExNyQlYoFKyCKR9q2d7ejueff95rkx0PKRU2MO7sV1NTg+7ublitVrS0tODmm2/G+++/zwr+iffQ3t4OrVaL6upqJCQkYMuWLXjttddgs9mYc+SaNWtw4cIFF5+eiyGNOp0OgYGBCA4ORn9/P3p6elzuX6FQQKPRwMfHB8PDw+jo6EBbW9tlE1DethsQEIDt27dDo9Fg+fLl0Gg0GBgYQGlpKYqLi1FbW+tVO6LGir6T6ovdbkdTUxMMBgOsVit6enrw6aefoqenB1lZWQgKCsLw8LBHk4tIPABI+l54SwLouR0dHcXo6Cjkcjn27NmDrKwsVsbg008/xYULF9DW1uax6q2776dLszuDiZghH18Q5HI54uPjodVqERkZiZUrV6KxsZHlphgeHkZ/fz9uueUWxMbGQqfTsWgYAMzje+/evejt7YVMJsPw8PAEjYEnAiK+dJMJX6fTif7+fhw+fBhZWVmYP38+0tLSUFtb65Vzmzegl11Mo01QqVSYP38+QkJCmO39xIkTOHv2LGpra11UybGxsYiOjkZLSwtLOnaxadO9RVlZGXbu3ImhoSHYbDacOXMGDQ0NWLRoEbKysuDn5we1Wn1ZyEdubi7GxsYQFRWF6OhoGI1G6PV6tnjOnj0bGo2GFZEDxsd2bGwMHR0deO+99y65H6SJAMYFVktLC7q7u9HX14eGhgZce+21+PjjjyWfM6dz3KFTJpOhoqICJpOJ1apRqVQwmUxISEjAihUr0Nraygq8ESYzn/G/U7SW0Whkjov03AUGBrLMowEBAVCpVOjv78fIyMhFCaLpJCsajQbh4eG4+eabERoaCrVazcyhRUVFKCoq8pp8iH0THa/pN4VCAaVSicbGRgQFBaG/vx9lZWX46KOPEBsbi/T0dOj1eoSHh6OxsREWi4X5g/HEQ2oNmmxspPy26HsyOdHnsbExFBYWoqmpCVFRUVAqlcjNzXWbSl28vpSvy+VyRJ/BDPn4XCD14oyNjeHQoUPYsGEDzGYzZs2ahYceesjlGBKUfDgc/UYhpQkJCTh16hRbiKUIhzcvuDcvGrWzfPlyxMXFwd/fHw899BCOHTvmkszrYsBfX9zN8v3SarVYv3499Ho9nE4nBgcH8eKLL6K+vh6jo6NQqVTw8fGBUqnEpk2bkJOTgz/96U/IzMxEaWkpmpqaXGq4SN3fpQiL5uZmNDc3Y9++few7jUaDP/7xj1ixYgUaGxtZZMrlwLlz53Du3DkolUrs378fCxcuRGNjI3p6enDs2DEcP34cMTExSE9PZztBKtDnDaSiIkSI42e1WtHc3MxSXxOk0rADQHl5OZqamvDBBx8wU5DZbMayZcuwY8cOPPbYYyxjLN0Dzam35CAiIgJpaWnIzMzE4OAg9Ho9dDodjEYjvvGNbyAlJQXJycmIi4uDUqnEwYMHWWIqvq9SprzpeI7cITo6GhkZGejo6EBoaKiLyWnPnj1oamryegxE/xgi/gqFAiqVimUJNRgMSExMxNatW3Ho0CHs2LEDO3bsAAC8++67mDNnDgICAvCf//wHv/jFL7B3714UFxeztqk+DWkngM/WHKrtwo+VVMit6HvB+7Tx5xkMBvT09KCxsZGFm9PGSCpV+2T+X5diTp6BZ8yQj88J9GLzgpUc/ujFogX09ddfxwsvvAA/Pz/cd999SExMnJCzoqWlBb/5zW9QVFQ0IaEYr/bmX/bpuo8PP/wQERER8PPzw//93/9Nmw+DNwRILpezmH1yNhwZGWEOZkqlEkqlEs8++yxLHPX888+jqakJjz76KEv77G48pltg6PV6xMfH41e/+hXUajU6OjrQ2to6rdeQApmjqqurmSkuNjaW+TnMnj2bFSl84403mNPjZHC3U5RavPkcNO7g7jeKpnI6naxEe2VlJUpLS7F37160tLS4OChS/ghvfT4SExMRHx/vUknWaDRi6dKl2L59O8s54nA40NzcjJCQENTX17uE2HqL6do9m0wmxMfHY968ecjMzIRSqcSHH36IvXv3orKyEq2trVMSluSDRIKeF9B8evIrrrgC9957LwYGBhAWFuayFt11113Yvn07vvvd78LX1xf5+fkYHByEv78/K2lPc6TRaDA6OupCAERCIkJqA+Xu+MDAQPzjH//AvHnz0Nvbi9OnT+PMmTMuPkYEkdjQtURn7RlcPsyQj88JUoJVZPi0UEdERGD58uVITk5GeHg4tFrthPMNBgM2btyIgoICt3Vc+BfJ08vEv+DeCAqLxYKzZ8/Cz88P119/PeRyOYqLi9Hc3Dz1gfHQB6n+2u125lDZ2dmJ6upqpKSkICUlBeHh4YiOjobZbMbs2bNhMpmgVCrh4+ODvr4+qFSqCe1K2bunE2vXrsWNN96IxMREnDlzBvv378epU6em/TpSGBsbc3k2WlpasHHjRqSnpwMYv3er1Yru7m60t7df1DVE7dRkNnL+mefnmbR7fEQCff/Nb36TEc4dO3agvLychbrS9aUEkqf5bGxsRGFhIfLy8pCZmYk1a9YgKysLwHiEy/DwMPr6+tDd3Y0zZ84wf6LJzAZSpp5LFWJKpRJxcXHYvHkzsrKykJaWBqVSCavViqqqKpw+fRqNjY2TFpQUIZXen0xP5A9Ea4fNZkNbWxvef/995OXlseMHBgYwODjIzGUGgwFXXXUVTCYT/vnPf2JgYIBdw1M5AVFjJPqFiH2U8vUZHh7GRx99hJ6eHlZjSTSzipo78fnlrz1DPi4vZsjHZYa4wNLfdrsdzc3N0Ol0CAsLQ1BQEDsmJiYG69atw+zZs6FWqyeUg6f014GBgS67Fv569Lennedk6nN3GB0dRVNTE+rr63HnnXeiubkZ3d3dl0Q++BfeU3/tdjsaGhrg5+fHonuWLFkCk8mEWbNmISkpCUaj0cVMNTIywvJFTIbp3PH4+/tj8eLF2LJlC5qamnDhwgWcP39+2mqDTAUqlQopKSlYunQpIiMjXRZshUIBX1/fi9rV83AXPQRIE+LJoFAoYDAYsG7dOpZR8/7772dOhqIQAdybXcRnvampCefOnUNgYCBmzZrFyhNQSHBRURE6OzvR1taG3Nxc1NbWXpRp8VKfJZlsvKJscHAwNm7ciJSUFJZRtKysDKWlpairq0NPT8+U2/aGJMpkMnR0dODcuXOIiIjAvn37UFpayo4jfxDS2qalpTFfNtIc8Zsrb+BucyAeI5ppR0dHUVxcjNHRUXR0dLDcJ1LtiOa+yZ6fGUw/ZsjHZYZIOvidxJtvvsli52+99VZmRggJCUFISAjbCdILTC/4iRMnsHv3bhw7dsxtHRGpa3vCVAiIXC6HyWRCQEAAqqqqkJqa6rHwFX/v7n6bjAjxC8zhw4eRmJiImJgYREdHY9myZZDJxhO3iR715Bvzwx/+EJ2dnZJOtu6udSmQy+VYuXIloqKi0NPTg5qaGhQXF6Ozs/OS274YBAYG4tlnn4VCoUB/fz/0ej3kcjna29tZReR9+/a5qNu9AU9uea0FbwLhowwmC6fkx16n0yErKwsmkwkVFRXIz89HR0eHyw5aVJFLOUzyoO96e3tx4sQJ1NXVYcmSJXj77bfR398PX19fJCcn46mnnkJzczOGh4ddquu6Mw1IXdNbnytPoOJpIyMjiIiIgK+vL/r7+1FeXo5f//rXKCoquiji4QmUap9w4sQJFBQUYPHixSgqKkJfXx+Az3J/UJLD0dFR3Hnnnfjkk0/w9ttvTwhtJYiEQEw05knzyYM3nZC/x5o1a3DixAmUlJRIZjgWCauY+0PsB+9XNIPpxQz5+JwgvlB2ux3Hjx+HXC5HSkoK5HI5/vWvf6G2tha9vb0wGAz429/+hpUrV6Kvrw+RkZFIS0vD4OAghoaG0Nvbi66uLrdqU1r4JrO5X+y9UHTJ2rVrUVtb67H8ujeLiKcFnMfQ0BDefPNNdHV1Yd26dVi1ahUroib6GwBAZWUlrrnmGkmV+eWATqdDQkICXn31VcjlcpSXl+Mf//gH3nrrLTQ0NExZuE8X+vv78Y9//IMVk+vp6UFzczO2bt0KlUqFlpYWhIaGYseOHVMOtxXNh1SqnXyOxN9pnlQqFebOnctCxcX5i4qKwqOPPoqOjg7s2bMHhw4dQn19vds8EXSetxgdHUVDQwO2bt06ITMsRbZMxzNzKe/fHXfcgQcffBBOpxM+Pj7Yt28fdu7cif3796Ozs/OSo7fEtUIK69atw5133omAgADceeed6O/vR2RkJPbt24e6ujqEhYXBarViYGAAW7ZsQXNzs0u/FAoF5HK5y3ck2Plri4SST0DmiZTQMVT5++c//zl27NiBf/zjH27nz9290rNL/ZnRhFw+zJCPLxC0o9q3bx/a2tpQXl7OkmepVCrceeedqKiowOjoKLq7u9HQ0MAcxChVtwje3ABc/MLniQCQ5mZ0dBSRkZG48sor8eabb6KpqcntTsMTeBXoZOeRAyBVHqWxonNoxz02NobS0lKcPn0aycnJzPFMHJvpJiSJiYlYvXo1RkdHce7cOZw9exbnzp1DQ0ODS92VzxsKhQJBQUHQ6/XQarVQKpUIDw+HyWRCbm4u9u/fj6NHj07Zb4B2j7yPBk8MpMgv/W4ymXDnnXfi17/+NUwmE2bPno2wsDC8+eabyM7OxqZNm5CQkICQkBC89957qK+vZ7laRJX7xcLhcLCdPIEniN6aAHhM1zNmMBhYMq+4uDj09vaioqICeXl56OjomJawcVFLJWqgoqOjMWfOHGRmZmJgYAD/8z//g8LCQvT09GBwcBDx8fHMBBQeHo6BgQHJ1POihooX7JRzhtcwSWmN3GlPiaj4+vpi/vz5iImJgdFodPmdb8MdpK4543h6+TBDPj5nSL085eXlKC8vn/B9XV0d+3tkZGRC2mtvFkNvVZhThdM5Hgrc09PDMmlKQXTkmoqwkOq70zkeXtvV1YWmpiYYjUYMDAwgNTUVOp2OJarS6/UoKirC6dOnWSVL0cbrSS1/sSA1OZl7SktLUVpaelHJu6YTDoeD5aowmUyMgNTU1ODYsWPYt28fysrKptyulIOplFaCFyj0m0ajwYIFC3DllVciODgYGRkZiI6ORnt7O0uX7XA4UFNTg5aWFhcTo5SDMn/tyXApZsjJ3qmL9aUSkZGRgYiICIyMjMBqtaKhoQG1tbVoamqa1nw1RBqlNhkUfmwymdDb24vVq1cjPj4etbW1GBsbQ1VVFWpra9HR0YGkpCRWtI2vkMvPkzdkbiprFj1XcrkcarUasbGx6OjoQG9vr1f3LkWM3WnVZjC9mCEf/yXwpImg73gzizeM3ZsF1tPvvb29ePrpp/H00097dc5UIN6DeP8vvvgiCgsLMW/ePOzfvx//+te/EBcXh4GBAbz++utYvHgxTp48iT179qCnp0cyp8TFaGkmQ3FxMWw2G7Zt2waz2czG6YvG4OAgXnvtNSxbtgwKhYIVInziiSdw7tw5F6I7VfBaCNF/g9d+iHkW7HY7LBYLnnzySVYyAACSk5Px0ksv4cUXX4RarcY3vvENdHR0sN/5eeLNjPR5OuANUb7cu+If/OAHyM7Ohp+fH1paWnDy5EmUlpZOW2g7zQ/NEe/bQEK4sbER9fX1aGtrQ2NjI+bMmYMFCxawUN/t27ejrKwMIyMjLj5qBKmspvxvwMQsp3wfxPIQ/Heihs1ut0OpVOKll15yiSjzNJfimiA+u1LkegbTA5lzhtZdFvT19bEdpjd2aHfkQkptLcXIP2/14FR3d56OdxeC5458EMjTfnR0lGk36FiZbDypEZ/HQFQte+r/pSQXksvlTAtDRe++LNBqtS62dpvNxrJ7Xix4vwFe2PCkRCTG9L1arWYVdHnCSfkgyP+Cb090UBR37fz9XQrctTEVNT4dM1VzFjAepn3zzTfjiiuuwP/3//1/LJvxdD1PYjitOxKgUqmgVqsnrDsymYxFAMlkMo/py3kS6mnMpGpR8aYhTyUSwsPD8eGHH+LMmTN466238NFHH03osxRxEedT/M1ut6O3t9fFlDODS8eM5uNLiMm0HO4gtTiIbU6XKnGqWg5P2hqCpz5KaSnIK9/pdDKzBk8ypjqOUjbfiwFVaP0ygtJeTxdEUwpPlqV8IURiLfZHJCyUP4La48+XMuVcTP95ePLf8Pa5mC4N4IIFCxAXFweFQoHQ0FBoNBqXxGqXCl5rRHPHO1wSqHaKCD4c19PY8O+Upw2TO+LBHy91LTpvcHAQO3fuRGhoKCO0vMlPbFMm+8yp1RsT9gymFzPk43OGJ2IwGbxd1CY77svyQokLkic7vjvtD/9ZSjh5IjczuHRICQNxPvljpb7jzxHbmMr1peZfqk/u2ncnGEVC5ImgeGpzqrBYLCgsLERdXZ3HwmgXi6nei6d23BGD6YS7jQF9NzIyggMHDiA1NdUlaZ4UARHNLcB4BtbAwEB0dXXBZrNNW7TTDKQxY3a5TODNLpMJ0ov5firg1dWT7fQ+D4jjMTY2NqHmAx3HkxF3u1xP6nGxPSmIi5No//5vwGRjcKntuIPoaCzOl7v6Ifz5YuisuBsWTQNSBEPczU6Gqb5vk42Lp9/JjPRVh1TtlKlCShMxlY0aaW6k3nt3BInmPDQ0FMuXL8eJEyfQ3t7uUhxvxuwy/ZghH5cJRD6AL9dO25NpRoS7HY0n7Y2U6tSbPkntRKTU7Z76PdlO1RPxcncv9NnpdEKtVjNTgNPpnCDkRHMPX2uGnOHIIU8cU/JvoPGjsGAqyiX6UXi6788TvA3d6RwvFOZ0juf4IIFLWXr5miFarRYajQZ2ux2Dg4OQyT4LkaZzFAoFbDabSxgm+R7QHGg0GuZXRXND1/bkfE2F6ahtEnr0Pe94SHkqxsbG2DyJYdsajYadb7fb2bPCz5s7jQ89S0ajkdWZoTnnnx++TzSe1Der1ery7qnVatjtdtZnAp+N9IvKOeMJ1DeaN74+FTCRHLpbizxpuMSNBvCZ3xKZtXht2tjY2Az5uAyYMbv8Pw5vtALenM9/nqow9IZYSJlVJoOnvntaoPjFibcLkyDha1/QMbRg8TVKxLT4fB4DXtDy16d2yJlWaly80aSJ9+MJ3j4DUou+zWaDyWSCTCbDwMAAqyxM4dfDw8MsCdzY2Bh0Oh17RkZGRthYaDQaqFQqViSRNE86nY6REBJEAQEB6O7uxtDQEKxW64RxJUHNR9nwfafjaaxJwAATK0jTvRIpUSqVsNls7Dh+DvhID+orPbdEWPhjxfkcHBx0yZnC95EnGvz4UEE9vqqv0zmeB4gcb3ntEd3Llxn8e0maDPG3i/1MkNos0dh8kWT+/yXMkI8ZAJhcUAMThZ+U0L5YRZon7Qq/GHsStt5+720f+fMozTK/aE0WNcOTGHe/8ffDq5t5wcWbMqTuYbJxd3fsZFqvySDOFx/uSG2LizsJSV7oU5+IsNE4EIlQq9UIDw+HUqlEc3PzhBLs/PjwO1cSylLjI2rVxLkSx0bUovD/E/nkk2ZJPbP8fIrXkslkLuSE13bxhESKvEgJaZ6s8Od50gh8GeDtu8qPkTdtSmlTpSC1mZrB5YH3uYhn8JXApbxMtIhJhQ67Mwfwi/BUr+OuLU/aFblcDr1eP6Egn9iut4swCUjavfOLPw9+90k7S3F3LO6qSVjyKcjpOwAu2hZvycVkkBLaYv89nSueo1arMTw8zLQe1GcyfRBpo5BjMldotVro9Xo2Vlar1SWJGJEP0pwsXLgQq1evhkajQVtbG4aHhyGXy6FSqaDVaqFSqZiJguZGqVSyZGq8EKd7JWIik8mY5oXXnPD3SfND/eVNLGQGIvJEBdXEceMJCJnY6Hngw43pPsRnlO8XPw/888ITLv7Z4u+Xjv1vgNSzzd8b/86Ipiyp98ZdMjU6T0q7OIPLgxnNxwymDFpwxV0t4L1Qn+wYfocsCnCpNjQaDWw2G6tP8sILL+D48eMscyzfr8nyrpCgon6oVCoWysvvpMkWTyp26gst9KRqJ5MBCRza5apUKpdr8WGP/Pd8/y8XdDod5syZg/Pnz0/JOZIWbMoFMTAwwPwfqASAyWSC0zkeDj00NAS9Xg+Hw4GxsTEYDAYAYFk8R0dHoVarodPp2Hh9//vfx5IlS6BQKNDT04N3332XmUlGR0dhtVqhVCqZqYeuT9fk0+/TmPJ5XGhOiTjRvJCwF/1uqF98Fk+6BoUP89ek7/l3ZmxsjLXrdLo6pJLWQqVSSSb/Es0mdA06nvpJuUXo2eGrzH5Zd/Q8ARDffQJv3pK6D9FXS9RQSWmiAEz4boaAXF7MkI//cgQFBSEwMBBGoxEqlQonT56cNEGWNwuPqBb2pI0Qj/P2pXVHVMTduWhukFKjrl+/HsuXL0d2djbS0tJwzz33IDQ0FLt27UJxcbHkLpGEvVQEBamspdTA4kJGgoKc+3iBQ4KC15zwgoh+J8dHb0xH0y04wsLCkJ6ejm9/+9t45JFHUFtbO6HeiTtotVpGzChLKZ94SqlUsnGx2+1QqVQsaRjNgTiOCoWC5ZYwmUwYGhpihclOnTrFSI1CoYBer8fAwICLlkn0b6Cdv0wmczHzEJxOJ7RaLaxWK3PcpP7T7xSRxWtAeG0WOW9Su7y2TKzky/t/0D++Zo24g+f7yYO0PPxY0vmiWZCO4fv9ZdZ+TGayJIhmJUDakdwT4eLbcxdNNYPpxwz5+JJCLpfDaDQiOzubpThOSkpCSUkJZs2ahdjYWFgsFmRlZcFsNkOv1wMYFyQnT55EQ0PDhDZlMhlSUlLQ2trK1OSTYbIXWcqeTguBXq9HQkICdDod+vr6YLFY0N7ePuF4T2pQqf5ILUwJCQlYsGABFi1aBJlMhuTkZFx55ZUYHh5GcXGx23vjdzs8eEHj7v5EPwD+WP43IjJi2mkpweJpbC7XbjUsLAwZGRmYN28eM1F4gjhetBMdHR1l5d/p/lUqlYvZRaVSufg2KJVKBAYGMg0Rmcvkcjn8/PywYsUKZGRkwOFwoLGxkREbXpjyvg08geM1DbxQpr77+PjAz88PZrMZ8+fPx8jICOrr65GbmzvBWZjmltcckLCXytDLjxF/TZ6g88+I+Ky5MzcQeBOZ1DNHz50nIj+dUCqVCAkJwcjICEuwFx8fj/Ly8illC/ZGczrZ+nAx1xC/8zQPM5gezJCPLyHkcjm0Wi0SEhLw05/+FPv27cOePXtw66234tlnn8V1112HTZs2obi4GNdccw3UajUL0bv66qvx8MMPY9euXRN2rwqFAqtXr8bx48dRU1PjsUaElGCUEtRSn+keAgMDsWHDBiQkJKCqqgr5+fnYv3//BNIjalZ4Aehp98Nf18fHh+00gXEVdHZ2NuRyOf7617+6vU9eiyH2n79//npSZERUcdPOXIx4IJX90NCQyzVFNbLU7svbhVCKTHlCdHQ0MjMzERQUhP7+/imFYJKvA5kowsLC0NHRwcaDyAaRD9Iw0G9msxkLFy5EX18fOjo6oNPpGPGYPXs27r//fiiVShw/fhxFRUXw9fVFd3c306aQiYPGkMJmac54AcxrHWSy8bwO8+bNw5w5c3D77bdjZGQEJ0+exMmTJ12iR3izCw8iSZSFlR9zXishPjtEXHhyQlE09BuRKn5O6XxgXJPGO96Shok3C/JmGHqeeZI2HaD5MhgMWLJkCbq7u9Hc3AwAuO666/DMM8/AYrFMOcJGiqwRpAi5lIYSAPMLIu2SlCnTk0Z3hnxcPsyQjy8hwsLCkJaWhi1btiA5ORlz587FPffcA71ej29961uor69Ha2sr/P39UV1djYGBAfT09KCnpwdr167F3//+d9x8883YsmWLS7tO57gNfPXq1aisrMTOnTvd9oGEspTjHP0OuHdcCwsLQ2hoKCorK/Gzn/0MVqsVR44cQXl5OWprayfsnHkhLS5UUguPWFr9hRdegF6vR3JyMgwGA9ra2vD888/jtddem9B/2mnSd/z90t9iDQleYNAOXtRk8H3kPyuVSgQEBGDu3LlYuXIlDAYDfvCDH0wYU74/JLxE88HlQGhoKBISEuB0OhEYGOhCHjyBSBeNDTCelVOtVkOj0QCAS34TIgw01/7+/rjvvvuwbds2DA0NoaurC/Hx8S4p1cfGxvCTn/wEMTExUKlUqKiogMlkYqYerVaLwcFBGI1GyOVyybT2YmSIVquFzWbD+vXr8ec//5kRQ+CzuefJAYWtitoV0XmYvuO1O/Qbb14iDQqRJmqT2pdyZibQNYnMEaHifU74cF9eK8ObBkXN28XiBz/4AaKjoxEaGorNmzdPeEZ9fHzw5ptv4ty5c1Nqlx9b3k8DmFibiX+HRC2TXC7H2rVrMTAwgJaWFlRWVrpoiHjSL44zXXsGlwcz5ONLhttuuw05OTnIyMhAaGgoHnjgAdTX17MFMCcnBxUVFaioqGBhiPzCXlBQgISEBADAXXfdheeff95F0zA6Ooq9e/dKmmV4uDOrSC1a4q5DpVLB398fWVlZ+NGPfgRfX19mw29ubp70fHffU1/EHBrAuJ8B5X0wGAz4y1/+ggMHDqCurm6CgKD74xc30UmNkjTRP14bQz4JonZE7NOvfvUrREREQKvVIjQ0FCaTCUajEe3t7cjJycHp06eZFoAECu2mqU+8jV4cB3dw95s7E1l5eTmOHTuGwMBAtLS0TKkuDREx6j/v4Mnn2lCr1fDz84PNZoNSqYRarYZKpcKRI0ewYcMG+Pr6wmg0wuFwoKamBhUVFRgcHMSyZctw7tw5HDlyxCU/B59jhfxOSNMg5mURTSN8ArPu7m74+Pigv78fb731Fnbs2IFvfvObiIyMRG1tLXp7e/GjH/0IH3zwAQoKCtDW1oawsDAcPHjQxX+EyKjT6XTxG6HnSQwPpvvgSQvdDz2XmzZtQlxcHCIiIjB37lz89Kc/RXx8PFatWoWFCxeydkZHR9HR0YHg4GA8/vjjeP/995kmhbQnVOSQrnWp/h5+fn645557sGnTJoSEhMBgMLgQOJr/Dz74ANXV1VNuXzRt8Z/pd/5//jwAWLFiBebNm4fi4mLcf//9MBgM6O3txbFjx/D6669j+fLlMJlMeOyxx5gP0WSmrhlML2bIx5cEMpkMRqMR8+fPR1paGvz9/dHW1oYzZ86gtraWLRwDAwNob29HW1ubZBuffvopTCYTkpOTMWfOnAkCsrS0FHV1dejp6Zm0T5OpNHmo1Wp23ZKSEsyfPx/r169HUlISamtrUV9fj4qKCheVvtSO31M/+PsUMW/ePMTGxjLBp9Vq4XA4MDw8PEGDIapbpdqTigrwZH7ik45pNBqkpqZixYoVkMlksFgsMJlM6O7uBvBZsi2eTPG2el5DIy6yPJGabNwmGzOZTAZfX1/4+flBo9GgoqICAwMDblXynkgiL0TFxFhEBKTCRH19fXH8+HGEhoZCoVAgLy8Per0eBQUFaGlpQUtLC5qamjA4OMjGhDQLZM7hc7CIRIP6IM6byWSCRqPByMgITCYT3n77bXz66adob2/Hj3/8Y+j1evj7+6O2thYdHR1ITU1FZGQkWlpacOzYsQk5WUT/Hx6eyKDUbl6hUCAyMhLz5s3D3LlzkZCQgLi4OHzjG99AaGgosrKykJKSwo4fHR2FxWLBwYMH0dvbyzRlUv2YDmGq1+uZn1BsbCz8/PxYRtfOzk50dnZibGwM6enpWLt2Lfr7+71ab6T6KPW+AtJEmszVmzZtwrx58xAfH4/09HSkpqbC19cXVquVmWcTEhLQ19cHtVoNq9Xq1udjBpcPM+TjSwKVSoWIiAhmNmhubsahQ4fQ0dHhIrALCgrctuF0OpGXl4dt27Zh9uzZ0Gg0UKvVTDXucDhw+vRpyXOlFiWpF1BcAOh/Ih7btm3Dv//9b2zcuBFXX301nE4nysrKcOrUKeTm5rrtt6frS5lGeGg0Gqxfvx5z586FTqeDw+HA3LlzcfbsWVy4cMGtACeIzn60i+d/F9W7FJ1CfVcqlWye9Ho9I14lJSUoKSnByMgIzp8/j9mzZzPBB7iqycUEXKK5QCrscDJQ3gmVSgWr1TrBnBIaGorU1FQkJSWhurqaPStSkBo/PsKCtBBDQ0Os7+RjQWNFgpq0cQsWLMCHH36I0NBQ+Pr64ve//z22bNmCiooKVFZW4siRI+jr62NmDxIw5NRKAoXXHJB2RTTX8bt+k8kEuVwOi8WC2NhYvPvuu2hoaEBaWhoyMzPR0dEBs9mMxsZGPPXUU/jBD36AFStWwGKx4Pnnn3chH6RloEgdmUzmom3kTXY8sRRDfAkajQbz5s1DRkYGE/AAcO+992J0dHRC6K1SqYS/vz9eeOEFFBYWAgDza5HSYLojSd5AJpMhKCgIaWlpCA0NhcFgYJuigYEBFBQUoKqqCjKZDHPmzMEvfvELdHR0oKSkxCtTnggaK56kSa0DOp0ORqMRwcHBTNMxMjLCSBpphmNiYnDPPfegoaEBhw4dmhDZxF93BpcXM+TjSwCtVguz2YyUlBRERkZCq9WiqqoKv//976dckEqlUkGn0yE4OBiBgYFIT09HcXExent72TGedvzi77xdVAokcHJycnDNNdfgG9/4Bu644w6XtpYvX46XX34Ze/bsmXCu+LfYN37xEXeJMpkMOp0Oy5YtYzthhUKB/v5+fPLJJxPUvaIqnNrgBQKByASp8ek7ACx6g8/DwCeZ0ul0WL16NfR6PUwmE+Lj45GWlobAwED4+fnBz88Pf/3rX7F48WIWRkrtkgATHVB5YuJpLsTf/f39kZ2djczMTOzbtw/5+fkuZHbhwoWYN28eFi5ciJycHDz00ENeh9nKZOPJuTQaDTO5kPMkhc329vaynCdEgKifWq0W27ZtwyuvvMK0CTqdDsePH3eZSx8fH5YDhCKn6L3giaVKpYLBYHBxpKbxJD8SchCtq6vDW2+9hcrKSuzevRuvv/46ent7UV5ejpUrV7LQXqvVioGBAWbCMBgMmDt3Lk6dOsW0kWSWozkUHRuJNNHzQfPNR/1otVp2TwaDAV//+tdxxRVXTKgnUlxcjLq6Olx99dXsvm02G1paWnDvvffiySefxJ49e1y0PfzzzidCu5jaLjqdDqtWrcL27dsxf/58AEB+fj4+/fRTPPbYY7BYLLjxxhtx8803s3Nmz56NhQsX4tixY5O2L5pGCUTG6RgR11xzDb7//e8jJSXFhYwSCgsLcebMGZw7dw6PPPIITpw4gV27dqG3t1eS0FwsOZuB95ghH18C6PV6xMXF4Te/+Q2OHTuGw4cP4/DhwxdVCZOiXoaHh2E2m3H77bfjmWeewYULF9gx4oLEQ1T9S4FeUh8fHyxevBhjY2PYsmULWxA//vhjxMfHY3h4GL/85S/R0NCAuro6t30WncSAiSSEz43Bf28ymfDTn/4USUlJMJlMaG9vx29/+1t8+OGHzMwhpVnxpP2g65Dphi/ORePD27f5SAIA6OjowPbt25lvCO20x8bGmFANCwtDX1+fixMjRWbwgktccD0tiuKYKRQKWCwWVFZWYmxsDIWFhRMKon37299GSkoKurq68O9//3tK/h7AZ/4XarUaZrOZhXDbbDZYrVbm5EjkjPJyOBwODA4O4tixYzCbzUhPT0dwcDCefvppDA4OMhJNicloHGj8KHeH3W7H0NAQi3Tq6emZ4CxMPhikKeGTw42MjCAvLw+xsbE4cOAAnn/+ebS2tjIfH5lMBj8/P8ydOxeBgYGorq5GV1cXG2/SgPA5W3gCRnMrJrfinxe5XO7iCKrVanHllVfC19cXMpkMw8PDyM3NhdVqxenTp9HY2IjMzEyEh4ezawwMDGDHjh0oLi5m988TZ+CzYnP8szJV/OQnP8GaNWuQmpoKmUyGP//5zzh48CDy8vLQ3t7OxpUH+fh4C0/rEr8+KJVKJCQkIDMzExs2bEBSUhJ8fHxYojyr1YqjR49i27ZtOHLkCN5//31YLBasXbuWOei7M+vMEI/Ljxny8QVj0aJFSE5ORkJCAo4cOYKCggKUlJR4FNaeYDQamdrX4XAgLy/Pa3srQcrHQvwuNjYWiYmJiImJwfz585GdnY2AgAA4nU4EBQWhs7MTpaWlOHnyJLq6ui7awU1KVcwv3jKZDM3NzZg3bx70ej2sVivmzJmDN99808WZU0rVLPpP8NeUWqR5QialRud9DmpqaphAIQ2BXq9HYmIiEhMTER0djVOnTrHz+YRnwERNx1Tt9RqNBitXrkRMTAza2tpQVlbmomWhdkl13tXVhXPnzkkm4ZKaEzqGCBUJOn5MxZ0kaR1IEI+MjKCgoADLly9ngva6667DG2+8wTQN1F++bdFvhAQ9b8KQmnM+gsLpHI/8am5uxttvv40lS5bg3LlzjKCRANdoNAgNDWX98PX1xeLFi9HT04POzk6WMM2drwf//NLc8iYb8XNCQgJWrVoFvV7PzELV1dV48cUXMTo6isbGRthsNpw+fRpXXXUV9Ho9G9uCggJ0dnZOuG/6nffHudgojvLycmRlZUGlUqG2thYFBQUoKytjjuQpKSmYPXs2oqOj4XQ6mXP7ZKn73UF8X+m+wsPDkZqaipUrVyIlJQWJiYlQqVQsA25XVxesVivKysowODiI/Px81NTUwGQyoaSkxCUaSQpTeddmcHGYIR9fEGQyGQIDA7FlyxbMnz8fPj4+uPvuu2E0GtnO6mIQGRkJHx8fAOO7xHfeeYdpAIDJkxdNxvhlMhmCg4OxePFiLFmyBENDQ7jllltgMBhgs9nQ2dmJ8PBwHD58GEePHkVnZ+ekbUrZpcXvpZJy6XQ6+Pr6ori4GGvXroVGo4FcLseyZcug1WolFxApAsILBvpdJB+i4BM1RLSz5gUm5V4gs0xoaChWrVqFDRs2wGAw4F//+hf6+vqY/Z/XevA776nC6XQyP5gNGzZg165dOH369ATyBgC9vb0ICgqCzWZjjs3e7Pp4UsQLaxJyMpmMmVmAz9LU8/VbRkZGcO7cOXznO99hZcvvuOMOnDx5Ek1NTRgbG4NGo2GRPyQ8aYxozMl/hsaNJwS8+YHmhgjW0NAQ6urq8Oqrr6KjowOVlZXo6upizwNpMEJCQlj1XKPRiDVr1uDs2bPo6+tzSXpG4LOO0m/irl3056FnKDY2FqtWrWLp11taWnDkyBG89NJL7D6CgoJQXFyMNWvWABh/z9vb21FXV4eBgYEJWgI6j/4Xyc9U8NFHHyE5ORlr165FVVUVGhsbmZmOTKDZ2dlITEyE3W7Ha6+9hp6eHq9NPFLPvJSZOCoqChs2bMCtt94Ko9GIgYEBNDY2oqmpCW+//Tbq6urYPOfl5cFoNCIoKAiJiYloa2tDX1+fi3+TuzVwRgNy+TBDPr4g+Pj44LHHHsPChQthsViQm5uLtrY2pja9GMhkMmzcuBEZGRkwm82wWq0YHh72qj3+JZPyjaD2ZTIZ/vCHPyAnJwfR0dEuCZ6qqqrw3e9+l4WR5ufnu+2neG3RrMCTAiID/IIqk8kwe/ZsXH311fjxj38MpVKJ4uJiHDp0CH/4wx/Q0dHB2hfzGkgt+iLEJFE8OaHaLXyeBRo3Pg8Db5IBgMWLFyMjIwM6nQ4vv/wyK6HOt0HjKRIFb0kInWez2VBaWorIyEjYbDbEx8ez5E98e7///e/xzW9+E2FhYaiurp5y8ikfHx9GQKxWK/z8/JhphJydiXio1WpGyIDxEvJvvvkmenp6cOutt+Lqq6+GXC7HH//4R5w4cQIlJSWQy+V4//33WRgy9d3X1xdOpxMWi4URCr6YHc0tXYuIis1mY8R0bGwMIyMjqK2txQsvvMDmleru0HlqtZqFtFNId1dXF0ZGRtg48M8nkQu+0CBfxI73ARGF28mTJ2GxWHD99ddDJpPh/PnzeOWVV1hfnE4nDAYDvva1r7GsxlVVVdiwYYOLHwz1mzSgcrkcIyMjLNHdxZh0ab41Gg3TCpWXl6O9vR0+Pj5YsWIFbrzxRqSnp0Mmk6GjowNVVVUoKirymNDQHfhNB092gXHiarFYEBAQAADYs2cPnnzySZw5c4ady/f5nnvuwe233w6TyYQ//vGP+OCDD5hzLg/RzDlDPi4fZsjHFwSZbDy0lpzp1Go1urq6LimpjdPpxOHDh7FixQrY7XaUl5d7Ze5w518hagkotn/ZsmUIDQ1lC/S5c+fQ3NyMgoIC5Ofno7S0FCMjI5N6t1PbYglysU9SKu25c+diw4YN2Lp1KxQKBUZGRlgug7a2Nkkh6k6FK+VXIUYU8Ashb06h33lhQ8SD+qDRaBAREYF58+bBx8cHVVVVePXVV2Gz2dhCzhMdfg5EMw/fT6m5A8ZJznXXXYerrroKubm5yMvLw9mzZ13GQiaTsaRsAQEBCA4Oxi9+8Qs88sgjGBgYcDtnIoaGhlzMIMPDwy7jTOSE7tHPz88l4yWRrffffx9nz57F448/joyMDCQnJ2N0dBRDQ0PQ6XQ4duwYamtrXYQ23TMRbJVKhcDAQHR1dbloPmge6DOfNIyIHxEX8TkbGhrCgQMHmF9JaGgoVq9ejZ///OeM6IjPEpmg+PkhgsSPPz+nDocDUVFRWLduHb7+9a8DGHcuPXfuHIqKitg5Mtl46PZjjz2GRx55BAEBAYiMjMSTTz6JBx54wMWxXPR9oey69PfFZDlNS0vD2NgYTp06hQULFiAoKAgGgwExMTGIiYlBeno6zGYzurq68PLLL09wdp8M4sbHXXK9wcFBlw1GcnIyNmzY4PKc09z+5S9/weLFixESEgK5XI6NGzciNDQUJ0+eZEkI+Xnn16MZ88vlwwz5+IIgk41Hanz00UeoqqpCYWHhJREPCre76qqrEBUVBbvdjoGBgUti7vzLp1ar4e/vj1mzZrG8ELTgfvTRR2htbUVzczOGhoYmFV5SZgvxJZciQHQMpZ5PSkqC2WxGbm4u1Go1jh07ho8//lgyQ6o73wnxN/47ftfFCxOx3/xn+kcOdoGBgQgJCYFWq4XBYMCZM2eQl5cHi8Xi0heRfPH94/sm/i1+J5PJ2K5QJpOhv78ffX19E/KdaDQapKSkYNGiRdDr9aipqWE+H5OBHzNyNiVtC/2m0WgQGRmJ66+/HtXV1SzkmKJeiODZ7XZUV1fD6XSisrISTz31FFasWIHW1lYMDg5i+fLlWLJkCcsVQ5qJkZGRCeSCnE9p7sR55OePN+XwxzgcDhdnYpls3OGztLQUgYGBCAoKQkNDAyOY4twDnxFFKQdi/jie9MrlcpjNZhYZZbPZUF9fj7a2NoyMjLg8fyqVCklJSUw719/fj1OnTk3QZoiZPKWe9amitrYWo6OjaGtrw7Jly7B9+3Y4HA74+/vDYDDAz88PRUVFOHbsGN5//3309/dPyd9L7Jc74R8eHo5FixaxY6xWKxwOB2644QZ8+OGH0Gq1iIqKQmpqKubPn4+QkBA2hvHx8Wwszp8/j8rKShdnYSlNywymHzPk4wsCLZyHDx/GqVOnUFFRcUntKZVKmM1mfO1rX0NoaCirlTGVl0e0TfPQ6XQIDAxEREQENBoN2+X29fXhwIED6OjoYLb26YBUH2jMjEYj0tPTERsbC6VSidzcXDgcDuzduxf79u1z257UwuaJeNBnWrjF8MmIiAim2u7u7mbRBA6HA2azGb29vYiLi0NSUhLGxsbQ3d2NgwcP4tChQ0wA07V5gcj342J2Xt3d3SxhmNM5HhWg1+sRFBSElpYW2O12aDQaREdHY+7cueju7kZeXh4++ugjt7Z5qbGi/lFUEGV9pR2n2WzGD37wA7z55puwWCzIz8930RDRzra2thbA+DP817/+FUqlkmU4XbVqFebOnYv9+/e7VImlMGjawZPQoGRkfLl6cefMa5rIj4Q0GHwUDZ/D5Pz580hISICvry8uXLjArknzJmrqRKdXfgzF9O30G4Ukk6NpcXExWlpa2G90Ha1Wi6VLl7L3sL+/HydOnPCoaRRJ/qWQj87OTkY0v/Od70x4Rqurq3Hq1Cm0t7dP2dHck8aT77vJZEJ0dDS6urrg5+cHh8MBrVaLb3zjG2hoaIDJZEJGRgauuOIKBAcHs+dkZGQEgYGBkMvH6yslJiaipqZmgqbzUsZoBt5hhnx8AaAXq7OzEwsWLEBfX98lkw+yR/v7+2NsbAwVFRV46623vNrJ8js0KYEnk8mY1oOydnZ1daG6uhqvvfYaLBYLmpubXRxb+XMne4nF3T8JAbovAuVxiImJwU033cQq+1qtVvz5z392cdTlidRkmg5+l8qPCS1ItMMkgWG326HT6fDKK68gLCwMJSUleOGFFxAfH4+BgQH09/dj48aNyM3NhcFgQGxsLLKzs7F27Vp0dHSwvBjUL94+z++KxZTbIkGSAt2LTqdDVFQUnM7xrJMDAwN48MEH8b3vfQ9tbW2Qy+WoqqrC6OgoSktLceTIEVgsFhefE7FdqXkjokHXpVDW/v5+FBYWwmg04o033kBubi5kMhkriKZSqaDRaFgeELrXxsZG3H333TCbzaxCcXBwMMLCwmA2m9HW1saELuV2Id8Hen74qrq8NoL+JxMNtQF8VoOG5obmh56LU6dOYfHixYiOjkZ5eTm7Bj0TKpXKJZyXcrXIZDLmEEvXJv8UMfvwhQsXYDQaYTAYEBAQgL/97W8sUoS0RDLZuCMvRQcpFApERETgpz/9KX784x+zyDYKcRbnTtTWTRWJiYlYsWIFNmzY4HajkpOTg9mzZ8Pf3x+ZmZlob2+f0jV40yP/mb+HAwcOoKKiAl//+tfx7W9/G0uWLMGSJUsAAGvXrmXnDw0NoampidX+OX36NFatWgV/f38EBgaysG++bbqmuOGYwfRihnx8AdBoNNDpdHjiiSeQk5NzycWL7rzzTlx77bVITEzESy+9hLGxMTQ0NOD48eNete3uBZPJZPDx8cFDDz2EhQsXskyLAPDKK6/giSeegMViwdDQkNsoCU9CUupvd6YWAMjOzsbXv/51rF69GiEhIRgbG0N7ezv+8Ic/sCgKcZfpaYF1J8zJhMAnhOKPVyqViIiIgEqlQkBAAObPn4+UlBSmAaDqratWrUJNTQ06OjoQHR2NefPm4fz58+jo6HCxK1NeDH6nLSal4vNITIaGhgYcOXKEJZv72te+hquvvhoymQxvvPEG2937+voiMDAQzc3NWLp0KebNm4fNmzfj6NGj+OSTT/DBBx9Mqnnx9fVFf38/5HI5jEYjyxNC4/aPf/yDpdo2mUw4fPgwNBoNbDYbM8+pVCrmc0HnDQwMoKOjA93d3awwWX9/P3x9fdHT08Oy9w4ODmJ4eJiFpg4ODrKxo3GUyWQTwp4p7wiByAip74k8EKlqbGxEd3c3enp6cOLECfbc0HzzYayi8KQ2eG0HkTC+DzabDcePH0dBQQGUSiXLmyGiubkZ3/nOd/D+++8jNDQUer0e8+bNg1qtnnBt6idpjSgUearEQ61WY+HChcjKysKaNWuwZs0at89GcHAwDAYDmpqakJCQAJvN5nW4P+/zIWpp+Hd7cHAQlZWVeOKJJzBv3jy0tLRg7969GBoaQkREBNasWYPZs2fj8ccfx+HDh2E0GuHr64uWlhYcPHgQer0eSUlJ+Pvf/44lS5a4+KV4s3bM4NIxQz6+AFAioezsbFRUVKChoQG+vr5TcvQjzJ8/H+np6TAajTh+/DguXLiA1tZWtLS0oK+vz6OpgSAl6IFxkrRq1SosWbIESUlJMBgMAIBTp06hpKQEFouF1ZLw9KLy7YrX8tQ/sT+RkZFYtmwZwsPDcfbsWRQXF+Ps2bPo6emR3IW5Wxzp2OjoaCiVygmZUPkdPanVgc8WdL1ej+uuuw4WiwWtra3w9fXFvn37kJKSwmzw5PcxMjICu93OcgtotVr4+PgwIc3fq2geoHEVyeFkviFEyn7xi1/AaDRieHgYAwMD8PPzw/DwMHJycrBs2TL4+vqitbUVJSUlOH/+PNMyXLhwgZlCJgORTookIZ8MqkGSmpqK2267DVVVVaioqEBycjLLYUNkjcwfKpWKmQ58fX1hNptZDg9yPiWfEd5Xg65NGiQxoRdP4tw9q9QPXgvGPz+bN29GSkoKI/YkxHmCwf/jry21s5bSQMhk4/l5enp6mFmHJ0HUn5GREZSVlTGtTV9fH/bs2cOcfaXecd6ngTfheAMiqikpKdiwYQPS0tKgUChY4rOamhr09fVh27Zt2LNnD9LT05GSkoLAwEBs3LiRlRbwBu7MLOJvRNq7u7vxj3/8A/39/aisrMTo6CjKy8tRX1+PoKAgnDhxAnV1ddBoNAgICEB6ejp7r8lXRtQOu1t/ZjC9mCEfXwBo0SRHOo1Gg5iYGObV7g1ksnGH1QULFiAkJAQ9PT3Ys2cPKioqUF1dLWkC8RYKhQL+/v6IjIxEZGQkIiIi4O/vzzQCp0+fRkNDw5RUt57styLc+Trwtu9Dhw7h008/xdmzZ5kqOjAwkO24bDYbfH19odPpWGIrnU4HrVYLjUaDzs5OzJkzh2XcFP1jeK0H9YdXA0dFRaG8vBwdHR3MtJCdnQ2Hw4Genh4m8Pz8/BAQEIDe3l6o1Wr4+vpieHjYJZMobx6SMgmJAk0K4jgODg7ib3/7G2JiYjAwMACLxYL4+Hh0d3dDqVQiJSUFHR0dKCgowIkTJ5Cbmwun04n29nbU1taisbHRq8WXdv189lBgPPPsrFmzEBERgZSUFBQUFMDhcCA8PBytra2wWq3MxMGPATmwBgUFsYrAYWFhLP24w+FgUVa8PwdpNYh88FokMvPQ+Eo5M4v+PLxDqcPhQEpKCtO2SY23qPGgMSHwZjS+v2L0Dn9N8kMR/TXUajXi4uLYWA8PDyMvL88lb4UoqPncKPx1vYFer0d4eDjmz5+PRYsWwcfHB21tbdi/fz8sFgvOnTuHjo4OJCYm4vXXX4dcLkdqaioCAgIQHx8/IUW8J0xF8NPG4P3333c5vq2tjZmx6fuxsTHo9XqkpKSwcRsZGUF5eblbjeLFmqZm4B1myMcXgOHhYbS3t0OhUODBBx9ER0cHcnNz8ctf/tLrNnQ6HVJTUzF79myMjY2hrq4O3d3duHDhgscYfneCnYevry+uu+463HLLLVi7di3uvPNOhIeHY2xsDI2Njairq3Pr4yFC9N2QCpvjhYinxefQoUMYHBzEH/7wB7zzzjsoLi5m9xoUFITvfe972LBhA3784x+jqqoKy5cvx9y5c1FbW4uBgQFkZmYiPT0dMTExePLJJ7F06VIEBAQgOjoaTz75JHO2pORSfEIrfkfZ19eHe+65B+np6SxR1ejoKPbt28fyKPBF5wIDA3HHHXdg5cqVOHr0KDo6OqDVaplvAPmR8ONDfgS8OWsqOzE6tr6+nv1dU1ODhQsXQq1WIy8vDwcPHsS7777LnDQBeKXxEBdl6vPY2Bgr9Ga1WlFYWIi33noLt912G1avXo1Vq1ahubkZx44dYzlOADASQk6koaGhSEhIQEJCAvR6PRYtWoRPPvkEOp0OSqUSvb29zDGTkoxptVo4nU6XVOyUt4PyWigUCmi1WgwPD09IVEbPIO/7Q+Nmt9vxz3/+E35+flixYgXWr1+PN998E06nkz0nY2Nj0Gq1zJFRHC/ex4OSshHBpf7xZIB/hsRxjo+Px8GDB2E0GuF0OmE0GrFhwwZ89NFHzOmbfFhIw0H3Ren1SQB7g+joaGzYsAF33XUXAKCsrAyHDx/Gyy+/jKqqKqat2rhxIwwGA1asWAGbzQa1Wo3nn39eMp+GO4haUqlnXzxG/M3dhmZsbAytra1sTEJDQ7F9+3Y888wzLjlb+GvMkI/Lhxny8QVhZGQETz31FPr7+2E2m2E2m71m2llZWVi6dCk2bdqErKwsvP7663j33Xdx7Nixi04exCMhIQH19fV4+eWXUVtbi8DAQNTU1KCyshKBgYHYtWsXampq3J7PC1B+l0kQd1xSQlWKJIWGhmLBggUIDw/HypUrYbfb2cJ22223ISsrC/7+/njzzTdZmfbw8HA4nU40NzcjNDQUZrMZCoUCv/71r1lG1IyMDDz99NOMfPB95n0G+PBNAKisrGT3y+8mR0dHWaVTAOjq6sKTTz6JZ599Fr/85S/R29uLP/3pTzh06BBb9MgHgDcZ8Dtoced8sfj617+OJUuWQKvV4v33379khzqr1cqSdlHUyODgIKqrq1FfX48TJ07g448/xo033ohbbrkFH3/8Ma64YrxgWl5eHjQaDaxWK3Om1Ol0kMlk2LBhAzZv3owdO3Zgx44dqKioYMJYp9O5FHDjyQTlTiGnURK2vNbgoYceQktLC8LCwhAfH49du3bh7NmzaGtrQ29vL+RyOSuAR+e9+OKLSEpKQktLC7q6upiPB+8ESmSC19LQc0HCj3+/RULOkzg6jsiTzWZj2pjKykqkp6fjxIkTLIlcfX39BJML1QuS0gB5O+9GoxFr167Fgw8+yPo8PDyMzs5OSa3B+vXrWUVtALj11ltZjRVv4M3miCckPMECMGETI9U21e6prKzEt771LZesu3SclAZpBtOLGfLxBYEKfVmtVixduhTz58/HBx98gL6+vkkdC1taWtDQ0ICUlBT09fWhrKwMxcXFXpes9uQzIJfL0d3djaysLBa229XVhb6+PnR3d+O5555DS0uLxygaKXs2DzHMUOyTu8Wnt7cXlZWVqKqqmhDWe+DAAbYoBgUFITw8HPX19Th27Bja29tx3XXXscRr77zzDpxOJ+Li4gCMZ5UUx06MbqG/edMPCSi+37Rw8c6TDsd4EbXjx4/DbDYjKioKWVlZLDcDb1rhi6aRM+NkPjWeQP2jaqQBAQEsKVtpaelFkVW+L+RHQqGOpL0APktyVVRUBJlsPLrruuuuw+zZs+F0OlFSUsIS7ZHj5P79+/H9738fmZmZAMZrHz322GPo6+tjAlOn0zHHUIoSonsV/SToH82F1WpFQUEBzGYzwsLCkJGRAblcjlWrVqGnpwft7e0oLi7GyZMnMXfuXGRmZqKqqgp5eXnQarUwmUzIysrCoUOHXMgDP+dUEVk03dFzpFKpXAr8iQ6u1CZvdqF8JtSO6B8mmudEoSwmzvJWi7Zs2TLMmzcPOp2O1XE5deoUjhw54rJOmUwmXHvttVizZg0SEhJYv6OiopivmDegfvHmJ/F3d9EpNJYigaFjrFYrSktLWd+InHnqxwwuH2bIxxcEp9OJtrY2mEwmqNVqGAwG5OTk4NSpU5DJxqNM2tvbXepUqFQqptan3fCxY8dQWFiItra2S+6TQqFAZmYmi+BYvXo1gPGXtr29HUVFRXj77bdZ/z3dG7+I8J+lTCxSEB3xnE6nS/6K4OBgBAYGssqnZ86cwfDwMDo6OuDr64slS5bg/PnzyM3NRX19PWJjY2E0GlFXV4eXXnoJTqcTaWlpkMlk+OSTTyZcm78XSjwlOumJWh0+URXl0uDt7Y2NjWhvb0dgYCArCCaqd8lUwJOdqQgLd2Op1+uxePFiBAQEoL+/H83NzSyj7qXs7jQaDXN05LU9RNLkcjl6enpw9uxZdHZ2YtOmTUhISEBGRgZKS0vh4+OD8PBwxMXFwWAwYGBgAFu3bsXo6Ciam5uh0+lYSXteA0REQ6VSTfDXEO+HH2ObzYYzZ84wh8igoCA4HA7MnTsXCoUCAwMDiIuLg0ajwdKlS7FixQqUlJSgsbERFosFRqMRSUlJLs81aaeIXJBAo37ypjsAzIFWfCf4OeZNQKLDrEajQVZWFotukcvlEwQ8rzHjry36j0yGiIgIFiWyd+9enD9/HhcuXEBxcTE7xtfXF3FxcbjqqquwcOFCBAYGwuEYrwbd3Nw85UrJfH8ngzfO2ASqX8SvLVSIUwozBOTyYoZ8fMFYuHAhRkZG8NZbb+G5557Dt771LQQFBWH+/Pn417/+herqalZrIjg4GP7+/li9ejXmzZuHPXv24Gc/+xkr7OQt3L1UBoMBzz//POLi4qDT6dgLGhgYiLNnz+J3v/vdpIsCr2YWnd4InjQ7nl54i8WChoYGLFiwAImJiQgODkZXVxeKiorgcDiQn5/P6sn885//dFnc/+d//mcCoWltbZW0qZNTIzmqkkmB7ol2qrzwcTrHkz/x5ePpOnTdjIwM2O12nD59Gvv378fAwABrnwQMCS5e7U+EhO5FalfnCSqVCj4+PggICEBqaioOHTqEnTt3smR03qjgxXmhfpBzrUw2HqlB2U6plkt/fz+ri1JXV4frrrsOjz32GLKzs5m2ISoqignLG264AaOjozh//jyOHz+Od999d0K6fNKu0LiQJgEAI0D0jBFp57UjpaWlqKysxHvvvcdIwB133IE5c+YgISEB1113HUtx7nQ6mV9VS0sLy7IqPtu047bb7ayGCt0TFYkjMxHtuHliQEX06PmT2vWTOSk0NBSPPfYY/P392feU8ZQfI5F0AWB98NbnIz8/n22EHn74YdZXPhR87ty5LPw9NDSUFffr6enBgw8+6FJTaDLwzzevfaS5k8r9ITod0+/ixsdut7sUlKP3mr+uO5+TGUw/ZM6Z0b0s6Ovrg8lkAuBZoCqVSvbybty4ETExMSzngFwud1lI9Xo9M9ccOXIETzzxxIRaGt7AXX/UajVWrlyJv/71r5g1axaGhobwn//8B6+++irKy8vR1tbm0WQDSIfS8mRE1IhI7frE8+nYBQsWYNOmTZg7dy5WrFgBlUqFyspKbNy4ke3iPTmKieSDjiNBJkVEeEhFK/D3zdv4AbAskKSK/8tf/oKkpCR0d3fjJz/5icuibLPZ4OPjw/pBGi9e9e5pvN1BJpNh06ZNuP3225nzLUX73HLLLV5rPqTIBwk1X19fAOOO1ETaSHBotVrmPEnf+/v7Y+3atbjxxhuxdu1adHd3Q6VSYWBgAM8//zyWLl2KXbt24aOPPkJ/fz8jNvSPyAwAJkTpPshfg7ROojlNSkslk41Hyeh0OoSEhOBb3/oWCw+uqanBTTfdxDQshYWF2LRpEyOuZOLgTWTULxJm9B7TmPAF3/g+8bk4yEeDf56IQCUmJmLPnj2IiopizqpdXV3IzMxEd3c3Gy+xZhKNFZEkb+b9kUcewZVXXonExEQ0NTXhlltuwaJFi3DzzTfj8ccfx7e//W3MmTMHkZGRrHDg//3f/zEnTm/JLYES1tG4eAqP5seO7ks8TnyP5XI5iouLER4ejgsXLuDGG29EW1ubS1VmXlsJgFVcnkrUzgwmx4zm4wvG2NgYampq8Mknn2BgYAC33347mpqacPbsWQQFBeGmm25CXl4ezp8/jyuvvBInTpzA2bNnceHChQle9VOBlGpapVIhOzub5aFobm5GR0cH6uvr3Ua2iC8/TyrodymB7y349mtra7Fr1y7k5ubCbDYjJSWF+VCQr4w3wlgcA76PUv+TgBGP5xcqcZGkc2Sy8eywN998M+bMmYOzZ8/i008/ZSGvpBonmz6vYeFJGe9wOlWyWV9fj1OnTuGKK65guWDy8/OnlNxOivzIZDLmXAmMa1go2ygl0LLZbC6RJjabDb29vTh27BhaW1uxc+dOVrvEbrejtLQUubm5aGxsRE9PD9MYkOaHyASNu7iLF/NuUL/4jKVici8KrSXzzo4dO3Du3Dn4+voygbNhwwZUVVXh0KFDLhovIgk8uRbDWImE0PMg+iXQd2JVWpHgEpkYHBzEoUOHcMMNN7BcLb/73e9cIohoLIi88mahqezo8/PzkZSUhKysLMTHx+ORRx5BcHAwEhIS8JOf/ATJycms1tPQ0BD++te/4tNPP8Xg4OAER86pgieHIgHnx88dMacx4L+jv2tra5Gfnw+LxeJyDLU11XGawdTxlSMfjzzyCN555x2UlpZCp9NhyZIlePTRR5GcnMyOueKKK3Do0CGX8+666y4888wz7HN9fT22b9+OAwcOwNfXF9/4xjfwyCOPTClEzVtYLBb09/fDZrMhIiICNTU1OH78OIKCghASEoLc3FwcP34cVqsVBw8eREVFBVpbW6e1D/SijY2N4cyZM5DJZGhubkZZWRl6enoknVlpURAXWnExkHq5PS0Y9LvYfmdnJ7q6umAwGLBv3z40Nze7zVcg9kO8lje2Yqn74NvmiRavsuUXMJ1Oh/DwcKxfvx5hYWEst8bw8DDUavUEh0RRbeyub96C5pRCQYeHh5Gfn4/9+/dfdPSMqCGiBF8UPcQTNV4jQZEbw8PDaGxsZJofvg6Lw+FAaWkpO140b6lUKkZU+JBagpSwIX8J/m8+tJm/9vDwMIqKilBSUoKoqCjExMSwFOclJSWsjhC1LfWc8QSDPksRJL5/RA6kxpq/T4djPGX48ePHsWXLFpbx9b333mPaMv66/FhcTGRTQUEB5s2bB7lcDr1ejy1btrDfrrzySva31WpFXV0d3nnnHTQ2Nk75OjykNjT83+LGgH/feLjbYCkUCpSVlSE3N3dCiK2UdnYGlwdfOfJx6NAh3H333Vi4cCHGxsbw85//HOvWrUNxcTF8fHzYcd/97nfx8MMPs8+0YwPGF8xNmzYhNDQUx48fR0tLC26//XaoVCr87ne/uyz9HhsbQ3FxMQtpA4CSkhIcPnyYfT59+vRluTZhcHAQv//9790KPXeqdx60+NP3osMbMNEpUDSBuFOlUrt9fX347W9/6/Y+eIFOgo//nvcHoOOkTCh0Di/sRMFCwp2vT8LfF0VUJCQkQC6Xw9/fHxEREWhoaIDNZnPxDaBzeKHG95UnOVNZFDMzM3HLLbfA6RwPUxVJz2Rwdz2n08m0Gmq1mjmf8gSE7Ork68ATSro3k8kEm83GKu+S7wPt8rVaLTvWYDCwNvmEX3xkEpEZmj8+pwYv7HlNCJm4yKl7dHQUdXV1qKmpgUqlYo7W/JjwGg16Zvg5o+PIjEr95Z2J3UXn8MfxPjUAGPmgiB/yMxEJu/jcShHoyVBYWIiysjL09fW5rJ8iLBYLPvroI9TW1nqdSt0d+HER85+IfXe3ZvDH0v+UqVWj0eD06dP48MMPJ5xL50ttiGYwvfjK+3x0dHQgODgYhw4dwooVKwCMaz4yMzPxl7/8RfKcjz76CJs3b0ZzczNCQkIAAM888wzuv/9+dHR0MNusJ3jr8/FFYLKFR0p7AbhPfSylopwKgRF9PkTTDe9s6UljIqWWlTKp8AuSJ/BCgNT7fN/4a4jqdB8fH3z/+99HZGQkTCYTIiMjoVAo8Mwzz+CNN95wSf7EkyOR5PC+DSIJ8xYqlQparRZarRZDQ0MsZ4S3bXi6np+fH6vtQ1EXIyMjsFqtLM16V1cXE4bAeI4b8n3QaDRQqVSsRouPjw9UKhXrJ+U/ociOoaEhmEwmlhuEnElJq0KCfHR0lJmxyOzCk0ZqjycxJPT46sQ09iQE+WeS5ppPZMYLfd7MMlkYvBhq6wkajQazZs3Cc889B4VCgQsXLuDnP/85LBYL6zc9WzTmfImAqS75VATQE4hcuauK7C1EHyep9UHUfBB4rab47stk4zlk0tLS8NJLL0Gv1yM3Nxc33ngj+11qzaL7mvH5mH585TQfIqhgUEBAgMv3r7zyCv7zn/8gNDQUW7ZswS9+8Qum/Thx4gTmzJnDiAcwnjxn+/btKCoqQlZW1oTrWK1WlxdvqhEonxfEF3Iyc4P4nWhqAKauznW3aEj1VSQi3kDqPHemHYJUiCavHZAiZPw1aIEkMmGz2bBnzx6W9ZIEVFVVFSMyosmF342T8KBr8Amjpio8yJ9heHjYq0ijydrn+0C1fWi8SACRICZfHD78GADLk0L1bkg7QbkyaMdPJh0S3pTEjIgC8Fk2UH6MKIso9YvvI/8siJoHIi68hoAch+kzH3ZN//hxpegWIo+eCDpPXHnNGW8KEueDMg3/7Gc/AwD09PSgt7eXEUDqH+D6bvJawKmQEHL0/TxB98/Pl7gGSW1YePDvrdM57nxcXV2NvLw8NDc3s7QGk/VjBpcHX2ny4XA48KMf/QhLly5Feno6+/7rX/86YmJiEB4ejvz8fNx///0oKyvDO++8AwBobW11IR4A2Gd3vhaPPPIIHnrooct0J5cfUi84/5k/TlxAPS0KUudIXdfdZ7EPU1kMJuur2Db/mScBUuSKXxj5c+jf2NgYSktLmdAVS6jz/aHzecdKvn3RzDNV8OYPT+e7I6WezqF6LqS14TUETudnJet5rRCNA5EEXqsj1Q9xV8p/liKavOMu8Fn9Gf4aom8If23e1MWTBxFSxJgfO15zxffXHbkX70s0YfJkv7e3FwcPHnQ5lwiMp108/cb7vXzZ4I5UTDYPUufzsNvtsFgsOHDgAKqrq1FeXu62DcLFvG8z8A5fafJx9913o7CwcEJq3zvvvJP9PWfOHISFhWH16tWoqqpCQkLCRV3rZz/7Ge677z72ua+vD1FRURfX8csIT5qAyXYY/N/iYiqlyfDWTOCJEJDw54WyeB4fJssLA965kO8fHwVAi7Zop+eFpChASCCREyEfsQJ8puImIUgqeNqZUp94Hwhew0Hg63vwan6p8XQ3dvz4i/MkNe7uNGP8MfxY8ySNzCk0LuTTQmNEhECtVrN05BaLxWWXTyGt5FxK19HpdJDL5ejt7UVAQAAz9dB5ZHJRKpUTfA5sNhvLWyP6EIhaB7o/3vQi+uTwqfbp3miu6G8+2Zo7nx6eIInkgf+eiBPfRzpWdJjlNWj8s8v7xPB+TF9GTOagThA1Gzz4d5tvy+Fw4Nlnn5Vsg//M92UGlwdfWfLx/e9/H7t378bhw4cRGRnp8dhFixYBGK/VkZCQgNDQUOTm5rocQxlEQ0NDJdvQaDST2kW/LKDFh2zr4veUh2BkZISlzFYqldBoNCw1N6UFV6vVbKFVKpUwGo2s/Lndboder2cRDrQLpuRIo6OjGBgY8Gp34Smdu7sFQgw79LY9Ggux4irgunsUF2/ej4LfaZMA5vMuiFE6fLu84OBJF9UtocWS16hQci+aC96pkheU/MIq+gHIZOPOkfQ9VQTmwzWpGB6vFqf75s0jREqGh4fZZ8oBAnyWs4J8JWh8KIGYOA6Dg4Msb8jAwADrM5k6yXRCOT7c7Z5pnKSInDjHPKklwkikUyS7Mpmro6xYkdZkMrGEbFqtFiMjI4xc0TjwZhqerJKGiH9eqEYLD8ptQtfnHaH5OeQ1Ml82TEaIPm/CNKP5uHz4ypEPp9OJe+65Bzt37sTBgwdZ/Q5PyMvLAwCEhYUBAHJycvDb3/4W7e3tCA4OBgB88sknMBqNSE1NvWx9/zxAWTgVCgWLzQdcPcxlsnG7NiWIokWO96oHPqv+ymdrpONoYSdhQoKQkkkBX+5dhZSwFomFFNEQBQJPVMSkT1LXc/cdCTe+mBl/bcpoSYKH6osAny3YREh4swBvAiEByP9O1+PBR4/w90ICWrxPT7tY/hjezCE1joArweN/4009UuHwUho7qXGW+o0fa6n23Gmh+L+JwFPUjzgXRBJovMnXhe6JCAs5kVJGVOoT+bjwBJYid4BxJ19+c+SNmYKOk9Kqiffr6Tf+XHefPbU/g68mvnLk4+6778aOHTvw3nvvwWAwMB8Nk8kEnU6Hqqoq7NixAxs3boTZbEZ+fj7uvfderFixAnPnzgUArFu3Dqmpqbjtttvwhz/8Aa2trXjwwQdx9913/9doN9yBFkBg4m5bVGMSaeA/E9Hgwwp5gkLOaaKNn65B4XOEyUwyXxQmW5ClTBjuzvGkMpbSqHjqkzgPBNFhEcCEejS8DwFpKkQhwAtEPnKCN0Px/ZUK3eTHQkrYuDP/SI0Z309RY8EfKyXMPI2lO3gSllK/+fj4IC4uDhaLBd3d3ZKJ/2QymYtGiB9jftz5d5E3wRCI6BNJoRBePjsnD95sSMfw7/RkzzjfP/pbJC3u3gXx3BnMQMSl1+j+kuHpp59Gb28vrrjiCoSFhbF/r7/+OoBxteu+ffuwbt06pKSk4Mc//jGuv/567Nq1i7WhUCiwe/duKBQK5OTkYNu2bbj99ttd8oL8t4KEhd1ux9DQENvxymSfZWqkVNg2m41F8VitVoyNjcHX19elLPfw8LBLGujh4WGXlPBkxiGNCjCuMqZdmZQD2ZcVvKAgk4jolCq1UyZBwgtQvj1gIhHk1eOiip/aFqMp+HMpqZh4Df44PhcHzT9PNkUtg7jzd0cA6DMdxws8d867vIAU26D7FLUw/O9SphIpLZO3O36p+6L/tVotC1+OiorCbbfdhkWLFsFsNku263Q62TtBbVBNGT5Ml9dQ8RopMmfRewSAvT8UNUSaMfE5GxkZYVWHyUQm9kXqXj2Ng7vxk3oG3H3Hb3i+jJuPGVx+fOXzfHxR+LLn+SDBabVaodPpWIhheHg4Ojo6AIzbkPv6+hAYGAir1crSJfOLIOVmoLwKer0eg4OD0Ov1UCgULDkROViSyYeEBJ9P4csEcojk544nVMBnQpOEOi3wolZCShMgClrR4RH4LLcHT3b4onXUFzqG5pX6RBV/SYCJfi6U/4KuC4Dl1aBr0O5ajNygORSFGL87dhfWyd8Xf206xx2J4cdSygQiatrEtqU0S1ICmBeMIkJDQ/Hd734Xra2tiIqKQlpaGlavXo3rrrsOFy5cQFdX1wTtjjg3ZA4jsyWNOflR8VpCPg+JVqtlJIwPLwY+88+h+xfTyMtksgmaLCltjjiH7uBOo3UxmMys80WC+jST52P68ZUzu3zVsHz5csTHx0Or1eL9999HYmIirrjiCphMJvzv//7vRbXJO5ySVoMWLUreRIuVTqdji5iPjw+ysrIwa9YsVFZWoqCggC2OJICHh4eZaYXMK1arFWq1mmlN+CJwfGTAlwn8DpIWRzHiRtRW0O8imZLazYtkg1e70/d8O6LTKC/4xf6QWp78c/j5Dg8Px/LlyzF//nz09PTg8ccfR39/PyNPlKNCJpMxQsmDyIjT6XQpC88TAr7WCe3ieZImhrLy4yRFFjyZVUjrxn9Hc0d/S0WzSJlnpEiPUqlEQEAAZs2aherqaiiVSuTk5MDf3x8KhQLV1dVYs2YNqqqqWOl4qZ0+EQWK4qHv+FBkPr8JT9jEyBp6HylRGn3Hzx31nSKueJIpk31W6dedGYWHO3IgzolcLkdmZiaGh4fR3d3NnPQngzgfM/h/AzPk40sM2n2bTCbExMSwbHwhISEX7fVNqbVpQeOjIpRKJTPF0KJGC1hISAiSkpJYRc+6uroJ0Rj87pkPJeV3XLxQF3e5kyEwMBChoaGwWCxwOp2IjIxEXFwctFotjh49ygRsUVHRpG1NllGS/14MgRSFIS+A+fN0Oh00Gg2MRiMyMjJQWFiIjo4O5nBL4Bd3KQFIEEMzxWNEGzwvdNVqNZYvX46IiAgsW7YMWVlZ6O7uxlNPPcXOJS0KRTXxJIJvn54ZPi8J9UXULkjtiN0dJzUH7p4RKZW+u/a8Na/wx8pkMpjNZpjNZsjlcqxduxadnZ0AgLi4OJhMJgwPD6O2thbV1dWS1Vv5vvF5XvhQVyJxREp4sxeBP57XovCET/TNEYkxPw9SGiCpMRKfJ3f3Bow/X7GxsVi2bBlGRkZQW1uLvXv3TjrunydUKhVCQ0PR2to6pQy/M7g8mCEfX0JQWGtQUBBaWlrg7++P0NBQ3H333dizZw/KyspQVlZ2UW3rdDoAYDsvEjgkXAcHB13COWWycWe52bNn4/bbb8fWrVvxq1/9Cj09PSxckLfrU9+pYBO/GwZcVfCehD8PHx8fyGQypKen44orrkBxcTEcDgdWr16Na6+9FgEBAfjhD38IrVYLHx8fNDU1uaig6R6USiVz2tNoNLBarRgeHpZ0EuSJFW9y4DUSUj4PtLBrtVr4+fkhKCgIqampeOCBB/DEE0/g2LFjqKioAAAW0kxEkm9bFOo0X7zKXIy6IaLI943mIyIiAnfffTcMBgP8/f2ZKYzuTy4fLxym0+mYetnhcLCQaZ50iPkl3Gks6G9R0yEKRf4+eeLr6Xte2IqCUUrLISV4eY0RDyLis2bNwpw5c1BXV4drr70WwcHB7H6Gh4dZwcXU1FScPHlS0owhtk3PEj2H5MdCvh9E6vi+kqaCSCvNqbgBoeddLpe7OHXzBMWdOdDdOIhaNaljtFotQkJCsH79emzZsgV2ux3FxcU4fPgwi3YTz+GvdykmG28hk8lgMBiQk5OD06dPo6urC4ODg1/aXCf/L2DG5+My4VJ8PubPn4+rr74a//u//4sf/ehHOHToECoqKiYsBhcDUe1LdmR+cefNKKRN+O53v4sf/vCHaGlpgY+PD55++mk888wz0Ov1Lqpiaot3DqTCYaTGl8lkLP/H2NgYU1dLwcfHB7/5zW+Y6nvu3LkT7P286cJqtaK1tRVvv/02/Pz8EBYWBr1ej48++gjZ2dlYsGABYmJiMDg4iMbGRnz66af4yf/f3pvHRXnd++PvGZh9ZRhg2AZkFQQRRQ3ucV/inmZva5ImNUnvvfk2TdM2bdL2ps29XXLbJm2a1GqSNqtJjJoYE8UdcUFQFNkF2beBgVlgFub5/cHvnJx5GBCNgrXP+/XiBczzzHPO+ZzznM/nfNannx7Srlwu99sc+QyB0CfQXKjVaqxfvx6VlZWYPXs2Vq5ciWnTpgEAnnvuOWzZsgVRUVFYsmQJ8vPzUVJSMmSNsGp40q7L5RqShIo97fLLp5M+/+AHP8ALL7xA6XzgwAF8/PHHeP/99ykz0ul0WLx4MX79619DoVCgra0NeXl5+MUvfkH9Rvj+JfzkWWwiK7LWAtGHFQBYYYvQmRWGWT8bYmYhgiE/+oa0yffV4bfN/06gexITE3H//ffjrrvugk6no8JCT08PPvvsM3Ach507d6KgoID6cPCFD/ZvYookggRx+iRClEwm86sdRHx7yLyS+jWkzwqFwi+M3ev10kRqbNtsojSR6KvidCQ/z3CmFD69AgkqRPB47LHHsHnzZmg0Gmi1WrjdbtTV1eG1117Dm2++SXO9DDcPI83F9YJOp0NaWhp+9KMfYcGCBfjb3/6Gd955B8XFxSN+j/RL8Pm4/hA0HzcZpkyZgnXr1mHNmjV0k7v99ttxzz33YOLEiaisrERwcDAUCgWCgoLws5/9jDqCjgaEQUgkEmi1WlitVroxkU2MgAgoy5cvx/Tp0yGRSPDWW2+hvb0dFy5c8NN4kB8iXEgkEr+TvVwuh1QqhcPhgM/nQ39/P3W2GwkcN5jDoqKiAgMDA1Cr1TQHglKphFqthlarpcxJJpMhJiYGDzzwAI20EYvFSExMhEajoX4nwcHB6O3tRXd3d8B2+doNVhNB/mcZZ1hYGCZMmIDp06dj1qxZMJvNcLlc0Ol0CAkJoWnEH3nkEaxZs4Z+f/bs2Th79ixefvllP98X1o7O9oc9uSoUCj9TDNH2sIwYAA4ePIgXXngBTz75JGpqanDu3DmUlpb6PcvlcqG8vBy9vb1oa2vD2bNn8eabb1JmxWdqgbQOrFDCCmmsgMTOayAtBsdxfn4LhHFOmjQJWq0Wx48fH+Koyjc1BTI1sO0GgslkQlpaGlJTU9HZ2Yn77rsPiYmJ0Ov1EIlE+OY3v0mTnJWUlIDjOHR1dfmd7Pntsf1jfanIvSxNiGBC6EIchFkzDLsmieDA+tSIRCLcd999WLp0KcxmM86dO4f33nsPZ86coRVw2fYCafBG0tzwtVtisRgbNmzApEmTaAI8YirmOA75+fnD1oRh53u4ubpakPdwzZo1qKmpQW1tLVatWoU1a9agrKwM3d3dmDt3LlQqFWw2G6xWK7RaLWw2m2CCGQcIwsdNAolEguzsbOoMaDabYbVasWDBAmg0GkRERMBsNiMxMZEyVZ/Ph1mzZuHs2bOjdu5i7crE4YxlGmxmRnLftGnTkJSUBIVCgeTkZGi1WrS2tqK2tpYKFGQTIZ777GbJJj8iERaBklcFgtfrxfHjx9Hb24uqqiqUlZXRjVqlUiEsLAw5OTlIT0+n5qKgoCCaMI5Ao9FALBbDbrejuLgYVqsVp0+fHpLJliCQnZvdIFmTkUwmw4oVK5Ceno5JkyYhLS2NmrfIM8gmHBYWBoPBAIlEApvNBpPJBK1Wi/Lycnz55Zf0vtFsxnyzFWuCAQY3Y7VaDYPBQH0XiBaKrVGkUChgMpkwa9YsqNVqlJaWoqCgALW1tX4CCtE4DHdqZZkJ+zmfpuzaIswzJSUF6enpCA8Ph9frRXFxMSoqKqDX6xEXF4dFixZBJpPh+PHjfn3gO+qyNB8NQyECq0QiQWRkJHJyciAWi5GVlQWXy4WLFy/izJkztAiZXC5He3v7kLFfqT2+dpGMm69dY5k+61sDgAq48fHxMBqN2LFjB8RiMUJCQmA2mxEVFUUPCkajEVarFSaTCTqdDu3t7X4OrYHmj6Udn0b8+6RSKdLT0zFlyhSYzWZIJBLU19ejq6sLWq0WLS0taGpqGjGS7Xox/IULF8LpdMJiseD222/H6tWr0dbWhtbWVsycORMZGRm00CfJrpyamoqpU6fi888/FwSPcYIgfNwEkEgkMBqNuPPOOzFz5kxER0fD5/MhNTUVmZmZNLTV6/UiLS2NZi10Op1YunTpVXmWE+bv9XppZAqxORNVNqsF8fl8iI6OhlKphNfrxZ133gm73Q6n04lz585BLpfTF5uU3ibVU4m6mZhDiPBBVPN8ZhkIbrcbu3btCnhNLpcjMjISjz76KI0IIghkVwaAzs5ObN++HS0tLTh9+jQaGhquSDO+vZv0n9BKLpdj7dq1mDx5MlQqFTiOg9VqhV6vp3kYent7qVqc9F2lUkGlUiEoKAh33XUXDh065BdBwrbBBzFBBNJAkOtBQUEIDw/HzJkzsXr1aohEIuj1evh8PnR1ddF7TSYTpk+fjoceeggRERGoqqrC8ePHaa0WVoPBp+1wAgb5m296Id9hvysWi5GTk4NvfetbyMrKgtfrxV/+8hf09fUhJiYGt912G5YuXYq+vj66pliNG9FKsdqEQP0NhKCgIERFRUGtViMiIgIpKSlISkqCzWbDpUuXcOLECfzv//4vpXVPT8+Izwtk1mE1OoFMVWSunE6n3/jYg4JarUZWVhaWLVuGRYsWIS0tDZcvXwYAJCUlYcWKFZg8eTJ9B7q6utDY2AhgUPBua2vzK4Uw3BhGQzOxWAy1Wo0lS5YgLS0NYWFh8Hq9OHbsGAoLCxEXFweRSITe3t4h7w777EAC/mghEomoD9fDDz+Mzs5OlJSU4Lvf/S4VhjiOg91uR21tLZqbmyl9PR4PpkyZAovFgo8++uia2hfw9SEIHzcBJk+ejDVr1mDhwoWYOHEizp8/j7feeguffPIJ5syZg+nTpyMhIQEXLlyA1+tFfHw8TCYT7HY7qqurKfMfDdiS5nwmQNS5BGLxYM2Qxx9/HMnJyZg1axb+8z//E/X19bBarXQz5jiOCkh2ux1KpZKqo0NDQ+HxeGCz2WhYL9kYrnXjIejv70dPTw/1H+EnLOO3YbPZ0NzcjIqKChw+fHjEMuGBnsX+Zs0wdrsdr7zyCu69916YzWbY7XY8+OCD2L17N5xOJwoLC3Hs2DHqcxITE4Nz584hOzsbTqcTdXV1OHny5JCcG6xpJ1B/WNU8AFqXhYxbrVYjOTkZEyZMgF6vR3t7OzZt2oSLFy/6mQDuuecePPTQQ1SjYLVaYbFYAPg73rIh2IRJslFDLI1Y0webMIvVALBapObmZuTn5yMvLw8PP/wwvve97+Gxxx6D3W7Hp59+igMHDqC+vp4yb9ZUQ55J6MQ3vbA0ZREcHAyj0Yif/OQnmDNnDnQ6HfVx2rx5M0wmE6Kjo79WOXnWZEI0HlKpFHa7nWoKid+VXC6ntJXL5VAqlVAqlTCZTHj00Uex4P8PsSep87dt20bXAcnzcenSJZSXl+Po0aN44403KMMliczYQoVX6jcL9j3S6XRISEhATk4OZs2ahYKCAnz00Uf44IMPhk1gNtyzr3UfMBgMMJvNmDRpEubMmUPrdw0MDOAPf/gDbDYbent78dprr8Hj8cBkMmH27NkABstpvPvuu9i3b99Vtyvg+kEQPsYZMTExSE9PR3Z2NiZOnIiysjKcOHEChYWFqKysRFNTE3bv3g2pVErzNkilUphMJqxduxaPP/44Zs6cif379+Of//znFdsj5gria+FyuaBUKuHzDWYrJX4agH/KbqvVioaGBkgkEuzduxdlZWUAQB3jiDMkmz5dJBKhr68PDocDISEhEIvFaG9vHzbPw7VALpdj3rx5UCqVfqdKdrwikQivvPIKDh06hNLSUrS1tV2RofBPrez/fE2Dx+PBiRMnUFlZSaMQbDYbNm3aROnqdDpx4cIFOJ1OrFmzBtOnT4dcLkdRURHy8vLw4Ycf+jkAkjbYUz6/ii4b2cJxnF+VXLlcjmXLlmHt2rXIyMgAx3F0PREbN8n1sG3bNpSXl2Pr1q0AgLVr10Iul+P3v/89gK+EDjb8NpC2haU56SfLXFhNBWuiUavVyMnJwcqVK5GXlweRSISzZ8+ioqICXq8Xr776Ks2kyxcs2DXKzlugeeRfV6lUiI2Nxbx586BWqyEWi2Gz2bBjxw6cPXsWfX19AevEDHeKJ2MEvsrNQcap1Wqp8ydx9CbzarfbERQUhPj4eDrGX/3qV0hKSoJSqYRUKoVWq4VOp4PP50NbWxveeOMNtLS0YNmyZZg/fz4141VWVuLIkSPYvn07DeHla4mu1b9CJBLhG9/4BjIzM5GWloZ58+ahtbUV7e3tcLvdNJPqaOl1rYePiIgIzJs3D+vXr8esWbNQX1+P1tZWeDwe/PSnP0V1dTXdl9xuN1566SVkZWXBbDbD7Xbj448/xuHDh1FTU3NN7Qu4PhCEj3GCSCRCSEgIbrvtNuTm5mLixImQSCQ4deoUCgoKUF5ejv7+fvT399NTKIvOzk4olUpMmDABRqMR06ZNw86dO6/ofNrX1weZTOZ3YubnCiAnaHKC8fkGq4paLBY0NTVh8uTJqKurQ0lJid/GLxaLaQgrOfHynSiJvwpxGg20uV8NHA4H3n33XURGRsJgMMBkMmHBggX0GnFsPXr0KAoLC9Hc3DzqZ7ObNF9dzoKod/lRO/zNzWg0QqlUQqVSQaPR4MiRIygqKkJVVRXNjHk1G3IgswZhNjKZDEuWLEFqaioUCgW6u7vR1taG/v7+Ic6roaGhMJvNVNBpbGyk4cBsgjDyw5rmWLMQK5TwNUXsdfZzqVRK5y0uLg5ZWVmoqqrC4cOHcebMGYhEIjQ3Nw9rLiD/kzZJ9s9AtGIxb948pKSkIDU1lUaltba24tKlSxgYGEBKSgq6u7ths9nQ0NAAmUyG7OxsxMTE4NSpU2htbR0iXLH9YM0N5B0i7wRbfI/t/+zZsxEZGQmVSoXc3FyEhYWhtbUVVVVVqKmpwerVq9HQ0ICCggLk5eXh9ttvh9FopL5O27ZtQ1lZGWpqaqgjNftuk/cPuHJVZz6IeSoxMRGZmZnIyMiAz+eDxWJBdXU1ysrKrvogca0CyMKFC7F48WJMnToVHR0dOHjwILq7u9HT04PCwkJaAdloNOLJJ5/E3LlzERcXh+DgYBw7dgz5+fmor6+nUUoCxgeC8DFOEIvFiIyMxMKFCzF37lzEx8ejtrYWhw4dwsmTJ1FfXz/i9+12Ow4cOICIiAjccccdMJvNiIuLQ1lZ2YiOnHa7nV4PlCeAaFYA+GkHPB4P+vv70dzcjFWrVqGpqQlHjx5FX18fdZ5jc3yw+TVYJ9OgoCC/kMArqX+vhJ6eHvzmN7+hGqRZs2Zh/vz5NJS2vb0dPp8PxcXFNEnU1YAw2eHKqLMIdJokkTVutxtTp05FcnIy9Ho9nE4n8vLyUF5ejsbGRj8mBATOksqaF1jNAQEb+SCVSjFt2jQYDAbKQGtqavzmlMx/dnY2li9fTuejsLAQX3755RD/CZaBku/zs74Gsu8HOvkCg2aP2NhYJCQkICIiAhqNBpmZmXj99dexb98+FBcX0zwyrLDD0oY16ZA+jgSRSASDwYB169YhNzcX8fHxtE9NTU0oLi5GeHg4Fi5cCLvdjra2NvT09ECj0WD16tWYNm0aBgYGcP78eXR2dlJna34bLE0A0FBZvhmKmHlkMhkWLVqEKVOmQKvVwmg0wuFwoLi4GDt27MCxY8cQHh6O4uJi7N69G42NjXjuuefooaW9vR1/+tOfYLPZqAmS9RlizVKBfHWuRLPg4GDExcUhOjoasbGxCA8PR0lJCSorK3Hu3DmUlJTQMg3kfqVSCZvN5hdZE8jZ9WoFkNzcXOTm5iIiIgI7duzAZ599hpqaGnR2dkIkEiE8PBwSiQRJSUn41a9+RSNxuru7UVRUhEuXLl1VhKCAGwNB+BgniMVihIWFYf78+Zg4cSLa29uxbNkyNDU1XZWNua+vD6WlpTCZTPjud7+LZ555JmDSLBZerxdSqRShoaGwWq1UXa9QKKBQKOBwOPzSVnMch5CQECQnJyMjIwM6nQ6rVq1CUFAQnn32WchkMvh8g7Vh3G43Lf9NtA6sStrlclGnTJKs6etCIpEgJSUFDzzwADZu3IiBgQF8+OGHOH/+PEpLS3Hw4MGrfia7KfKTNpHrrLZhOEyYMAFmsxkXL17EL37xC0RERKC7uxtffPEFtFotLBYL1TKwQg2fgRGmQYS8oKAg9Pf3++XUIEIOYdBffvklNm7ciMbGRuzevRsvv/wyvZf4iwCD0S4qlQperxcSiYRqp6RSKd2kWaZPvsfWd2Hpwv4GAmuKxGIxTCYTtm7dCrPZDK/Xi7q6OlitVmzbtg3t7e3UzMN+fzjhgo38CRQBQ6BSqfDzn/+cahbI3InFYmg0GqhUKnzyySd44YUXEBsbC6lUihdffJH22+v14sUXX0R/fz/++Mc/+mkbA2l2yPilUild6xKJhNJRKpVCr9dj/vz5yMjIwKVLl7B//348++yz+Pzzz7Fr1y7s3bsXbrcbd999N6RSKTUXER+Ouro6bNq0ibZPHL5JO3zhkd+fkeYJAG3TarVi/vz5SEhIQFtbG1566SUcOHCA+nlNnz4dNpsNcrkc0dHR2LhxI7Zu3YrS0lJ0dnZCLpfDZrP55Tfh02002LVrFyQSCZYsWYLDhw+jtLQUdrudht9v3boVLpcLVquVrmNg0Fzzgx/8AM3NzTRZo4DxgyB8jBPEYjFiYmIglUpRXV2NI0eOQK/XU9vlaLF//37ExsbSTIyxsbFobGwcNnGXQqGAx+Ohcf8KhQJOp5OeKonDGHsqc7vdWLZsGZ5++mmq4jWbzZg6dSp9LuvJTza14OBgGvdPnisWi9Hf30/H+HU1HyLRYATNs88+i4yMDNqH/fv3o6io6KrMLCxYZ0/W/wLwj3Zh+/HWW2+hv78fJSUliI6ORn9/P8LDwxETE4Pw8HCEhYUBAJRKJW677Tb87ne/GxJtw1eTszZ70i75zWpBCI05bjAyIjY2FrGxsRCLxZg8eTLUajUVPlgNwdy5cxEaGoquri4MDAxg586dKC0thcPh8EtaxjIKNpEXGzLN18KIRCLqd8Ay5R//+MeIjo6mET979uyBUqmEx+PBc8895xeJww9HJeB/xjeR8cF+lxRTZKv+chyHhIQEmEwmzJ8/H9HR0X5aF1aTQDQTP/rRj/CNb3wDe/fupQwvEDiOo/4QhGakIi0RFPLz89Hd3Q273Y76+nrk5eXB6XRSZk3WH/Fj8Pl8SElJQXNzM06dOoXg4GBqZmTbYeeOFCZkaRSIpuRz8iOTyRAXF4d33nkHkZGRcDgcsNlsmDlzJlatWgWj0Qij0YiwsDD6jODgYGg0GkRHR6O3txdlZWV46aWXsHTpUpw6dQqXLl0KKGSPBuvWrcOsWbOoFmvGjBnIzs7GokWLYDabYTabMTAwgKamJjz55JNYuXIlKisrYbfb8aMf/chPEyNg/CAIH+OEoKAgpKSkQKFQoLa2lubquFpbrN1uR11dHaKiomAwGBAZGYmurq5hhQ/Wdk+SUrF5E9iIC+IcJxINZiQ1GAyUkTQ0NODs2bP0uSQfAWFWZIysfwC7wbBVba8VEokEYWFheOSRRzBx4kTodDq6oa1cuRIWi+WancoCbYZ8Bsz2IzExEUlJSZDL5TCZTDSxmEqlgk6ng0ajwcGDB+FwOGC321FRUYHm5mbqHwP4M9DhNmWWnvy+kXsTEhKwatUqJCUlQSKRoKSkBJ9//nnAsa1fvx5JSUmIiIiAz+fD3r17UVdXR0/57L1EECDzyrbJd5QlnwUax6RJk5Ceng6FQkFrpISGhiIkJARNTU10bbB+E/xn830rWNoM5xBLGGlGRgaUSqWfYEFMVVKplGbtLS0tRWNjI1JTU3HhwgVotVqadCw9PZ0y24SEBEoPvvmMpQO5h2g8iDDh8XjQ2dmJ4uJimvGXpT37XbVajZiYGNx1110ICQmBVCpFREQEWlpaqMM3oYtMJqNCP/mcvOtEOOH3mb/e4uLikJOTg8WLFyM8PBx2ux3l5eWoqKhARkYGEhISoNVqoVQqIZPJYLPZ0NraCqfTSaNiOI5DZGQkFVQrKyuHrMWrET72798PsViMOXPmYOPGjSgvL4fT6cTJkyfR0tKC6OhoXLp0CQcOHMD+/fths9ngdruh1+tRXl6O8vLyYZMLChg7CMLHOIEIH3K5HFarFdXV1WhpabmmZ1mtVvT29iI9PR1yuXxEMwBbLIwIC0TVzt+MiId8cHAwrFYr6uvrkZKSAgBoaGjAhQsXEBISAq1WS53ziJklEAMiIDZhvkByNTCZTDAYDEhNTcVTTz0FiUQCh8MBl8uFsLAwLFiwAMeOHbumZwfqN6stIJs4q5aeMWMGlEolIiIiEBER4ceogUEh8fz586isrERtbS1Onz4dsC2+mYWAZRD8e/k2/NjYWMyfPx9xcXE0Eufvf/+73/iI6n3GjBkwm800q2hVVRV6enr8zDLkfrJGWB8Mtl02IoevhWAZqUqlgsFgoJlpVSoVwsPD/TLVss/lz8VIGpCR1j5JppaZmek3f3yzTm9vL9xuN3X+njdvHvbs2YPIyEiYzWbq6K1SqQBgSHXYQM8l80kYsFgspr5QxJ/K4XD4adn4kT1SqRQhISFISUnB/fffD5FoMKpJp9OhpaWF+lwQAYeUL+A4jmow+Wnp+fRl+6xQKJCamooVK1bg3nvvxfnz59HR0YETJ07g/Pnz+I//+A9oNBooFAoqwFVWVqKkpARdXV1wu92IjY1FaGgokpKSoFarkZeXN2SNXC0++eQTmgdpzZo1iIqKwt69e7Fv3z7IZDIkJCSgoKAA27dvR01NDZxOJxWUGhoaUFFRAavVek1tC7h+EISPcYJYLEZUVBRNJHS1Gg8Wq1evxn333YfOzk4UFBSgp6dn2HvZcEziy0BOTKS4FbmHrafxxRdfwGKx4NVXX0VISAgiIiKQm5sLo9GI5ORk7Ny5EwcOHKAZTkmtCuKQyp64iFAjlUqh0+nQ1NR01RvRL3/5S8yePZsyTo7jcPDgQZw7dw7PP/88XnrpJRw/fvyaacpGcgRSR7MMRi6XY8OGDQgNDYVUKvXzPfD5BlPJV1dX46mnnsLPf/5zbN++fUh7hCEQRhboFAp8pZniX2e1TTabDfX19ZgxYwa6urpgs9looT8yz3K5HPHx8di3bx8WL16MKVOmICgoCA8//DDefvttHD9+3E9AJWYHAH4RTCwz4wtBfMEDGNQSnT59Gu3t7VCpVDCZTNSPqKOjA1KplEZMsT4tfO0BO17W8ZV1yuULASkpKbjrrrso0yd9JE7RIpEIdrsdf//736HX63Hq1CkcO3YMO3fupM8jJogVK1ZAJpOhtbUVr732GqVJICGEzCu/T8QXgXyX/E/aIRFpJESW5B0hP4cPH0ZxcTEKCwv97iNr0Gaz+TnpEh8aQjeWNvw1HhwcjMmTJ2PKlCmIiYlBb28vvv/97+PcuXNwOBwIDg5GXV0d7r77bqSlpcFsNsNgMOD5559HSUkJLBYL5HI5HnjgAXzzm9+E0WjET3/6U/T19dHkZ8P5mIwGDQ0NyM/Px4IFCzBjxgxoNBqEhYXhlVdewbJly+B2uyGVSpGYmIjk5GQ89NBDWLlyJbq6uqivjIDxhSB8jBPEYjHMZjNkMhkWLlyImJgYWnzsaiCTyXD06FFoNBps3LgRoaGh6Ovr82MQLEimUvbUzt5P7PlEYCAaio6ODpw6dQpvvfUWYmJiMHHiRNx1113Uk5w4pdXW1qKiogJut5smGmMzNRKfD8JAWIfU0UIkEiE1NRXR0dF0E3311Vdx4sQJ9Pb2orCwEJ999tmospcOB9YXha+FYEHU5s3Nzdi0aRPkcjmSk5ORmJiI2tpa5OTkIDc3F9nZ2aiqqoLBYMCsWbOQn59Px8JxHI2G4FezHc7MwtKC3EvQ1taGoqIi3HPPPQgNDcWDDz6IlStXwuv1oqWlBWfOnMHly5exZs0aLFmyBDqdjub8KCoqQkpKCoxGIz744APaBhFGiUMrGftwzoLk9M3Pd+FyufDaa68NOf0++OCDuP/++7F7925s2bIFp06dQl1dnR89+AIz4B+xFUgwJG2IRCKUl5fjzTffxCOPPOJnnvB6vTh37hz0ej20Wi3EYjG2bNmC9vb2IX4cLpcLVVVV1MdJq9Vi6dKlePPNN0c0ISoUCuoLRcwhrHBHsg6zBwASNRYUFASXy4VHHnkEubm5VPtYW1uL/Px8nDhxAl6vl1a9JcID+R6/WB9ZsyNBLpfTOjFNTU146aWX0NXVRfcOg8GAX//618jMzEReXh62bt2K4uJidHR00LH19/fj4MGDuP3225GVlYWnnnoKr7766tcOrweAjo4O5OfnY/PmzfjZz36GpKQkxMbGYt26dWhsbKQCdnBwMPR6PTQaDdrb2/HKK69Qbe/XSR4n4OtDED7GCSKRCFqtFhUVFaivr8eFCxeu6TkSiQRRUVGIj4+HXC6HQqGgUQ/Dgc3dwDo2sqp2wuzIJstxHBwOBz799FOkpqbi3Llz1DkvLS2Nnj5qamrwf//3f35ZMMmmSjZZ1nQwUj/5kMlk0Gq1yMjIQGhoKD3BtrS0wOVyobu7G1VVVdi6dSva29uv2+ZCNm5CL9anQCQSob+/Hx9++CFKSkoQHByM2tpaGAwGdHd3g+M46myq0+kQGRmJ6OhohISEoKenZ4hjKV9VT9on/7Of8Rkv+T4pPEgcfkNDQwEA77zzDnJychAWFga73Y4pU6YgJCSEZpwlJ+6qqipcvnzZb5744+bThw/+mFiBoLu7e4hp74svvkB3dzcSEhLQ0dExovMmv012HZNxBDItmM1mrFixwk9wGRgYgNVqRVNTE6qrq+FwOHDkyBG0trZSbRELpVLpV0coJCQEK1aswDvvvDOkz2x/SNp8Mm7iDAr4ayH45iUyTnKoIJqmXbt2IS8vjzpS8kGKORLtCdFGkvlgtSD8tlQqFcxmM3JychASEoKOjg6IxeIhzvAej4eaeUlo+3CaHyKU5+bm0j0v0LyOFt3d3SgtLUVNTQ0WLVqEadOmQaVS4b333kNjYyPS09MxY8YMJCUlQSqVQiQaDPvPzs7G1q1bv5avmYDrA0H4GCf4fD60trbi+PHjKCoqwpkzZ67q+2KxGCqVClqtlqbQrq+vH1VqYzYSgais2U2RNRuwuQIGBgZw5swZ9PT0wOVyUXtzUlISEhISYDAYaEZG1k5tt9v9cg8QxkSeOVoYDAZMmjQJK1eupI5/Xq+XJlWyWq1obGzEJ598csVw4ythuBM9e41s2G63GwcOHKDX2aJtRqMRBoMBMTEx1Bs/MTERRUVF6O/v94suIs8G/E/xgYSPQHlAyL1KpRJ6vR5lZWWQy+VwOBy4dOkSPvroI3oCdLlctNgcOy6Xy4Xq6mpUVVX5OWMSBs/3yQhEI9asx6+STPrO3gMA586dQ01NDRYuXEjrcPC/x46bv8b5OVD4ffP5fNDr9UhJSUF/f79f5JLb7UZPTw9qa2tRW1uLwsLCgGp5lUqF6OhozJ07lwofGo0GOTk5UCqVNGosED34UT/suxXI/4R9R2QyGTUvulwuWCwWmgW5s7PTT6Anc8NqO8h7x65pol3h9xMYLGA3ffp0JCcno66uDvX19ejv76dRSKQNIpwpFAro9Xq/MZC/yXtP+qZWq4doPq7F98PhcFCn+v3796OnpwchISF4/fXX0dLSgjlz5sDr9SI8PJwKblarFQaDQYh2uUkgCB/jBKfTiWeffZY6ml5tAiy1Wo3bbrsNMpkMEydOhNvtxg9/+MMhiaT4ID4KHo8HTqcTKpUKcrkcbrcbNpsNSqXS7/7+/n7IZDLKdFwuF8rKyiASDYa5nTlzBhs2bEBwcDB6enqwfft26q0PgJ6qAVDnQjaM82qEj+nTp+PJJ5/EjBkz/DQpFy9exLZt2ygN2aqjXxek72ySKH5irZFw6NAhnDhxAllZWUhLS8PkyZMRGhqKw4cP09MkKVZGGD1romL7QcwYwFc1V1hhjjA0lUoFpVKJ5cuXY8OGDSgvL0deXh4A4Ic//CGAwSiG+vp66PV6P7PShx9+iI6ODqqe52t52HETJsIyeY7j6OdERR8omR25l/gkkORzJpMJlZWVfjQIJJwNR3t+X9jPT548ibKyMkycOBERERFQqVSUsZPxkfT4gXx9SNXpnJwcSKVSSrfg4GBERUXB6XT6aSFYZsyaj9iMsWxEGSuMEA0W8YuZN28evv3tb6Ovrw+XLl1CfHw8+vr6qGmTzAc7Zz09PZBKpTTfx8DAAGQyGV1DxPzJp9/UqVPxzDPPQK/X4+mnn8bZs2eHzH9wcDDS09OhVCppgj9+kTaRSASn0wmPx4Oenh7k5eXhmWee8QulJvddq/MpAGzZsgVbtmzx++zzzz9HYWEhurq68NBDD+Hs2bPYv38/du3adVW1sATcOAjCxzhBoVDghz/8Id577z0cPXp01MJHTEwMvvOd72Djxo3QaDRQq9X45JNP8OGHH0KtVg97WidwOp10EwoNDUV3dzdVAZON3uPx0JBD9nRPnCGJQ5vVasU//vEPKBQK3HnnnUhNTcXChQuxZ88eupkQxy9yqiZMkxS4Gy4kmI8nn3wSs2fPRkREBN3M33//ffzzn//EkiVLRvWMqwGfjsNFR4wG/f39KCoqwq5du7B06VKkpaVh69at+OKLL/DOO+/gxIkTVLgIlLiLbPzEdyZQmC1JKuX1elFQUICSkhJYrVa8++67Q8wBSqUSISEh9FlkXvmmCjL3Go0GYrHYr3oxmU/WZ4f1X+HTiT3Rs3lBiJBDNBckWdyrr76Kt99+O6C/zXDmFdbEM9wc2Ww23HPPPbSWzLp16yASibBhwwb84x//wMcff4zMzEw4nU5YrVY4nU4YDAaEh4dj/fr1WLVqFdRqNV2/RLvX1tZGfTr4bZP54vvKsKHoZI7IPV6vFwqFAg8++CC+//3v04iSDz/8EH/961+pCYQVbFhaeDweqt0g64qUTeAnbmNB3utLly4hJSUFLpeL1gJi6d/X14ft27djYGAADocDTU1NAZ81YcIEaLVadHZ2Ys+ePeju7h4SHcRqbK4n7HY7PvvsMzz44IMQiUS0wq1gcrk5IAgf4wSXy4W33noLSqUSM2fORGxsLPWqDwSNRoOVK1ciNjYWc+bMQUJCAoKCgvDpp59i3759OH36NNUEjARyD3EEJV71RCNC1LNer5cWiyNJjcTir7JrknTpADBlyhRERkZCJpMhJiaGnq6IDwE5kROm4PV6qf2aaGGGg1KpxE9+8hNMmzYN0dHR0Ov18Hg8NLKlt7cXH330UUC799fBtQoagUCyZyYlJcFgMCAoKCig+nckcwZ7Ugb8k6CR6+TkTKoHi8ViGvHAZ/QulwvNzc1ISUmB1+tFQ0MDdu7cCbvd7sfYBwYGqOMj+Z+NhuL3kc3/EUgIYE1IZB2xviFarRafffYZKioq/MbEB3sSZ+lGhFv2PrZdjuPQ0dGB9vZ2tLe3w2KxwGQy0QKFBoMBKpUKFy5cQGtrK9xuN3JycqDX65Genk4r3xKBgVRW5kfmBOov3x+C/5lSqaTCZ2hoKNatW4d58+YhODgYcrkc27dvR0FBATo7O2Gz2aBQKOiYiWBKQN5T0ifWWZhPEz46Ojpw8uRJmM1mfPOb38Ty5cvR1dWFP/7xj5TuTqcTe/bsoZEj/GypwcHB0Ol06O7uhtPphEwmQ1JS0hDfpustcBDI5XLExcXh8ccfh1arRXl5OY4dOyYIHjcRBOFjnOB2u7Fz5056Ep4yZQoKCwuHJBrTaDQYGBiAwWDA6tWrER0djaSkJPh8Ppw/fx47duzAyZMnUVdXN6p2+Q5varWapocmDI1sEMShjN3AWEYgl8uRkZGBnJwcREREoL+/Hx0dHfRUR77DbrKEoRDtC9lAA8FoNCIzMxP33nsvTQBFnOZqa2tht9uh0WhQUFCAmJgYv6qvZCwDAwOUGROfFOIDMZLQw26Q5HdUVBS0Wi3kcjkkEglqamrophtIhQ18tQlPnToVqampCAkJATB4sm1qaqKl1a9kTmD7wTJeFmTcrDmDTb9OQLRaxOenpaUFp0+fphla+adSkoyOddRk/+f3ka+BCOSEyE8IJhaLIZfLERERgb/97W80ORxZS3xhJpBWZbSMzOfzwWq1oq6uDufPn4dWq4VCoUBaWhrS09MhEolgMpnQ0dEBn8+H2267DQqFgmbrBQYjTYh2pLq6+ooOsqwZi3zO9psI9uQnJCQEK1euRFxcHGw2G2w2G/bv34+ysjK43W6al4VvniLPZf24WGFwJK0QAYlsS05ORlJSEqZPnw63240tW7YgOTmZFoa8fPkyrFbrEIauVCoRFhaG7Oxs6ujKRigNR6PrCZ1Oh5SUFKxfvx4XL17EqVOncPHixevejoBrhyB8jBN8Ph+6urqQn5+PmJgYrF+/HpcuXcIbb7zh57OQlZUFh8MBpVKJWbNmITo6GsHBwTh//jzWrFmDzs7Oq3KeIj4BxAlOLpejr68PHo8HfX19lMGzqnDC1IKCgvxSp0dFReHFF19EXFwcZcYvvvgiOjs7IZFIIJFIaBVd8kySSIk8b6SkUIsXL8Zvf/tb9PT0IDQ0lD5DJBIhJycHCoUCUqkUTqcT3/nOd2A0GumpTKVS0VNpU1MT6urqsGbNGqSnp+Ps2bN4/PHHYbFYhj0JsWYW8vvee+/FnDlzkJycjPDwcGzevBmVlZXgOA7l5eV+95KNPiQkBFlZWXjhhRdoOn2PxwOLxYKTJ0/6Oaey/hV8EJoRwYL1+SDXWQYDYIj5g6yT2NhYzJw5E1lZWZDJZCguLsbOnTvR3Nw8JLcJ+1zinEzaZ7UMRDMSSEBg+8Q6sBLfAZ/PB41Gg5iYGMyaNQt9fX3UKZRNlMUfC2t2CSSUsPPBF1BqampgsVhQXl6OsLAwpKWlQS6XUxpNmTLFry0iIJH34Q9/+AMVPlhnYxasmYUIB6xDNyvAEYYOgGojIyMjERoaitbWVnz55Ze4ePEijcIhmWHJIYIveAQFBcHpdNIxeDwe6PV6Gno7kqmD+CGFh4fD6XRiyZIluOOOO5CSkoItW7YgKioKDQ0NeP7553Hs2DG/d5rjOKSkpGDJkiX45S9/SbVCJSUl2LZtGxVk+QLu9RZA4uPjMX36dMjlctx5551XLNQpYOwhCB/jiP7+fpqmfMqUKXjmmWfwwAMP4OjRozh8+DAA4Omnn0Z0dDQt/lVZWQmLxYJz585RLcPVglWZs4XDyOZI7PJsMh5iiiHqcuArZuZ0OikzUSgU1Cbs9Xqh0Wj8Mp8ODAxArVbTSI+RYv47OztRUlKC2267zc9xFQAmT56MSZMmYcOGDfR0xYah8tX/AwMDKCkpQWFhIcLCwvzU5IFAxsYys/3792Pv3r3o7u7GX/7yF/z3f/83+vr60NraCp1OB6fTierqapoPhc38SBLK2Ww2dHR04Ny5cygrK6OZFvn5PFhmz2eCZH7IPLJ+ICwD4lc1Jd8PDQ3FhAkTEB4ejsbGRiQlJWH16tU0+yRhaHz/jODgYOp4y/aH1WbxfTTI36GhoTTt+5kzZ6DX6xEWFoa8vDxs2rSJmgDlcjkef/xxvP/++zh27NgQxsRGtZD/WQH2Sj4frBBitVpx8eJFvP3227BYLDSTp9vthtPppKnwe3p6UFNTg5iYGCgUCuzevRtffPEF7Ha73/vBb4c9FDidTqrVIPNF1j7x1yF5Q6KiopCdnU0LPZrNZmzatAmvv/46jRwjggeAIWuErH/+2nA4HH5mu0B9Jujr68P7778PALBYLHC73fjTn/5EcxNFRUVh9erV0Ov1cDgctMTAPffcA5PJBLVaDY7jYLfb8fnnn+OLL75AXV3diPlqrpcAMm3aNHzrW9/CHXfcgR07dlA6Xo8ilgKuHwThY5zhdrvR0dGBqqoqZGZmIioqCkuXLkVmZiY4jkNiYiL1u7BYLPjd736H5uZmWCyWa3pZyYZEhAnA/3TInr75eSbYk3dQUBAcDgfee+89zJkzB01NTdROLpfL6b0ej4eaSkh7hPGzZoFAuHDhAl5++WWIRCI0NzcjISEBubm5lKHyBRI+GhsbUVZWht27d2Pz5s04ePAgjh49SjfvkRCIedXV1WFgYAButxtbt27F3XffDa1WS6N3SkpKaGnvtWvXQiKRYOLEicjOzoZMJsO+fftgtVrR3t6OvXv3Uv8KQmNWQ0CYPQviYEius6Gv7PyxY+DX0CGZMon6XKfT4ejRo/jss88A+FeHZZ9FzAKBfIpYWrHfkUgkuOOOO2CxWGA0GpGamorExERMnz4d5eXlKC4uxuTJk9Hd3U3Hkp+fj9OnT6O1tTWgmYKv6WAzeJL/+SaH4eDz+eB0OnHkyBFqmmtubobRaERZWRm6u7tpyv7e3l6oVCoEBQWhvr6eVoNm54xPC7Z9VuBno4DIb2LuSk5Oxp133ons7GyEhobC4/GgqakJr7/+OiwWy5DnkmeyeXVY7RJLM77vDx+BzG3A4HvY19eHy5cvY9u2bQgLC0NSUhJmz56NtLQ06gOk0WiQmJiIvr4+1NTUoKCgADU1NSguLkZ5efmQMOkbofEAgE2bNmH+/PlQq9XweDy0touAmwuC8DHO8Pl8aG9vR1FRETQaDVJSUhAZGYnExEQAg4y6sbER9fX1cDgc2LNnD7VFXwvYjYifRp1VsQMI+D8bt+9yuXDo0CH09fWhqqoKVVVVfqGTJJJCKpX69ZevQRkOra2tOHToEFJSUlBbW0tDiq9kOyb9JgX73nnnHcTHx+PIkSPIz88f1UYU6PRM0taLxWIcO3YMoaGhCA8PpzlXioqKaF2UuLg46HQ6pKamIiYmBqWlpTh16hTa2trQ2tqKkydPDmmPFfz4vg788bE2ftInvsaBZTT8OST1erxeL6qqqmieGX4YKHnGSAIO33+B3C+XyzFlyhT4fD6q1bh8+TI0Gg0sFguqqqoQHx+P8+fP0zXR09ODwsJCtLe3D1l7BOxY2f4F0lbx1wbbb2CQadfW1tJsoI2NjYiOjkZpaSmsVqtfKOuVnhkIhD58Hxe+VomsSVKOfurUqQgODkZ9fT2KiorwwQcf0LLxfDqTZ7FaoEDmHVZrFIgegTRWwKAPiNVqpWG+4eHhmDp1KtLS0hAeHg65XE79tywWC+rq6lBaWordu3ejoaEBLS0tI5Z8uN5ITU2lhRLb2tpohJ+Amwsi7kaIngLQ29sLnU4H4OoiJoxGIxYuXIjly5fTehMHDx7El19++bXShRMQJkCqZxJPesLoHA4H3dz5CcuCgoKg0Wig1+vhdrvhcDjQ09MDtVpNk2XpdDrYbDZ6AiM2XqKlICc8koGTqGZvNhAhi2C4OVQqldBoNJR+JOFaSUkJpk6dCrlcjv7+flRWVkKpVKKiomKIczArXLD5T1gtFevrQQQIwrDJD4lKIfeT0Fv+K75gwQIsWbIE8fHxUCgUeOutt7Br164hp3gANEcEgCHrgT3N8/06pFIpDAYDHnroIWzYsAH19fX4+OOPsW3btiF0Hc6BlRXEWPMOm5GVdbIl7ZMaKey8sX4O7OeBTuHDaXL4fRtp6+Q/gxWMyBy5XC4adk4cj5OSkjB//nz8/ve/h0wmo+nmDxw4QAtAErMmmXdCQ1IhmbRN3i9+qC9Lu0CC42hYglKpxNy5czF58mTExMQgJiYGKSkp2LlzJ0pLS1FRUYHi4mK/74xEy5GuXy1+//vfY8GCBVCpVHjqqaeQl5cXMFvtaED61NPTA61We136J2AQgvBxg3CtwgfZ0FmVOwlvvB5TpdPpaOw/Sb1M6lmQ3ADED0QikdDMjSQslCRhImp4kqCMnBB1Oh16e3tpf8lGS2z6SqWSxvrfzFkGSR4HslHzT9ssWCZJGAI5hfJt8XwtBAF/4yeCG2tCIMyKPI81NxAfD77GgwVbhI2kXgdAK6vyI2PYqCG2X6xwyq5TvpmGXcvkfiKM8u9n6czShhU6APgVhQtkhmHbZj+/0rsTSKMz0vcCXeebgliBiPjSkP6R8FN2fCKRCImJicjNzcXdd9+NxMREfPrpp3jttddQU1ND65GwTptSqdTPKZc1d/K1XqTqLelrIIZ8NYIA6zRO5oIthhcoH02gNq638LF48WJ0dXWhoaEBbrcbvb291/xsQfi4cRDMLjcZOI6jgsGNglQq9cvWyZohXC4XjSohGwnZNAmjIRscyQXCqueJmQUAZWjkZOb1emnSMdbxbrgwxZsB7EkykCmGfE42KeJ4Sf4OhJHMWuQ6n7EDGHLCZ5/FZuUk/eR/n+0XYQx8ExRrgmOdVcnziJDJZuJkT9Dsb9IGX1gIVJOGHT/7GfnNaljYqBq++Ym9l/0+i+HMi3yMxLBG+i5/TIQW/PVA5ozVTLS3t+Po0aOorq6GXq9HY2MjGhsb/Uw0rBmTPJ9og9jn8TUe7HwNJ/hfjUDArnX2O/xn8a+xAvKNwNmzZ+FyuWiKfuF8fXNCED7+zcCPimCZATnlkqgGdnNhHdnYTYPNlUGED3I6ZtN/sxs+W1GSMLSbDaygQTbsQJvrcP4GfEGF3dT5zJXPaMnffIdfcrJk2+ULHGwbrBmDPQHz+3SlEz+/LYLh6oMMJ1QFapu9xm+bP07+ffxn8f++kQgkiA4nnALwEx6ArwR5VrjiuEETpNPpRG1tLdXy8HNk8P1HyHP4mie2qjBpm9VaXWl8owF/TQw352MpAFxtqQoB4wNB+LhBGI8NcTTweDyU2RPmQXJysAnByOmIqP7JJkaiREjNCHJyJpsNYUasQymbQIl8RjQmJCTvZgO7ifJzWgwnLBDwBQK+8MI3xbDtsIyW/Q57UiXP5qc2D5S2nPxmtQ/keWQdsIwiUGFCwvjYFOCkD4GYGPs8tujZcELO1bwrfAGM/Q6rBWLn6noxSFaTEEjo42sayDOJ4zUbDk4y+5I5kkql1N+K0Jcf7UOEEfLOkneP+PuQv4k5hG+qZddToHm+GgSav9Foish3r1bTNN64mfv2rwrB5+MGobGxEbGxsePdDQECBAgQ8DXR0NCAmJiY8e7GLQVB+LhB8Pl8qKioQHp6OhoaGv6tnZV6e3sRGxsr0EGgAwCBDgQCHQZxM9OB4zjYbDZERUWNmI1ZwNVDMLvcIIjFYkRHRwMAtFrtTfdSjQcEOgxCoMMgBDoMQqDDIG5WOpCoRQHXF4IoJ0CAAAECBAgYUwjChwABAgQIECBgTCEIHzcQMpkMzz//PE1Y9e8KgQ6DEOgwCIEOgxDoMAiBDv+eEBxOBQgQIECAAAFjCkHzIUCAAAECBAgYUwjChwABAgQIECBgTCEIHwIECBAgQICAMYUgfAgQIECAAAECxhSC8HGD8Oc//xnx8fGQy+WYOXMmTp06Nd5duqH4+c9/7lcETCQSYeLEifR6f38/nnjiCYSGhkKtVmPjxo1oa2sbxx5fHxw5cgSrV69GVFQURCIRPvnkE7/rHMfhueeeQ2RkJBQKBRYvXoyqqiq/e7q6unD//fdDq9VCr9fj4Ycfht1uH8NRfH1ciQ6bNm0asj6WL1/ud8+tQIcXX3wR06dPh0ajQXh4ONatW4eKigq/e0bzLtTX12PVqlVQKpUIDw/H008/fUMrXV9vjIYOCxYsGLImNm/e7HfPvzodBAwPQfi4AXj//ffx/e9/H88//zyKioqQlZWFZcuWob29fby7dkMxadIktLS00J9jx47Ra//v//0/7N69G9u3b8fhw4fR3NyMDRs2jGNvrw8cDgeysrLw5z//OeD13/zmN/jTn/6Ev/71rzh58iRUKhWWLVtGC4EBwP3334/S0lLs27cPn376KY4cOYJHH310rIZwXXAlOgDA8uXL/dbHu+++63f9VqDD4cOH8cQTT+DEiRPYt28fPB4Pli5dCofDQe+50rswMDCAVatWwe124/jx43jzzTfxxhtv4LnnnhuPIV0TRkMHAHjkkUf81sRvfvMbeu1WoIOAEcAJuO6YMWMG98QTT9D/BwYGuKioKO7FF18cx17dWDz//PNcVlZWwGtWq5WTSCTc9u3b6WdlZWUcAK6goGCMenjjAYDbsWMH/d/n83Emk4n77W9/Sz+zWq2cTCbj3n33XY7jOO7ixYscAO706dP0ns8//5wTiURcU1PTmPX9eoJPB47juG9/+9vc2rVrh/3OrUgHjuO49vZ2DgB3+PBhjuNG9y7s2bOHE4vFXGtrK73n1Vdf5bRaLedyucZ2ANcJfDpwHMfNnz+f+6//+q9hv3Mr0kHAVxA0H9cZbrcbZ86cweLFi+lnYrEYixcvRkFBwTj27MajqqoKUVFRSEhIwP3334/6+noAwJkzZ+DxePxoMnHiRJjN5luaJrW1tWhtbfUbt06nw8yZM+m4CwoKoNfrkZOTQ+9ZvHgxxGIxTp48OeZ9vpE4dOgQwsPDkZqaisceewwWi4Veu1Xp0NPTAwAwGAwARvcuFBQUIDMzExEREfSeZcuWobe3F6WlpWPY++sHPh0I3n77bRiNRmRkZODHP/4xnE4nvXYr0kHAVxAKy11ndHZ2YmBgwO+FAYCIiAiUl5ePU69uPGbOnIk33ngDqampaGlpwS9+8QvMnTsXFy5cQGtrK6RSKfR6vd93IiIi0NraOj4dHgOQsQVaC+Raa2srwsPD/a4HBwfDYDDcUrRZvnw5NmzYgAkTJqCmpgY/+clPsGLFChQUFCAoKOiWpIPP58OTTz6J2bNnIyMjAwBG9S60trYGXDPk2r8aAtEBAO677z7ExcUhKioKJSUleOaZZ1BRUYGPP/4YwK1HBwH+EIQPAdcFK1asoH9PnjwZM2fORFxcHD744AMoFIpx7JmAmwH33HMP/TszMxOTJ09GYmIiDh06hEWLFo1jz24cnnjiCVy4cMHP9+nfEcPRgfXnyczMRGRkJBYtWoSamhokJiaOdTcFjDEEs8t1htFoRFBQ0BDv9ba2NphMpnHq1dhDr9cjJSUF1dXVMJlMcLvdsFqtfvfc6jQhYxtpLZhMpiGOyF6vF11dXbc0bRISEmA0GlFdXQ3g1qPD9773PXz66ac4ePAgYmJi6OejeRdMJlPANUOu/SthODoEwsyZMwHAb03cKnQQMBSC8HGdIZVKMW3aNOTl5dHPfD4f8vLykJubO449G1vY7XbU1NQgMjIS06ZNg0Qi8aNJRUUF6uvrb2maTJgwASaTyW/cvb29OHnyJB13bm4urFYrzpw5Q+85cOAAfD4f3YxvRTQ2NsJisSAyMhLArUMHjuPwve99Dzt27MCBAwcwYcIEv+ujeRdyc3Nx/vx5P2Fs37590Gq1SE9PH5uBfE1ciQ6BcPbsWQDwWxP/6nQQMALG2+P1VsR7773HyWQy7o033uAuXrzIPfroo5xer/fz2r7V8NRTT3GHDh3iamtrufz8fG7x4sWc0Wjk2tvbOY7juM2bN3Nms5k7cOAAV1hYyOXm5nK5ubnj3OuvD5vNxhUXF3PFxcUcAO6ll17iiouLucuXL3Mcx3H/8z//w+n1em7nzp1cSUkJt3btWm7ChAlcX18ffcby5cu57Oxs7uTJk9yxY8e45ORk7t577x2vIV0TRqKDzWbjfvCDH3AFBQVcbW0tt3//fm7q1KlccnIy19/fT59xK9Dhscce43Q6HXfo0CGupaWF/jidTnrPld4Fr9fLZWRkcEuXLuXOnj3L7d27lwsLC+N+/OMfj8eQrglXokN1dTX3y1/+kissLORqa2u5nTt3cgkJCdy8efPoM24FOggYHoLwcYPw8ssvc2azmZNKpdyMGTO4EydOjHeXbijuvvtuLjIykpNKpVx0dDR39913c9XV1fR6X18f9/jjj3MhISGcUqnk1q9fz7W0tIxjj68PDh48yAEY8vPtb3+b47jBcNuf/exnXEREBCeTybhFixZxFRUVfs+wWCzcvffey6nVak6r1XIPPvggZ7PZxmE0146R6OB0OrmlS5dyYWFhnEQi4eLi4rhHHnlkiDB+K9AhEA0AcNu2baP3jOZdqKur41asWMEpFArOaDRyTz31FOfxeMZ4NNeOK9Ghvr6emzdvHmcwGDiZTMYlJSVxTz/9NNfT0+P3nH91OggYHiKO47ix07MIECBAgAABAv7dIfh8CBAgQIAAAQLGFILwIUCAAAECBAgYUwjChwABAgQIECBgTCEIHwIECBAgQICAMYUgfAgQIECAAAECxhSC8CFAgAABAgQIGFMIwocAAQIECBAgYEwhCB8CBAgQIECAgDGFIHwIECBAgAABAsYUgvAhQIAAAQIECBhTCMKHAAECBAgQIGBMIQgfAgQIECBAgIAxxf8HVGUNEYyE+a0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "USE_TORCH_DIFFEQ = True\n", + "with torch.no_grad():\n", + " if USE_TORCH_DIFFEQ:\n", + " traj = torchdiffeq.odeint(\n", + " lambda t, x: model.forward(t, x, generated_class_list),\n", + " torch.randn(100, 1, 28, 28, device=device),\n", + " torch.linspace(0, 1, 2, device=device),\n", + " atol=1e-4,\n", + " rtol=1e-4,\n", + " method=\"dopri5\",\n", + " )\n", + " else:\n", + " traj = node.trajectory(\n", + " torch.randn(100, 1, 28, 28, device=device),\n", + " t_span=torch.linspace(0, 1, 2, device=device),\n", + " )\n", + "grid = make_grid(\n", + " traj[-1, :100].view([-1, 1, 28, 28]).clip(-1, 1), value_range=(-1, 1), padding=0, nrow=10\n", + ")\n", + "img = ToPILImage()(grid)\n", + "plt.imshow(img)\n", + "plt.title(f\"optimal transport cfm\\nlabels: {cond_values}\")\n", + "plt.savefig(\"ot-cfm_noninteger.svg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "940a3db7", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T13:05:30.958274Z", + "iopub.status.busy": "2025-05-08T13:05:30.958088Z", + "iopub.status.idle": "2025-05-08T13:05:31.071636Z", + "shell.execute_reply": "2025-05-08T13:05:31.070988Z" + } + }, + "outputs": [], + "source": [ + "#################################\n", + "# SF2M\n", + "#################################\n", + "batch_size = 128\n", + "n_epochs = 10\n", + "sigma = 0.1\n", + "\n", + "\n", + "model = UNetModel(\n", + " dim=(1, 28, 28), num_channels=32, num_res_blocks=1, embedding_net=embed_condition\n", + ").to(device)\n", + "score_model = UNetModel(\n", + " dim=(1, 28, 28), num_channels=32, num_res_blocks=1, embedding_net=embed_condition\n", + ").to(device)\n", + "\n", + "optimizer = torch.optim.Adam(list(model.parameters()) + list(score_model.parameters()))\n", + "FM = SchrodingerBridgeConditionalFlowMatcher(sigma=sigma)\n", + "node = NeuralODE(model, solver=\"dopri5\", sensitivity=\"adjoint\", atol=1e-4, rtol=1e-4)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "c2761777", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T13:05:31.073228Z", + "iopub.status.busy": "2025-05-08T13:05:31.073045Z", + "iopub.status.idle": "2025-05-08T13:14:15.351348Z", + "shell.execute_reply": "2025-05-08T13:14:15.350854Z" + } + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.16it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.54it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 0, loss: 2.857\r", + "SF2M epoch: 0, steps: 1, loss: 2.893\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.71it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.79it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 2, loss: 2.735\r", + "SF2M epoch: 0, steps: 3, loss: 2.619\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.82it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.85it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 4, loss: 2.528\r", + "SF2M epoch: 0, steps: 5, loss: 2.384\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 6, loss: 2.283\r", + "SF2M epoch: 0, steps: 7, loss: 2.574\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.46it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 8, loss: 2.067\r", + "SF2M epoch: 0, steps: 9, loss: 1.991\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.60it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.69it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 10, loss: 1.914\r", + "SF2M epoch: 0, steps: 11, loss: 1.795\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.76it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.82it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 12, loss: 1.732\r", + "SF2M epoch: 0, steps: 13, loss: 1.702\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.84it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 14, loss: 1.629\r", + "SF2M epoch: 0, steps: 15, loss: 1.61\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 16, loss: 1.56\r", + "SF2M epoch: 0, steps: 17, loss: 1.523\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 18, loss: 1.511\r", + "SF2M epoch: 0, steps: 19, loss: 1.505\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 20, loss: 1.443\r", + "SF2M epoch: 0, steps: 21, loss: 1.427\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 22, loss: 1.442\r", + "SF2M epoch: 0, steps: 23, loss: 1.391\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 24, loss: 1.422\r", + "SF2M epoch: 0, steps: 25, loss: 1.359\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 26, loss: 1.499\r", + "SF2M epoch: 0, steps: 27, loss: 1.806\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 28, loss: 1.417\r", + "SF2M epoch: 0, steps: 29, loss: 1.383\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 30, loss: 1.375\r", + "SF2M epoch: 0, steps: 31, loss: 1.326\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 32, loss: 1.416\r", + "SF2M epoch: 0, steps: 33, loss: 1.385\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 34, loss: 1.28\r", + "SF2M epoch: 0, steps: 35, loss: 1.325\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 36, loss: 1.295\r", + "SF2M epoch: 0, steps: 37, loss: 1.279\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 38, loss: 1.297\r", + "SF2M epoch: 0, steps: 39, loss: 1.309\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 40, loss: 1.321\r", + "SF2M epoch: 0, steps: 41, loss: 1.284\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 42, loss: 1.281\r", + "SF2M epoch: 0, steps: 43, loss: 1.273\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 44, loss: 1.336\r", + "SF2M epoch: 0, steps: 45, loss: 1.247\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 46, loss: 1.277\r", + "SF2M epoch: 0, steps: 47, loss: 1.293\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 48, loss: 1.255\r", + "SF2M epoch: 0, steps: 49, loss: 1.308\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 50, loss: 1.25\r", + "SF2M epoch: 0, steps: 51, loss: 1.244\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 52, loss: 1.288\r", + "SF2M epoch: 0, steps: 53, loss: 1.265\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 54, loss: 1.259\r", + "SF2M epoch: 0, steps: 55, loss: 1.287\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 56, loss: 1.261\r", + "SF2M epoch: 0, steps: 57, loss: 1.259\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 58, loss: 1.252\r", + "SF2M epoch: 0, steps: 59, loss: 1.228\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 60, loss: 1.316\r", + "SF2M epoch: 0, steps: 61, loss: 1.248\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 62, loss: 1.24\r", + "SF2M epoch: 0, steps: 63, loss: 1.373\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 64, loss: 1.219\r", + "SF2M epoch: 0, steps: 65, loss: 1.216\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 66, loss: 1.242\r", + "SF2M epoch: 0, steps: 67, loss: 1.222\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 68, loss: 1.244\r", + "SF2M epoch: 0, steps: 69, loss: 1.261\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 70, loss: 1.29\r", + "SF2M epoch: 0, steps: 71, loss: 1.223\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 72, loss: 1.23\r", + "SF2M epoch: 0, steps: 73, loss: 1.227\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 74, loss: 1.245\r", + "SF2M epoch: 0, steps: 75, loss: 1.216\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 76, loss: 1.212\r", + "SF2M epoch: 0, steps: 77, loss: 1.257\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:09, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 78, loss: 1.26\r", + "SF2M epoch: 0, steps: 79, loss: 1.272\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 80, loss: 1.412\r", + "SF2M epoch: 0, steps: 81, loss: 1.217\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 82, loss: 1.232\r", + "SF2M epoch: 0, steps: 83, loss: 1.211\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 84, loss: 1.24\r", + "SF2M epoch: 0, steps: 85, loss: 1.216\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 86, loss: 1.223\r", + "SF2M epoch: 0, steps: 87, loss: 1.19\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:10, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 88, loss: 1.295\r", + "SF2M epoch: 0, steps: 89, loss: 1.296\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 90, loss: 1.24\r", + "SF2M epoch: 0, steps: 91, loss: 1.208\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 92, loss: 1.208\r", + "SF2M epoch: 0, steps: 93, loss: 1.204\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 94, loss: 1.291\r", + "SF2M epoch: 0, steps: 95, loss: 1.217\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:11, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 96, loss: 1.236\r", + "SF2M epoch: 0, steps: 97, loss: 1.198\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 98, loss: 1.393\r", + "SF2M epoch: 0, steps: 99, loss: 1.204\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 100, loss: 1.211\r", + "SF2M epoch: 0, steps: 101, loss: 1.206\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 102, loss: 1.216\r", + "SF2M epoch: 0, steps: 103, loss: 1.209\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 104, loss: 1.261\r", + "SF2M epoch: 0, steps: 105, loss: 1.207\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:12, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 106, loss: 1.214\r", + "SF2M epoch: 0, steps: 107, loss: 1.196\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 108, loss: 1.188\r", + "SF2M epoch: 0, steps: 109, loss: 1.191\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 110, loss: 1.202\r", + "SF2M epoch: 0, steps: 111, loss: 1.201\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 112, loss: 1.276\r", + "SF2M epoch: 0, steps: 113, loss: 1.225\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:13, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 114, loss: 1.195\r", + "SF2M epoch: 0, steps: 115, loss: 1.179\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 116, loss: 1.21\r", + "SF2M epoch: 0, steps: 117, loss: 1.198\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 118, loss: 1.205\r", + "SF2M epoch: 0, steps: 119, loss: 1.184\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 120, loss: 1.19\r", + "SF2M epoch: 0, steps: 121, loss: 1.191\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 122, loss: 1.197\r", + "SF2M epoch: 0, steps: 123, loss: 1.439\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:14, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 124, loss: 1.164\r", + "SF2M epoch: 0, steps: 125, loss: 1.172\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 126, loss: 1.187\r", + "SF2M epoch: 0, steps: 127, loss: 1.171\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 128, loss: 1.226\r", + "SF2M epoch: 0, steps: 129, loss: 1.193\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 130, loss: 1.18\r", + "SF2M epoch: 0, steps: 131, loss: 1.178\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:15, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 132, loss: 1.187\r", + "SF2M epoch: 0, steps: 133, loss: 1.181\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 134, loss: 1.174\r", + "SF2M epoch: 0, steps: 135, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 136, loss: 1.186\r", + "SF2M epoch: 0, steps: 137, loss: 1.171\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 138, loss: 1.186\r", + "SF2M epoch: 0, steps: 139, loss: 1.175\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 140, loss: 1.192\r", + "SF2M epoch: 0, steps: 141, loss: 1.191\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:16, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 142, loss: 1.252\r", + "SF2M epoch: 0, steps: 143, loss: 1.19\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 144, loss: 1.201\r", + "SF2M epoch: 0, steps: 145, loss: 1.188\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 146, loss: 1.187\r", + "SF2M epoch: 0, steps: 147, loss: 1.196\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 148, loss: 1.171\r", + "SF2M epoch: 0, steps: 149, loss: 1.17\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 150, loss: 1.188\r", + "SF2M epoch: 0, steps: 151, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 152, loss: 1.225\r", + "SF2M epoch: 0, steps: 153, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 154, loss: 1.191\r", + "SF2M epoch: 0, steps: 155, loss: 1.189\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 156, loss: 1.17\r", + "SF2M epoch: 0, steps: 157, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 158, loss: 1.217\r", + "SF2M epoch: 0, steps: 159, loss: 1.181\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 160, loss: 1.332\r", + "SF2M epoch: 0, steps: 161, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 162, loss: 1.262\r", + "SF2M epoch: 0, steps: 163, loss: 1.198\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 164, loss: 1.201\r", + "SF2M epoch: 0, steps: 165, loss: 1.187\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 166, loss: 1.249\r", + "SF2M epoch: 0, steps: 167, loss: 4.328\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 168, loss: 1.186\r", + "SF2M epoch: 0, steps: 169, loss: 1.187\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 170, loss: 1.576\r", + "SF2M epoch: 0, steps: 171, loss: 1.19\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 172, loss: 1.183\r", + "SF2M epoch: 0, steps: 173, loss: 1.229\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 174, loss: 1.187\r", + "SF2M epoch: 0, steps: 175, loss: 1.25\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:20, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 176, loss: 1.192\r", + "SF2M epoch: 0, steps: 177, loss: 1.182\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.88it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 178, loss: 1.178\r", + "SF2M epoch: 0, steps: 179, loss: 1.172\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.88it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 180, loss: 1.173\r", + "SF2M epoch: 0, steps: 181, loss: 1.178\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 182, loss: 1.196\r", + "SF2M epoch: 0, steps: 183, loss: 1.391\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 184, loss: 1.203\r", + "SF2M epoch: 0, steps: 185, loss: 1.195\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:21, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 186, loss: 1.185\r", + "SF2M epoch: 0, steps: 187, loss: 1.182\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 188, loss: 1.159\r", + "SF2M epoch: 0, steps: 189, loss: 1.21\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 190, loss: 1.174\r", + "SF2M epoch: 0, steps: 191, loss: 1.209\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 192, loss: 1.166\r", + "SF2M epoch: 0, steps: 193, loss: 1.182\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:22, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 194, loss: 1.203\r", + "SF2M epoch: 0, steps: 195, loss: 1.182\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 196, loss: 1.165\r", + "SF2M epoch: 0, steps: 197, loss: 1.171\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 198, loss: 1.197\r", + "SF2M epoch: 0, steps: 199, loss: 1.177\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 200, loss: 1.166\r", + "SF2M epoch: 0, steps: 201, loss: 1.254\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 202, loss: 1.167\r", + "SF2M epoch: 0, steps: 203, loss: 1.189\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:23, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 204, loss: 1.179\r", + "SF2M epoch: 0, steps: 205, loss: 1.188\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 206, loss: 1.18\r", + "SF2M epoch: 0, steps: 207, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 208, loss: 1.185\r", + "SF2M epoch: 0, steps: 209, loss: 1.187\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 210, loss: 1.159\r", + "SF2M epoch: 0, steps: 211, loss: 1.181\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:24, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 212, loss: 1.168\r", + "SF2M epoch: 0, steps: 213, loss: 1.203\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 214, loss: 1.179\r", + "SF2M epoch: 0, steps: 215, loss: 1.198\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 216, loss: 1.194\r", + "SF2M epoch: 0, steps: 217, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 218, loss: 1.196\r", + "SF2M epoch: 0, steps: 219, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 220, loss: 1.17\r", + "SF2M epoch: 0, steps: 221, loss: 1.23\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:25, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 222, loss: 1.233\r", + "SF2M epoch: 0, steps: 223, loss: 1.258\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 224, loss: 1.187\r", + "SF2M epoch: 0, steps: 225, loss: 1.178\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 226, loss: 1.186\r", + "SF2M epoch: 0, steps: 227, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 228, loss: 1.204\r", + "SF2M epoch: 0, steps: 229, loss: 1.17\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:26, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 230, loss: 1.185\r", + "SF2M epoch: 0, steps: 231, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 232, loss: 1.17\r", + "SF2M epoch: 0, steps: 233, loss: 1.183\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 234, loss: 1.162\r", + "SF2M epoch: 0, steps: 235, loss: 1.176\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 236, loss: 1.177\r", + "SF2M epoch: 0, steps: 237, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 238, loss: 1.173\r", + "SF2M epoch: 0, steps: 239, loss: 1.282\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:27, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 240, loss: 1.34\r", + "SF2M epoch: 0, steps: 241, loss: 1.184\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 242, loss: 1.164\r", + "SF2M epoch: 0, steps: 243, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 244, loss: 1.166\r", + "SF2M epoch: 0, steps: 245, loss: 1.602\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 246, loss: 1.148\r", + "SF2M epoch: 0, steps: 247, loss: 1.234\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:28, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 248, loss: 1.152\r", + "SF2M epoch: 0, steps: 249, loss: 1.23\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 250, loss: 1.17\r", + "SF2M epoch: 0, steps: 251, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 252, loss: 1.233\r", + "SF2M epoch: 0, steps: 253, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 254, loss: 1.149\r", + "SF2M epoch: 0, steps: 255, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 256, loss: 1.18\r", + "SF2M epoch: 0, steps: 257, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:29, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 258, loss: 1.162\r", + "SF2M epoch: 0, steps: 259, loss: 1.203\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 260, loss: 1.133\r", + "SF2M epoch: 0, steps: 261, loss: 1.175\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 262, loss: 1.208\r", + "SF2M epoch: 0, steps: 263, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 264, loss: 1.178\r", + "SF2M epoch: 0, steps: 265, loss: 1.21\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:30, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 266, loss: 1.193\r", + "SF2M epoch: 0, steps: 267, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 268, loss: 1.169\r", + "SF2M epoch: 0, steps: 269, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 270, loss: 1.169\r", + "SF2M epoch: 0, steps: 271, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 272, loss: 1.242\r", + "SF2M epoch: 0, steps: 273, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:31, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 274, loss: 1.205\r", + "SF2M epoch: 0, steps: 275, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:31, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 276, loss: 1.156\r", + "SF2M epoch: 0, steps: 277, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 278, loss: 1.144\r", + "SF2M epoch: 0, steps: 279, loss: 1.192\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 280, loss: 1.169\r", + "SF2M epoch: 0, steps: 281, loss: 1.179\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 282, loss: 1.141\r", + "SF2M epoch: 0, steps: 283, loss: 1.202\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:32, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:32, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 284, loss: 1.151\r", + "SF2M epoch: 0, steps: 285, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.01it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 286, loss: 1.149\r", + "SF2M epoch: 0, steps: 287, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 7.99it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.26it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 288, loss: 1.169\r", + "SF2M epoch: 0, steps: 289, loss: 1.524\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.44it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.57it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 290, loss: 1.147\r", + "SF2M epoch: 0, steps: 291, loss: 1.305\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.67it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:33, 8.73it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 292, loss: 1.171\r", + "SF2M epoch: 0, steps: 293, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.79it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.84it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 294, loss: 1.16\r", + "SF2M epoch: 0, steps: 295, loss: 1.176\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.88it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 296, loss: 1.189\r", + "SF2M epoch: 0, steps: 297, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 298, loss: 1.153\r", + "SF2M epoch: 0, steps: 299, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 300, loss: 1.159\r", + "SF2M epoch: 0, steps: 301, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:34, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 302, loss: 1.148\r", + "SF2M epoch: 0, steps: 303, loss: 1.187\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 304, loss: 1.163\r", + "SF2M epoch: 0, steps: 305, loss: 1.165\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 306, loss: 1.139\r", + "SF2M epoch: 0, steps: 307, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 308, loss: 1.633\r", + "SF2M epoch: 0, steps: 309, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:35, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 310, loss: 1.148\r", + "SF2M epoch: 0, steps: 311, loss: 1.194\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 312, loss: 1.159\r", + "SF2M epoch: 0, steps: 313, loss: 1.507\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 314, loss: 1.174\r", + "SF2M epoch: 0, steps: 315, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 316, loss: 1.211\r", + "SF2M epoch: 0, steps: 317, loss: 1.197\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:36, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 318, loss: 1.17\r", + "SF2M epoch: 0, steps: 319, loss: 1.205\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:36, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 320, loss: 1.226\r", + "SF2M epoch: 0, steps: 321, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 322, loss: 1.161\r", + "SF2M epoch: 0, steps: 323, loss: 1.225\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 324, loss: 1.15\r", + "SF2M epoch: 0, steps: 325, loss: 1.172\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 326, loss: 1.213\r", + "SF2M epoch: 0, steps: 327, loss: 1.163\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:37, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:37, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 328, loss: 1.217\r", + "SF2M epoch: 0, steps: 329, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 330, loss: 1.162\r", + "SF2M epoch: 0, steps: 331, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 332, loss: 1.137\r", + "SF2M epoch: 0, steps: 333, loss: 1.255\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 334, loss: 1.161\r", + "SF2M epoch: 0, steps: 335, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:38, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 336, loss: 1.387\r", + "SF2M epoch: 0, steps: 337, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:38, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 338, loss: 1.145\r", + "SF2M epoch: 0, steps: 339, loss: 1.196\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 340, loss: 1.168\r", + "SF2M epoch: 0, steps: 341, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 342, loss: 1.157\r", + "SF2M epoch: 0, steps: 343, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 344, loss: 1.16\r", + "SF2M epoch: 0, steps: 345, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:39, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:39, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 346, loss: 1.196\r", + "SF2M epoch: 0, steps: 347, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 348, loss: 1.154\r", + "SF2M epoch: 0, steps: 349, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 350, loss: 1.175\r", + "SF2M epoch: 0, steps: 351, loss: 1.168\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 352, loss: 1.189\r", + "SF2M epoch: 0, steps: 353, loss: 4.285\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:40, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 354, loss: 1.139\r", + "SF2M epoch: 0, steps: 355, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:40, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 356, loss: 1.137\r", + "SF2M epoch: 0, steps: 357, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 358, loss: 1.151\r", + "SF2M epoch: 0, steps: 359, loss: 1.225\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 360, loss: 1.14\r", + "SF2M epoch: 0, steps: 361, loss: 1.206\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 362, loss: 1.238\r", + "SF2M epoch: 0, steps: 363, loss: 1.177\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:41, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:41, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 364, loss: 1.135\r", + "SF2M epoch: 0, steps: 365, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 366, loss: 1.163\r", + "SF2M epoch: 0, steps: 367, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 368, loss: 1.16\r", + "SF2M epoch: 0, steps: 369, loss: 1.17\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 370, loss: 1.228\r", + "SF2M epoch: 0, steps: 371, loss: 1.171\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:42, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 372, loss: 1.176\r", + "SF2M epoch: 0, steps: 373, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:42, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 374, loss: 1.196\r", + "SF2M epoch: 0, steps: 375, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 376, loss: 1.142\r", + "SF2M epoch: 0, steps: 377, loss: 1.187\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 378, loss: 1.165\r", + "SF2M epoch: 0, steps: 379, loss: 1.181\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 380, loss: 1.156\r", + "SF2M epoch: 0, steps: 381, loss: 1.163\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:43, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:43, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 382, loss: 1.163\r", + "SF2M epoch: 0, steps: 383, loss: 1.197\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 384, loss: 1.144\r", + "SF2M epoch: 0, steps: 385, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 386, loss: 1.153\r", + "SF2M epoch: 0, steps: 387, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 388, loss: 1.2\r", + "SF2M epoch: 0, steps: 389, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:44, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 390, loss: 1.152\r", + "SF2M epoch: 0, steps: 391, loss: 1.171\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:44, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 392, loss: 1.182\r", + "SF2M epoch: 0, steps: 393, loss: 1.17\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 394, loss: 1.156\r", + "SF2M epoch: 0, steps: 395, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 396, loss: 1.149\r", + "SF2M epoch: 0, steps: 397, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 398, loss: 1.164\r", + "SF2M epoch: 0, steps: 399, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:45, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:45, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 400, loss: 1.147\r", + "SF2M epoch: 0, steps: 401, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 402, loss: 1.171\r", + "SF2M epoch: 0, steps: 403, loss: 1.225\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 404, loss: 1.178\r", + "SF2M epoch: 0, steps: 405, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 406, loss: 1.159\r", + "SF2M epoch: 0, steps: 407, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:46, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:46, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 408, loss: 1.149\r", + "SF2M epoch: 0, steps: 409, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:46, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 410, loss: 1.136\r", + "SF2M epoch: 0, steps: 411, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 412, loss: 1.16\r", + "SF2M epoch: 0, steps: 413, loss: 1.255\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 414, loss: 1.164\r", + "SF2M epoch: 0, steps: 415, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:47, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 416, loss: 1.145\r", + "SF2M epoch: 0, steps: 417, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:47, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:47, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 418, loss: 1.156\r", + "SF2M epoch: 0, steps: 419, loss: 1.186\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 420, loss: 1.151\r", + "SF2M epoch: 0, steps: 421, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 422, loss: 1.147\r", + "SF2M epoch: 0, steps: 423, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 424, loss: 1.181\r", + "SF2M epoch: 0, steps: 425, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:48, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:48, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 426, loss: 1.164\r", + "SF2M epoch: 0, steps: 427, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:48, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 428, loss: 1.15\r", + "SF2M epoch: 0, steps: 429, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 430, loss: 1.139\r", + "SF2M epoch: 0, steps: 431, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 432, loss: 1.162\r", + "SF2M epoch: 0, steps: 433, loss: 1.297\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:49, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 434, loss: 1.209\r", + "SF2M epoch: 0, steps: 435, loss: 1.324\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:49, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:49, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 436, loss: 1.174\r", + "SF2M epoch: 0, steps: 437, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 438, loss: 1.141\r", + "SF2M epoch: 0, steps: 439, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 440, loss: 1.178\r", + "SF2M epoch: 0, steps: 441, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 442, loss: 1.138\r", + "SF2M epoch: 0, steps: 443, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:50, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:50, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 444, loss: 1.157\r", + "SF2M epoch: 0, steps: 445, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 446, loss: 1.172\r", + "SF2M epoch: 0, steps: 447, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 448, loss: 1.156\r", + "SF2M epoch: 0, steps: 449, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 450, loss: 1.165\r", + "SF2M epoch: 0, steps: 451, loss: 1.286\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:51, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 452, loss: 1.131\r", + "SF2M epoch: 0, steps: 453, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:51, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 454, loss: 1.146\r", + "SF2M epoch: 0, steps: 455, loss: 1.204\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 456, loss: 1.135\r", + "SF2M epoch: 0, steps: 457, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 458, loss: 1.157\r", + "SF2M epoch: 0, steps: 459, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 460, loss: 1.238\r", + "SF2M epoch: 0, steps: 461, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:52, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:52, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 462, loss: 1.141\r", + "SF2M epoch: 0, steps: 463, loss: 1.237\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 464, loss: 1.191\r", + "SF2M epoch: 0, steps: 465, loss: 1.288\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 0, steps: 466, loss: 1.15\r", + "SF2M epoch: 0, steps: 467, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.83it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 0, loss: 1.158\r", + "SF2M epoch: 1, steps: 1, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.88it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 2, loss: 1.181\r", + "SF2M epoch: 1, steps: 3, loss: 1.191\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 4, loss: 1.155\r", + "SF2M epoch: 1, steps: 5, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 6, loss: 1.197\r", + "SF2M epoch: 1, steps: 7, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.17it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 8, loss: 1.172\r", + "SF2M epoch: 1, steps: 9, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.39it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.54it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 10, loss: 1.164\r", + "SF2M epoch: 1, steps: 11, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.64it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.72it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 12, loss: 1.151\r", + "SF2M epoch: 1, steps: 13, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.78it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.82it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 14, loss: 1.16\r", + "SF2M epoch: 1, steps: 15, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.84it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.86it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 16, loss: 1.158\r", + "SF2M epoch: 1, steps: 17, loss: 1.163\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 18, loss: 1.153\r", + "SF2M epoch: 1, steps: 19, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 20, loss: 1.18\r", + "SF2M epoch: 1, steps: 21, loss: 1.207\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 22, loss: 1.138\r", + "SF2M epoch: 1, steps: 23, loss: 1.173\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 24, loss: 1.182\r", + "SF2M epoch: 1, steps: 25, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 26, loss: 1.155\r", + "SF2M epoch: 1, steps: 27, loss: 1.296\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 28, loss: 1.154\r", + "SF2M epoch: 1, steps: 29, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 30, loss: 1.185\r", + "SF2M epoch: 1, steps: 31, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 32, loss: 1.139\r", + "SF2M epoch: 1, steps: 33, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 34, loss: 1.156\r", + "SF2M epoch: 1, steps: 35, loss: 1.265\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 36, loss: 1.15\r", + "SF2M epoch: 1, steps: 37, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 38, loss: 1.152\r", + "SF2M epoch: 1, steps: 39, loss: 1.179\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 40, loss: 1.14\r", + "SF2M epoch: 1, steps: 41, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 42, loss: 1.157\r", + "SF2M epoch: 1, steps: 43, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 44, loss: 1.152\r", + "SF2M epoch: 1, steps: 45, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 46, loss: 1.154\r", + "SF2M epoch: 1, steps: 47, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 48, loss: 1.139\r", + "SF2M epoch: 1, steps: 49, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 50, loss: 1.175\r", + "SF2M epoch: 1, steps: 51, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 52, loss: 1.145\r", + "SF2M epoch: 1, steps: 53, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 54, loss: 1.13\r", + "SF2M epoch: 1, steps: 55, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 56, loss: 1.169\r", + "SF2M epoch: 1, steps: 57, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 58, loss: 1.187\r", + "SF2M epoch: 1, steps: 59, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:07, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 60, loss: 1.161\r", + "SF2M epoch: 1, steps: 61, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 62, loss: 1.139\r", + "SF2M epoch: 1, steps: 63, loss: 1.203\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 64, loss: 1.135\r", + "SF2M epoch: 1, steps: 65, loss: 1.215\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 66, loss: 1.356\r", + "SF2M epoch: 1, steps: 67, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 68, loss: 1.172\r", + "SF2M epoch: 1, steps: 69, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:08, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 70, loss: 1.147\r", + "SF2M epoch: 1, steps: 71, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 72, loss: 1.181\r", + "SF2M epoch: 1, steps: 73, loss: 1.163\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 74, loss: 1.147\r", + "SF2M epoch: 1, steps: 75, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 76, loss: 1.148\r", + "SF2M epoch: 1, steps: 77, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 78, loss: 1.151\r", + "SF2M epoch: 1, steps: 79, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 80, loss: 1.125\r", + "SF2M epoch: 1, steps: 81, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 82, loss: 1.271\r", + "SF2M epoch: 1, steps: 83, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 84, loss: 1.145\r", + "SF2M epoch: 1, steps: 85, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 86, loss: 1.273\r", + "SF2M epoch: 1, steps: 87, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:10, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 88, loss: 1.143\r", + "SF2M epoch: 1, steps: 89, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 90, loss: 1.164\r", + "SF2M epoch: 1, steps: 91, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 92, loss: 1.142\r", + "SF2M epoch: 1, steps: 93, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 94, loss: 1.151\r", + "SF2M epoch: 1, steps: 95, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 96, loss: 1.183\r", + "SF2M epoch: 1, steps: 97, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 98, loss: 1.143\r", + "SF2M epoch: 1, steps: 99, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 100, loss: 1.146\r", + "SF2M epoch: 1, steps: 101, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 102, loss: 1.152\r", + "SF2M epoch: 1, steps: 103, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 104, loss: 1.126\r", + "SF2M epoch: 1, steps: 105, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 106, loss: 1.158\r", + "SF2M epoch: 1, steps: 107, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 108, loss: 1.197\r", + "SF2M epoch: 1, steps: 109, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 110, loss: 1.254\r", + "SF2M epoch: 1, steps: 111, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 112, loss: 1.231\r", + "SF2M epoch: 1, steps: 113, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:13, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 114, loss: 1.152\r", + "SF2M epoch: 1, steps: 115, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 116, loss: 1.153\r", + "SF2M epoch: 1, steps: 117, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 118, loss: 1.163\r", + "SF2M epoch: 1, steps: 119, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 120, loss: 1.461\r", + "SF2M epoch: 1, steps: 121, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 122, loss: 1.147\r", + "SF2M epoch: 1, steps: 123, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 124, loss: 1.146\r", + "SF2M epoch: 1, steps: 125, loss: 1.231\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 126, loss: 1.127\r", + "SF2M epoch: 1, steps: 127, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 128, loss: 1.143\r", + "SF2M epoch: 1, steps: 129, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 130, loss: 1.143\r", + "SF2M epoch: 1, steps: 131, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 132, loss: 1.16\r", + "SF2M epoch: 1, steps: 133, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 134, loss: 1.161\r", + "SF2M epoch: 1, steps: 135, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 136, loss: 1.155\r", + "SF2M epoch: 1, steps: 137, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 138, loss: 1.193\r", + "SF2M epoch: 1, steps: 139, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 140, loss: 1.136\r", + "SF2M epoch: 1, steps: 141, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 142, loss: 1.153\r", + "SF2M epoch: 1, steps: 143, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 144, loss: 1.139\r", + "SF2M epoch: 1, steps: 145, loss: 1.165\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 146, loss: 1.143\r", + "SF2M epoch: 1, steps: 147, loss: 1.165\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 148, loss: 1.142\r", + "SF2M epoch: 1, steps: 149, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 150, loss: 1.125\r", + "SF2M epoch: 1, steps: 151, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 152, loss: 1.232\r", + "SF2M epoch: 1, steps: 153, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 154, loss: 1.195\r", + "SF2M epoch: 1, steps: 155, loss: 1.192\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 156, loss: 1.145\r", + "SF2M epoch: 1, steps: 157, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 158, loss: 1.154\r", + "SF2M epoch: 1, steps: 159, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 160, loss: 1.284\r", + "SF2M epoch: 1, steps: 161, loss: 1.189\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 162, loss: 1.143\r", + "SF2M epoch: 1, steps: 163, loss: 1.168\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 164, loss: 1.144\r", + "SF2M epoch: 1, steps: 165, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 166, loss: 1.218\r", + "SF2M epoch: 1, steps: 167, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 168, loss: 1.215\r", + "SF2M epoch: 1, steps: 169, loss: 1.359\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 170, loss: 1.147\r", + "SF2M epoch: 1, steps: 171, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 172, loss: 1.107\r", + "SF2M epoch: 1, steps: 173, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 174, loss: 1.158\r", + "SF2M epoch: 1, steps: 175, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 176, loss: 1.166\r", + "SF2M epoch: 1, steps: 177, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 178, loss: 1.141\r", + "SF2M epoch: 1, steps: 179, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 180, loss: 1.121\r", + "SF2M epoch: 1, steps: 181, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 182, loss: 1.155\r", + "SF2M epoch: 1, steps: 183, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 184, loss: 1.15\r", + "SF2M epoch: 1, steps: 185, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 186, loss: 1.149\r", + "SF2M epoch: 1, steps: 187, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 188, loss: 1.136\r", + "SF2M epoch: 1, steps: 189, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 190, loss: 1.138\r", + "SF2M epoch: 1, steps: 191, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 192, loss: 1.14\r", + "SF2M epoch: 1, steps: 193, loss: 1.176\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:22, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 194, loss: 1.147\r", + "SF2M epoch: 1, steps: 195, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 196, loss: 1.143\r", + "SF2M epoch: 1, steps: 197, loss: 3.711\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 198, loss: 1.135\r", + "SF2M epoch: 1, steps: 199, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 200, loss: 1.193\r", + "SF2M epoch: 1, steps: 201, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 202, loss: 1.158\r", + "SF2M epoch: 1, steps: 203, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 204, loss: 1.148\r", + "SF2M epoch: 1, steps: 205, loss: 1.175\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 206, loss: 1.145\r", + "SF2M epoch: 1, steps: 207, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 208, loss: 1.134\r", + "SF2M epoch: 1, steps: 209, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 210, loss: 1.205\r", + "SF2M epoch: 1, steps: 211, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 212, loss: 1.129\r", + "SF2M epoch: 1, steps: 213, loss: 1.165\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 214, loss: 1.166\r", + "SF2M epoch: 1, steps: 215, loss: 1.795\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 216, loss: 1.172\r", + "SF2M epoch: 1, steps: 217, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 218, loss: 1.135\r", + "SF2M epoch: 1, steps: 219, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 220, loss: 1.171\r", + "SF2M epoch: 1, steps: 221, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 222, loss: 1.112\r", + "SF2M epoch: 1, steps: 223, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 224, loss: 1.252\r", + "SF2M epoch: 1, steps: 225, loss: 1.332\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 226, loss: 1.16\r", + "SF2M epoch: 1, steps: 227, loss: 1.195\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 228, loss: 1.14\r", + "SF2M epoch: 1, steps: 229, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:26, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 230, loss: 1.13\r", + "SF2M epoch: 1, steps: 231, loss: 1.179\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 232, loss: 1.162\r", + "SF2M epoch: 1, steps: 233, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 234, loss: 1.131\r", + "SF2M epoch: 1, steps: 235, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 236, loss: 1.141\r", + "SF2M epoch: 1, steps: 237, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 238, loss: 1.15\r", + "SF2M epoch: 1, steps: 239, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:27, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 240, loss: 1.137\r", + "SF2M epoch: 1, steps: 241, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 242, loss: 1.145\r", + "SF2M epoch: 1, steps: 243, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 244, loss: 1.134\r", + "SF2M epoch: 1, steps: 245, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 246, loss: 1.143\r", + "SF2M epoch: 1, steps: 247, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 248, loss: 1.156\r", + "SF2M epoch: 1, steps: 249, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 250, loss: 1.187\r", + "SF2M epoch: 1, steps: 251, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 252, loss: 1.131\r", + "SF2M epoch: 1, steps: 253, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 254, loss: 1.126\r", + "SF2M epoch: 1, steps: 255, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 256, loss: 1.179\r", + "SF2M epoch: 1, steps: 257, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:29, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 258, loss: 1.14\r", + "SF2M epoch: 1, steps: 259, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 260, loss: 1.146\r", + "SF2M epoch: 1, steps: 261, loss: 1.184\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 262, loss: 1.144\r", + "SF2M epoch: 1, steps: 263, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 264, loss: 1.134\r", + "SF2M epoch: 1, steps: 265, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:30, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 266, loss: 1.154\r", + "SF2M epoch: 1, steps: 267, loss: 1.286\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 268, loss: 1.135\r", + "SF2M epoch: 1, steps: 269, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 270, loss: 1.126\r", + "SF2M epoch: 1, steps: 271, loss: 1.391\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 272, loss: 1.132\r", + "SF2M epoch: 1, steps: 273, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 274, loss: 1.134\r", + "SF2M epoch: 1, steps: 275, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 276, loss: 1.201\r", + "SF2M epoch: 1, steps: 277, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 278, loss: 1.134\r", + "SF2M epoch: 1, steps: 279, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 280, loss: 1.141\r", + "SF2M epoch: 1, steps: 281, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 282, loss: 1.145\r", + "SF2M epoch: 1, steps: 283, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 284, loss: 1.126\r", + "SF2M epoch: 1, steps: 285, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 286, loss: 1.127\r", + "SF2M epoch: 1, steps: 287, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 288, loss: 1.147\r", + "SF2M epoch: 1, steps: 289, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 290, loss: 1.209\r", + "SF2M epoch: 1, steps: 291, loss: 1.204\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 292, loss: 1.167\r", + "SF2M epoch: 1, steps: 293, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 294, loss: 1.174\r", + "SF2M epoch: 1, steps: 295, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 296, loss: 1.19\r", + "SF2M epoch: 1, steps: 297, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 298, loss: 1.14\r", + "SF2M epoch: 1, steps: 299, loss: 1.237\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 300, loss: 14.65\r", + "SF2M epoch: 1, steps: 301, loss: 1.489\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 302, loss: 1.126\r", + "SF2M epoch: 1, steps: 303, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 304, loss: 1.146\r", + "SF2M epoch: 1, steps: 305, loss: 1.221\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 306, loss: 1.218\r", + "SF2M epoch: 1, steps: 307, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 308, loss: 1.437\r", + "SF2M epoch: 1, steps: 309, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 310, loss: 1.146\r", + "SF2M epoch: 1, steps: 311, loss: 1.171\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 312, loss: 1.167\r", + "SF2M epoch: 1, steps: 313, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 314, loss: 1.134\r", + "SF2M epoch: 1, steps: 315, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 316, loss: 1.14\r", + "SF2M epoch: 1, steps: 317, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 318, loss: 1.16\r", + "SF2M epoch: 1, steps: 319, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:36, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 320, loss: 1.13\r", + "SF2M epoch: 1, steps: 321, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 322, loss: 1.143\r", + "SF2M epoch: 1, steps: 323, loss: 1.17\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.85it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 324, loss: 1.188\r", + "SF2M epoch: 1, steps: 325, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.88it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 326, loss: 1.144\r", + "SF2M epoch: 1, steps: 327, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:37, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 328, loss: 1.153\r", + "SF2M epoch: 1, steps: 329, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 330, loss: 1.137\r", + "SF2M epoch: 1, steps: 331, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 332, loss: 1.126\r", + "SF2M epoch: 1, steps: 333, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 334, loss: 1.152\r", + "SF2M epoch: 1, steps: 335, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 336, loss: 1.162\r", + "SF2M epoch: 1, steps: 337, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:38, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 338, loss: 1.139\r", + "SF2M epoch: 1, steps: 339, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 340, loss: 1.134\r", + "SF2M epoch: 1, steps: 341, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 342, loss: 2.313\r", + "SF2M epoch: 1, steps: 343, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 344, loss: 1.182\r", + "SF2M epoch: 1, steps: 345, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 346, loss: 1.147\r", + "SF2M epoch: 1, steps: 347, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 348, loss: 1.157\r", + "SF2M epoch: 1, steps: 349, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 350, loss: 1.146\r", + "SF2M epoch: 1, steps: 351, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 352, loss: 1.211\r", + "SF2M epoch: 1, steps: 353, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 354, loss: 1.145\r", + "SF2M epoch: 1, steps: 355, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 356, loss: 1.156\r", + "SF2M epoch: 1, steps: 357, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 358, loss: 1.125\r", + "SF2M epoch: 1, steps: 359, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 360, loss: 1.182\r", + "SF2M epoch: 1, steps: 361, loss: 1.186\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 362, loss: 1.174\r", + "SF2M epoch: 1, steps: 363, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 364, loss: 1.174\r", + "SF2M epoch: 1, steps: 365, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 366, loss: 1.147\r", + "SF2M epoch: 1, steps: 367, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 368, loss: 1.172\r", + "SF2M epoch: 1, steps: 369, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 370, loss: 1.18\r", + "SF2M epoch: 1, steps: 371, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 372, loss: 1.148\r", + "SF2M epoch: 1, steps: 373, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 374, loss: 1.164\r", + "SF2M epoch: 1, steps: 375, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 376, loss: 1.13\r", + "SF2M epoch: 1, steps: 377, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 378, loss: 1.139\r", + "SF2M epoch: 1, steps: 379, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 380, loss: 1.121\r", + "SF2M epoch: 1, steps: 381, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 382, loss: 1.267\r", + "SF2M epoch: 1, steps: 383, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 384, loss: 1.135\r", + "SF2M epoch: 1, steps: 385, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 386, loss: 1.176\r", + "SF2M epoch: 1, steps: 387, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 388, loss: 1.138\r", + "SF2M epoch: 1, steps: 389, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 390, loss: 1.13\r", + "SF2M epoch: 1, steps: 391, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 392, loss: 1.126\r", + "SF2M epoch: 1, steps: 393, loss: 1.217\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 394, loss: 1.117\r", + "SF2M epoch: 1, steps: 395, loss: 1.286\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 396, loss: 1.122\r", + "SF2M epoch: 1, steps: 397, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 398, loss: 1.138\r", + "SF2M epoch: 1, steps: 399, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 400, loss: 1.13\r", + "SF2M epoch: 1, steps: 401, loss: 1.237\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 402, loss: 1.153\r", + "SF2M epoch: 1, steps: 403, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 404, loss: 1.194\r", + "SF2M epoch: 1, steps: 405, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 406, loss: 1.152\r", + "SF2M epoch: 1, steps: 407, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 408, loss: 1.149\r", + "SF2M epoch: 1, steps: 409, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 410, loss: 1.144\r", + "SF2M epoch: 1, steps: 411, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 412, loss: 1.139\r", + "SF2M epoch: 1, steps: 413, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 414, loss: 1.815\r", + "SF2M epoch: 1, steps: 415, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 416, loss: 1.139\r", + "SF2M epoch: 1, steps: 417, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 418, loss: 1.133\r", + "SF2M epoch: 1, steps: 419, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 420, loss: 1.133\r", + "SF2M epoch: 1, steps: 421, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 422, loss: 1.194\r", + "SF2M epoch: 1, steps: 423, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 424, loss: 1.143\r", + "SF2M epoch: 1, steps: 425, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 426, loss: 1.15\r", + "SF2M epoch: 1, steps: 427, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:48, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 428, loss: 1.136\r", + "SF2M epoch: 1, steps: 429, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 430, loss: 1.134\r", + "SF2M epoch: 1, steps: 431, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 432, loss: 1.143\r", + "SF2M epoch: 1, steps: 433, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 434, loss: 1.125\r", + "SF2M epoch: 1, steps: 435, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 436, loss: 1.142\r", + "SF2M epoch: 1, steps: 437, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 438, loss: 1.137\r", + "SF2M epoch: 1, steps: 439, loss: 5.64\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 440, loss: 1.156\r", + "SF2M epoch: 1, steps: 441, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 442, loss: 1.126\r", + "SF2M epoch: 1, steps: 443, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:50, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 444, loss: 1.147\r", + "SF2M epoch: 1, steps: 445, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 446, loss: 1.15\r", + "SF2M epoch: 1, steps: 447, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 448, loss: 1.135\r", + "SF2M epoch: 1, steps: 449, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 450, loss: 1.126\r", + "SF2M epoch: 1, steps: 451, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 452, loss: 1.149\r", + "SF2M epoch: 1, steps: 453, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 454, loss: 1.117\r", + "SF2M epoch: 1, steps: 455, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 456, loss: 1.124\r", + "SF2M epoch: 1, steps: 457, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 458, loss: 1.12\r", + "SF2M epoch: 1, steps: 459, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 460, loss: 1.158\r", + "SF2M epoch: 1, steps: 461, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:52, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 462, loss: 1.124\r", + "SF2M epoch: 1, steps: 463, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 464, loss: 1.153\r", + "SF2M epoch: 1, steps: 465, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 1, steps: 466, loss: 1.13\r", + "SF2M epoch: 1, steps: 467, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 0, loss: 1.272\r", + "SF2M epoch: 2, steps: 1, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 2, loss: 1.139\r", + "SF2M epoch: 2, steps: 3, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 4, loss: 1.116\r", + "SF2M epoch: 2, steps: 5, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 6, loss: 1.146\r", + "SF2M epoch: 2, steps: 7, loss: 1.17\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 8, loss: 1.188\r", + "SF2M epoch: 2, steps: 9, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 10, loss: 1.12\r", + "SF2M epoch: 2, steps: 11, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 12, loss: 1.163\r", + "SF2M epoch: 2, steps: 13, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 14, loss: 1.145\r", + "SF2M epoch: 2, steps: 15, loss: 1.193\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 16, loss: 1.125\r", + "SF2M epoch: 2, steps: 17, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 18, loss: 1.137\r", + "SF2M epoch: 2, steps: 19, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 20, loss: 1.149\r", + "SF2M epoch: 2, steps: 21, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 22, loss: 1.138\r", + "SF2M epoch: 2, steps: 23, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 24, loss: 1.133\r", + "SF2M epoch: 2, steps: 25, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 26, loss: 1.121\r", + "SF2M epoch: 2, steps: 27, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 28, loss: 1.146\r", + "SF2M epoch: 2, steps: 29, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 30, loss: 1.128\r", + "SF2M epoch: 2, steps: 31, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 32, loss: 1.126\r", + "SF2M epoch: 2, steps: 33, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 34, loss: 1.141\r", + "SF2M epoch: 2, steps: 35, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 36, loss: 1.149\r", + "SF2M epoch: 2, steps: 37, loss: 1.176\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 38, loss: 1.126\r", + "SF2M epoch: 2, steps: 39, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 40, loss: 1.119\r", + "SF2M epoch: 2, steps: 41, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 42, loss: 1.168\r", + "SF2M epoch: 2, steps: 43, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 44, loss: 1.137\r", + "SF2M epoch: 2, steps: 45, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 46, loss: 1.128\r", + "SF2M epoch: 2, steps: 47, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 48, loss: 1.151\r", + "SF2M epoch: 2, steps: 49, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 50, loss: 1.126\r", + "SF2M epoch: 2, steps: 51, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 52, loss: 1.126\r", + "SF2M epoch: 2, steps: 53, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 54, loss: 1.499\r", + "SF2M epoch: 2, steps: 55, loss: 1.163\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 56, loss: 1.128\r", + "SF2M epoch: 2, steps: 57, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 58, loss: 1.139\r", + "SF2M epoch: 2, steps: 59, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 60, loss: 1.129\r", + "SF2M epoch: 2, steps: 61, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 62, loss: 1.172\r", + "SF2M epoch: 2, steps: 63, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 64, loss: 1.156\r", + "SF2M epoch: 2, steps: 65, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 66, loss: 1.156\r", + "SF2M epoch: 2, steps: 67, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 68, loss: 1.128\r", + "SF2M epoch: 2, steps: 69, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 70, loss: 1.128\r", + "SF2M epoch: 2, steps: 71, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 72, loss: 1.145\r", + "SF2M epoch: 2, steps: 73, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 74, loss: 1.117\r", + "SF2M epoch: 2, steps: 75, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 76, loss: 1.129\r", + "SF2M epoch: 2, steps: 77, loss: 1.172\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 78, loss: 1.136\r", + "SF2M epoch: 2, steps: 79, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 80, loss: 1.135\r", + "SF2M epoch: 2, steps: 81, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 82, loss: 1.144\r", + "SF2M epoch: 2, steps: 83, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 84, loss: 1.141\r", + "SF2M epoch: 2, steps: 85, loss: 1.186\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 86, loss: 1.14\r", + "SF2M epoch: 2, steps: 87, loss: 1.172\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 88, loss: 1.13\r", + "SF2M epoch: 2, steps: 89, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 90, loss: 1.144\r", + "SF2M epoch: 2, steps: 91, loss: 1.753\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 92, loss: 1.141\r", + "SF2M epoch: 2, steps: 93, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 94, loss: 1.137\r", + "SF2M epoch: 2, steps: 95, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 96, loss: 1.13\r", + "SF2M epoch: 2, steps: 97, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 98, loss: 1.123\r", + "SF2M epoch: 2, steps: 99, loss: 1.241\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 100, loss: 1.136\r", + "SF2M epoch: 2, steps: 101, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 102, loss: 1.177\r", + "SF2M epoch: 2, steps: 103, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 104, loss: 1.136\r", + "SF2M epoch: 2, steps: 105, loss: 4.943\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 106, loss: 1.144\r", + "SF2M epoch: 2, steps: 107, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 108, loss: 1.179\r", + "SF2M epoch: 2, steps: 109, loss: 1.195\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 110, loss: 1.188\r", + "SF2M epoch: 2, steps: 111, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 112, loss: 1.141\r", + "SF2M epoch: 2, steps: 113, loss: 1.193\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 114, loss: 1.174\r", + "SF2M epoch: 2, steps: 115, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 116, loss: 1.135\r", + "SF2M epoch: 2, steps: 117, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 118, loss: 1.13\r", + "SF2M epoch: 2, steps: 119, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 120, loss: 1.147\r", + "SF2M epoch: 2, steps: 121, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 122, loss: 1.19\r", + "SF2M epoch: 2, steps: 123, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:13, 8.77it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.81it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 124, loss: 1.126\r", + "SF2M epoch: 2, steps: 125, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.88it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 126, loss: 1.133\r", + "SF2M epoch: 2, steps: 127, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 128, loss: 1.128\r", + "SF2M epoch: 2, steps: 129, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 130, loss: 1.126\r", + "SF2M epoch: 2, steps: 131, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 132, loss: 1.147\r", + "SF2M epoch: 2, steps: 133, loss: 1.407\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 134, loss: 1.146\r", + "SF2M epoch: 2, steps: 135, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 136, loss: 1.138\r", + "SF2M epoch: 2, steps: 137, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 138, loss: 1.175\r", + "SF2M epoch: 2, steps: 139, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 140, loss: 1.119\r", + "SF2M epoch: 2, steps: 141, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 142, loss: 1.151\r", + "SF2M epoch: 2, steps: 143, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 144, loss: 1.128\r", + "SF2M epoch: 2, steps: 145, loss: 9.244\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 146, loss: 1.135\r", + "SF2M epoch: 2, steps: 147, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 148, loss: 1.148\r", + "SF2M epoch: 2, steps: 149, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 150, loss: 1.132\r", + "SF2M epoch: 2, steps: 151, loss: 1.165\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 152, loss: 1.148\r", + "SF2M epoch: 2, steps: 153, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 154, loss: 1.124\r", + "SF2M epoch: 2, steps: 155, loss: 1.196\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 156, loss: 1.151\r", + "SF2M epoch: 2, steps: 157, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 158, loss: 1.141\r", + "SF2M epoch: 2, steps: 159, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 160, loss: 1.124\r", + "SF2M epoch: 2, steps: 161, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 162, loss: 1.136\r", + "SF2M epoch: 2, steps: 163, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 164, loss: 1.126\r", + "SF2M epoch: 2, steps: 165, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 166, loss: 1.699\r", + "SF2M epoch: 2, steps: 167, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 168, loss: 1.127\r", + "SF2M epoch: 2, steps: 169, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 170, loss: 1.131\r", + "SF2M epoch: 2, steps: 171, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 172, loss: 1.145\r", + "SF2M epoch: 2, steps: 173, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 174, loss: 1.162\r", + "SF2M epoch: 2, steps: 175, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 176, loss: 1.124\r", + "SF2M epoch: 2, steps: 177, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 178, loss: 1.134\r", + "SF2M epoch: 2, steps: 179, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 180, loss: 1.133\r", + "SF2M epoch: 2, steps: 181, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 182, loss: 1.119\r", + "SF2M epoch: 2, steps: 183, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 184, loss: 1.151\r", + "SF2M epoch: 2, steps: 185, loss: 1.258\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 186, loss: 1.148\r", + "SF2M epoch: 2, steps: 187, loss: 1.182\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 188, loss: 1.128\r", + "SF2M epoch: 2, steps: 189, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 190, loss: 1.147\r", + "SF2M epoch: 2, steps: 191, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 192, loss: 1.126\r", + "SF2M epoch: 2, steps: 193, loss: 1.187\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 194, loss: 1.13\r", + "SF2M epoch: 2, steps: 195, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 196, loss: 1.128\r", + "SF2M epoch: 2, steps: 197, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 198, loss: 1.125\r", + "SF2M epoch: 2, steps: 199, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 200, loss: 1.128\r", + "SF2M epoch: 2, steps: 201, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 202, loss: 1.154\r", + "SF2M epoch: 2, steps: 203, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 204, loss: 1.122\r", + "SF2M epoch: 2, steps: 205, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 206, loss: 1.142\r", + "SF2M epoch: 2, steps: 207, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 208, loss: 1.153\r", + "SF2M epoch: 2, steps: 209, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 210, loss: 1.118\r", + "SF2M epoch: 2, steps: 211, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:23, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 212, loss: 1.143\r", + "SF2M epoch: 2, steps: 213, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 214, loss: 1.129\r", + "SF2M epoch: 2, steps: 215, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 216, loss: 1.136\r", + "SF2M epoch: 2, steps: 217, loss: 1.22\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 218, loss: 1.108\r", + "SF2M epoch: 2, steps: 219, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 220, loss: 1.143\r", + "SF2M epoch: 2, steps: 221, loss: 1.168\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 222, loss: 1.344\r", + "SF2M epoch: 2, steps: 223, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 224, loss: 1.147\r", + "SF2M epoch: 2, steps: 225, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 226, loss: 1.167\r", + "SF2M epoch: 2, steps: 227, loss: 1.173\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 228, loss: 1.135\r", + "SF2M epoch: 2, steps: 229, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 230, loss: 1.123\r", + "SF2M epoch: 2, steps: 231, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 232, loss: 1.141\r", + "SF2M epoch: 2, steps: 233, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 234, loss: 1.202\r", + "SF2M epoch: 2, steps: 235, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 236, loss: 1.112\r", + "SF2M epoch: 2, steps: 237, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 238, loss: 1.124\r", + "SF2M epoch: 2, steps: 239, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 240, loss: 1.126\r", + "SF2M epoch: 2, steps: 241, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 242, loss: 1.145\r", + "SF2M epoch: 2, steps: 243, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 244, loss: 1.127\r", + "SF2M epoch: 2, steps: 245, loss: 1.192\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 246, loss: 1.138\r", + "SF2M epoch: 2, steps: 247, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 248, loss: 1.121\r", + "SF2M epoch: 2, steps: 249, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 250, loss: 1.165\r", + "SF2M epoch: 2, steps: 251, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 252, loss: 1.148\r", + "SF2M epoch: 2, steps: 253, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 254, loss: 1.147\r", + "SF2M epoch: 2, steps: 255, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 256, loss: 1.141\r", + "SF2M epoch: 2, steps: 257, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 258, loss: 1.161\r", + "SF2M epoch: 2, steps: 259, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 260, loss: 1.159\r", + "SF2M epoch: 2, steps: 261, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 262, loss: 1.154\r", + "SF2M epoch: 2, steps: 263, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 264, loss: 1.227\r", + "SF2M epoch: 2, steps: 265, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 266, loss: 1.166\r", + "SF2M epoch: 2, steps: 267, loss: 1.296\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 268, loss: 1.149\r", + "SF2M epoch: 2, steps: 269, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 270, loss: 1.185\r", + "SF2M epoch: 2, steps: 271, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 272, loss: 1.148\r", + "SF2M epoch: 2, steps: 273, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 274, loss: 1.143\r", + "SF2M epoch: 2, steps: 275, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 276, loss: 1.138\r", + "SF2M epoch: 2, steps: 277, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 278, loss: 1.135\r", + "SF2M epoch: 2, steps: 279, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 280, loss: 1.137\r", + "SF2M epoch: 2, steps: 281, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 282, loss: 1.112\r", + "SF2M epoch: 2, steps: 283, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 284, loss: 1.136\r", + "SF2M epoch: 2, steps: 285, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 286, loss: 1.153\r", + "SF2M epoch: 2, steps: 287, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 288, loss: 1.117\r", + "SF2M epoch: 2, steps: 289, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 290, loss: 1.143\r", + "SF2M epoch: 2, steps: 291, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 292, loss: 1.133\r", + "SF2M epoch: 2, steps: 293, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 294, loss: 1.154\r", + "SF2M epoch: 2, steps: 295, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 296, loss: 1.131\r", + "SF2M epoch: 2, steps: 297, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 298, loss: 1.114\r", + "SF2M epoch: 2, steps: 299, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 300, loss: 1.114\r", + "SF2M epoch: 2, steps: 301, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 302, loss: 1.136\r", + "SF2M epoch: 2, steps: 303, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 304, loss: 1.13\r", + "SF2M epoch: 2, steps: 305, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 306, loss: 1.143\r", + "SF2M epoch: 2, steps: 307, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 308, loss: 1.13\r", + "SF2M epoch: 2, steps: 309, loss: 1.185\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 310, loss: 1.137\r", + "SF2M epoch: 2, steps: 311, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 312, loss: 1.133\r", + "SF2M epoch: 2, steps: 313, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 314, loss: 1.111\r", + "SF2M epoch: 2, steps: 315, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 316, loss: 1.136\r", + "SF2M epoch: 2, steps: 317, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 318, loss: 1.119\r", + "SF2M epoch: 2, steps: 319, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 320, loss: 1.211\r", + "SF2M epoch: 2, steps: 321, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 322, loss: 1.176\r", + "SF2M epoch: 2, steps: 323, loss: 1.195\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 324, loss: 1.129\r", + "SF2M epoch: 2, steps: 325, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 326, loss: 1.132\r", + "SF2M epoch: 2, steps: 327, loss: 1.348\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 328, loss: 1.142\r", + "SF2M epoch: 2, steps: 329, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 330, loss: 1.13\r", + "SF2M epoch: 2, steps: 331, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 332, loss: 1.123\r", + "SF2M epoch: 2, steps: 333, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 334, loss: 1.154\r", + "SF2M epoch: 2, steps: 335, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 336, loss: 1.136\r", + "SF2M epoch: 2, steps: 337, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 338, loss: 1.183\r", + "SF2M epoch: 2, steps: 339, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 340, loss: 1.135\r", + "SF2M epoch: 2, steps: 341, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 342, loss: 1.124\r", + "SF2M epoch: 2, steps: 343, loss: 1.259\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 344, loss: 1.117\r", + "SF2M epoch: 2, steps: 345, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 346, loss: 1.162\r", + "SF2M epoch: 2, steps: 347, loss: 1.206\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 348, loss: 1.169\r", + "SF2M epoch: 2, steps: 349, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 350, loss: 1.118\r", + "SF2M epoch: 2, steps: 351, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 352, loss: 1.124\r", + "SF2M epoch: 2, steps: 353, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 354, loss: 1.156\r", + "SF2M epoch: 2, steps: 355, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 356, loss: 1.204\r", + "SF2M epoch: 2, steps: 357, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 358, loss: 1.126\r", + "SF2M epoch: 2, steps: 359, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 360, loss: 1.124\r", + "SF2M epoch: 2, steps: 361, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 362, loss: 1.177\r", + "SF2M epoch: 2, steps: 363, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:40, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 364, loss: 1.134\r", + "SF2M epoch: 2, steps: 365, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 366, loss: 1.121\r", + "SF2M epoch: 2, steps: 367, loss: 1.163\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 368, loss: 1.136\r", + "SF2M epoch: 2, steps: 369, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 370, loss: 1.115\r", + "SF2M epoch: 2, steps: 371, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 372, loss: 1.113\r", + "SF2M epoch: 2, steps: 373, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:41, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 374, loss: 1.143\r", + "SF2M epoch: 2, steps: 375, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 376, loss: 1.115\r", + "SF2M epoch: 2, steps: 377, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 378, loss: 1.129\r", + "SF2M epoch: 2, steps: 379, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 380, loss: 1.114\r", + "SF2M epoch: 2, steps: 381, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 382, loss: 1.143\r", + "SF2M epoch: 2, steps: 383, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 384, loss: 1.128\r", + "SF2M epoch: 2, steps: 385, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 386, loss: 1.141\r", + "SF2M epoch: 2, steps: 387, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 388, loss: 1.146\r", + "SF2M epoch: 2, steps: 389, loss: 1.522\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 390, loss: 1.126\r", + "SF2M epoch: 2, steps: 391, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:43, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 392, loss: 1.147\r", + "SF2M epoch: 2, steps: 393, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 394, loss: 1.146\r", + "SF2M epoch: 2, steps: 395, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 396, loss: 1.121\r", + "SF2M epoch: 2, steps: 397, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 398, loss: 1.141\r", + "SF2M epoch: 2, steps: 399, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 400, loss: 1.128\r", + "SF2M epoch: 2, steps: 401, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 402, loss: 1.149\r", + "SF2M epoch: 2, steps: 403, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 404, loss: 1.159\r", + "SF2M epoch: 2, steps: 405, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 406, loss: 1.132\r", + "SF2M epoch: 2, steps: 407, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 408, loss: 1.137\r", + "SF2M epoch: 2, steps: 409, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 410, loss: 1.135\r", + "SF2M epoch: 2, steps: 411, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 412, loss: 1.132\r", + "SF2M epoch: 2, steps: 413, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 414, loss: 1.117\r", + "SF2M epoch: 2, steps: 415, loss: 1.177\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 416, loss: 1.104\r", + "SF2M epoch: 2, steps: 417, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 418, loss: 1.119\r", + "SF2M epoch: 2, steps: 419, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 420, loss: 1.233\r", + "SF2M epoch: 2, steps: 421, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 422, loss: 1.137\r", + "SF2M epoch: 2, steps: 423, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 424, loss: 1.119\r", + "SF2M epoch: 2, steps: 425, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 426, loss: 1.121\r", + "SF2M epoch: 2, steps: 427, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 428, loss: 1.153\r", + "SF2M epoch: 2, steps: 429, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 430, loss: 1.235\r", + "SF2M epoch: 2, steps: 431, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 432, loss: 1.151\r", + "SF2M epoch: 2, steps: 433, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 434, loss: 1.138\r", + "SF2M epoch: 2, steps: 435, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 436, loss: 1.124\r", + "SF2M epoch: 2, steps: 437, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 438, loss: 1.116\r", + "SF2M epoch: 2, steps: 439, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 440, loss: 1.102\r", + "SF2M epoch: 2, steps: 441, loss: 1.099\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 442, loss: 1.137\r", + "SF2M epoch: 2, steps: 443, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 444, loss: 1.132\r", + "SF2M epoch: 2, steps: 445, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 446, loss: 1.163\r", + "SF2M epoch: 2, steps: 447, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 448, loss: 1.13\r", + "SF2M epoch: 2, steps: 449, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 450, loss: 1.194\r", + "SF2M epoch: 2, steps: 451, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 452, loss: 1.116\r", + "SF2M epoch: 2, steps: 453, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 454, loss: 1.17\r", + "SF2M epoch: 2, steps: 455, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 456, loss: 1.131\r", + "SF2M epoch: 2, steps: 457, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 458, loss: 1.123\r", + "SF2M epoch: 2, steps: 459, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 460, loss: 1.148\r", + "SF2M epoch: 2, steps: 461, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 462, loss: 1.126\r", + "SF2M epoch: 2, steps: 463, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 464, loss: 1.207\r", + "SF2M epoch: 2, steps: 465, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 2, steps: 466, loss: 1.124\r", + "SF2M epoch: 2, steps: 467, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.82it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 0, loss: 1.106\r", + "SF2M epoch: 3, steps: 1, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 2, loss: 1.141\r", + "SF2M epoch: 3, steps: 3, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.84it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.86it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 4, loss: 1.143\r", + "SF2M epoch: 3, steps: 5, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 6, loss: 1.12\r", + "SF2M epoch: 3, steps: 7, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 8, loss: 1.108\r", + "SF2M epoch: 3, steps: 9, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 10, loss: 1.157\r", + "SF2M epoch: 3, steps: 11, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 12, loss: 1.162\r", + "SF2M epoch: 3, steps: 13, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 14, loss: 1.134\r", + "SF2M epoch: 3, steps: 15, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 16, loss: 1.133\r", + "SF2M epoch: 3, steps: 17, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 18, loss: 1.149\r", + "SF2M epoch: 3, steps: 19, loss: 1.31\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 20, loss: 1.11\r", + "SF2M epoch: 3, steps: 21, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 22, loss: 1.188\r", + "SF2M epoch: 3, steps: 23, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 24, loss: 1.133\r", + "SF2M epoch: 3, steps: 25, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 26, loss: 1.379\r", + "SF2M epoch: 3, steps: 27, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 28, loss: 1.139\r", + "SF2M epoch: 3, steps: 29, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 30, loss: 1.135\r", + "SF2M epoch: 3, steps: 31, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 32, loss: 1.137\r", + "SF2M epoch: 3, steps: 33, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 34, loss: 1.116\r", + "SF2M epoch: 3, steps: 35, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 36, loss: 1.118\r", + "SF2M epoch: 3, steps: 37, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 38, loss: 1.129\r", + "SF2M epoch: 3, steps: 39, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 40, loss: 1.135\r", + "SF2M epoch: 3, steps: 41, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 42, loss: 1.121\r", + "SF2M epoch: 3, steps: 43, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 44, loss: 1.129\r", + "SF2M epoch: 3, steps: 45, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 46, loss: 1.125\r", + "SF2M epoch: 3, steps: 47, loss: 1.17\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 48, loss: 1.118\r", + "SF2M epoch: 3, steps: 49, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 50, loss: 1.132\r", + "SF2M epoch: 3, steps: 51, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 52, loss: 1.111\r", + "SF2M epoch: 3, steps: 53, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 54, loss: 1.143\r", + "SF2M epoch: 3, steps: 55, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 56, loss: 1.127\r", + "SF2M epoch: 3, steps: 57, loss: 1.183\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 58, loss: 1.14\r", + "SF2M epoch: 3, steps: 59, loss: 1.219\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 60, loss: 1.133\r", + "SF2M epoch: 3, steps: 61, loss: 1.442\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 62, loss: 1.158\r", + "SF2M epoch: 3, steps: 63, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 64, loss: 1.137\r", + "SF2M epoch: 3, steps: 65, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 66, loss: 1.148\r", + "SF2M epoch: 3, steps: 67, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 68, loss: 1.143\r", + "SF2M epoch: 3, steps: 69, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 70, loss: 1.155\r", + "SF2M epoch: 3, steps: 71, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 72, loss: 1.123\r", + "SF2M epoch: 3, steps: 73, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 74, loss: 1.126\r", + "SF2M epoch: 3, steps: 75, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 76, loss: 1.224\r", + "SF2M epoch: 3, steps: 77, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 78, loss: 1.13\r", + "SF2M epoch: 3, steps: 79, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 80, loss: 1.133\r", + "SF2M epoch: 3, steps: 81, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 82, loss: 1.152\r", + "SF2M epoch: 3, steps: 83, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 84, loss: 1.165\r", + "SF2M epoch: 3, steps: 85, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 86, loss: 1.128\r", + "SF2M epoch: 3, steps: 87, loss: 1.648\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 88, loss: 1.171\r", + "SF2M epoch: 3, steps: 89, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 90, loss: 1.313\r", + "SF2M epoch: 3, steps: 91, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 92, loss: 1.13\r", + "SF2M epoch: 3, steps: 93, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 94, loss: 1.193\r", + "SF2M epoch: 3, steps: 95, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 96, loss: 1.497\r", + "SF2M epoch: 3, steps: 97, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 98, loss: 1.144\r", + "SF2M epoch: 3, steps: 99, loss: 1.19\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 100, loss: 1.149\r", + "SF2M epoch: 3, steps: 101, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 102, loss: 1.16\r", + "SF2M epoch: 3, steps: 103, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 104, loss: 1.222\r", + "SF2M epoch: 3, steps: 105, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 106, loss: 1.142\r", + "SF2M epoch: 3, steps: 107, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 108, loss: 2.109\r", + "SF2M epoch: 3, steps: 109, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 110, loss: 1.13\r", + "SF2M epoch: 3, steps: 111, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 112, loss: 1.137\r", + "SF2M epoch: 3, steps: 113, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:12, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 114, loss: 1.19\r", + "SF2M epoch: 3, steps: 115, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 116, loss: 1.134\r", + "SF2M epoch: 3, steps: 117, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 118, loss: 1.154\r", + "SF2M epoch: 3, steps: 119, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 120, loss: 1.144\r", + "SF2M epoch: 3, steps: 121, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 122, loss: 1.119\r", + "SF2M epoch: 3, steps: 123, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:13, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 124, loss: 1.315\r", + "SF2M epoch: 3, steps: 125, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 126, loss: 1.188\r", + "SF2M epoch: 3, steps: 127, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 128, loss: 1.126\r", + "SF2M epoch: 3, steps: 129, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 130, loss: 1.169\r", + "SF2M epoch: 3, steps: 131, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 132, loss: 1.126\r", + "SF2M epoch: 3, steps: 133, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 134, loss: 1.163\r", + "SF2M epoch: 3, steps: 135, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 136, loss: 1.112\r", + "SF2M epoch: 3, steps: 137, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 138, loss: 1.123\r", + "SF2M epoch: 3, steps: 139, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 140, loss: 1.149\r", + "SF2M epoch: 3, steps: 141, loss: 1.306\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 142, loss: 1.121\r", + "SF2M epoch: 3, steps: 143, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 144, loss: 1.135\r", + "SF2M epoch: 3, steps: 145, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 146, loss: 1.139\r", + "SF2M epoch: 3, steps: 147, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 148, loss: 1.148\r", + "SF2M epoch: 3, steps: 149, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 150, loss: 1.15\r", + "SF2M epoch: 3, steps: 151, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 152, loss: 1.133\r", + "SF2M epoch: 3, steps: 153, loss: 1.243\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 154, loss: 1.111\r", + "SF2M epoch: 3, steps: 155, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 156, loss: 1.146\r", + "SF2M epoch: 3, steps: 157, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 158, loss: 1.131\r", + "SF2M epoch: 3, steps: 159, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 160, loss: 1.121\r", + "SF2M epoch: 3, steps: 161, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 162, loss: 1.144\r", + "SF2M epoch: 3, steps: 163, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 164, loss: 1.153\r", + "SF2M epoch: 3, steps: 165, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 166, loss: 1.119\r", + "SF2M epoch: 3, steps: 167, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 168, loss: 1.138\r", + "SF2M epoch: 3, steps: 169, loss: 1.23\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 170, loss: 1.13\r", + "SF2M epoch: 3, steps: 171, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 172, loss: 1.119\r", + "SF2M epoch: 3, steps: 173, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 174, loss: 1.225\r", + "SF2M epoch: 3, steps: 175, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 176, loss: 1.128\r", + "SF2M epoch: 3, steps: 177, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 178, loss: 1.113\r", + "SF2M epoch: 3, steps: 179, loss: 1.268\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 180, loss: 1.192\r", + "SF2M epoch: 3, steps: 181, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 182, loss: 1.136\r", + "SF2M epoch: 3, steps: 183, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 184, loss: 1.127\r", + "SF2M epoch: 3, steps: 185, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 186, loss: 1.224\r", + "SF2M epoch: 3, steps: 187, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 188, loss: 1.128\r", + "SF2M epoch: 3, steps: 189, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 190, loss: 1.125\r", + "SF2M epoch: 3, steps: 191, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 192, loss: 1.146\r", + "SF2M epoch: 3, steps: 193, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 194, loss: 1.139\r", + "SF2M epoch: 3, steps: 195, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 196, loss: 1.203\r", + "SF2M epoch: 3, steps: 197, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 198, loss: 1.116\r", + "SF2M epoch: 3, steps: 199, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 200, loss: 1.162\r", + "SF2M epoch: 3, steps: 201, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 202, loss: 1.135\r", + "SF2M epoch: 3, steps: 203, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 204, loss: 1.251\r", + "SF2M epoch: 3, steps: 205, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 206, loss: 1.141\r", + "SF2M epoch: 3, steps: 207, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 208, loss: 1.136\r", + "SF2M epoch: 3, steps: 209, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 210, loss: 1.176\r", + "SF2M epoch: 3, steps: 211, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 212, loss: 1.148\r", + "SF2M epoch: 3, steps: 213, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 214, loss: 1.166\r", + "SF2M epoch: 3, steps: 215, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 216, loss: 1.135\r", + "SF2M epoch: 3, steps: 217, loss: 1.24\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 218, loss: 1.127\r", + "SF2M epoch: 3, steps: 219, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 220, loss: 1.136\r", + "SF2M epoch: 3, steps: 221, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 222, loss: 1.114\r", + "SF2M epoch: 3, steps: 223, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 224, loss: 1.119\r", + "SF2M epoch: 3, steps: 225, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 226, loss: 1.121\r", + "SF2M epoch: 3, steps: 227, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 228, loss: 1.12\r", + "SF2M epoch: 3, steps: 229, loss: 1.216\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 230, loss: 1.119\r", + "SF2M epoch: 3, steps: 231, loss: 1.238\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 232, loss: 1.121\r", + "SF2M epoch: 3, steps: 233, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 234, loss: 1.111\r", + "SF2M epoch: 3, steps: 235, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 236, loss: 1.155\r", + "SF2M epoch: 3, steps: 237, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 238, loss: 1.111\r", + "SF2M epoch: 3, steps: 239, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:26, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 240, loss: 1.136\r", + "SF2M epoch: 3, steps: 241, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 242, loss: 1.14\r", + "SF2M epoch: 3, steps: 243, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 244, loss: 1.116\r", + "SF2M epoch: 3, steps: 245, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 246, loss: 1.13\r", + "SF2M epoch: 3, steps: 247, loss: 1.099\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 248, loss: 1.14\r", + "SF2M epoch: 3, steps: 249, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 250, loss: 1.12\r", + "SF2M epoch: 3, steps: 251, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 252, loss: 1.176\r", + "SF2M epoch: 3, steps: 253, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 254, loss: 1.128\r", + "SF2M epoch: 3, steps: 255, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 256, loss: 1.11\r", + "SF2M epoch: 3, steps: 257, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 258, loss: 1.123\r", + "SF2M epoch: 3, steps: 259, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 260, loss: 1.14\r", + "SF2M epoch: 3, steps: 261, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 262, loss: 2.097\r", + "SF2M epoch: 3, steps: 263, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 264, loss: 1.165\r", + "SF2M epoch: 3, steps: 265, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 266, loss: 1.185\r", + "SF2M epoch: 3, steps: 267, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 268, loss: 1.187\r", + "SF2M epoch: 3, steps: 269, loss: 1.172\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 270, loss: 1.257\r", + "SF2M epoch: 3, steps: 271, loss: 1.184\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 272, loss: 1.153\r", + "SF2M epoch: 3, steps: 273, loss: 1.19\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 274, loss: 1.157\r", + "SF2M epoch: 3, steps: 275, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:31, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 276, loss: 1.146\r", + "SF2M epoch: 3, steps: 277, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 278, loss: 1.137\r", + "SF2M epoch: 3, steps: 279, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 280, loss: 1.207\r", + "SF2M epoch: 3, steps: 281, loss: 1.212\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 282, loss: 1.209\r", + "SF2M epoch: 3, steps: 283, loss: 1.213\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 284, loss: 2.653\r", + "SF2M epoch: 3, steps: 285, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 286, loss: 1.133\r", + "SF2M epoch: 3, steps: 287, loss: 1.2\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 288, loss: 1.146\r", + "SF2M epoch: 3, steps: 289, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 290, loss: 1.133\r", + "SF2M epoch: 3, steps: 291, loss: 1.173\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 292, loss: 1.149\r", + "SF2M epoch: 3, steps: 293, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 294, loss: 1.166\r", + "SF2M epoch: 3, steps: 295, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 296, loss: 1.122\r", + "SF2M epoch: 3, steps: 297, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 298, loss: 1.329\r", + "SF2M epoch: 3, steps: 299, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 300, loss: 1.154\r", + "SF2M epoch: 3, steps: 301, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 302, loss: 1.128\r", + "SF2M epoch: 3, steps: 303, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 304, loss: 1.135\r", + "SF2M epoch: 3, steps: 305, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 306, loss: 1.161\r", + "SF2M epoch: 3, steps: 307, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 308, loss: 1.164\r", + "SF2M epoch: 3, steps: 309, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 310, loss: 1.208\r", + "SF2M epoch: 3, steps: 311, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 312, loss: 1.156\r", + "SF2M epoch: 3, steps: 313, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 314, loss: 1.116\r", + "SF2M epoch: 3, steps: 315, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 316, loss: 1.117\r", + "SF2M epoch: 3, steps: 317, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 318, loss: 1.187\r", + "SF2M epoch: 3, steps: 319, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 320, loss: 1.124\r", + "SF2M epoch: 3, steps: 321, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 322, loss: 1.128\r", + "SF2M epoch: 3, steps: 323, loss: 1.173\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 324, loss: 1.153\r", + "SF2M epoch: 3, steps: 325, loss: 1.372\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 326, loss: 1.123\r", + "SF2M epoch: 3, steps: 327, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 328, loss: 1.12\r", + "SF2M epoch: 3, steps: 329, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 330, loss: 1.131\r", + "SF2M epoch: 3, steps: 331, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 332, loss: 1.141\r", + "SF2M epoch: 3, steps: 333, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 334, loss: 1.137\r", + "SF2M epoch: 3, steps: 335, loss: 1.284\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 336, loss: 1.148\r", + "SF2M epoch: 3, steps: 337, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 338, loss: 1.131\r", + "SF2M epoch: 3, steps: 339, loss: 1.191\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 340, loss: 1.131\r", + "SF2M epoch: 3, steps: 341, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 342, loss: 1.129\r", + "SF2M epoch: 3, steps: 343, loss: 1.179\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 344, loss: 1.129\r", + "SF2M epoch: 3, steps: 345, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 346, loss: 1.134\r", + "SF2M epoch: 3, steps: 347, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 348, loss: 1.137\r", + "SF2M epoch: 3, steps: 349, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 350, loss: 1.129\r", + "SF2M epoch: 3, steps: 351, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 352, loss: 1.132\r", + "SF2M epoch: 3, steps: 353, loss: 1.237\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 354, loss: 1.141\r", + "SF2M epoch: 3, steps: 355, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:39, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 356, loss: 1.119\r", + "SF2M epoch: 3, steps: 357, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 358, loss: 1.128\r", + "SF2M epoch: 3, steps: 359, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 360, loss: 1.253\r", + "SF2M epoch: 3, steps: 361, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 362, loss: 1.123\r", + "SF2M epoch: 3, steps: 363, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 364, loss: 1.135\r", + "SF2M epoch: 3, steps: 365, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 366, loss: 1.13\r", + "SF2M epoch: 3, steps: 367, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 368, loss: 1.383\r", + "SF2M epoch: 3, steps: 369, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 370, loss: 1.134\r", + "SF2M epoch: 3, steps: 371, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 372, loss: 1.122\r", + "SF2M epoch: 3, steps: 373, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:41, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 374, loss: 1.126\r", + "SF2M epoch: 3, steps: 375, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 376, loss: 1.157\r", + "SF2M epoch: 3, steps: 377, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 378, loss: 1.146\r", + "SF2M epoch: 3, steps: 379, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 380, loss: 1.129\r", + "SF2M epoch: 3, steps: 381, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 382, loss: 1.132\r", + "SF2M epoch: 3, steps: 383, loss: 1.204\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 384, loss: 1.123\r", + "SF2M epoch: 3, steps: 385, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 386, loss: 1.103\r", + "SF2M epoch: 3, steps: 387, loss: 1.204\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 388, loss: 1.19\r", + "SF2M epoch: 3, steps: 389, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 390, loss: 1.122\r", + "SF2M epoch: 3, steps: 391, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:44, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 392, loss: 1.122\r", + "SF2M epoch: 3, steps: 393, loss: 1.196\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 394, loss: 1.146\r", + "SF2M epoch: 3, steps: 395, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 396, loss: 1.131\r", + "SF2M epoch: 3, steps: 397, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 398, loss: 1.142\r", + "SF2M epoch: 3, steps: 399, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 400, loss: 1.131\r", + "SF2M epoch: 3, steps: 401, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 402, loss: 1.146\r", + "SF2M epoch: 3, steps: 403, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 404, loss: 1.131\r", + "SF2M epoch: 3, steps: 405, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 406, loss: 1.133\r", + "SF2M epoch: 3, steps: 407, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 408, loss: 1.144\r", + "SF2M epoch: 3, steps: 409, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 410, loss: 1.153\r", + "SF2M epoch: 3, steps: 411, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 412, loss: 1.104\r", + "SF2M epoch: 3, steps: 413, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 414, loss: 1.13\r", + "SF2M epoch: 3, steps: 415, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 416, loss: 1.411\r", + "SF2M epoch: 3, steps: 417, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:47, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 418, loss: 1.15\r", + "SF2M epoch: 3, steps: 419, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 420, loss: 1.134\r", + "SF2M epoch: 3, steps: 421, loss: 1.195\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 422, loss: 1.134\r", + "SF2M epoch: 3, steps: 423, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 424, loss: 1.113\r", + "SF2M epoch: 3, steps: 425, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:47, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 426, loss: 1.149\r", + "SF2M epoch: 3, steps: 427, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 428, loss: 1.139\r", + "SF2M epoch: 3, steps: 429, loss: 1.189\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 430, loss: 1.137\r", + "SF2M epoch: 3, steps: 431, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 432, loss: 1.161\r", + "SF2M epoch: 3, steps: 433, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 434, loss: 1.129\r", + "SF2M epoch: 3, steps: 435, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 436, loss: 1.142\r", + "SF2M epoch: 3, steps: 437, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 438, loss: 1.16\r", + "SF2M epoch: 3, steps: 439, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 440, loss: 1.126\r", + "SF2M epoch: 3, steps: 441, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 442, loss: 1.117\r", + "SF2M epoch: 3, steps: 443, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 444, loss: 1.14\r", + "SF2M epoch: 3, steps: 445, loss: 1.186\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 446, loss: 1.122\r", + "SF2M epoch: 3, steps: 447, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 448, loss: 1.124\r", + "SF2M epoch: 3, steps: 449, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 450, loss: 2.01\r", + "SF2M epoch: 3, steps: 451, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 452, loss: 1.12\r", + "SF2M epoch: 3, steps: 453, loss: 1.184\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 454, loss: 1.116\r", + "SF2M epoch: 3, steps: 455, loss: 1.168\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 456, loss: 1.137\r", + "SF2M epoch: 3, steps: 457, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 458, loss: 1.119\r", + "SF2M epoch: 3, steps: 459, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 460, loss: 1.162\r", + "SF2M epoch: 3, steps: 461, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 462, loss: 1.128\r", + "SF2M epoch: 3, steps: 463, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 464, loss: 1.113\r", + "SF2M epoch: 3, steps: 465, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 3, steps: 466, loss: 1.121\r", + "SF2M epoch: 3, steps: 467, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.86it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 0, loss: 1.129\r", + "SF2M epoch: 4, steps: 1, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 2, loss: 1.122\r", + "SF2M epoch: 4, steps: 3, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 4, loss: 1.152\r", + "SF2M epoch: 4, steps: 5, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 6, loss: 1.135\r", + "SF2M epoch: 4, steps: 7, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 8, loss: 1.136\r", + "SF2M epoch: 4, steps: 9, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 10, loss: 1.104\r", + "SF2M epoch: 4, steps: 11, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 12, loss: 1.147\r", + "SF2M epoch: 4, steps: 13, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 14, loss: 1.121\r", + "SF2M epoch: 4, steps: 15, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 16, loss: 1.202\r", + "SF2M epoch: 4, steps: 17, loss: 1.23\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 18, loss: 1.114\r", + "SF2M epoch: 4, steps: 19, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 20, loss: 1.139\r", + "SF2M epoch: 4, steps: 21, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 22, loss: 1.112\r", + "SF2M epoch: 4, steps: 23, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 24, loss: 1.118\r", + "SF2M epoch: 4, steps: 25, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 26, loss: 1.121\r", + "SF2M epoch: 4, steps: 27, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 28, loss: 1.124\r", + "SF2M epoch: 4, steps: 29, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 30, loss: 1.127\r", + "SF2M epoch: 4, steps: 31, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 32, loss: 1.12\r", + "SF2M epoch: 4, steps: 33, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 34, loss: 1.121\r", + "SF2M epoch: 4, steps: 35, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 36, loss: 1.122\r", + "SF2M epoch: 4, steps: 37, loss: 1.456\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 38, loss: 1.11\r", + "SF2M epoch: 4, steps: 39, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 40, loss: 1.134\r", + "SF2M epoch: 4, steps: 41, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 42, loss: 1.144\r", + "SF2M epoch: 4, steps: 43, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 44, loss: 1.219\r", + "SF2M epoch: 4, steps: 45, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 46, loss: 1.134\r", + "SF2M epoch: 4, steps: 47, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 48, loss: 1.129\r", + "SF2M epoch: 4, steps: 49, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 50, loss: 1.113\r", + "SF2M epoch: 4, steps: 51, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 52, loss: 1.124\r", + "SF2M epoch: 4, steps: 53, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 54, loss: 1.133\r", + "SF2M epoch: 4, steps: 55, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 56, loss: 1.113\r", + "SF2M epoch: 4, steps: 57, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 58, loss: 1.131\r", + "SF2M epoch: 4, steps: 59, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 60, loss: 1.116\r", + "SF2M epoch: 4, steps: 61, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 62, loss: 1.125\r", + "SF2M epoch: 4, steps: 63, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 64, loss: 1.117\r", + "SF2M epoch: 4, steps: 65, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 66, loss: 1.138\r", + "SF2M epoch: 4, steps: 67, loss: 1.175\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 68, loss: 1.143\r", + "SF2M epoch: 4, steps: 69, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 70, loss: 1.149\r", + "SF2M epoch: 4, steps: 71, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 72, loss: 1.48\r", + "SF2M epoch: 4, steps: 73, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 74, loss: 1.112\r", + "SF2M epoch: 4, steps: 75, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 76, loss: 1.151\r", + "SF2M epoch: 4, steps: 77, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 78, loss: 1.12\r", + "SF2M epoch: 4, steps: 79, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 80, loss: 1.136\r", + "SF2M epoch: 4, steps: 81, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 82, loss: 1.134\r", + "SF2M epoch: 4, steps: 83, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 84, loss: 1.124\r", + "SF2M epoch: 4, steps: 85, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 86, loss: 1.149\r", + "SF2M epoch: 4, steps: 87, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 88, loss: 1.144\r", + "SF2M epoch: 4, steps: 89, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 90, loss: 1.123\r", + "SF2M epoch: 4, steps: 91, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 92, loss: 1.113\r", + "SF2M epoch: 4, steps: 93, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 94, loss: 1.115\r", + "SF2M epoch: 4, steps: 95, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 96, loss: 1.106\r", + "SF2M epoch: 4, steps: 97, loss: 1.21\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 98, loss: 1.118\r", + "SF2M epoch: 4, steps: 99, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 100, loss: 1.157\r", + "SF2M epoch: 4, steps: 101, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 102, loss: 1.105\r", + "SF2M epoch: 4, steps: 103, loss: 1.274\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 104, loss: 1.119\r", + "SF2M epoch: 4, steps: 105, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 106, loss: 1.119\r", + "SF2M epoch: 4, steps: 107, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 108, loss: 1.11\r", + "SF2M epoch: 4, steps: 109, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 110, loss: 1.126\r", + "SF2M epoch: 4, steps: 111, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 112, loss: 1.166\r", + "SF2M epoch: 4, steps: 113, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 114, loss: 1.182\r", + "SF2M epoch: 4, steps: 115, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 116, loss: 1.119\r", + "SF2M epoch: 4, steps: 117, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 118, loss: 1.891\r", + "SF2M epoch: 4, steps: 119, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 120, loss: 1.171\r", + "SF2M epoch: 4, steps: 121, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 122, loss: 1.39\r", + "SF2M epoch: 4, steps: 123, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 124, loss: 1.17\r", + "SF2M epoch: 4, steps: 125, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 126, loss: 1.132\r", + "SF2M epoch: 4, steps: 127, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 128, loss: 1.124\r", + "SF2M epoch: 4, steps: 129, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 130, loss: 1.116\r", + "SF2M epoch: 4, steps: 131, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 132, loss: 1.13\r", + "SF2M epoch: 4, steps: 133, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 134, loss: 1.131\r", + "SF2M epoch: 4, steps: 135, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 136, loss: 1.115\r", + "SF2M epoch: 4, steps: 137, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 138, loss: 1.142\r", + "SF2M epoch: 4, steps: 139, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 140, loss: 1.148\r", + "SF2M epoch: 4, steps: 141, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 142, loss: 1.137\r", + "SF2M epoch: 4, steps: 143, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 144, loss: 1.133\r", + "SF2M epoch: 4, steps: 145, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 146, loss: 1.136\r", + "SF2M epoch: 4, steps: 147, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 148, loss: 1.124\r", + "SF2M epoch: 4, steps: 149, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 150, loss: 1.126\r", + "SF2M epoch: 4, steps: 151, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 152, loss: 1.123\r", + "SF2M epoch: 4, steps: 153, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 154, loss: 1.132\r", + "SF2M epoch: 4, steps: 155, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 156, loss: 1.118\r", + "SF2M epoch: 4, steps: 157, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 158, loss: 1.129\r", + "SF2M epoch: 4, steps: 159, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 160, loss: 1.211\r", + "SF2M epoch: 4, steps: 161, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 162, loss: 1.124\r", + "SF2M epoch: 4, steps: 163, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 164, loss: 1.132\r", + "SF2M epoch: 4, steps: 165, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 166, loss: 1.123\r", + "SF2M epoch: 4, steps: 167, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 168, loss: 1.106\r", + "SF2M epoch: 4, steps: 169, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 170, loss: 1.652\r", + "SF2M epoch: 4, steps: 171, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 172, loss: 1.135\r", + "SF2M epoch: 4, steps: 173, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 174, loss: 1.124\r", + "SF2M epoch: 4, steps: 175, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 176, loss: 1.149\r", + "SF2M epoch: 4, steps: 177, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 178, loss: 1.111\r", + "SF2M epoch: 4, steps: 179, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 180, loss: 1.128\r", + "SF2M epoch: 4, steps: 181, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 182, loss: 1.134\r", + "SF2M epoch: 4, steps: 183, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 184, loss: 1.118\r", + "SF2M epoch: 4, steps: 185, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 186, loss: 1.17\r", + "SF2M epoch: 4, steps: 187, loss: 1.337\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 188, loss: 1.156\r", + "SF2M epoch: 4, steps: 189, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 190, loss: 1.137\r", + "SF2M epoch: 4, steps: 191, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 192, loss: 1.182\r", + "SF2M epoch: 4, steps: 193, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 194, loss: 1.132\r", + "SF2M epoch: 4, steps: 195, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 196, loss: 1.115\r", + "SF2M epoch: 4, steps: 197, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 198, loss: 1.128\r", + "SF2M epoch: 4, steps: 199, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 200, loss: 1.131\r", + "SF2M epoch: 4, steps: 201, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 202, loss: 1.139\r", + "SF2M epoch: 4, steps: 203, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 204, loss: 1.145\r", + "SF2M epoch: 4, steps: 205, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 206, loss: 1.117\r", + "SF2M epoch: 4, steps: 207, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 208, loss: 1.12\r", + "SF2M epoch: 4, steps: 209, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 210, loss: 1.121\r", + "SF2M epoch: 4, steps: 211, loss: 1.168\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 212, loss: 1.132\r", + "SF2M epoch: 4, steps: 213, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 214, loss: 1.157\r", + "SF2M epoch: 4, steps: 215, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 216, loss: 1.107\r", + "SF2M epoch: 4, steps: 217, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 218, loss: 1.102\r", + "SF2M epoch: 4, steps: 219, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 220, loss: 1.119\r", + "SF2M epoch: 4, steps: 221, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 222, loss: 1.152\r", + "SF2M epoch: 4, steps: 223, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 224, loss: 1.107\r", + "SF2M epoch: 4, steps: 225, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 226, loss: 1.147\r", + "SF2M epoch: 4, steps: 227, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 228, loss: 1.197\r", + "SF2M epoch: 4, steps: 229, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 230, loss: 1.128\r", + "SF2M epoch: 4, steps: 231, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 232, loss: 1.136\r", + "SF2M epoch: 4, steps: 233, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 234, loss: 1.138\r", + "SF2M epoch: 4, steps: 235, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 236, loss: 1.129\r", + "SF2M epoch: 4, steps: 237, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 238, loss: 1.12\r", + "SF2M epoch: 4, steps: 239, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 240, loss: 1.116\r", + "SF2M epoch: 4, steps: 241, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 242, loss: 1.127\r", + "SF2M epoch: 4, steps: 243, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 244, loss: 1.116\r", + "SF2M epoch: 4, steps: 245, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 246, loss: 1.332\r", + "SF2M epoch: 4, steps: 247, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 248, loss: 1.144\r", + "SF2M epoch: 4, steps: 249, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 250, loss: 1.105\r", + "SF2M epoch: 4, steps: 251, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 252, loss: 1.119\r", + "SF2M epoch: 4, steps: 253, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 254, loss: 1.12\r", + "SF2M epoch: 4, steps: 255, loss: 1.175\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 256, loss: 1.413\r", + "SF2M epoch: 4, steps: 257, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:28, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 258, loss: 1.119\r", + "SF2M epoch: 4, steps: 259, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 260, loss: 1.118\r", + "SF2M epoch: 4, steps: 261, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 262, loss: 1.131\r", + "SF2M epoch: 4, steps: 263, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 264, loss: 1.123\r", + "SF2M epoch: 4, steps: 265, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 266, loss: 1.101\r", + "SF2M epoch: 4, steps: 267, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 268, loss: 1.24\r", + "SF2M epoch: 4, steps: 269, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 270, loss: 1.123\r", + "SF2M epoch: 4, steps: 271, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 272, loss: 1.13\r", + "SF2M epoch: 4, steps: 273, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 274, loss: 1.153\r", + "SF2M epoch: 4, steps: 275, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 276, loss: 1.132\r", + "SF2M epoch: 4, steps: 277, loss: 1.2\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 278, loss: 1.124\r", + "SF2M epoch: 4, steps: 279, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 280, loss: 1.138\r", + "SF2M epoch: 4, steps: 281, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 282, loss: 1.114\r", + "SF2M epoch: 4, steps: 283, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:32, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 284, loss: 1.13\r", + "SF2M epoch: 4, steps: 285, loss: 1.196\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 286, loss: 1.115\r", + "SF2M epoch: 4, steps: 287, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 288, loss: 1.116\r", + "SF2M epoch: 4, steps: 289, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 290, loss: 1.219\r", + "SF2M epoch: 4, steps: 291, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 292, loss: 1.107\r", + "SF2M epoch: 4, steps: 293, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 294, loss: 1.122\r", + "SF2M epoch: 4, steps: 295, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 296, loss: 1.136\r", + "SF2M epoch: 4, steps: 297, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 298, loss: 1.114\r", + "SF2M epoch: 4, steps: 299, loss: 1.591\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 300, loss: 1.141\r", + "SF2M epoch: 4, steps: 301, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 302, loss: 1.132\r", + "SF2M epoch: 4, steps: 303, loss: 1.214\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 304, loss: 1.132\r", + "SF2M epoch: 4, steps: 305, loss: 1.314\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 306, loss: 1.147\r", + "SF2M epoch: 4, steps: 307, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 308, loss: 1.151\r", + "SF2M epoch: 4, steps: 309, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 310, loss: 1.119\r", + "SF2M epoch: 4, steps: 311, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 312, loss: 1.188\r", + "SF2M epoch: 4, steps: 313, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 314, loss: 1.134\r", + "SF2M epoch: 4, steps: 315, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 316, loss: 1.124\r", + "SF2M epoch: 4, steps: 317, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 318, loss: 1.11\r", + "SF2M epoch: 4, steps: 319, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:35, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 320, loss: 1.15\r", + "SF2M epoch: 4, steps: 321, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 322, loss: 1.13\r", + "SF2M epoch: 4, steps: 323, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 324, loss: 1.143\r", + "SF2M epoch: 4, steps: 325, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 326, loss: 1.147\r", + "SF2M epoch: 4, steps: 327, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 328, loss: 1.172\r", + "SF2M epoch: 4, steps: 329, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 330, loss: 1.115\r", + "SF2M epoch: 4, steps: 331, loss: 1.184\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 332, loss: 1.145\r", + "SF2M epoch: 4, steps: 333, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 334, loss: 1.129\r", + "SF2M epoch: 4, steps: 335, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 336, loss: 1.105\r", + "SF2M epoch: 4, steps: 337, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 338, loss: 1.12\r", + "SF2M epoch: 4, steps: 339, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 340, loss: 1.127\r", + "SF2M epoch: 4, steps: 341, loss: 1.208\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 342, loss: 1.118\r", + "SF2M epoch: 4, steps: 343, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 344, loss: 1.142\r", + "SF2M epoch: 4, steps: 345, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:38, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 346, loss: 1.115\r", + "SF2M epoch: 4, steps: 347, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 348, loss: 1.122\r", + "SF2M epoch: 4, steps: 349, loss: 1.226\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 350, loss: 1.123\r", + "SF2M epoch: 4, steps: 351, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 352, loss: 1.147\r", + "SF2M epoch: 4, steps: 353, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 354, loss: 1.14\r", + "SF2M epoch: 4, steps: 355, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:39, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 356, loss: 1.151\r", + "SF2M epoch: 4, steps: 357, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 358, loss: 1.231\r", + "SF2M epoch: 4, steps: 359, loss: 1.168\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 360, loss: 1.123\r", + "SF2M epoch: 4, steps: 361, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 362, loss: 1.135\r", + "SF2M epoch: 4, steps: 363, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 364, loss: 1.207\r", + "SF2M epoch: 4, steps: 365, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 366, loss: 1.135\r", + "SF2M epoch: 4, steps: 367, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 368, loss: 1.134\r", + "SF2M epoch: 4, steps: 369, loss: 1.325\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 370, loss: 1.156\r", + "SF2M epoch: 4, steps: 371, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 372, loss: 1.134\r", + "SF2M epoch: 4, steps: 373, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 374, loss: 1.124\r", + "SF2M epoch: 4, steps: 375, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 376, loss: 1.122\r", + "SF2M epoch: 4, steps: 377, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 378, loss: 1.199\r", + "SF2M epoch: 4, steps: 379, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 380, loss: 1.206\r", + "SF2M epoch: 4, steps: 381, loss: 1.213\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 382, loss: 1.119\r", + "SF2M epoch: 4, steps: 383, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 384, loss: 1.132\r", + "SF2M epoch: 4, steps: 385, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 386, loss: 1.124\r", + "SF2M epoch: 4, steps: 387, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 388, loss: 1.128\r", + "SF2M epoch: 4, steps: 389, loss: 1.377\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 390, loss: 1.128\r", + "SF2M epoch: 4, steps: 391, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 392, loss: 1.236\r", + "SF2M epoch: 4, steps: 393, loss: 3.567\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 394, loss: 1.141\r", + "SF2M epoch: 4, steps: 395, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 396, loss: 1.127\r", + "SF2M epoch: 4, steps: 397, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 398, loss: 1.252\r", + "SF2M epoch: 4, steps: 399, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 400, loss: 1.126\r", + "SF2M epoch: 4, steps: 401, loss: 1.186\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 402, loss: 1.125\r", + "SF2M epoch: 4, steps: 403, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 404, loss: 1.214\r", + "SF2M epoch: 4, steps: 405, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 406, loss: 1.125\r", + "SF2M epoch: 4, steps: 407, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 408, loss: 1.142\r", + "SF2M epoch: 4, steps: 409, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 410, loss: 1.145\r", + "SF2M epoch: 4, steps: 411, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 412, loss: 1.138\r", + "SF2M epoch: 4, steps: 413, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 414, loss: 1.125\r", + "SF2M epoch: 4, steps: 415, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 416, loss: 2.64\r", + "SF2M epoch: 4, steps: 417, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:47, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 418, loss: 1.128\r", + "SF2M epoch: 4, steps: 419, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 420, loss: 1.13\r", + "SF2M epoch: 4, steps: 421, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 422, loss: 1.132\r", + "SF2M epoch: 4, steps: 423, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 424, loss: 1.275\r", + "SF2M epoch: 4, steps: 425, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:47, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 426, loss: 1.164\r", + "SF2M epoch: 4, steps: 427, loss: 1.184\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 428, loss: 1.124\r", + "SF2M epoch: 4, steps: 429, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 430, loss: 1.115\r", + "SF2M epoch: 4, steps: 431, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 432, loss: 1.125\r", + "SF2M epoch: 4, steps: 433, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 434, loss: 1.232\r", + "SF2M epoch: 4, steps: 435, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 436, loss: 1.127\r", + "SF2M epoch: 4, steps: 437, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 438, loss: 1.143\r", + "SF2M epoch: 4, steps: 439, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 440, loss: 1.167\r", + "SF2M epoch: 4, steps: 441, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 442, loss: 1.136\r", + "SF2M epoch: 4, steps: 443, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 444, loss: 1.119\r", + "SF2M epoch: 4, steps: 445, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 446, loss: 1.379\r", + "SF2M epoch: 4, steps: 447, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 448, loss: 1.131\r", + "SF2M epoch: 4, steps: 449, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 450, loss: 1.142\r", + "SF2M epoch: 4, steps: 451, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 452, loss: 1.141\r", + "SF2M epoch: 4, steps: 453, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 454, loss: 1.194\r", + "SF2M epoch: 4, steps: 455, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 456, loss: 1.125\r", + "SF2M epoch: 4, steps: 457, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 458, loss: 1.125\r", + "SF2M epoch: 4, steps: 459, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 460, loss: 1.159\r", + "SF2M epoch: 4, steps: 461, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:51, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 462, loss: 1.125\r", + "SF2M epoch: 4, steps: 463, loss: 1.107\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 464, loss: 1.14\r", + "SF2M epoch: 4, steps: 465, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 4, steps: 466, loss: 1.153\r", + "SF2M epoch: 4, steps: 467, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 0, loss: 1.12\r", + "SF2M epoch: 5, steps: 1, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 2, loss: 1.213\r", + "SF2M epoch: 5, steps: 3, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 4, loss: 1.132\r", + "SF2M epoch: 5, steps: 5, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 6, loss: 1.121\r", + "SF2M epoch: 5, steps: 7, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 8, loss: 1.114\r", + "SF2M epoch: 5, steps: 9, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 10, loss: 1.139\r", + "SF2M epoch: 5, steps: 11, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 12, loss: 1.127\r", + "SF2M epoch: 5, steps: 13, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 14, loss: 1.125\r", + "SF2M epoch: 5, steps: 15, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 16, loss: 1.153\r", + "SF2M epoch: 5, steps: 17, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 18, loss: 1.114\r", + "SF2M epoch: 5, steps: 19, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 20, loss: 1.119\r", + "SF2M epoch: 5, steps: 21, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 22, loss: 1.153\r", + "SF2M epoch: 5, steps: 23, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 24, loss: 1.12\r", + "SF2M epoch: 5, steps: 25, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 26, loss: 1.121\r", + "SF2M epoch: 5, steps: 27, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 28, loss: 1.117\r", + "SF2M epoch: 5, steps: 29, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 30, loss: 1.158\r", + "SF2M epoch: 5, steps: 31, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 32, loss: 1.137\r", + "SF2M epoch: 5, steps: 33, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 34, loss: 1.133\r", + "SF2M epoch: 5, steps: 35, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 36, loss: 1.25\r", + "SF2M epoch: 5, steps: 37, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 38, loss: 1.116\r", + "SF2M epoch: 5, steps: 39, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 40, loss: 1.153\r", + "SF2M epoch: 5, steps: 41, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 42, loss: 1.126\r", + "SF2M epoch: 5, steps: 43, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 44, loss: 1.115\r", + "SF2M epoch: 5, steps: 45, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 46, loss: 1.15\r", + "SF2M epoch: 5, steps: 47, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 48, loss: 1.113\r", + "SF2M epoch: 5, steps: 49, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 50, loss: 1.169\r", + "SF2M epoch: 5, steps: 51, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 52, loss: 1.147\r", + "SF2M epoch: 5, steps: 53, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 54, loss: 1.1\r", + "SF2M epoch: 5, steps: 55, loss: 1.466\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 56, loss: 1.104\r", + "SF2M epoch: 5, steps: 57, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 58, loss: 1.155\r", + "SF2M epoch: 5, steps: 59, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 60, loss: 1.111\r", + "SF2M epoch: 5, steps: 61, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 62, loss: 1.132\r", + "SF2M epoch: 5, steps: 63, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 64, loss: 1.115\r", + "SF2M epoch: 5, steps: 65, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 66, loss: 1.106\r", + "SF2M epoch: 5, steps: 67, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 68, loss: 1.112\r", + "SF2M epoch: 5, steps: 69, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 70, loss: 1.132\r", + "SF2M epoch: 5, steps: 71, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 72, loss: 1.117\r", + "SF2M epoch: 5, steps: 73, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 74, loss: 1.14\r", + "SF2M epoch: 5, steps: 75, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 76, loss: 1.155\r", + "SF2M epoch: 5, steps: 77, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 78, loss: 1.119\r", + "SF2M epoch: 5, steps: 79, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 80, loss: 1.132\r", + "SF2M epoch: 5, steps: 81, loss: 1.225\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 82, loss: 1.121\r", + "SF2M epoch: 5, steps: 83, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 84, loss: 1.132\r", + "SF2M epoch: 5, steps: 85, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 86, loss: 1.11\r", + "SF2M epoch: 5, steps: 87, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 88, loss: 1.14\r", + "SF2M epoch: 5, steps: 89, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 90, loss: 1.129\r", + "SF2M epoch: 5, steps: 91, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 92, loss: 1.118\r", + "SF2M epoch: 5, steps: 93, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 94, loss: 1.12\r", + "SF2M epoch: 5, steps: 95, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 96, loss: 1.259\r", + "SF2M epoch: 5, steps: 97, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 98, loss: 1.125\r", + "SF2M epoch: 5, steps: 99, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 100, loss: 1.131\r", + "SF2M epoch: 5, steps: 101, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 102, loss: 1.14\r", + "SF2M epoch: 5, steps: 103, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 104, loss: 1.134\r", + "SF2M epoch: 5, steps: 105, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 106, loss: 1.112\r", + "SF2M epoch: 5, steps: 107, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 108, loss: 1.122\r", + "SF2M epoch: 5, steps: 109, loss: 1.188\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 110, loss: 1.126\r", + "SF2M epoch: 5, steps: 111, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 112, loss: 1.106\r", + "SF2M epoch: 5, steps: 113, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 114, loss: 1.153\r", + "SF2M epoch: 5, steps: 115, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 116, loss: 1.187\r", + "SF2M epoch: 5, steps: 117, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 118, loss: 1.125\r", + "SF2M epoch: 5, steps: 119, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 120, loss: 1.131\r", + "SF2M epoch: 5, steps: 121, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 122, loss: 1.135\r", + "SF2M epoch: 5, steps: 123, loss: 1.104\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:13, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 124, loss: 1.244\r", + "SF2M epoch: 5, steps: 125, loss: 1.359\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 126, loss: 1.127\r", + "SF2M epoch: 5, steps: 127, loss: 1.556\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 128, loss: 1.132\r", + "SF2M epoch: 5, steps: 129, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 130, loss: 1.108\r", + "SF2M epoch: 5, steps: 131, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:14, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 132, loss: 1.136\r", + "SF2M epoch: 5, steps: 133, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 134, loss: 1.123\r", + "SF2M epoch: 5, steps: 135, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 136, loss: 1.116\r", + "SF2M epoch: 5, steps: 137, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 138, loss: 1.11\r", + "SF2M epoch: 5, steps: 139, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 140, loss: 1.118\r", + "SF2M epoch: 5, steps: 141, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:15, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 142, loss: 1.12\r", + "SF2M epoch: 5, steps: 143, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 144, loss: 1.834\r", + "SF2M epoch: 5, steps: 145, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 146, loss: 1.138\r", + "SF2M epoch: 5, steps: 147, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 148, loss: 1.115\r", + "SF2M epoch: 5, steps: 149, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 150, loss: 1.137\r", + "SF2M epoch: 5, steps: 151, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 152, loss: 1.178\r", + "SF2M epoch: 5, steps: 153, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 154, loss: 1.128\r", + "SF2M epoch: 5, steps: 155, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 156, loss: 1.144\r", + "SF2M epoch: 5, steps: 157, loss: 1.177\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 158, loss: 1.155\r", + "SF2M epoch: 5, steps: 159, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 160, loss: 1.136\r", + "SF2M epoch: 5, steps: 161, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 162, loss: 1.233\r", + "SF2M epoch: 5, steps: 163, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 164, loss: 1.135\r", + "SF2M epoch: 5, steps: 165, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 166, loss: 1.125\r", + "SF2M epoch: 5, steps: 167, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 168, loss: 1.144\r", + "SF2M epoch: 5, steps: 169, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 170, loss: 1.136\r", + "SF2M epoch: 5, steps: 171, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 172, loss: 1.107\r", + "SF2M epoch: 5, steps: 173, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 174, loss: 1.125\r", + "SF2M epoch: 5, steps: 175, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 176, loss: 1.129\r", + "SF2M epoch: 5, steps: 177, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 178, loss: 1.103\r", + "SF2M epoch: 5, steps: 179, loss: 1.098\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 180, loss: 1.121\r", + "SF2M epoch: 5, steps: 181, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 182, loss: 1.111\r", + "SF2M epoch: 5, steps: 183, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 184, loss: 1.128\r", + "SF2M epoch: 5, steps: 185, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:20, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 186, loss: 1.112\r", + "SF2M epoch: 5, steps: 187, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 188, loss: 1.113\r", + "SF2M epoch: 5, steps: 189, loss: 1.735\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 190, loss: 1.318\r", + "SF2M epoch: 5, steps: 191, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 192, loss: 1.119\r", + "SF2M epoch: 5, steps: 193, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:21, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 194, loss: 1.123\r", + "SF2M epoch: 5, steps: 195, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 196, loss: 1.169\r", + "SF2M epoch: 5, steps: 197, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 198, loss: 1.123\r", + "SF2M epoch: 5, steps: 199, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 200, loss: 1.126\r", + "SF2M epoch: 5, steps: 201, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 202, loss: 1.187\r", + "SF2M epoch: 5, steps: 203, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 204, loss: 1.116\r", + "SF2M epoch: 5, steps: 205, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 206, loss: 1.136\r", + "SF2M epoch: 5, steps: 207, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 208, loss: 1.118\r", + "SF2M epoch: 5, steps: 209, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 210, loss: 1.107\r", + "SF2M epoch: 5, steps: 211, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:23, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 212, loss: 1.122\r", + "SF2M epoch: 5, steps: 213, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 214, loss: 1.139\r", + "SF2M epoch: 5, steps: 215, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 216, loss: 1.158\r", + "SF2M epoch: 5, steps: 217, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 218, loss: 1.124\r", + "SF2M epoch: 5, steps: 219, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 220, loss: 1.142\r", + "SF2M epoch: 5, steps: 221, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 222, loss: 1.103\r", + "SF2M epoch: 5, steps: 223, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 224, loss: 1.136\r", + "SF2M epoch: 5, steps: 225, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 226, loss: 1.285\r", + "SF2M epoch: 5, steps: 227, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 228, loss: 1.106\r", + "SF2M epoch: 5, steps: 229, loss: 1.209\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 230, loss: 1.119\r", + "SF2M epoch: 5, steps: 231, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 232, loss: 1.145\r", + "SF2M epoch: 5, steps: 233, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 234, loss: 1.115\r", + "SF2M epoch: 5, steps: 235, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 236, loss: 1.287\r", + "SF2M epoch: 5, steps: 237, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 238, loss: 1.145\r", + "SF2M epoch: 5, steps: 239, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 240, loss: 1.11\r", + "SF2M epoch: 5, steps: 241, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 242, loss: 1.11\r", + "SF2M epoch: 5, steps: 243, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 244, loss: 1.132\r", + "SF2M epoch: 5, steps: 245, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 246, loss: 1.122\r", + "SF2M epoch: 5, steps: 247, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:27, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 248, loss: 1.259\r", + "SF2M epoch: 5, steps: 249, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 250, loss: 1.117\r", + "SF2M epoch: 5, steps: 251, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 252, loss: 1.112\r", + "SF2M epoch: 5, steps: 253, loss: 1.102\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 254, loss: 1.104\r", + "SF2M epoch: 5, steps: 255, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 256, loss: 1.128\r", + "SF2M epoch: 5, steps: 257, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:28, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.96it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 258, loss: 1.986\r", + "SF2M epoch: 5, steps: 259, loss: 1.379\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 260, loss: 1.145\r", + "SF2M epoch: 5, steps: 261, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 262, loss: 1.153\r", + "SF2M epoch: 5, steps: 263, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 264, loss: 1.258\r", + "SF2M epoch: 5, steps: 265, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 266, loss: 1.148\r", + "SF2M epoch: 5, steps: 267, loss: 1.177\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 268, loss: 1.123\r", + "SF2M epoch: 5, steps: 269, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 270, loss: 1.141\r", + "SF2M epoch: 5, steps: 271, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 272, loss: 1.134\r", + "SF2M epoch: 5, steps: 273, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 274, loss: 1.298\r", + "SF2M epoch: 5, steps: 275, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 276, loss: 1.135\r", + "SF2M epoch: 5, steps: 277, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 278, loss: 1.14\r", + "SF2M epoch: 5, steps: 279, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 280, loss: 1.146\r", + "SF2M epoch: 5, steps: 281, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 282, loss: 1.175\r", + "SF2M epoch: 5, steps: 283, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 284, loss: 1.198\r", + "SF2M epoch: 5, steps: 285, loss: 1.292\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 286, loss: 1.117\r", + "SF2M epoch: 5, steps: 287, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 288, loss: 1.169\r", + "SF2M epoch: 5, steps: 289, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 290, loss: 1.419\r", + "SF2M epoch: 5, steps: 291, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 292, loss: 1.175\r", + "SF2M epoch: 5, steps: 293, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 294, loss: 1.164\r", + "SF2M epoch: 5, steps: 295, loss: 1.256\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 296, loss: 1.13\r", + "SF2M epoch: 5, steps: 297, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 298, loss: 1.135\r", + "SF2M epoch: 5, steps: 299, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 300, loss: 1.115\r", + "SF2M epoch: 5, steps: 301, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 302, loss: 1.124\r", + "SF2M epoch: 5, steps: 303, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 304, loss: 1.171\r", + "SF2M epoch: 5, steps: 305, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 306, loss: 1.373\r", + "SF2M epoch: 5, steps: 307, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 308, loss: 1.114\r", + "SF2M epoch: 5, steps: 309, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:34, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 310, loss: 1.138\r", + "SF2M epoch: 5, steps: 311, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 312, loss: 1.12\r", + "SF2M epoch: 5, steps: 313, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 314, loss: 1.117\r", + "SF2M epoch: 5, steps: 315, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 316, loss: 1.124\r", + "SF2M epoch: 5, steps: 317, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 318, loss: 1.127\r", + "SF2M epoch: 5, steps: 319, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 320, loss: 1.227\r", + "SF2M epoch: 5, steps: 321, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 322, loss: 1.134\r", + "SF2M epoch: 5, steps: 323, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 324, loss: 1.139\r", + "SF2M epoch: 5, steps: 325, loss: 1.192\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 326, loss: 1.126\r", + "SF2M epoch: 5, steps: 327, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 328, loss: 1.113\r", + "SF2M epoch: 5, steps: 329, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 330, loss: 1.141\r", + "SF2M epoch: 5, steps: 331, loss: 1.592\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 332, loss: 1.153\r", + "SF2M epoch: 5, steps: 333, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 334, loss: 1.121\r", + "SF2M epoch: 5, steps: 335, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 336, loss: 1.134\r", + "SF2M epoch: 5, steps: 337, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 338, loss: 1.111\r", + "SF2M epoch: 5, steps: 339, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 340, loss: 1.131\r", + "SF2M epoch: 5, steps: 341, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 342, loss: 1.146\r", + "SF2M epoch: 5, steps: 343, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 344, loss: 1.148\r", + "SF2M epoch: 5, steps: 345, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 346, loss: 1.268\r", + "SF2M epoch: 5, steps: 347, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 348, loss: 1.117\r", + "SF2M epoch: 5, steps: 349, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 350, loss: 1.124\r", + "SF2M epoch: 5, steps: 351, loss: 1.171\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 352, loss: 1.138\r", + "SF2M epoch: 5, steps: 353, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 354, loss: 1.113\r", + "SF2M epoch: 5, steps: 355, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 356, loss: 1.14\r", + "SF2M epoch: 5, steps: 357, loss: 1.558\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 358, loss: 1.123\r", + "SF2M epoch: 5, steps: 359, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 360, loss: 1.134\r", + "SF2M epoch: 5, steps: 361, loss: 1.173\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 362, loss: 1.135\r", + "SF2M epoch: 5, steps: 363, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 364, loss: 1.126\r", + "SF2M epoch: 5, steps: 365, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 366, loss: 1.189\r", + "SF2M epoch: 5, steps: 367, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 368, loss: 1.122\r", + "SF2M epoch: 5, steps: 369, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 370, loss: 1.31\r", + "SF2M epoch: 5, steps: 371, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 372, loss: 1.107\r", + "SF2M epoch: 5, steps: 373, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 374, loss: 1.188\r", + "SF2M epoch: 5, steps: 375, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 376, loss: 1.176\r", + "SF2M epoch: 5, steps: 377, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 378, loss: 1.106\r", + "SF2M epoch: 5, steps: 379, loss: 1.099\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 380, loss: 1.127\r", + "SF2M epoch: 5, steps: 381, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 382, loss: 1.124\r", + "SF2M epoch: 5, steps: 383, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 384, loss: 1.138\r", + "SF2M epoch: 5, steps: 385, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 386, loss: 1.122\r", + "SF2M epoch: 5, steps: 387, loss: 1.107\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 388, loss: 1.124\r", + "SF2M epoch: 5, steps: 389, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 390, loss: 1.12\r", + "SF2M epoch: 5, steps: 391, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 392, loss: 1.118\r", + "SF2M epoch: 5, steps: 393, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 394, loss: 1.11\r", + "SF2M epoch: 5, steps: 395, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 396, loss: 1.124\r", + "SF2M epoch: 5, steps: 397, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 398, loss: 1.134\r", + "SF2M epoch: 5, steps: 399, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.87it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:44, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 400, loss: 1.113\r", + "SF2M epoch: 5, steps: 401, loss: 1.316\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 402, loss: 1.109\r", + "SF2M epoch: 5, steps: 403, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 404, loss: 1.13\r", + "SF2M epoch: 5, steps: 405, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 406, loss: 1.119\r", + "SF2M epoch: 5, steps: 407, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 408, loss: 1.339\r", + "SF2M epoch: 5, steps: 409, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 410, loss: 1.112\r", + "SF2M epoch: 5, steps: 411, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 412, loss: 1.126\r", + "SF2M epoch: 5, steps: 413, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 414, loss: 1.119\r", + "SF2M epoch: 5, steps: 415, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 416, loss: 1.142\r", + "SF2M epoch: 5, steps: 417, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 418, loss: 1.122\r", + "SF2M epoch: 5, steps: 419, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 420, loss: 1.114\r", + "SF2M epoch: 5, steps: 421, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 422, loss: 1.11\r", + "SF2M epoch: 5, steps: 423, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 424, loss: 1.148\r", + "SF2M epoch: 5, steps: 425, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 426, loss: 1.11\r", + "SF2M epoch: 5, steps: 427, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 428, loss: 1.12\r", + "SF2M epoch: 5, steps: 429, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 430, loss: 1.142\r", + "SF2M epoch: 5, steps: 431, loss: 1.185\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 432, loss: 1.129\r", + "SF2M epoch: 5, steps: 433, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 434, loss: 1.142\r", + "SF2M epoch: 5, steps: 435, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 436, loss: 1.19\r", + "SF2M epoch: 5, steps: 437, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 438, loss: 1.129\r", + "SF2M epoch: 5, steps: 439, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 440, loss: 1.123\r", + "SF2M epoch: 5, steps: 441, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 442, loss: 1.116\r", + "SF2M epoch: 5, steps: 443, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 444, loss: 1.125\r", + "SF2M epoch: 5, steps: 445, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 446, loss: 1.117\r", + "SF2M epoch: 5, steps: 447, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 448, loss: 1.2\r", + "SF2M epoch: 5, steps: 449, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 450, loss: 1.119\r", + "SF2M epoch: 5, steps: 451, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 452, loss: 1.095\r", + "SF2M epoch: 5, steps: 453, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 454, loss: 1.122\r", + "SF2M epoch: 5, steps: 455, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 456, loss: 1.142\r", + "SF2M epoch: 5, steps: 457, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 458, loss: 1.116\r", + "SF2M epoch: 5, steps: 459, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 460, loss: 1.145\r", + "SF2M epoch: 5, steps: 461, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 462, loss: 1.145\r", + "SF2M epoch: 5, steps: 463, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 464, loss: 1.182\r", + "SF2M epoch: 5, steps: 465, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 5, steps: 466, loss: 1.122\r", + "SF2M epoch: 5, steps: 467, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 0, loss: 1.168\r", + "SF2M epoch: 6, steps: 1, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 2, loss: 1.133\r", + "SF2M epoch: 6, steps: 3, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 4, loss: 1.116\r", + "SF2M epoch: 6, steps: 5, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 6, loss: 1.115\r", + "SF2M epoch: 6, steps: 7, loss: 1.183\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 8, loss: 1.148\r", + "SF2M epoch: 6, steps: 9, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 10, loss: 1.132\r", + "SF2M epoch: 6, steps: 11, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 12, loss: 1.137\r", + "SF2M epoch: 6, steps: 13, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 14, loss: 1.131\r", + "SF2M epoch: 6, steps: 15, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 16, loss: 1.122\r", + "SF2M epoch: 6, steps: 17, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 18, loss: 1.116\r", + "SF2M epoch: 6, steps: 19, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 20, loss: 1.126\r", + "SF2M epoch: 6, steps: 21, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 22, loss: 1.123\r", + "SF2M epoch: 6, steps: 23, loss: 1.343\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 24, loss: 1.108\r", + "SF2M epoch: 6, steps: 25, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 26, loss: 1.126\r", + "SF2M epoch: 6, steps: 27, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 28, loss: 1.125\r", + "SF2M epoch: 6, steps: 29, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 30, loss: 1.143\r", + "SF2M epoch: 6, steps: 31, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 32, loss: 1.154\r", + "SF2M epoch: 6, steps: 33, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 34, loss: 1.175\r", + "SF2M epoch: 6, steps: 35, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 36, loss: 1.115\r", + "SF2M epoch: 6, steps: 37, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 38, loss: 1.132\r", + "SF2M epoch: 6, steps: 39, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 40, loss: 1.134\r", + "SF2M epoch: 6, steps: 41, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 42, loss: 1.133\r", + "SF2M epoch: 6, steps: 43, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 44, loss: 1.118\r", + "SF2M epoch: 6, steps: 45, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 46, loss: 1.125\r", + "SF2M epoch: 6, steps: 47, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 48, loss: 1.223\r", + "SF2M epoch: 6, steps: 49, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 50, loss: 1.127\r", + "SF2M epoch: 6, steps: 51, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 52, loss: 1.134\r", + "SF2M epoch: 6, steps: 53, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 54, loss: 1.114\r", + "SF2M epoch: 6, steps: 55, loss: 1.199\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 56, loss: 1.136\r", + "SF2M epoch: 6, steps: 57, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 58, loss: 1.112\r", + "SF2M epoch: 6, steps: 59, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 60, loss: 1.107\r", + "SF2M epoch: 6, steps: 61, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 62, loss: 1.119\r", + "SF2M epoch: 6, steps: 63, loss: 1.185\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 64, loss: 1.112\r", + "SF2M epoch: 6, steps: 65, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 66, loss: 1.118\r", + "SF2M epoch: 6, steps: 67, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 68, loss: 1.178\r", + "SF2M epoch: 6, steps: 69, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 70, loss: 1.133\r", + "SF2M epoch: 6, steps: 71, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 72, loss: 1.13\r", + "SF2M epoch: 6, steps: 73, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 74, loss: 1.104\r", + "SF2M epoch: 6, steps: 75, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 76, loss: 1.145\r", + "SF2M epoch: 6, steps: 77, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 78, loss: 1.116\r", + "SF2M epoch: 6, steps: 79, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 80, loss: 1.148\r", + "SF2M epoch: 6, steps: 81, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 82, loss: 1.127\r", + "SF2M epoch: 6, steps: 83, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 84, loss: 1.119\r", + "SF2M epoch: 6, steps: 85, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 86, loss: 1.126\r", + "SF2M epoch: 6, steps: 87, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 88, loss: 1.128\r", + "SF2M epoch: 6, steps: 89, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 90, loss: 1.143\r", + "SF2M epoch: 6, steps: 91, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 92, loss: 1.15\r", + "SF2M epoch: 6, steps: 93, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 94, loss: 1.152\r", + "SF2M epoch: 6, steps: 95, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 96, loss: 1.107\r", + "SF2M epoch: 6, steps: 97, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 98, loss: 1.17\r", + "SF2M epoch: 6, steps: 99, loss: 1.289\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 100, loss: 1.156\r", + "SF2M epoch: 6, steps: 101, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 102, loss: 1.139\r", + "SF2M epoch: 6, steps: 103, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 104, loss: 19.39\r", + "SF2M epoch: 6, steps: 105, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 106, loss: 1.305\r", + "SF2M epoch: 6, steps: 107, loss: 1.249\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 108, loss: 1.185\r", + "SF2M epoch: 6, steps: 109, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 110, loss: 1.19\r", + "SF2M epoch: 6, steps: 111, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 112, loss: 1.175\r", + "SF2M epoch: 6, steps: 113, loss: 1.262\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 114, loss: 1.149\r", + "SF2M epoch: 6, steps: 115, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 116, loss: 1.177\r", + "SF2M epoch: 6, steps: 117, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 118, loss: 1.159\r", + "SF2M epoch: 6, steps: 119, loss: 1.379\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 120, loss: 1.148\r", + "SF2M epoch: 6, steps: 121, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 122, loss: 1.139\r", + "SF2M epoch: 6, steps: 123, loss: 1.181\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:13, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 124, loss: 1.198\r", + "SF2M epoch: 6, steps: 125, loss: 1.182\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 126, loss: 1.146\r", + "SF2M epoch: 6, steps: 127, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 128, loss: 1.178\r", + "SF2M epoch: 6, steps: 129, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 130, loss: 1.122\r", + "SF2M epoch: 6, steps: 131, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 132, loss: 1.142\r", + "SF2M epoch: 6, steps: 133, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 134, loss: 1.241\r", + "SF2M epoch: 6, steps: 135, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 136, loss: 1.149\r", + "SF2M epoch: 6, steps: 137, loss: 1.38\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 138, loss: 1.138\r", + "SF2M epoch: 6, steps: 139, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 140, loss: 1.144\r", + "SF2M epoch: 6, steps: 141, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:15, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 142, loss: 1.127\r", + "SF2M epoch: 6, steps: 143, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 144, loss: 1.165\r", + "SF2M epoch: 6, steps: 145, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 146, loss: 1.19\r", + "SF2M epoch: 6, steps: 147, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 148, loss: 1.143\r", + "SF2M epoch: 6, steps: 149, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 150, loss: 1.126\r", + "SF2M epoch: 6, steps: 151, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 152, loss: 1.129\r", + "SF2M epoch: 6, steps: 153, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 154, loss: 1.121\r", + "SF2M epoch: 6, steps: 155, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 156, loss: 1.148\r", + "SF2M epoch: 6, steps: 157, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 158, loss: 1.123\r", + "SF2M epoch: 6, steps: 159, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 160, loss: 1.129\r", + "SF2M epoch: 6, steps: 161, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 162, loss: 1.126\r", + "SF2M epoch: 6, steps: 163, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 164, loss: 1.167\r", + "SF2M epoch: 6, steps: 165, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 166, loss: 1.111\r", + "SF2M epoch: 6, steps: 167, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 168, loss: 1.116\r", + "SF2M epoch: 6, steps: 169, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 170, loss: 1.121\r", + "SF2M epoch: 6, steps: 171, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 172, loss: 1.177\r", + "SF2M epoch: 6, steps: 173, loss: 1.22\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 174, loss: 1.123\r", + "SF2M epoch: 6, steps: 175, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 176, loss: 1.14\r", + "SF2M epoch: 6, steps: 177, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 178, loss: 1.134\r", + "SF2M epoch: 6, steps: 179, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 180, loss: 1.54\r", + "SF2M epoch: 6, steps: 181, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 182, loss: 1.135\r", + "SF2M epoch: 6, steps: 183, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 184, loss: 1.109\r", + "SF2M epoch: 6, steps: 185, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 186, loss: 1.129\r", + "SF2M epoch: 6, steps: 187, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 188, loss: 1.156\r", + "SF2M epoch: 6, steps: 189, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 190, loss: 1.125\r", + "SF2M epoch: 6, steps: 191, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 192, loss: 1.124\r", + "SF2M epoch: 6, steps: 193, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 194, loss: 1.113\r", + "SF2M epoch: 6, steps: 195, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 196, loss: 1.122\r", + "SF2M epoch: 6, steps: 197, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 198, loss: 1.151\r", + "SF2M epoch: 6, steps: 199, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 200, loss: 1.143\r", + "SF2M epoch: 6, steps: 201, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 202, loss: 1.119\r", + "SF2M epoch: 6, steps: 203, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 204, loss: 1.136\r", + "SF2M epoch: 6, steps: 205, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 206, loss: 1.147\r", + "SF2M epoch: 6, steps: 207, loss: 1.369\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 208, loss: 1.122\r", + "SF2M epoch: 6, steps: 209, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 210, loss: 1.127\r", + "SF2M epoch: 6, steps: 211, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:23, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 212, loss: 1.557\r", + "SF2M epoch: 6, steps: 213, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 214, loss: 1.122\r", + "SF2M epoch: 6, steps: 215, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 216, loss: 1.161\r", + "SF2M epoch: 6, steps: 217, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 218, loss: 1.136\r", + "SF2M epoch: 6, steps: 219, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 220, loss: 1.133\r", + "SF2M epoch: 6, steps: 221, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 222, loss: 1.119\r", + "SF2M epoch: 6, steps: 223, loss: 1.172\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 224, loss: 1.128\r", + "SF2M epoch: 6, steps: 225, loss: 1.102\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 226, loss: 1.114\r", + "SF2M epoch: 6, steps: 227, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 228, loss: 1.143\r", + "SF2M epoch: 6, steps: 229, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 230, loss: 1.105\r", + "SF2M epoch: 6, steps: 231, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 232, loss: 1.215\r", + "SF2M epoch: 6, steps: 233, loss: 1.804\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 234, loss: 1.112\r", + "SF2M epoch: 6, steps: 235, loss: 1.103\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 236, loss: 1.109\r", + "SF2M epoch: 6, steps: 237, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 238, loss: 1.11\r", + "SF2M epoch: 6, steps: 239, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 240, loss: 1.178\r", + "SF2M epoch: 6, steps: 241, loss: 1.198\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 242, loss: 1.132\r", + "SF2M epoch: 6, steps: 243, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 244, loss: 1.129\r", + "SF2M epoch: 6, steps: 245, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 246, loss: 1.116\r", + "SF2M epoch: 6, steps: 247, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 248, loss: 1.124\r", + "SF2M epoch: 6, steps: 249, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 250, loss: 1.13\r", + "SF2M epoch: 6, steps: 251, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 252, loss: 1.125\r", + "SF2M epoch: 6, steps: 253, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 254, loss: 1.13\r", + "SF2M epoch: 6, steps: 255, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 256, loss: 1.17\r", + "SF2M epoch: 6, steps: 257, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 258, loss: 1.211\r", + "SF2M epoch: 6, steps: 259, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 260, loss: 1.127\r", + "SF2M epoch: 6, steps: 261, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 262, loss: 1.465\r", + "SF2M epoch: 6, steps: 263, loss: 1.273\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 264, loss: 1.123\r", + "SF2M epoch: 6, steps: 265, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 266, loss: 1.13\r", + "SF2M epoch: 6, steps: 267, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 268, loss: 1.168\r", + "SF2M epoch: 6, steps: 269, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 270, loss: 1.114\r", + "SF2M epoch: 6, steps: 271, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 272, loss: 1.14\r", + "SF2M epoch: 6, steps: 273, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 274, loss: 1.139\r", + "SF2M epoch: 6, steps: 275, loss: 1.257\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 276, loss: 1.136\r", + "SF2M epoch: 6, steps: 277, loss: 1.212\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 278, loss: 1.116\r", + "SF2M epoch: 6, steps: 279, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 280, loss: 1.125\r", + "SF2M epoch: 6, steps: 281, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 282, loss: 1.132\r", + "SF2M epoch: 6, steps: 283, loss: 1.286\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 284, loss: 1.138\r", + "SF2M epoch: 6, steps: 285, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 286, loss: 1.123\r", + "SF2M epoch: 6, steps: 287, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 288, loss: 1.189\r", + "SF2M epoch: 6, steps: 289, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 290, loss: 1.165\r", + "SF2M epoch: 6, steps: 291, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 292, loss: 1.121\r", + "SF2M epoch: 6, steps: 293, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 294, loss: 1.202\r", + "SF2M epoch: 6, steps: 295, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 296, loss: 1.131\r", + "SF2M epoch: 6, steps: 297, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 298, loss: 1.156\r", + "SF2M epoch: 6, steps: 299, loss: 1.208\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 300, loss: 1.118\r", + "SF2M epoch: 6, steps: 301, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 302, loss: 1.166\r", + "SF2M epoch: 6, steps: 303, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 304, loss: 1.123\r", + "SF2M epoch: 6, steps: 305, loss: 1.102\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 306, loss: 1.111\r", + "SF2M epoch: 6, steps: 307, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 308, loss: 1.141\r", + "SF2M epoch: 6, steps: 309, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 310, loss: 1.213\r", + "SF2M epoch: 6, steps: 311, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 312, loss: 1.15\r", + "SF2M epoch: 6, steps: 313, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 314, loss: 1.161\r", + "SF2M epoch: 6, steps: 315, loss: 1.181\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 316, loss: 1.232\r", + "SF2M epoch: 6, steps: 317, loss: 1.175\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 318, loss: 1.135\r", + "SF2M epoch: 6, steps: 319, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 320, loss: 1.148\r", + "SF2M epoch: 6, steps: 321, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 322, loss: 1.113\r", + "SF2M epoch: 6, steps: 323, loss: 1.184\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 324, loss: 1.113\r", + "SF2M epoch: 6, steps: 325, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 326, loss: 1.13\r", + "SF2M epoch: 6, steps: 327, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 328, loss: 1.117\r", + "SF2M epoch: 6, steps: 329, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 330, loss: 1.122\r", + "SF2M epoch: 6, steps: 331, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 332, loss: 1.116\r", + "SF2M epoch: 6, steps: 333, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 334, loss: 1.11\r", + "SF2M epoch: 6, steps: 335, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 336, loss: 1.167\r", + "SF2M epoch: 6, steps: 337, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 338, loss: 1.122\r", + "SF2M epoch: 6, steps: 339, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 340, loss: 1.134\r", + "SF2M epoch: 6, steps: 341, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 342, loss: 1.123\r", + "SF2M epoch: 6, steps: 343, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 344, loss: 1.127\r", + "SF2M epoch: 6, steps: 345, loss: 1.211\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 346, loss: 1.108\r", + "SF2M epoch: 6, steps: 347, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 348, loss: 1.109\r", + "SF2M epoch: 6, steps: 349, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 350, loss: 1.13\r", + "SF2M epoch: 6, steps: 351, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 352, loss: 1.159\r", + "SF2M epoch: 6, steps: 353, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 354, loss: 1.189\r", + "SF2M epoch: 6, steps: 355, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 356, loss: 1.125\r", + "SF2M epoch: 6, steps: 357, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 358, loss: 1.144\r", + "SF2M epoch: 6, steps: 359, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 360, loss: 1.115\r", + "SF2M epoch: 6, steps: 361, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 362, loss: 1.148\r", + "SF2M epoch: 6, steps: 363, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 364, loss: 1.113\r", + "SF2M epoch: 6, steps: 365, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 366, loss: 1.13\r", + "SF2M epoch: 6, steps: 367, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 368, loss: 1.135\r", + "SF2M epoch: 6, steps: 369, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 370, loss: 1.141\r", + "SF2M epoch: 6, steps: 371, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 372, loss: 1.115\r", + "SF2M epoch: 6, steps: 373, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 374, loss: 1.444\r", + "SF2M epoch: 6, steps: 375, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 376, loss: 1.13\r", + "SF2M epoch: 6, steps: 377, loss: 1.209\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 378, loss: 1.117\r", + "SF2M epoch: 6, steps: 379, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 380, loss: 1.155\r", + "SF2M epoch: 6, steps: 381, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:42, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 382, loss: 1.154\r", + "SF2M epoch: 6, steps: 383, loss: 1.364\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 384, loss: 1.126\r", + "SF2M epoch: 6, steps: 385, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 386, loss: 1.111\r", + "SF2M epoch: 6, steps: 387, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 388, loss: 1.111\r", + "SF2M epoch: 6, steps: 389, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 390, loss: 1.131\r", + "SF2M epoch: 6, steps: 391, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 392, loss: 1.124\r", + "SF2M epoch: 6, steps: 393, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 394, loss: 1.124\r", + "SF2M epoch: 6, steps: 395, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 396, loss: 1.239\r", + "SF2M epoch: 6, steps: 397, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 398, loss: 1.133\r", + "SF2M epoch: 6, steps: 399, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 400, loss: 1.116\r", + "SF2M epoch: 6, steps: 401, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 402, loss: 1.126\r", + "SF2M epoch: 6, steps: 403, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 404, loss: 1.125\r", + "SF2M epoch: 6, steps: 405, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 406, loss: 1.103\r", + "SF2M epoch: 6, steps: 407, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 408, loss: 1.131\r", + "SF2M epoch: 6, steps: 409, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 410, loss: 1.129\r", + "SF2M epoch: 6, steps: 411, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 412, loss: 1.128\r", + "SF2M epoch: 6, steps: 413, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 414, loss: 1.126\r", + "SF2M epoch: 6, steps: 415, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 416, loss: 1.118\r", + "SF2M epoch: 6, steps: 417, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 418, loss: 1.147\r", + "SF2M epoch: 6, steps: 419, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 420, loss: 1.128\r", + "SF2M epoch: 6, steps: 421, loss: 1.157\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 422, loss: 1.118\r", + "SF2M epoch: 6, steps: 423, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 424, loss: 1.12\r", + "SF2M epoch: 6, steps: 425, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 426, loss: 1.126\r", + "SF2M epoch: 6, steps: 427, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 428, loss: 1.132\r", + "SF2M epoch: 6, steps: 429, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 430, loss: 1.122\r", + "SF2M epoch: 6, steps: 431, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 432, loss: 1.116\r", + "SF2M epoch: 6, steps: 433, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 434, loss: 1.17\r", + "SF2M epoch: 6, steps: 435, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 436, loss: 1.122\r", + "SF2M epoch: 6, steps: 437, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 438, loss: 1.218\r", + "SF2M epoch: 6, steps: 439, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 440, loss: 1.118\r", + "SF2M epoch: 6, steps: 441, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 442, loss: 1.125\r", + "SF2M epoch: 6, steps: 443, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:49, 8.89it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 444, loss: 1.15\r", + "SF2M epoch: 6, steps: 445, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.89it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 446, loss: 1.121\r", + "SF2M epoch: 6, steps: 447, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 448, loss: 1.244\r", + "SF2M epoch: 6, steps: 449, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 450, loss: 1.125\r", + "SF2M epoch: 6, steps: 451, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 452, loss: 1.128\r", + "SF2M epoch: 6, steps: 453, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 454, loss: 1.126\r", + "SF2M epoch: 6, steps: 455, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 456, loss: 1.109\r", + "SF2M epoch: 6, steps: 457, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 458, loss: 1.122\r", + "SF2M epoch: 6, steps: 459, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 460, loss: 1.138\r", + "SF2M epoch: 6, steps: 461, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 462, loss: 1.124\r", + "SF2M epoch: 6, steps: 463, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 464, loss: 1.148\r", + "SF2M epoch: 6, steps: 465, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 6, steps: 466, loss: 1.102\r", + "SF2M epoch: 6, steps: 467, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.88it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 0, loss: 1.132\r", + "SF2M epoch: 7, steps: 1, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 2, loss: 1.115\r", + "SF2M epoch: 7, steps: 3, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 4, loss: 1.134\r", + "SF2M epoch: 7, steps: 5, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 6, loss: 1.109\r", + "SF2M epoch: 7, steps: 7, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 8, loss: 1.108\r", + "SF2M epoch: 7, steps: 9, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 10, loss: 1.139\r", + "SF2M epoch: 7, steps: 11, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 12, loss: 1.132\r", + "SF2M epoch: 7, steps: 13, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 14, loss: 1.135\r", + "SF2M epoch: 7, steps: 15, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 16, loss: 1.24\r", + "SF2M epoch: 7, steps: 17, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 18, loss: 1.151\r", + "SF2M epoch: 7, steps: 19, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 20, loss: 1.13\r", + "SF2M epoch: 7, steps: 21, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 22, loss: 1.108\r", + "SF2M epoch: 7, steps: 23, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 24, loss: 1.125\r", + "SF2M epoch: 7, steps: 25, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 26, loss: 1.124\r", + "SF2M epoch: 7, steps: 27, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 28, loss: 1.137\r", + "SF2M epoch: 7, steps: 29, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 30, loss: 1.149\r", + "SF2M epoch: 7, steps: 31, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 32, loss: 1.138\r", + "SF2M epoch: 7, steps: 33, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 34, loss: 1.117\r", + "SF2M epoch: 7, steps: 35, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 36, loss: 1.11\r", + "SF2M epoch: 7, steps: 37, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 38, loss: 1.139\r", + "SF2M epoch: 7, steps: 39, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 40, loss: 1.125\r", + "SF2M epoch: 7, steps: 41, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 42, loss: 1.212\r", + "SF2M epoch: 7, steps: 43, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 44, loss: 1.29\r", + "SF2M epoch: 7, steps: 45, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 46, loss: 1.224\r", + "SF2M epoch: 7, steps: 47, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 48, loss: 1.113\r", + "SF2M epoch: 7, steps: 49, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 50, loss: 1.118\r", + "SF2M epoch: 7, steps: 51, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 52, loss: 1.137\r", + "SF2M epoch: 7, steps: 53, loss: 1.197\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 54, loss: 1.125\r", + "SF2M epoch: 7, steps: 55, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 56, loss: 1.123\r", + "SF2M epoch: 7, steps: 57, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 58, loss: 1.125\r", + "SF2M epoch: 7, steps: 59, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 60, loss: 1.105\r", + "SF2M epoch: 7, steps: 61, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 62, loss: 1.131\r", + "SF2M epoch: 7, steps: 63, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 64, loss: 1.161\r", + "SF2M epoch: 7, steps: 65, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 66, loss: 1.133\r", + "SF2M epoch: 7, steps: 67, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 68, loss: 1.148\r", + "SF2M epoch: 7, steps: 69, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 70, loss: 1.128\r", + "SF2M epoch: 7, steps: 71, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 72, loss: 1.125\r", + "SF2M epoch: 7, steps: 73, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 74, loss: 1.143\r", + "SF2M epoch: 7, steps: 75, loss: 1.237\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 76, loss: 1.121\r", + "SF2M epoch: 7, steps: 77, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:08, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 78, loss: 1.124\r", + "SF2M epoch: 7, steps: 79, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 80, loss: 1.123\r", + "SF2M epoch: 7, steps: 81, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 82, loss: 1.112\r", + "SF2M epoch: 7, steps: 83, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 84, loss: 1.109\r", + "SF2M epoch: 7, steps: 85, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 86, loss: 1.124\r", + "SF2M epoch: 7, steps: 87, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 88, loss: 1.234\r", + "SF2M epoch: 7, steps: 89, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 90, loss: 1.329\r", + "SF2M epoch: 7, steps: 91, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 92, loss: 1.111\r", + "SF2M epoch: 7, steps: 93, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 94, loss: 1.12\r", + "SF2M epoch: 7, steps: 95, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 96, loss: 1.127\r", + "SF2M epoch: 7, steps: 97, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 98, loss: 1.148\r", + "SF2M epoch: 7, steps: 99, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 100, loss: 1.22\r", + "SF2M epoch: 7, steps: 101, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 102, loss: 1.293\r", + "SF2M epoch: 7, steps: 103, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 104, loss: 1.142\r", + "SF2M epoch: 7, steps: 105, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 106, loss: 1.127\r", + "SF2M epoch: 7, steps: 107, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 108, loss: 1.136\r", + "SF2M epoch: 7, steps: 109, loss: 1.175\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 110, loss: 1.128\r", + "SF2M epoch: 7, steps: 111, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 112, loss: 1.148\r", + "SF2M epoch: 7, steps: 113, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 114, loss: 1.122\r", + "SF2M epoch: 7, steps: 115, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 116, loss: 1.136\r", + "SF2M epoch: 7, steps: 117, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 118, loss: 1.135\r", + "SF2M epoch: 7, steps: 119, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 120, loss: 1.131\r", + "SF2M epoch: 7, steps: 121, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 122, loss: 1.121\r", + "SF2M epoch: 7, steps: 123, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 124, loss: 1.133\r", + "SF2M epoch: 7, steps: 125, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 126, loss: 1.108\r", + "SF2M epoch: 7, steps: 127, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 128, loss: 1.124\r", + "SF2M epoch: 7, steps: 129, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 130, loss: 1.198\r", + "SF2M epoch: 7, steps: 131, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 132, loss: 1.139\r", + "SF2M epoch: 7, steps: 133, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 134, loss: 1.128\r", + "SF2M epoch: 7, steps: 135, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 136, loss: 1.126\r", + "SF2M epoch: 7, steps: 137, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 138, loss: 1.1\r", + "SF2M epoch: 7, steps: 139, loss: 1.103\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 140, loss: 1.145\r", + "SF2M epoch: 7, steps: 141, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 142, loss: 1.139\r", + "SF2M epoch: 7, steps: 143, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 144, loss: 1.121\r", + "SF2M epoch: 7, steps: 145, loss: 1.104\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 146, loss: 1.107\r", + "SF2M epoch: 7, steps: 147, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 148, loss: 1.119\r", + "SF2M epoch: 7, steps: 149, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 150, loss: 1.161\r", + "SF2M epoch: 7, steps: 151, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 152, loss: 1.136\r", + "SF2M epoch: 7, steps: 153, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 154, loss: 1.118\r", + "SF2M epoch: 7, steps: 155, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 156, loss: 1.15\r", + "SF2M epoch: 7, steps: 157, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 158, loss: 1.118\r", + "SF2M epoch: 7, steps: 159, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 160, loss: 1.37\r", + "SF2M epoch: 7, steps: 161, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 162, loss: 1.124\r", + "SF2M epoch: 7, steps: 163, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 164, loss: 1.131\r", + "SF2M epoch: 7, steps: 165, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 166, loss: 1.129\r", + "SF2M epoch: 7, steps: 167, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 168, loss: 1.142\r", + "SF2M epoch: 7, steps: 169, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 170, loss: 1.121\r", + "SF2M epoch: 7, steps: 171, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 172, loss: 1.097\r", + "SF2M epoch: 7, steps: 173, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 174, loss: 1.126\r", + "SF2M epoch: 7, steps: 175, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 176, loss: 1.123\r", + "SF2M epoch: 7, steps: 177, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 178, loss: 1.151\r", + "SF2M epoch: 7, steps: 179, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 180, loss: 1.158\r", + "SF2M epoch: 7, steps: 181, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 182, loss: 1.122\r", + "SF2M epoch: 7, steps: 183, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 184, loss: 1.116\r", + "SF2M epoch: 7, steps: 185, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 186, loss: 1.113\r", + "SF2M epoch: 7, steps: 187, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 188, loss: 1.128\r", + "SF2M epoch: 7, steps: 189, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 190, loss: 1.121\r", + "SF2M epoch: 7, steps: 191, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 192, loss: 1.132\r", + "SF2M epoch: 7, steps: 193, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 194, loss: 1.117\r", + "SF2M epoch: 7, steps: 195, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 196, loss: 1.115\r", + "SF2M epoch: 7, steps: 197, loss: 1.168\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 198, loss: 1.2\r", + "SF2M epoch: 7, steps: 199, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 200, loss: 1.412\r", + "SF2M epoch: 7, steps: 201, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 202, loss: 1.124\r", + "SF2M epoch: 7, steps: 203, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:22, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 204, loss: 1.122\r", + "SF2M epoch: 7, steps: 205, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 206, loss: 1.248\r", + "SF2M epoch: 7, steps: 207, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 208, loss: 1.146\r", + "SF2M epoch: 7, steps: 209, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 210, loss: 1.119\r", + "SF2M epoch: 7, steps: 211, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:23, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 212, loss: 1.123\r", + "SF2M epoch: 7, steps: 213, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 214, loss: 1.128\r", + "SF2M epoch: 7, steps: 215, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 216, loss: 1.111\r", + "SF2M epoch: 7, steps: 217, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 218, loss: 1.12\r", + "SF2M epoch: 7, steps: 219, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 220, loss: 1.125\r", + "SF2M epoch: 7, steps: 221, loss: 1.187\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 222, loss: 1.12\r", + "SF2M epoch: 7, steps: 223, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 224, loss: 1.123\r", + "SF2M epoch: 7, steps: 225, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 226, loss: 1.128\r", + "SF2M epoch: 7, steps: 227, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 228, loss: 1.121\r", + "SF2M epoch: 7, steps: 229, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 230, loss: 1.116\r", + "SF2M epoch: 7, steps: 231, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 232, loss: 1.126\r", + "SF2M epoch: 7, steps: 233, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 234, loss: 1.111\r", + "SF2M epoch: 7, steps: 235, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 236, loss: 1.11\r", + "SF2M epoch: 7, steps: 237, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 238, loss: 1.163\r", + "SF2M epoch: 7, steps: 239, loss: 1.42\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:26, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 240, loss: 1.117\r", + "SF2M epoch: 7, steps: 241, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 242, loss: 1.11\r", + "SF2M epoch: 7, steps: 243, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 244, loss: 1.121\r", + "SF2M epoch: 7, steps: 245, loss: 1.19\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 246, loss: 1.139\r", + "SF2M epoch: 7, steps: 247, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 248, loss: 1.129\r", + "SF2M epoch: 7, steps: 249, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 250, loss: 1.123\r", + "SF2M epoch: 7, steps: 251, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 252, loss: 1.123\r", + "SF2M epoch: 7, steps: 253, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 254, loss: 1.454\r", + "SF2M epoch: 7, steps: 255, loss: 1.179\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 256, loss: 1.135\r", + "SF2M epoch: 7, steps: 257, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 258, loss: 1.123\r", + "SF2M epoch: 7, steps: 259, loss: 1.167\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 260, loss: 1.109\r", + "SF2M epoch: 7, steps: 261, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 262, loss: 1.139\r", + "SF2M epoch: 7, steps: 263, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 264, loss: 1.106\r", + "SF2M epoch: 7, steps: 265, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 266, loss: 1.134\r", + "SF2M epoch: 7, steps: 267, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 268, loss: 1.116\r", + "SF2M epoch: 7, steps: 269, loss: 1.09\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 270, loss: 1.122\r", + "SF2M epoch: 7, steps: 271, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 272, loss: 1.155\r", + "SF2M epoch: 7, steps: 273, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 274, loss: 1.12\r", + "SF2M epoch: 7, steps: 275, loss: 1.28\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:30, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 276, loss: 1.11\r", + "SF2M epoch: 7, steps: 277, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 278, loss: 1.124\r", + "SF2M epoch: 7, steps: 279, loss: 1.179\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 280, loss: 1.144\r", + "SF2M epoch: 7, steps: 281, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 282, loss: 1.153\r", + "SF2M epoch: 7, steps: 283, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:31, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 284, loss: 1.143\r", + "SF2M epoch: 7, steps: 285, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 286, loss: 1.11\r", + "SF2M epoch: 7, steps: 287, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 288, loss: 1.139\r", + "SF2M epoch: 7, steps: 289, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 290, loss: 1.111\r", + "SF2M epoch: 7, steps: 291, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 292, loss: 1.121\r", + "SF2M epoch: 7, steps: 293, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 294, loss: 1.12\r", + "SF2M epoch: 7, steps: 295, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 296, loss: 1.133\r", + "SF2M epoch: 7, steps: 297, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 298, loss: 1.125\r", + "SF2M epoch: 7, steps: 299, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 300, loss: 1.132\r", + "SF2M epoch: 7, steps: 301, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 302, loss: 1.146\r", + "SF2M epoch: 7, steps: 303, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 304, loss: 1.124\r", + "SF2M epoch: 7, steps: 305, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 306, loss: 1.132\r", + "SF2M epoch: 7, steps: 307, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 308, loss: 1.181\r", + "SF2M epoch: 7, steps: 309, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 310, loss: 1.133\r", + "SF2M epoch: 7, steps: 311, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 312, loss: 1.11\r", + "SF2M epoch: 7, steps: 313, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 314, loss: 1.115\r", + "SF2M epoch: 7, steps: 315, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 316, loss: 1.125\r", + "SF2M epoch: 7, steps: 317, loss: 1.091\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 318, loss: 1.186\r", + "SF2M epoch: 7, steps: 319, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 320, loss: 1.125\r", + "SF2M epoch: 7, steps: 321, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 322, loss: 1.119\r", + "SF2M epoch: 7, steps: 323, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 324, loss: 1.141\r", + "SF2M epoch: 7, steps: 325, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 326, loss: 1.682\r", + "SF2M epoch: 7, steps: 327, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 328, loss: 1.219\r", + "SF2M epoch: 7, steps: 329, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 330, loss: 1.116\r", + "SF2M epoch: 7, steps: 331, loss: 1.181\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 332, loss: 1.164\r", + "SF2M epoch: 7, steps: 333, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 334, loss: 1.152\r", + "SF2M epoch: 7, steps: 335, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 336, loss: 1.125\r", + "SF2M epoch: 7, steps: 337, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 338, loss: 1.145\r", + "SF2M epoch: 7, steps: 339, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 340, loss: 1.131\r", + "SF2M epoch: 7, steps: 341, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 342, loss: 1.171\r", + "SF2M epoch: 7, steps: 343, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 344, loss: 1.108\r", + "SF2M epoch: 7, steps: 345, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 346, loss: 2.251\r", + "SF2M epoch: 7, steps: 347, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 348, loss: 1.18\r", + "SF2M epoch: 7, steps: 349, loss: 1.337\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 350, loss: 1.151\r", + "SF2M epoch: 7, steps: 351, loss: 1.186\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 352, loss: 1.145\r", + "SF2M epoch: 7, steps: 353, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 354, loss: 1.153\r", + "SF2M epoch: 7, steps: 355, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 356, loss: 1.12\r", + "SF2M epoch: 7, steps: 357, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 358, loss: 1.138\r", + "SF2M epoch: 7, steps: 359, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 360, loss: 1.144\r", + "SF2M epoch: 7, steps: 361, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 362, loss: 1.162\r", + "SF2M epoch: 7, steps: 363, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 364, loss: 1.121\r", + "SF2M epoch: 7, steps: 365, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 366, loss: 1.132\r", + "SF2M epoch: 7, steps: 367, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 368, loss: 1.133\r", + "SF2M epoch: 7, steps: 369, loss: 1.222\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 370, loss: 1.123\r", + "SF2M epoch: 7, steps: 371, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 372, loss: 1.126\r", + "SF2M epoch: 7, steps: 373, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 374, loss: 1.139\r", + "SF2M epoch: 7, steps: 375, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 376, loss: 1.127\r", + "SF2M epoch: 7, steps: 377, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 378, loss: 1.147\r", + "SF2M epoch: 7, steps: 379, loss: 1.205\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 380, loss: 1.165\r", + "SF2M epoch: 7, steps: 381, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:42, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 382, loss: 1.127\r", + "SF2M epoch: 7, steps: 383, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 384, loss: 1.129\r", + "SF2M epoch: 7, steps: 385, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 386, loss: 1.18\r", + "SF2M epoch: 7, steps: 387, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 388, loss: 1.119\r", + "SF2M epoch: 7, steps: 389, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 390, loss: 1.137\r", + "SF2M epoch: 7, steps: 391, loss: 1.188\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 392, loss: 1.118\r", + "SF2M epoch: 7, steps: 393, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 394, loss: 1.261\r", + "SF2M epoch: 7, steps: 395, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 396, loss: 1.123\r", + "SF2M epoch: 7, steps: 397, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 398, loss: 1.118\r", + "SF2M epoch: 7, steps: 399, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 400, loss: 1.112\r", + "SF2M epoch: 7, steps: 401, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 402, loss: 1.124\r", + "SF2M epoch: 7, steps: 403, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 404, loss: 1.135\r", + "SF2M epoch: 7, steps: 405, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 406, loss: 1.099\r", + "SF2M epoch: 7, steps: 407, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 408, loss: 1.116\r", + "SF2M epoch: 7, steps: 409, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 410, loss: 1.133\r", + "SF2M epoch: 7, steps: 411, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 412, loss: 1.12\r", + "SF2M epoch: 7, steps: 413, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 414, loss: 1.1\r", + "SF2M epoch: 7, steps: 415, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 416, loss: 1.113\r", + "SF2M epoch: 7, steps: 417, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 418, loss: 1.148\r", + "SF2M epoch: 7, steps: 419, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 420, loss: 1.133\r", + "SF2M epoch: 7, steps: 421, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 422, loss: 1.138\r", + "SF2M epoch: 7, steps: 423, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 424, loss: 1.139\r", + "SF2M epoch: 7, steps: 425, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 426, loss: 1.127\r", + "SF2M epoch: 7, steps: 427, loss: 1.092\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 428, loss: 1.12\r", + "SF2M epoch: 7, steps: 429, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 430, loss: 1.133\r", + "SF2M epoch: 7, steps: 431, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 432, loss: 1.124\r", + "SF2M epoch: 7, steps: 433, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 434, loss: 1.126\r", + "SF2M epoch: 7, steps: 435, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 436, loss: 1.127\r", + "SF2M epoch: 7, steps: 437, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 438, loss: 1.121\r", + "SF2M epoch: 7, steps: 439, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 440, loss: 1.116\r", + "SF2M epoch: 7, steps: 441, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 442, loss: 1.107\r", + "SF2M epoch: 7, steps: 443, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 444, loss: 1.119\r", + "SF2M epoch: 7, steps: 445, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 446, loss: 1.128\r", + "SF2M epoch: 7, steps: 447, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 448, loss: 1.129\r", + "SF2M epoch: 7, steps: 449, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 450, loss: 1.132\r", + "SF2M epoch: 7, steps: 451, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 452, loss: 1.122\r", + "SF2M epoch: 7, steps: 453, loss: 1.171\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 454, loss: 1.127\r", + "SF2M epoch: 7, steps: 455, loss: 1.175\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 456, loss: 1.116\r", + "SF2M epoch: 7, steps: 457, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 458, loss: 1.101\r", + "SF2M epoch: 7, steps: 459, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 460, loss: 1.146\r", + "SF2M epoch: 7, steps: 461, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 462, loss: 1.134\r", + "SF2M epoch: 7, steps: 463, loss: 1.172\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 464, loss: 1.135\r", + "SF2M epoch: 7, steps: 465, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 7, steps: 466, loss: 1.119\r", + "SF2M epoch: 7, steps: 467, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 0, loss: 1.13\r", + "SF2M epoch: 8, steps: 1, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 2, loss: 1.121\r", + "SF2M epoch: 8, steps: 3, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 4, loss: 1.124\r", + "SF2M epoch: 8, steps: 5, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 6, loss: 1.202\r", + "SF2M epoch: 8, steps: 7, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 8, loss: 1.12\r", + "SF2M epoch: 8, steps: 9, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 10, loss: 1.128\r", + "SF2M epoch: 8, steps: 11, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 12, loss: 1.109\r", + "SF2M epoch: 8, steps: 13, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 14, loss: 1.132\r", + "SF2M epoch: 8, steps: 15, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 16, loss: 1.142\r", + "SF2M epoch: 8, steps: 17, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 18, loss: 1.112\r", + "SF2M epoch: 8, steps: 19, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 20, loss: 1.118\r", + "SF2M epoch: 8, steps: 21, loss: 1.097\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 22, loss: 1.11\r", + "SF2M epoch: 8, steps: 23, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 24, loss: 1.114\r", + "SF2M epoch: 8, steps: 25, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 26, loss: 1.145\r", + "SF2M epoch: 8, steps: 27, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 28, loss: 1.105\r", + "SF2M epoch: 8, steps: 29, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 30, loss: 1.149\r", + "SF2M epoch: 8, steps: 31, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 32, loss: 1.103\r", + "SF2M epoch: 8, steps: 33, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 34, loss: 1.138\r", + "SF2M epoch: 8, steps: 35, loss: 1.161\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 36, loss: 1.114\r", + "SF2M epoch: 8, steps: 37, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 38, loss: 1.146\r", + "SF2M epoch: 8, steps: 39, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 40, loss: 1.125\r", + "SF2M epoch: 8, steps: 41, loss: 1.094\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 42, loss: 1.126\r", + "SF2M epoch: 8, steps: 43, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 44, loss: 1.114\r", + "SF2M epoch: 8, steps: 45, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 46, loss: 1.132\r", + "SF2M epoch: 8, steps: 47, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 48, loss: 1.116\r", + "SF2M epoch: 8, steps: 49, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 50, loss: 1.121\r", + "SF2M epoch: 8, steps: 51, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 52, loss: 1.192\r", + "SF2M epoch: 8, steps: 53, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 54, loss: 1.134\r", + "SF2M epoch: 8, steps: 55, loss: 1.204\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 56, loss: 1.127\r", + "SF2M epoch: 8, steps: 57, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 58, loss: 1.151\r", + "SF2M epoch: 8, steps: 59, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 60, loss: 1.122\r", + "SF2M epoch: 8, steps: 61, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 62, loss: 1.112\r", + "SF2M epoch: 8, steps: 63, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 64, loss: 1.131\r", + "SF2M epoch: 8, steps: 65, loss: 2.334\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 66, loss: 1.164\r", + "SF2M epoch: 8, steps: 67, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 68, loss: 1.111\r", + "SF2M epoch: 8, steps: 69, loss: 1.103\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 70, loss: 1.131\r", + "SF2M epoch: 8, steps: 71, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 72, loss: 1.116\r", + "SF2M epoch: 8, steps: 73, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 74, loss: 1.105\r", + "SF2M epoch: 8, steps: 75, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 76, loss: 1.156\r", + "SF2M epoch: 8, steps: 77, loss: 1.181\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 78, loss: 1.106\r", + "SF2M epoch: 8, steps: 79, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 80, loss: 1.117\r", + "SF2M epoch: 8, steps: 81, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 82, loss: 1.127\r", + "SF2M epoch: 8, steps: 83, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 84, loss: 1.14\r", + "SF2M epoch: 8, steps: 85, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 86, loss: 1.152\r", + "SF2M epoch: 8, steps: 87, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:09, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 88, loss: 1.142\r", + "SF2M epoch: 8, steps: 89, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 90, loss: 1.169\r", + "SF2M epoch: 8, steps: 91, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 92, loss: 1.138\r", + "SF2M epoch: 8, steps: 93, loss: 1.107\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 94, loss: 1.132\r", + "SF2M epoch: 8, steps: 95, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 96, loss: 1.112\r", + "SF2M epoch: 8, steps: 97, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 98, loss: 1.116\r", + "SF2M epoch: 8, steps: 99, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 100, loss: 1.103\r", + "SF2M epoch: 8, steps: 101, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 102, loss: 1.264\r", + "SF2M epoch: 8, steps: 103, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 104, loss: 1.139\r", + "SF2M epoch: 8, steps: 105, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 106, loss: 1.171\r", + "SF2M epoch: 8, steps: 107, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 108, loss: 1.127\r", + "SF2M epoch: 8, steps: 109, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 110, loss: 1.131\r", + "SF2M epoch: 8, steps: 111, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 112, loss: 1.122\r", + "SF2M epoch: 8, steps: 113, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 114, loss: 1.116\r", + "SF2M epoch: 8, steps: 115, loss: 1.187\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 116, loss: 1.127\r", + "SF2M epoch: 8, steps: 117, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 118, loss: 1.151\r", + "SF2M epoch: 8, steps: 119, loss: 3.206\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 120, loss: 1.164\r", + "SF2M epoch: 8, steps: 121, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 122, loss: 1.145\r", + "SF2M epoch: 8, steps: 123, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 124, loss: 1.177\r", + "SF2M epoch: 8, steps: 125, loss: 1.18\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 126, loss: 1.124\r", + "SF2M epoch: 8, steps: 127, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 128, loss: 1.168\r", + "SF2M epoch: 8, steps: 129, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 130, loss: 1.135\r", + "SF2M epoch: 8, steps: 131, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 132, loss: 1.127\r", + "SF2M epoch: 8, steps: 133, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 134, loss: 1.224\r", + "SF2M epoch: 8, steps: 135, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 136, loss: 1.122\r", + "SF2M epoch: 8, steps: 137, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 138, loss: 1.114\r", + "SF2M epoch: 8, steps: 139, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 140, loss: 1.122\r", + "SF2M epoch: 8, steps: 141, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 142, loss: 1.119\r", + "SF2M epoch: 8, steps: 143, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 144, loss: 1.388\r", + "SF2M epoch: 8, steps: 145, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 146, loss: 1.131\r", + "SF2M epoch: 8, steps: 147, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 148, loss: 1.113\r", + "SF2M epoch: 8, steps: 149, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 150, loss: 1.334\r", + "SF2M epoch: 8, steps: 151, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 152, loss: 1.119\r", + "SF2M epoch: 8, steps: 153, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 154, loss: 1.133\r", + "SF2M epoch: 8, steps: 155, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 156, loss: 1.127\r", + "SF2M epoch: 8, steps: 157, loss: 1.238\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 158, loss: 1.121\r", + "SF2M epoch: 8, steps: 159, loss: 1.094\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 160, loss: 1.143\r", + "SF2M epoch: 8, steps: 161, loss: 1.14\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 162, loss: 1.119\r", + "SF2M epoch: 8, steps: 163, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 164, loss: 1.236\r", + "SF2M epoch: 8, steps: 165, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 166, loss: 1.124\r", + "SF2M epoch: 8, steps: 167, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 168, loss: 1.146\r", + "SF2M epoch: 8, steps: 169, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 170, loss: 1.117\r", + "SF2M epoch: 8, steps: 171, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 172, loss: 1.12\r", + "SF2M epoch: 8, steps: 173, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 174, loss: 1.119\r", + "SF2M epoch: 8, steps: 175, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 176, loss: 1.128\r", + "SF2M epoch: 8, steps: 177, loss: 1.101\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 178, loss: 1.117\r", + "SF2M epoch: 8, steps: 179, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 180, loss: 1.119\r", + "SF2M epoch: 8, steps: 181, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 182, loss: 1.128\r", + "SF2M epoch: 8, steps: 183, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 184, loss: 1.125\r", + "SF2M epoch: 8, steps: 185, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:20, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 186, loss: 1.111\r", + "SF2M epoch: 8, steps: 187, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 188, loss: 1.108\r", + "SF2M epoch: 8, steps: 189, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 190, loss: 1.118\r", + "SF2M epoch: 8, steps: 191, loss: 1.288\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 192, loss: 1.112\r", + "SF2M epoch: 8, steps: 193, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 194, loss: 1.148\r", + "SF2M epoch: 8, steps: 195, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 196, loss: 1.401\r", + "SF2M epoch: 8, steps: 197, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 198, loss: 1.135\r", + "SF2M epoch: 8, steps: 199, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 200, loss: 1.12\r", + "SF2M epoch: 8, steps: 201, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 202, loss: 1.148\r", + "SF2M epoch: 8, steps: 203, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 204, loss: 1.131\r", + "SF2M epoch: 8, steps: 205, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 206, loss: 1.124\r", + "SF2M epoch: 8, steps: 207, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 208, loss: 1.127\r", + "SF2M epoch: 8, steps: 209, loss: 1.177\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 210, loss: 1.116\r", + "SF2M epoch: 8, steps: 211, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 212, loss: 1.108\r", + "SF2M epoch: 8, steps: 213, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 214, loss: 1.127\r", + "SF2M epoch: 8, steps: 215, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 216, loss: 1.121\r", + "SF2M epoch: 8, steps: 217, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 218, loss: 1.13\r", + "SF2M epoch: 8, steps: 219, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 220, loss: 1.182\r", + "SF2M epoch: 8, steps: 221, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:24, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 222, loss: 1.117\r", + "SF2M epoch: 8, steps: 223, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 224, loss: 1.261\r", + "SF2M epoch: 8, steps: 225, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 226, loss: 1.12\r", + "SF2M epoch: 8, steps: 227, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 228, loss: 1.179\r", + "SF2M epoch: 8, steps: 229, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 230, loss: 1.143\r", + "SF2M epoch: 8, steps: 231, loss: 1.104\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 232, loss: 1.115\r", + "SF2M epoch: 8, steps: 233, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 234, loss: 1.113\r", + "SF2M epoch: 8, steps: 235, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 236, loss: 1.111\r", + "SF2M epoch: 8, steps: 237, loss: 1.101\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 238, loss: 1.109\r", + "SF2M epoch: 8, steps: 239, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 240, loss: 1.132\r", + "SF2M epoch: 8, steps: 241, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 242, loss: 1.12\r", + "SF2M epoch: 8, steps: 243, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 244, loss: 1.15\r", + "SF2M epoch: 8, steps: 245, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 246, loss: 1.122\r", + "SF2M epoch: 8, steps: 247, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:27, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 248, loss: 1.118\r", + "SF2M epoch: 8, steps: 249, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 250, loss: 1.11\r", + "SF2M epoch: 8, steps: 251, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 252, loss: 1.128\r", + "SF2M epoch: 8, steps: 253, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 254, loss: 1.121\r", + "SF2M epoch: 8, steps: 255, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 256, loss: 1.124\r", + "SF2M epoch: 8, steps: 257, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 258, loss: 1.124\r", + "SF2M epoch: 8, steps: 259, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 260, loss: 1.203\r", + "SF2M epoch: 8, steps: 261, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 262, loss: 1.21\r", + "SF2M epoch: 8, steps: 263, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 264, loss: 1.12\r", + "SF2M epoch: 8, steps: 265, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 266, loss: 1.115\r", + "SF2M epoch: 8, steps: 267, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 268, loss: 1.104\r", + "SF2M epoch: 8, steps: 269, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 270, loss: 1.136\r", + "SF2M epoch: 8, steps: 271, loss: 1.183\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 272, loss: 1.17\r", + "SF2M epoch: 8, steps: 273, loss: 1.22\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 274, loss: 1.128\r", + "SF2M epoch: 8, steps: 275, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 276, loss: 1.12\r", + "SF2M epoch: 8, steps: 277, loss: 1.188\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 278, loss: 1.137\r", + "SF2M epoch: 8, steps: 279, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 280, loss: 1.104\r", + "SF2M epoch: 8, steps: 281, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 282, loss: 1.158\r", + "SF2M epoch: 8, steps: 283, loss: 1.104\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 284, loss: 1.12\r", + "SF2M epoch: 8, steps: 285, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 286, loss: 1.109\r", + "SF2M epoch: 8, steps: 287, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 288, loss: 1.128\r", + "SF2M epoch: 8, steps: 289, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 290, loss: 1.109\r", + "SF2M epoch: 8, steps: 291, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 292, loss: 1.121\r", + "SF2M epoch: 8, steps: 293, loss: 1.177\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 294, loss: 1.127\r", + "SF2M epoch: 8, steps: 295, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 296, loss: 1.133\r", + "SF2M epoch: 8, steps: 297, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 298, loss: 1.12\r", + "SF2M epoch: 8, steps: 299, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 300, loss: 1.114\r", + "SF2M epoch: 8, steps: 301, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 302, loss: 1.119\r", + "SF2M epoch: 8, steps: 303, loss: 1.237\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 304, loss: 1.111\r", + "SF2M epoch: 8, steps: 305, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 306, loss: 1.121\r", + "SF2M epoch: 8, steps: 307, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 308, loss: 1.135\r", + "SF2M epoch: 8, steps: 309, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 310, loss: 1.103\r", + "SF2M epoch: 8, steps: 311, loss: 1.1\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 312, loss: 1.145\r", + "SF2M epoch: 8, steps: 313, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 314, loss: 1.124\r", + "SF2M epoch: 8, steps: 315, loss: 1.103\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 316, loss: 1.121\r", + "SF2M epoch: 8, steps: 317, loss: 1.162\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 318, loss: 1.111\r", + "SF2M epoch: 8, steps: 319, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 320, loss: 1.112\r", + "SF2M epoch: 8, steps: 321, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 322, loss: 1.126\r", + "SF2M epoch: 8, steps: 323, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 324, loss: 1.12\r", + "SF2M epoch: 8, steps: 325, loss: 1.179\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 326, loss: 1.113\r", + "SF2M epoch: 8, steps: 327, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 328, loss: 1.114\r", + "SF2M epoch: 8, steps: 329, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 330, loss: 1.14\r", + "SF2M epoch: 8, steps: 331, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 332, loss: 1.121\r", + "SF2M epoch: 8, steps: 333, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 334, loss: 1.114\r", + "SF2M epoch: 8, steps: 335, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 336, loss: 1.119\r", + "SF2M epoch: 8, steps: 337, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:37, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 338, loss: 1.121\r", + "SF2M epoch: 8, steps: 339, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 340, loss: 1.136\r", + "SF2M epoch: 8, steps: 341, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 342, loss: 1.115\r", + "SF2M epoch: 8, steps: 343, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 344, loss: 1.123\r", + "SF2M epoch: 8, steps: 345, loss: 1.214\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:38, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 346, loss: 1.144\r", + "SF2M epoch: 8, steps: 347, loss: 1.099\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 348, loss: 1.133\r", + "SF2M epoch: 8, steps: 349, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 350, loss: 1.142\r", + "SF2M epoch: 8, steps: 351, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 352, loss: 1.237\r", + "SF2M epoch: 8, steps: 353, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 354, loss: 1.132\r", + "SF2M epoch: 8, steps: 355, loss: 1.174\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 356, loss: 1.122\r", + "SF2M epoch: 8, steps: 357, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 358, loss: 1.124\r", + "SF2M epoch: 8, steps: 359, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 360, loss: 1.134\r", + "SF2M epoch: 8, steps: 361, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 362, loss: 1.13\r", + "SF2M epoch: 8, steps: 363, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 364, loss: 1.111\r", + "SF2M epoch: 8, steps: 365, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 366, loss: 1.138\r", + "SF2M epoch: 8, steps: 367, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 368, loss: 1.14\r", + "SF2M epoch: 8, steps: 369, loss: 1.096\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 370, loss: 1.136\r", + "SF2M epoch: 8, steps: 371, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 372, loss: 1.114\r", + "SF2M epoch: 8, steps: 373, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 374, loss: 1.126\r", + "SF2M epoch: 8, steps: 375, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 376, loss: 1.133\r", + "SF2M epoch: 8, steps: 377, loss: 1.094\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 378, loss: 1.12\r", + "SF2M epoch: 8, steps: 379, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 380, loss: 1.156\r", + "SF2M epoch: 8, steps: 381, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:42, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 382, loss: 1.121\r", + "SF2M epoch: 8, steps: 383, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 384, loss: 1.113\r", + "SF2M epoch: 8, steps: 385, loss: 1.489\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 386, loss: 1.1\r", + "SF2M epoch: 8, steps: 387, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 388, loss: 1.115\r", + "SF2M epoch: 8, steps: 389, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 390, loss: 1.107\r", + "SF2M epoch: 8, steps: 391, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:43, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 392, loss: 1.104\r", + "SF2M epoch: 8, steps: 393, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 394, loss: 1.103\r", + "SF2M epoch: 8, steps: 395, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 396, loss: 1.128\r", + "SF2M epoch: 8, steps: 397, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 398, loss: 1.305\r", + "SF2M epoch: 8, steps: 399, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:44, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 400, loss: 1.132\r", + "SF2M epoch: 8, steps: 401, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 402, loss: 1.13\r", + "SF2M epoch: 8, steps: 403, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 404, loss: 1.104\r", + "SF2M epoch: 8, steps: 405, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 406, loss: 1.094\r", + "SF2M epoch: 8, steps: 407, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 408, loss: 1.119\r", + "SF2M epoch: 8, steps: 409, loss: 1.196\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:45, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 410, loss: 1.11\r", + "SF2M epoch: 8, steps: 411, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 412, loss: 1.131\r", + "SF2M epoch: 8, steps: 413, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 414, loss: 1.118\r", + "SF2M epoch: 8, steps: 415, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 416, loss: 1.113\r", + "SF2M epoch: 8, steps: 417, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:46, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 418, loss: 1.119\r", + "SF2M epoch: 8, steps: 419, loss: 1.098\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 420, loss: 1.132\r", + "SF2M epoch: 8, steps: 421, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 422, loss: 1.135\r", + "SF2M epoch: 8, steps: 423, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 424, loss: 1.13\r", + "SF2M epoch: 8, steps: 425, loss: 2.552\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:47, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 426, loss: 1.126\r", + "SF2M epoch: 8, steps: 427, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 428, loss: 1.142\r", + "SF2M epoch: 8, steps: 429, loss: 1.152\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 430, loss: 1.143\r", + "SF2M epoch: 8, steps: 431, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 432, loss: 1.143\r", + "SF2M epoch: 8, steps: 433, loss: 1.148\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 434, loss: 1.338\r", + "SF2M epoch: 8, steps: 435, loss: 1.202\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 436, loss: 1.137\r", + "SF2M epoch: 8, steps: 437, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 438, loss: 1.121\r", + "SF2M epoch: 8, steps: 439, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 440, loss: 1.131\r", + "SF2M epoch: 8, steps: 441, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 442, loss: 1.162\r", + "SF2M epoch: 8, steps: 443, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:49, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 444, loss: 1.128\r", + "SF2M epoch: 8, steps: 445, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 446, loss: 1.15\r", + "SF2M epoch: 8, steps: 447, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 448, loss: 1.119\r", + "SF2M epoch: 8, steps: 449, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 450, loss: 1.154\r", + "SF2M epoch: 8, steps: 451, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 452, loss: 1.125\r", + "SF2M epoch: 8, steps: 453, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 454, loss: 1.124\r", + "SF2M epoch: 8, steps: 455, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 456, loss: 1.108\r", + "SF2M epoch: 8, steps: 457, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 458, loss: 1.153\r", + "SF2M epoch: 8, steps: 459, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 460, loss: 1.119\r", + "SF2M epoch: 8, steps: 461, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:51, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 462, loss: 1.128\r", + "SF2M epoch: 8, steps: 463, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 464, loss: 1.156\r", + "SF2M epoch: 8, steps: 465, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 8, steps: 466, loss: 1.12\r", + "SF2M epoch: 8, steps: 467, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "0it [00:00, ?it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "1it [00:00, 8.85it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "2it [00:00, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 0, loss: 1.138\r", + "SF2M epoch: 9, steps: 1, loss: 1.183\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "3it [00:00, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "4it [00:00, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 2, loss: 1.129\r", + "SF2M epoch: 9, steps: 3, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "5it [00:00, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "6it [00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 4, loss: 1.141\r", + "SF2M epoch: 9, steps: 5, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "7it [00:00, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "8it [00:00, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 6, loss: 1.127\r", + "SF2M epoch: 9, steps: 7, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "9it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "10it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 8, loss: 1.106\r", + "SF2M epoch: 9, steps: 9, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "11it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "12it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 10, loss: 1.123\r", + "SF2M epoch: 9, steps: 11, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "13it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "14it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 12, loss: 1.122\r", + "SF2M epoch: 9, steps: 13, loss: 1.675\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "15it [00:01, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "16it [00:01, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 14, loss: 1.145\r", + "SF2M epoch: 9, steps: 15, loss: 1.173\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "17it [00:01, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "18it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 16, loss: 1.163\r", + "SF2M epoch: 9, steps: 17, loss: 1.139\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "19it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "20it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 18, loss: 1.129\r", + "SF2M epoch: 9, steps: 19, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "21it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "22it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 20, loss: 1.111\r", + "SF2M epoch: 9, steps: 21, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "23it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "24it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 22, loss: 1.127\r", + "SF2M epoch: 9, steps: 23, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "25it [00:02, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "26it [00:02, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 24, loss: 1.139\r", + "SF2M epoch: 9, steps: 25, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "27it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "28it [00:03, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 26, loss: 1.121\r", + "SF2M epoch: 9, steps: 27, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "29it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "30it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 28, loss: 1.295\r", + "SF2M epoch: 9, steps: 29, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "31it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "32it [00:03, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 30, loss: 1.135\r", + "SF2M epoch: 9, steps: 31, loss: 1.143\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "33it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "34it [00:03, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 32, loss: 1.13\r", + "SF2M epoch: 9, steps: 33, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "35it [00:03, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "36it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 34, loss: 1.161\r", + "SF2M epoch: 9, steps: 35, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "37it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "38it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 36, loss: 1.111\r", + "SF2M epoch: 9, steps: 37, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "39it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "40it [00:04, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 38, loss: 1.108\r", + "SF2M epoch: 9, steps: 39, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "41it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "42it [00:04, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 40, loss: 1.134\r", + "SF2M epoch: 9, steps: 41, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "43it [00:04, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "44it [00:04, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 42, loss: 1.114\r", + "SF2M epoch: 9, steps: 43, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "45it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "46it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 44, loss: 1.499\r", + "SF2M epoch: 9, steps: 45, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "47it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "48it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 46, loss: 1.155\r", + "SF2M epoch: 9, steps: 47, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "49it [00:05, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "50it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 48, loss: 1.195\r", + "SF2M epoch: 9, steps: 49, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "51it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "52it [00:05, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 50, loss: 1.37\r", + "SF2M epoch: 9, steps: 51, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "53it [00:05, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "54it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 52, loss: 1.108\r", + "SF2M epoch: 9, steps: 53, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "55it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "56it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 54, loss: 1.163\r", + "SF2M epoch: 9, steps: 55, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "57it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "58it [00:06, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 56, loss: 1.128\r", + "SF2M epoch: 9, steps: 57, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "59it [00:06, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "60it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 58, loss: 1.112\r", + "SF2M epoch: 9, steps: 59, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "61it [00:06, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "62it [00:06, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 60, loss: 1.111\r", + "SF2M epoch: 9, steps: 61, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "63it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "64it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 62, loss: 1.126\r", + "SF2M epoch: 9, steps: 63, loss: 1.107\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "65it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "66it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 64, loss: 1.1\r", + "SF2M epoch: 9, steps: 65, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "67it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "68it [00:07, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 66, loss: 1.117\r", + "SF2M epoch: 9, steps: 67, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "69it [00:07, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "70it [00:07, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 68, loss: 1.119\r", + "SF2M epoch: 9, steps: 69, loss: 1.107\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "71it [00:07, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "72it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 70, loss: 4.355\r", + "SF2M epoch: 9, steps: 71, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "73it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "74it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 72, loss: 1.129\r", + "SF2M epoch: 9, steps: 73, loss: 1.15\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "75it [00:08, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "76it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 74, loss: 1.125\r", + "SF2M epoch: 9, steps: 75, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "77it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "78it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 76, loss: 1.14\r", + "SF2M epoch: 9, steps: 77, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "79it [00:08, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "80it [00:08, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 78, loss: 1.126\r", + "SF2M epoch: 9, steps: 79, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "81it [00:09, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "82it [00:09, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 80, loss: 1.118\r", + "SF2M epoch: 9, steps: 81, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "83it [00:09, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "84it [00:09, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 82, loss: 1.141\r", + "SF2M epoch: 9, steps: 83, loss: 1.107\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "85it [00:09, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "86it [00:09, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 84, loss: 1.152\r", + "SF2M epoch: 9, steps: 85, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "87it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "88it [00:09, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 86, loss: 1.2\r", + "SF2M epoch: 9, steps: 87, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "89it [00:09, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "90it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 88, loss: 1.119\r", + "SF2M epoch: 9, steps: 89, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "91it [00:10, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "92it [00:10, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 90, loss: 1.172\r", + "SF2M epoch: 9, steps: 91, loss: 1.135\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "93it [00:10, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "94it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 92, loss: 1.143\r", + "SF2M epoch: 9, steps: 93, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "95it [00:10, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "96it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 94, loss: 1.193\r", + "SF2M epoch: 9, steps: 95, loss: 1.1\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "97it [00:10, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "98it [00:10, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 96, loss: 1.148\r", + "SF2M epoch: 9, steps: 97, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "99it [00:11, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 98, loss: 1.121\r", + "SF2M epoch: 9, steps: 99, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "101it [00:11, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "102it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 100, loss: 1.12\r", + "SF2M epoch: 9, steps: 101, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "103it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "104it [00:11, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 102, loss: 1.103\r", + "SF2M epoch: 9, steps: 103, loss: 1.107\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "105it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "106it [00:11, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 104, loss: 1.111\r", + "SF2M epoch: 9, steps: 105, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "107it [00:11, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "108it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 106, loss: 1.123\r", + "SF2M epoch: 9, steps: 107, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "109it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "110it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 108, loss: 1.119\r", + "SF2M epoch: 9, steps: 109, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "111it [00:12, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "112it [00:12, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 110, loss: 1.116\r", + "SF2M epoch: 9, steps: 111, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "113it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "114it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 112, loss: 1.123\r", + "SF2M epoch: 9, steps: 113, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "115it [00:12, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "116it [00:12, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 114, loss: 1.116\r", + "SF2M epoch: 9, steps: 115, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "117it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "118it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 116, loss: 1.127\r", + "SF2M epoch: 9, steps: 117, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "119it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "120it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 118, loss: 1.132\r", + "SF2M epoch: 9, steps: 119, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "121it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "122it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 120, loss: 1.546\r", + "SF2M epoch: 9, steps: 121, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "123it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "124it [00:13, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 122, loss: 1.131\r", + "SF2M epoch: 9, steps: 123, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "125it [00:13, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "126it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 124, loss: 1.118\r", + "SF2M epoch: 9, steps: 125, loss: 1.244\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "127it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "128it [00:14, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 126, loss: 1.129\r", + "SF2M epoch: 9, steps: 127, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "129it [00:14, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "130it [00:14, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 128, loss: 1.128\r", + "SF2M epoch: 9, steps: 129, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "131it [00:14, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "132it [00:14, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 130, loss: 1.127\r", + "SF2M epoch: 9, steps: 131, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "133it [00:14, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "134it [00:14, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 132, loss: 1.137\r", + "SF2M epoch: 9, steps: 133, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "135it [00:15, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "136it [00:15, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 134, loss: 1.101\r", + "SF2M epoch: 9, steps: 135, loss: 1.165\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "137it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "138it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 136, loss: 1.133\r", + "SF2M epoch: 9, steps: 137, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "139it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "140it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 138, loss: 1.119\r", + "SF2M epoch: 9, steps: 139, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "141it [00:15, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "142it [00:15, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 140, loss: 1.111\r", + "SF2M epoch: 9, steps: 141, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "143it [00:15, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "144it [00:16, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 142, loss: 1.144\r", + "SF2M epoch: 9, steps: 143, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "145it [00:16, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "146it [00:16, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 144, loss: 1.12\r", + "SF2M epoch: 9, steps: 145, loss: 1.105\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "147it [00:16, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "148it [00:16, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 146, loss: 1.121\r", + "SF2M epoch: 9, steps: 147, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "149it [00:16, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "150it [00:16, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 148, loss: 1.117\r", + "SF2M epoch: 9, steps: 149, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "151it [00:16, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "152it [00:16, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 150, loss: 1.129\r", + "SF2M epoch: 9, steps: 151, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "153it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "154it [00:17, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 152, loss: 1.118\r", + "SF2M epoch: 9, steps: 153, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "155it [00:17, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "156it [00:17, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 154, loss: 1.123\r", + "SF2M epoch: 9, steps: 155, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "157it [00:17, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "158it [00:17, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 156, loss: 1.144\r", + "SF2M epoch: 9, steps: 157, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "159it [00:17, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "160it [00:17, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 158, loss: 1.128\r", + "SF2M epoch: 9, steps: 159, loss: 1.158\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "161it [00:18, 8.95it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "162it [00:18, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 160, loss: 1.152\r", + "SF2M epoch: 9, steps: 161, loss: 1.115\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "163it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "164it [00:18, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 162, loss: 1.11\r", + "SF2M epoch: 9, steps: 163, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "165it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "166it [00:18, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 164, loss: 1.114\r", + "SF2M epoch: 9, steps: 165, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "167it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "168it [00:18, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 166, loss: 1.123\r", + "SF2M epoch: 9, steps: 167, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "169it [00:18, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "170it [00:19, 8.95it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 168, loss: 1.111\r", + "SF2M epoch: 9, steps: 169, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "171it [00:19, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "172it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 170, loss: 1.142\r", + "SF2M epoch: 9, steps: 171, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "173it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "174it [00:19, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 172, loss: 1.181\r", + "SF2M epoch: 9, steps: 173, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "175it [00:19, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "176it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 174, loss: 1.118\r", + "SF2M epoch: 9, steps: 175, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "177it [00:19, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "178it [00:19, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 176, loss: 1.192\r", + "SF2M epoch: 9, steps: 177, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "179it [00:20, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "180it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 178, loss: 1.123\r", + "SF2M epoch: 9, steps: 179, loss: 1.17\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "181it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "182it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 180, loss: 1.384\r", + "SF2M epoch: 9, steps: 181, loss: 1.107\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "183it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "184it [00:20, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 182, loss: 1.117\r", + "SF2M epoch: 9, steps: 183, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "185it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "186it [00:20, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 184, loss: 1.118\r", + "SF2M epoch: 9, steps: 185, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "187it [00:20, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "188it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 186, loss: 1.135\r", + "SF2M epoch: 9, steps: 187, loss: 1.104\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "189it [00:21, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "190it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 188, loss: 1.127\r", + "SF2M epoch: 9, steps: 189, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "191it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "192it [00:21, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 190, loss: 1.135\r", + "SF2M epoch: 9, steps: 191, loss: 1.166\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "193it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "194it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 192, loss: 1.122\r", + "SF2M epoch: 9, steps: 193, loss: 1.154\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "195it [00:21, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "196it [00:21, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 194, loss: 1.161\r", + "SF2M epoch: 9, steps: 195, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "197it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "198it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 196, loss: 1.124\r", + "SF2M epoch: 9, steps: 197, loss: 1.102\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "199it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "200it [00:22, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 198, loss: 1.118\r", + "SF2M epoch: 9, steps: 199, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "201it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "202it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 200, loss: 1.426\r", + "SF2M epoch: 9, steps: 201, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "203it [00:22, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "204it [00:22, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 202, loss: 1.106\r", + "SF2M epoch: 9, steps: 203, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "205it [00:22, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "206it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 204, loss: 1.107\r", + "SF2M epoch: 9, steps: 205, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "207it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "208it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 206, loss: 1.17\r", + "SF2M epoch: 9, steps: 207, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "209it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "210it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 208, loss: 1.134\r", + "SF2M epoch: 9, steps: 209, loss: 1.117\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "211it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "212it [00:23, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 210, loss: 1.123\r", + "SF2M epoch: 9, steps: 211, loss: 1.159\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "213it [00:23, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "214it [00:23, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 212, loss: 1.128\r", + "SF2M epoch: 9, steps: 213, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "215it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "216it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 214, loss: 1.11\r", + "SF2M epoch: 9, steps: 215, loss: 1.783\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "217it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "218it [00:24, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 216, loss: 1.123\r", + "SF2M epoch: 9, steps: 217, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "219it [00:24, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "220it [00:24, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 218, loss: 1.117\r", + "SF2M epoch: 9, steps: 219, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "221it [00:24, 8.91it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "222it [00:24, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 220, loss: 1.142\r", + "SF2M epoch: 9, steps: 221, loss: 1.134\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "223it [00:24, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "224it [00:25, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 222, loss: 1.107\r", + "SF2M epoch: 9, steps: 223, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "225it [00:25, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "226it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 224, loss: 1.131\r", + "SF2M epoch: 9, steps: 225, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "227it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "228it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 226, loss: 1.187\r", + "SF2M epoch: 9, steps: 227, loss: 1.101\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "229it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "230it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 228, loss: 1.121\r", + "SF2M epoch: 9, steps: 229, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "231it [00:25, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "232it [00:25, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 230, loss: 1.126\r", + "SF2M epoch: 9, steps: 231, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "233it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "234it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 232, loss: 1.106\r", + "SF2M epoch: 9, steps: 233, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "235it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "236it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 234, loss: 1.123\r", + "SF2M epoch: 9, steps: 235, loss: 1.16\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "237it [00:26, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "238it [00:26, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 236, loss: 1.113\r", + "SF2M epoch: 9, steps: 237, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "239it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "240it [00:26, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 238, loss: 1.114\r", + "SF2M epoch: 9, steps: 239, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "241it [00:26, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "242it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 240, loss: 1.12\r", + "SF2M epoch: 9, steps: 241, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "243it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "244it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 242, loss: 1.128\r", + "SF2M epoch: 9, steps: 243, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "245it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "246it [00:27, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 244, loss: 1.155\r", + "SF2M epoch: 9, steps: 245, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "247it [00:27, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "248it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 246, loss: 1.108\r", + "SF2M epoch: 9, steps: 247, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "249it [00:27, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "250it [00:27, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 248, loss: 1.117\r", + "SF2M epoch: 9, steps: 249, loss: 1.104\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "251it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "252it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 250, loss: 1.119\r", + "SF2M epoch: 9, steps: 251, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "253it [00:28, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "254it [00:28, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 252, loss: 1.132\r", + "SF2M epoch: 9, steps: 253, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "255it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "256it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 254, loss: 1.102\r", + "SF2M epoch: 9, steps: 255, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "257it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "258it [00:28, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 256, loss: 1.138\r", + "SF2M epoch: 9, steps: 257, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "259it [00:28, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "260it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 258, loss: 1.099\r", + "SF2M epoch: 9, steps: 259, loss: 1.326\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "261it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "262it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 260, loss: 1.118\r", + "SF2M epoch: 9, steps: 261, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "263it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "264it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 262, loss: 1.125\r", + "SF2M epoch: 9, steps: 263, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "265it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "266it [00:29, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 264, loss: 1.105\r", + "SF2M epoch: 9, steps: 265, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "267it [00:29, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "268it [00:29, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 266, loss: 1.099\r", + "SF2M epoch: 9, steps: 267, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "269it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "270it [00:30, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 268, loss: 1.122\r", + "SF2M epoch: 9, steps: 269, loss: 1.894\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "271it [00:30, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "272it [00:30, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 270, loss: 1.128\r", + "SF2M epoch: 9, steps: 271, loss: 1.138\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "273it [00:30, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "274it [00:30, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 272, loss: 1.199\r", + "SF2M epoch: 9, steps: 273, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "275it [00:30, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "276it [00:30, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 274, loss: 1.142\r", + "SF2M epoch: 9, steps: 275, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "277it [00:30, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "278it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 276, loss: 1.153\r", + "SF2M epoch: 9, steps: 277, loss: 1.124\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "279it [00:31, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "280it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 278, loss: 1.115\r", + "SF2M epoch: 9, steps: 279, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "281it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "282it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 280, loss: 1.123\r", + "SF2M epoch: 9, steps: 281, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "283it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "284it [00:31, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 282, loss: 1.125\r", + "SF2M epoch: 9, steps: 283, loss: 1.165\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "285it [00:31, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "286it [00:31, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 284, loss: 1.123\r", + "SF2M epoch: 9, steps: 285, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "287it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "288it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 286, loss: 1.141\r", + "SF2M epoch: 9, steps: 287, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "289it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "290it [00:32, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 288, loss: 1.124\r", + "SF2M epoch: 9, steps: 289, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "291it [00:32, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "292it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 290, loss: 1.107\r", + "SF2M epoch: 9, steps: 291, loss: 2.258\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "293it [00:32, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "294it [00:32, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 292, loss: 1.126\r", + "SF2M epoch: 9, steps: 293, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "295it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "296it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 294, loss: 1.112\r", + "SF2M epoch: 9, steps: 295, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "297it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "298it [00:33, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 296, loss: 1.14\r", + "SF2M epoch: 9, steps: 297, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "299it [00:33, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "300it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 298, loss: 1.143\r", + "SF2M epoch: 9, steps: 299, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "301it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "302it [00:33, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 300, loss: 1.131\r", + "SF2M epoch: 9, steps: 301, loss: 1.203\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "303it [00:33, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "304it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 302, loss: 1.111\r", + "SF2M epoch: 9, steps: 303, loss: 1.119\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "305it [00:34, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "306it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 304, loss: 1.114\r", + "SF2M epoch: 9, steps: 305, loss: 1.136\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "307it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "308it [00:34, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 306, loss: 1.126\r", + "SF2M epoch: 9, steps: 307, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "309it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "310it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 308, loss: 1.134\r", + "SF2M epoch: 9, steps: 309, loss: 1.103\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "311it [00:34, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "312it [00:34, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 310, loss: 1.117\r", + "SF2M epoch: 9, steps: 311, loss: 1.116\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "313it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "314it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 312, loss: 1.113\r", + "SF2M epoch: 9, steps: 313, loss: 1.145\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "315it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "316it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 314, loss: 1.108\r", + "SF2M epoch: 9, steps: 315, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "317it [00:35, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "318it [00:35, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 316, loss: 1.122\r", + "SF2M epoch: 9, steps: 317, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "319it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "320it [00:35, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 318, loss: 1.111\r", + "SF2M epoch: 9, steps: 319, loss: 1.218\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "321it [00:35, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "322it [00:36, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 320, loss: 1.119\r", + "SF2M epoch: 9, steps: 321, loss: 1.131\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "323it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "324it [00:36, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 322, loss: 1.117\r", + "SF2M epoch: 9, steps: 323, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "325it [00:36, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "326it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 324, loss: 1.116\r", + "SF2M epoch: 9, steps: 325, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "327it [00:36, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "328it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 326, loss: 1.103\r", + "SF2M epoch: 9, steps: 327, loss: 1.146\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "329it [00:36, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "330it [00:36, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 328, loss: 1.125\r", + "SF2M epoch: 9, steps: 329, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "331it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "332it [00:37, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 330, loss: 1.144\r", + "SF2M epoch: 9, steps: 331, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "333it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "334it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 332, loss: 1.146\r", + "SF2M epoch: 9, steps: 333, loss: 1.178\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "335it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "336it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 334, loss: 1.114\r", + "SF2M epoch: 9, steps: 335, loss: 1.156\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "337it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "338it [00:37, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 336, loss: 1.142\r", + "SF2M epoch: 9, steps: 337, loss: 1.129\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "339it [00:37, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "340it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 338, loss: 1.115\r", + "SF2M epoch: 9, steps: 339, loss: 1.121\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "341it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "342it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 340, loss: 1.134\r", + "SF2M epoch: 9, steps: 341, loss: 1.11\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "343it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "344it [00:38, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 342, loss: 1.119\r", + "SF2M epoch: 9, steps: 343, loss: 1.246\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "345it [00:38, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "346it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 344, loss: 1.124\r", + "SF2M epoch: 9, steps: 345, loss: 1.114\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "347it [00:38, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "348it [00:38, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 346, loss: 1.144\r", + "SF2M epoch: 9, steps: 347, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "349it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "350it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 348, loss: 1.123\r", + "SF2M epoch: 9, steps: 349, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "351it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "352it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 350, loss: 1.158\r", + "SF2M epoch: 9, steps: 351, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "353it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "354it [00:39, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 352, loss: 1.115\r", + "SF2M epoch: 9, steps: 353, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "355it [00:39, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "356it [00:39, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 354, loss: 1.138\r", + "SF2M epoch: 9, steps: 355, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "357it [00:39, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "358it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 356, loss: 1.145\r", + "SF2M epoch: 9, steps: 357, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "359it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "360it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 358, loss: 1.117\r", + "SF2M epoch: 9, steps: 359, loss: 1.103\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "361it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "362it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 360, loss: 1.113\r", + "SF2M epoch: 9, steps: 361, loss: 1.196\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "363it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "364it [00:40, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 362, loss: 1.125\r", + "SF2M epoch: 9, steps: 363, loss: 1.109\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "365it [00:40, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "366it [00:40, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 364, loss: 1.11\r", + "SF2M epoch: 9, steps: 365, loss: 2.177\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "367it [00:41, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "368it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 366, loss: 1.11\r", + "SF2M epoch: 9, steps: 367, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "369it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "370it [00:41, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 368, loss: 1.191\r", + "SF2M epoch: 9, steps: 369, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "371it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "372it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 370, loss: 1.105\r", + "SF2M epoch: 9, steps: 371, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "373it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "374it [00:41, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 372, loss: 1.145\r", + "SF2M epoch: 9, steps: 373, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "375it [00:41, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "376it [00:42, 8.87it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 374, loss: 1.109\r", + "SF2M epoch: 9, steps: 375, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "377it [00:42, 8.88it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "378it [00:42, 8.90it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 376, loss: 1.118\r", + "SF2M epoch: 9, steps: 377, loss: 1.118\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "379it [00:42, 8.90it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "380it [00:42, 8.91it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 378, loss: 1.109\r", + "SF2M epoch: 9, steps: 379, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "381it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "382it [00:42, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 380, loss: 1.117\r", + "SF2M epoch: 9, steps: 381, loss: 1.169\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "383it [00:42, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "384it [00:42, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 382, loss: 1.197\r", + "SF2M epoch: 9, steps: 383, loss: 1.113\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "385it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "386it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 384, loss: 1.136\r", + "SF2M epoch: 9, steps: 385, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "387it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "388it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 386, loss: 1.111\r", + "SF2M epoch: 9, steps: 387, loss: 1.092\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "389it [00:43, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "390it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 388, loss: 1.112\r", + "SF2M epoch: 9, steps: 389, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "391it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "392it [00:43, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 390, loss: 1.63\r", + "SF2M epoch: 9, steps: 391, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "393it [00:43, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "394it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 392, loss: 1.118\r", + "SF2M epoch: 9, steps: 393, loss: 1.23\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "395it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "396it [00:44, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 394, loss: 1.112\r", + "SF2M epoch: 9, steps: 395, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "397it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "398it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 396, loss: 1.123\r", + "SF2M epoch: 9, steps: 397, loss: 1.104\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "399it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "400it [00:44, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 398, loss: 1.134\r", + "SF2M epoch: 9, steps: 399, loss: 1.108\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "401it [00:44, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "402it [00:44, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 400, loss: 1.154\r", + "SF2M epoch: 9, steps: 401, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "403it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "404it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 402, loss: 1.121\r", + "SF2M epoch: 9, steps: 403, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "405it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "406it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 404, loss: 1.129\r", + "SF2M epoch: 9, steps: 405, loss: 1.155\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "407it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "408it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 406, loss: 1.263\r", + "SF2M epoch: 9, steps: 407, loss: 1.137\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "409it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "410it [00:45, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 408, loss: 1.138\r", + "SF2M epoch: 9, steps: 409, loss: 1.12\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "411it [00:45, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "412it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 410, loss: 1.13\r", + "SF2M epoch: 9, steps: 411, loss: 1.205\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "413it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "414it [00:46, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 412, loss: 1.122\r", + "SF2M epoch: 9, steps: 413, loss: 1.153\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "415it [00:46, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "416it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 414, loss: 1.109\r", + "SF2M epoch: 9, steps: 415, loss: 1.122\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "417it [00:46, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "418it [00:46, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 416, loss: 1.136\r", + "SF2M epoch: 9, steps: 417, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "419it [00:46, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "420it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 418, loss: 1.117\r", + "SF2M epoch: 9, steps: 419, loss: 1.218\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "421it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "422it [00:47, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 420, loss: 1.135\r", + "SF2M epoch: 9, steps: 421, loss: 1.324\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "423it [00:47, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "424it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 422, loss: 1.116\r", + "SF2M epoch: 9, steps: 423, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "425it [00:47, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "426it [00:47, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 424, loss: 1.129\r", + "SF2M epoch: 9, steps: 425, loss: 1.128\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "427it [00:47, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "428it [00:47, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 426, loss: 1.117\r", + "SF2M epoch: 9, steps: 427, loss: 1.127\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "429it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "430it [00:48, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 428, loss: 1.151\r", + "SF2M epoch: 9, steps: 429, loss: 1.149\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "431it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "432it [00:48, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 430, loss: 1.113\r", + "SF2M epoch: 9, steps: 431, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "433it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "434it [00:48, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 432, loss: 1.12\r", + "SF2M epoch: 9, steps: 433, loss: 1.151\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "435it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "436it [00:48, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 434, loss: 1.145\r", + "SF2M epoch: 9, steps: 435, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "437it [00:48, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "438it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 436, loss: 1.18\r", + "SF2M epoch: 9, steps: 437, loss: 1.112\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "439it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "440it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 438, loss: 1.089\r", + "SF2M epoch: 9, steps: 439, loss: 1.111\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "441it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "442it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 440, loss: 1.126\r", + "SF2M epoch: 9, steps: 441, loss: 1.125\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "443it [00:49, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "444it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 442, loss: 1.1\r", + "SF2M epoch: 9, steps: 443, loss: 1.353\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "445it [00:49, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "446it [00:49, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 444, loss: 1.129\r", + "SF2M epoch: 9, steps: 445, loss: 1.123\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "447it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "448it [00:50, 8.92it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 446, loss: 1.101\r", + "SF2M epoch: 9, steps: 447, loss: 1.164\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "449it [00:50, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "450it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 448, loss: 1.174\r", + "SF2M epoch: 9, steps: 449, loss: 1.142\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "451it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "452it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 450, loss: 1.141\r", + "SF2M epoch: 9, steps: 451, loss: 1.147\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "453it [00:50, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "454it [00:50, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 452, loss: 1.11\r", + "SF2M epoch: 9, steps: 453, loss: 1.126\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "455it [00:50, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "456it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 454, loss: 1.099\r", + "SF2M epoch: 9, steps: 455, loss: 1.13\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "457it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "458it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 456, loss: 1.168\r", + "SF2M epoch: 9, steps: 457, loss: 1.141\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "459it [00:51, 8.92it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "460it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 458, loss: 1.119\r", + "SF2M epoch: 9, steps: 459, loss: 1.22\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "461it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "462it [00:51, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 460, loss: 1.22\r", + "SF2M epoch: 9, steps: 461, loss: 1.133\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "463it [00:51, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "464it [00:51, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 462, loss: 1.166\r", + "SF2M epoch: 9, steps: 463, loss: 1.106\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "465it [00:52, 8.94it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "466it [00:52, 8.94it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 464, loss: 1.127\r", + "SF2M epoch: 9, steps: 465, loss: 1.132\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "467it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.93it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "468it [00:52, 8.93it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SF2M epoch: 9, steps: 466, loss: 1.122\r", + "SF2M epoch: 9, steps: 467, loss: 1.144\r" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "for epoch in range(n_epochs):\n", + " for i, data in tqdm(enumerate(train_loader)):\n", + " optimizer.zero_grad()\n", + " x1 = data[0].to(device)\n", + " y = (\n", + " data[1].float().to(device).reshape((batch_size, 1)) / 2.0\n", + " ) # just to have a floating point label\n", + " x0 = torch.randn_like(x1)\n", + " t, xt, ut, _, y1, eps = FM.guided_sample_location_and_conditional_flow(\n", + " x0, x1, y1=y, return_noise=True\n", + " )\n", + " lambda_t = FM.compute_lambda(t)\n", + " vt = model(t, xt, y1)\n", + " st = score_model(t, xt, y1)\n", + " flow_loss = torch.mean((vt - ut) ** 2)\n", + " score_loss = torch.mean((lambda_t[:, None, None, None] * st + eps) ** 2)\n", + " loss = flow_loss + score_loss\n", + " loss.backward()\n", + " optimizer.step()\n", + " print(f\"SF2M epoch: {epoch}, steps: {i}, loss: {loss.item():.4}\", end=\"\\r\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c27deab4", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T13:14:15.353414Z", + "iopub.status.busy": "2025-05-08T13:14:15.353119Z", + "iopub.status.idle": "2025-05-08T13:14:17.769989Z", + "shell.execute_reply": "2025-05-08T13:14:17.769505Z" + }, + "lines_to_next_cell": 0 + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHICAYAAADujojbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsfXd4VFX+/ju9JZn03gMhCQFCL4KARDqCvbGKZbGXda1roVhWXVx12bXhKnZXsevSVFSkGggQIDGN9D6pk0lmMjPn90d+n8O5k0mjCH73vs+TJzN37r3n3HPPOZ/3fNpRMMYYZMiQIUOGDBkyfiMoz3QFZMiQIUOGDBn/W5DJhwwZMmTIkCHjN4VMPmTIkCFDhgwZvylk8iFDhgwZMmTI+E0hkw8ZMmTIkCFDxm8KmXzIkCFDhgwZMn5TyORDhgwZMmTIkPGbQiYfMmTIkCFDhozfFDL5kCFDhgwZMmT8ppDJhwwZAJYtWwYfH5+Tvs+aNWugUChQUlKCrKwsKBQKrF+/fkDXrly5EgqFQnIsPj4ey5YtO+l6nSkoFArcfvvtJ3UPb+3SV3krV648qfJOJwoKCjB79myYzWYoFAp8/vnnZ7pKMmScEajPdAVkyPi/hAULFiA8PBwhISHw8/PDO++8gylTppzpask4S3Dttdfi2LFjePLJJ+Hv749x48ad6SrJkHFGIJMPGTJOIVJTU5GamgoAMJlMWLp06Und79dff4VS+b+toHzkkUfw4IMPnulqnDQ6Ojqwa9cuPPzwwyetDZIh4/eO/+1ZTYaMUwCn0wmHw3Fa7q3T6aDRaE7LvU8FTuezt7e3AwDUajX0ev1pKeO3RH19PQDA39//zFZEhoyzADL5kPG7RltbG+6++27Ex8dDp9MhNDQU559/Pvbv3y85b8+ePZg/fz4CAgJgMpkwcuRIvPjiiz3uV1lZiSVLlsDHxwchISG499574XK5+O8lJSVQKBRYs2YNXnjhBSQlJUGn0+Ho0aMAgO+//x7Tpk2DyWSCv78/Fi9ejNzc3B7l/Pzzzxg/fjz0ej2SkpLw6quven0+T5+P9evXQ6FQYMeOHbjnnnsQEhICk8mECy+8kAs3gtvtxsqVKxEZGQmj0YiZM2fi6NGjXv1ImpubcffddyMmJgY6nQ5DhgzBM888A7fbPeBn7wvvvfcehg0bBr1ej7Fjx+Knn36S/E5+HUePHsVVV12FgIAATJ06VfKbCLvdjj/96U8ICQmBr68vLrjgAlRUVHgt+4cffsC4ceMkbd2bH8m7776LsWPHwmAwIDAwEFdccQXKy8v7fT6gu+/ccMMNiIyMhE6nQ0JCAm655RY4HA6sXLkScXFxAID77rsPCoUC8fHxkufLz8/H0qVLYTabERISgkcffRSMMZSXl2Px4sXw8/NDeHg4nnvuuQHVR4aMsxmy2UXG7xo333wzNmzYgNtvvx1paWmwWCz4+eefkZubizFjxgAAtm7dioULFyIiIgJ33XUXwsPDkZubi6+//hp33XUXv5fL5cKcOXMwceJErFmzBt9++y2ee+45JCUl4ZZbbpGU++abb6KzsxPLly+HTqdDYGAgvv32W8ybNw+JiYlYuXIlOjo6sHbtWpxzzjnYv38/FzY5OTmYPXs2QkJCsHLlSjidTqxYsQJhYWEDfu477rgDAQEBWLFiBUpKSvDCCy/g9ttvx3/+8x9+zkMPPYRnn30WixYtwpw5c3Dw4EHMmTMHnZ2dknvZbDZMnz4dlZWVuOmmmxAbG4udO3fioYceQnV1NV544YV+n70v/Pjjj/jPf/6DO++8EzqdDi+99BLmzp2LvXv3Ij09XXLupZdeiqFDh+Kpp54CY6zXe95444149913cdVVV2HKlCn4/vvvsWDBgh7nZWdnY+7cuYiIiMCqVavgcrmwevVqhISE9Dj3ySefxKOPPorLLrsMN954I+rr67F27Vqce+65yM7O7lNjUVVVhQkTJqC5uRnLly9HSkoKKisrsWHDBthsNlx00UXw9/fHn/70J1x55ZWYP39+Dwfnyy+/HKmpqXj66afxzTff4IknnkBgYCBeffVVnHfeeXjmmWfw3nvv4d5778X48eNx7rnn9tnuMmSc1WAyZPyOYTab2W233dbr706nkyUkJLC4uDjW1NQk+c3tdvPP1157LQPAVq9eLTln9OjRbOzYsfz7sWPHGADm5+fH6urqJOdmZGSw0NBQZrFY+LGDBw8ypVLJrrnmGn5syZIlTK/Xs9LSUn7s6NGjTKVSMc8hGRcXx6699lr+/c0332QAWGZmpqT+f/rTn5hKpWLNzc2MMcZqamqYWq1mS5Yskdxv5cqVDIDkno8//jgzmUwsPz9fcu6DDz7IVCoVKysr6/fZewMABoBlZWXxY6WlpUyv17MLL7yQH1uxYgUDwK688soe96DfCAcOHGAA2K233io576qrrmIA2IoVK/ixRYsWMaPRyCorK/mxgoICplarJfcsKSlhKpWKPfnkk5J75uTkMLVa3eO4J6655hqmVCrZL7/80uM3ek/Ufn/729+8Pt/y5cv5MafTyaKjo5lCoWBPP/00P97U1MQMBoPk/cmQ8XuEbHaR8buGv78/9uzZg6qqKq+/Z2dn49ixY7j77rt7rFy9qd1vvvlmyfdp06ahuLi4x3kXX3yxZPVcXV2NAwcOYNmyZRJNwMiRI3H++efjv//9L4Bu7crmzZuxZMkSxMbG8vNSU1MxZ86c/h/4/2P58uWS+k+bNg0ulwulpaUAgO+++w5OpxO33nqr5Lo77rijx70+/vhjTJs2DQEBAWhoaOB/mZmZcLlcPUwkns/eHyZPnoyxY8fy77GxsVi8eDE2b94sMWkBPdvfG6gt77zzTsnxu+++W/Ld5XLh22+/xZIlSxAZGcmPDxkyBPPmzZOc++mnn8LtduOyyy6TtEF4eDiGDh2Kbdu29Voft9uNzz//HIsWLfIavTLQMOEbb7yRf1apVBg3bhwYY7jhhhv4cX9/fwwbNsxrn5Qh4/cE2ewi43eNZ599Ftdeey1iYmIwduxYzJ8/H9dccw0SExMBAEVFRQDQQ73vDXq9vodQDQgIQFNTU49zExISJN9J6A8bNqzHuampqdi8eTPa29vR1taGjo4ODB06tMd5w4YN44K1P4jEheoJgNeV6jNkyBDJeYGBgfxcQkFBAQ4dOtQroairq5N893z2/uDtWZOTk2Gz2VBfX4/w8PBB3bu0tBRKpRJJSUmS455tX1dXh46Ojh5tAPRsl4KCAjDGvNYVQJ9Ov/X19WhtbR1QH+sLnu/UbDZDr9cjODi4x3GLxXJSZcmQcaYhkw8Zv2tcdtllmDZtGj777DNs2bIFf/vb3/DMM8/g008/7bG67Q8qlWrA5xoMhsFW9ZSit7qyPvwkeoPb7cb555+P+++/3+vvycnJku+n89nPVLu63W4oFAps3LjRa9ueigR0/cFbuafyPcuQcTZBJh8yfveIiIjArbfeiltvvRV1dXUYM2YMnnzyScybN4+vjg8fPozMzMzTVgeKZPj11197/JaXl4fg4GCYTCbo9XoYDAYUFBT0OM/btSdbn8LCQok2wWKx9NDkJCUlwWq1nrb28fas+fn5MBqNgzLfEOLi4uB2u1FUVCTRdni2X2hoKPR6PQoLC3vcw/NYUlISGGNISEjoQbb6AyWUO3z48KCukyHjfxmyz4eM3y1cLhdaWlokx0JDQxEZGQm73Q4AGDNmDBISEvDCCy+gublZcu6pXD1GREQgIyMDb731lqScw4cPY8uWLZg/fz6A7pXsnDlz8Pnnn6OsrIyfl5ubi82bN5+y+syaNQtqtRovv/yy5Pg///nPHudedtll2LVrl9fym5ub4XQ6T6ouu3btkoQ+l5eX44svvsDs2bMHpW0ikEbrH//4h+S4Z1SOSqVCZmYmPv/8c4lPUGFhITZu3Cg596KLLoJKpcKqVat69AvGWJ9mDqVSiSVLluCrr75CVlZWj99lLYUMGT0haz5k/G7R1taG6OhoXHLJJRg1ahR8fHzw7bff4pdffuG5EJRKJV5++WUsWrQIGRkZuO666xAREYG8vDwcOXLklAr8v/3tb5g3bx4mT56MG264gYfams1myX4jq1atwqZNmzBt2jTceuutcDqdWLt2LYYPH45Dhw6dkrqEhYXhrrvuwnPPPYcLLrgAc+fOxcGDB7Fx40YEBwdLnCDvu+8+fPnll1i4cCGWLVuGsWPHor29HTk5OdiwYQNKSkp6+B0MBunp6ZgzZ44k1BbobocTQUZGBq688kq89NJLaGlpwZQpU/Ddd9951XCsXLkSW7ZswTnnnINbbrkFLpcL//znP5Geno4DBw7w85KSkvDEE0/goYceQklJCZYsWQJfX18cO3YMn332GZYvX45777231zo99dRT2LJlC6ZPn47ly5cjNTUV1dXV+Pjjj/Hzzz/LicVkyPCATD5k/G5hNBpx6623YsuWLTxaYciQIXjppZckeTnmzJmDbdu2YdWqVXjuuefgdruRlJSEP/7xj6e0PpmZmdi0aRNWrFiBxx57DBqNBtOnT8czzzwjMX2MHDkSmzdvxj333IPHHnsM0dHRWLVqFaqrq08Z+QCAZ555BkajEevWrcO3336LyZMnY8uWLZg6daokY6jRaMSPP/6Ip556Ch9//DHefvtt+Pn5ITk5GatWrYLZbD6pekyfPh2TJ0/GqlWrUFZWhrS0NKxfvx4jR4484Xu+8cYbCAkJwXvvvYfPP/8c5513Hr755hvExMRIzhs7diw2btyIe++9F48++ihiYmKwevVq5ObmIi8vT3Lugw8+iOTkZDz//POcGMXExGD27Nm44IIL+qxPVFQU9uzZg0cffRTvvfceWltbERUVhXnz5sFoNJ7wc8qQ8X8VCibrBGXI+J9Bc3MzAgIC8MQTT+Dhhx8+09U5Y1iyZAmOHDni1R9FhgwZpx+yz4cMGf9H0dHR0eMY+UXMmDHjt63MGYRnOxQUFOC///3v/1QbyJBxtkHWfMiQ8X8U69evx/r163kq759//hkffPABZs+efUp9Xc52REREYNmyZUhMTERpaSlefvll2O12ZGdn95rXQ4YMGacXss+HDBn/RzFy5Eio1Wo8++yzaG1t5U6oTzzxxJmu2m+KuXPn4oMPPkBNTQ10Oh0mT56Mp556SiYeMmScQciaDxkyZMiQIUPGbwrZ50OGDBkyZMiQ8ZtCJh8yZMiQIUOGjN8UgyIf69evh0KhQElJyaALmjFjxklvvOSJ+Ph4LFu27JTeU4YMGTJkyJBxeiFrPvpBc3Mzli9fjpCQEJhMJsycOVOSKro/5ObmYu7cufDx8UFgYCD+8Ic/oL6+vsd5brcbzz77LBISEqDX6zFy5Eh88MEHJ13/f//730hNTYVer8fQoUOxdu3aAV33ww8/QKFQeP3bvXt3j/N37tyJqVOnwmg0Ijw8HHfeeSesVusJ13vv3r249dZbMXbsWGg0mgFvS34idbLb7XjggQcQGRkJg8GAiRMnYuvWrSdcdwB48sknccEFFyAsLAwKhUKS4bQ/nMm2d7vdWL9+PS644ALExMTAZDIhPT0dTzzxBDo7Owd8nzPV9nl5ebj//vuRkZEBX19fREREYMGCBV7TnnvDme7369atw/Tp0xEWFgadToeEhARcd911g1rwnam2r6qqwtKlSzFs2DD4+vrC398fEyZMwFtvvTWgFPNnuu1FdHV1IS0tDQqFAmvWrBnwdV9++SXGjBkDvV6P2NhYrFixwuv2BCcrV/rDk08+CYVCMeAF/8qVK722u5iMUMSJyhURcrRLH3C73ViwYAEOHjyI++67D8HBwXjppZcwY8YM7Nu3r19v+YqKCpx77rkwm8146qmnYLVasWbNGuTk5GDv3r3QarX83IcffhhPP/00/vjHP2L8+PH44osvcNVVV0GhUOCKK644ofq/+uqruPnmm3HxxRfjnnvuwfbt23HnnXfCZrPhgQceGNA97rzzTowfP15yzHM78gMHDmDWrFlITU3F3//+d1RUVGDNmjUoKCjosYfGQPHf//4Xr7/+OkaOHInExETk5+cP6vrB1GnZsmXYsGED7r77bgwdOpSHp27btg1Tp049ofo/8sgjCA8Px+jRo084rPVMtL3NZsN1112HSZMm4eabb0ZoaCh27dqFFStW4LvvvsP333/fLxE8k23/+uuv49///jcuvvhi3HrrrWhpacGrr76KSZMmYdOmTQPePO9M9fvs7GwkJCTgggsuQEBAAI4dO4Z169bh66+/xsGDBxEZGdnn9Wey7RsaGlBRUYFLLrkEsbGx6OrqwtatW7Fs2TL8+uuveOqppwZ0nzPV9iLWrl0r2XtpINi4cSOWLFmCGTNmYO3atcjJycETTzyBuro6yR5LJytX+kNFRQWeeuopmEymQV/78ssvS3Zw9rb30qmQKwAANgi8+eabDAA7duzYYC5jjDE2ffp0Nnz48EFf1xfi4uLYtddee0rvKeI///kPA8A+/vhjfqyuro75+/uzK6+8st/rb7nlFmYwGFhpaSk/tnXrVgaAvfrqq/xYRUUF02g07LbbbuPH3G43mzZtGouOjmZOp3PQdbfZbCwoKIgtWLBAcvzqq69mJpOJNTY29nn9tm3bejx7b5g3bx6LiIhgLS0t/Ni6desYALZ58+ZB150xxmpqapjNZmOMMXbbbbexQXbVAddpz549DAD729/+xo91dHSwpKQkNnny5BOqO2OMj5H6+noGgK1YsWLA157Jtrfb7WzHjh09jq9atYoBYFu3bj1ldTodbZ+VlcXa2tokxxoaGlhISAg755xz+r3+TPd7b8jKymIA2F//+tdTVqfT1e+9YeHChcxkMvU7j50tbV9bW8vMZjNbvXp1jzbqC2lpaWzUqFGsq6uLH3v44YeZQqFgubm5/NjJypX+cPnll7PzzjtvUDJ3xYoVDACrr6/v87yTlSsiTpp8fP7552z+/PksIiKCabValpiYyFavXt2jo1FDZGVlscmTJzO9Xs/i4+PZyy+/3KOczs5O9thjj7GkpCSm1WpZdHQ0u++++1hnZ6fkPE/y4XA42MqVK9mQIUOYTqdjgYGB7JxzzmFbtmyRnJObm8uqqqr6fd5LL72UhYWFMZfLJTm+fPlyZjQae9THE6GhoezSSy/tcTw5OZnNmjWLf//Xv/7FALAjR45Iznv//fcZALZ9+/Z+6+qJb775hgFg33zzjeT4zp07GQD2zjvv9Hm9OBG0trZKBpSIlpYWplar2X333Sc5brfbmY+PD7vhhhsGXXdPDJZ8DKZO9913H1OpVJJJjDHGnnrqKQaAlZWVnVTdT5Z8nOm2Jxw6dIgBYP/4xz/6PO9sansRF110EQsMDOz3vLOx7RsaGhgA9sADD/R53tna9rfffjtTKBR8MdEbzpa2v+6669iECRNYcXHxgMnHkSNHGAD2r3/9S3K8srKSAWCPP/44P3aycqUv/Pjjj0ylUrFDhw6dEPmoq6tjLS0tzO12ez3vZOWKiJP2+Vi/fj18fHxwzz334MUXX8TYsWPx2GOP4cEHH+xxblNTE+bPn4+xY8fi2WefRXR0NG655Ra88cYb/By3240LLrgAa9aswaJFi7B27VosWbIEzz//PC6//PI+67Jy5UqsWrUKM2fOxD//+U88/PDDiI2NldjSKisrkZqaioceeqjfZ8vOzsaYMWOgVEqbacKECbDZbH2aAiorK1FXV4dx48b1+G3ChAnIzs6WlGMymZCamtrjPPp9sKBrPMsfO3YslErlgO953XXXwc/PD3q9HjNnzuxhO8/JyYHT6exRjlarRUZGxgnV/WQxmDplZ2cjOTkZfn5+knOp7cWdT39rnE1tX1NTAwD97m57trZ9TU3NoHbmPdNtb7FYUFdXh6ysLFx33XUAgFmzZvV5zdnS9h0dHWhoaEBJSQneeustvPnmm5g8eTIMBsOArj+Tbb9371689dZbeOGFFwblZ9bbfBsZGYno6OgebX+icqUvuFwu3HHHHbjxxhsxYsSIE7pHYmIizGYzfH19sXTpUtTW1kp+P1VyBTgFPh/vv/++pFPdfPPNuPnmm/HSSy/hiSeegE6n479VVVXhueeewz333AMAuOmmmzBx4kQ89NBD+MMf/gCNRoP3338f3377LX788UeJ3TE9PR0333wzdu7ciSlTpnityzfffIP58+fjtddeO9nHAgBUV1fj3HPP7XE8IiKCP09vL7m6ulpyruf1jY2NsNvt0Ol0qK6u5o6JvZVzInVXqVQIDQ2VHNdqtQgKCur3nlqtFhdffDHmz5+P4OBgHD16FGvWrMG0adOwc+dOjB49ekDPuX379kHX/WQxmDpVV1f3eh5wYm1/sjgb2/7ZZ5+Fn58f5s2b1+d5Z2Pbb9++Hbt27cIjjzzS77lnS9tHRUXBbrcDAIKCgvCPf/wD559/fp/XnC1t/+KLL0oWd7NmzcKbb77Z73Vnuu0ZY7jjjjtw+eWXY/LkyYNy8u2vTmJ7noxc6QuvvPIKSktL8e233w762oCAANx+++2YPHkydDodtm/fjn/961/Yu3cvsrKyOEk9Wbki4qTJh0g82traYLfbMW3aNLz66qvIy8vDqFGjjhemVuOmm26SVPimm27CLbfcgn379mHSpEn4+OOPkZqaipSUFDQ0NPBzzzvvPADAtm3beiUf/v7+fKfK3px24uPjB+R5DXQzeJE8EcgD2NvGXeK1APq9XqfTnVQ5fZUvOrR63re/e06ZMkXSzhdccAEuueQSjBw5Eg899BA2bdokqVtv9T+Rup8sBlOn09H2J4uzre2feuopfPvtt3jppZfg7+/f57lnW9vX1dXhqquuQkJCAu6///5+zz9b2n7jxo3o7OxEbm4u3n33XbS3t/d7zdnS9ldeeSXGjRuH+vp6fP3116itrR3Q/c50269fvx45OTnYsGHDoK/tr06tra2Sc09121ssFjz22GN49NFHERISMujr77rrLsn3iy++GBMmTMDVV1+Nl156iVsyTlauiDhps8uRI0dw4YUXwmw2w8/PDyEhIVi6dCkAoKWlRXJuZGRkDw/c5ORkAOAss6CgAEeOHEFISIjkj86rq6vrtS6rV69Gc3MzkpOTMWLECNx33304dOjQCT+bwWDgqw8RFHLYlxqRfhvI9SdTTl/lOxwOr791dnae0D2HDBmCxYsXY9u2bXC5XJK69Vb/EynnZDGYOp2Otj8dOFNt/5///AePPPIIbrjhBtxyyy39nn82tX17ezsWLlyItrY2fPHFFxIv/sHgTLT9zJkzMW/ePNxzzz34+OOPsWrVKvzzn//s85qzpe3j4uKQmZmJK6+8Eu+99x4SExORmZl5QkL1t2r71tZWPPTQQ7jvvvsQExMz6OvPdNs/8sgjCAwMxB133DHoa3vDVVddhfDwcIkm5VTKlZMiH83NzZg+fToOHjyI1atX46uvvsLWrVvxzDPPAOj23xgs3G43RowYga1bt3r9u/XWW3u99txzz0VRURHeeOMNpKen4/XXX8eYMWPw+uuvn9DzRUREcHWaCDrWV9gbqdB6uz4wMJCz34iICNTU1PTQyAyknL7Kd7lcPciaw+GAxWI5oXsCQExMDBwOB1+J9fecJ1rOyWAwdTqZd/xb47du+61bt+Kaa67BggUL8MorrwzomrOl7R0OBy666CIcOnQIX3zxxUknODyT/T4pKQmjR4/Ge++91+d5Z0vbe+KSSy5BeXk5fvrppxO6/rdo+zVr1sDhcODyyy9HSUkJSkpKUFFRAaDbV7GkpKRXoTvYOp3qti8oKMBrr72GO++8E1VVVbz+nZ2d6OrqQklJCRobGwd1T0JMTIzk2lMpV06KfPzwww+wWCxYv3497rrrLixcuBCZmZkICAjwen5VVVUP9SE518THxwPoHmiNjY2YNWsWMjMze/wNGzaszzoFBgbiuuuuwwcffIDy8nKMHDlyUAmeRGRkZGD//v09SNSePXtgNBq5NsYboqKiEBIS4jW50d69e5GRkSEpx2azITc3t0c59PuJ1B1Aj/KzsrLgdrtP6J4AUFxcDL1ez1eR6enpUKvVPcpxOBw4cODACZdzMhhMnTIyMpCfny9RiwIn1/anC79l2+/ZswcXXnghxo0bh48++ghq9cAstGdD27vdblxzzTX47rvv8P7772P69OkndB8RZ7rfd3R09NAke+JsaHtvII1Hf/XvDb9F25eVlaGpqQnDhw9HQkICEhISMG3aNADdZseEhAQcPXq01+t7m2+rqqpQUVHRo+1PVK54Q2VlJdxuN+68805e94SEBOzZswf5+flISEjA6tWrB3VPoNsHpqSkRGLGOaVyZcBxMaxnqO2XX37JALAffviBn2O321lGRgYDwLZt28aPT58+nQFgzz33XI9zQ0JCmMPhYIwxtn79+h55MAg2m41ZrVb+3TPUtqGhocc1l156KQsODubfBxNq++GHH/aIx66vr2f+/v7s8ssvl5xbWFjICgsLJcduvvlmZjAYJGFr3377LQMgCTEuLy/vNc9HVFTUCef5CAwMZAsXLpQcX7p0KTMajcxisUieKTc3l7W3t/NjdXV1Pe554MABptFo2AUXXCA5PnfuXBYREcFaW1v5sddff50BYBs3bhx03T3RX6htbm6uJJfKYOq0e/fuHuF0nZ2dbMiQIWzixIknXff+Qm3PxrY/evQoCwoKYsOHD+83bv9sbPtbb7211zlExNnW9l1dXV7be8+ePUylUrE//OEPkuNnW9t7azvGGFu0aBFTKBSsoKCAHzvb2n7fvn3ss88+k/y9+uqrDABbtmwZ++yzz1hzczNjrHcZkpKSwkaNGiWZrx955BGmUCjY0aNH+bHByJWBoL6+vkfdP/vsMzZ8+HAWGxvLPvvsM3bo0CF+fmlpqSTvCGPe255SQPz973/nxwYjV/rDSZGPhoYGFhAQwOLi4thzzz3H/v73v7PRo0ezUaNGeSUfkZGRLDQ0lN1xxx1s7dq1bOrUqQwAe+211/h5LpeLzZ8/nykUCnbFFVewtWvXshdeeIHdfPPNLDAwkP3yyy/8XE/yERoayi677DL2zDPPsHXr1rGbbrqJKRQKdscdd/Bzjh07xgAMKDmZ0+lkkyZNYj4+PmzVqlXsX//6Fxs+fDjz9fVleXl5knPj4uJYXFyc5FhZWRkLCgpiSUlJ7B//+Ad76qmnWEBAABsxYkSPWO777ruPAWDLly9n69atYwsWLGAA2Hvvvef1Hbz55pv91p86zyWXXMLWrVvHrrnmGgaAPfnkk5LzKMZbfF8zZ85k8+fPZ0888QR77bXX2N13382MRiMzm82SgcRY98DV6XRs9OjR7OWXX2YPP/ww0+v1bPbs2T3qBIBNnz6937qXlJSwxx9/nD3++ONs4sSJPFb+8ccfZ2+//Xa/9xxMnS699FKeN+DVV19lU6ZMYWq1mv3444/9tlNvePvtt9njjz/OHnroIQaAzZw5k9e/pKSkz3ueybZvbW1lMTExTKlUsqeffpq98847kr+dO3f2e88z2fbPP/88A8AmT57co+7vvPOOZPFytrV9U1MTM5lM7Prrr2fPPfcce+WVV9htt93GjEYjCwwMZPn5+f3e80y2/V133cXGjRvHHnnkEfbaa6+xp59+mo0fP54BkMzBvd3zTM85niBZ4ZnnozcZ8tVXXzGFQsHOO+889tprr7E777yTKZVK9sc//lFy3mDkyrXXXnvKE3uSIkCEwWBgy5YtY8899xz717/+xa688kqmUChYRkaGhCAyNnC50h9OOsnYjh072KRJk5jBYGCRkZHs/vvvZ5s3b/ZKPjyTjMXFxbF//vOfPcpxOBzsmWeeYcOHD2c6nY4FBASwsWPHslWrVkmS4niSjyeeeIJNmDCB+fv7M4PBwFJSUtiTTz7JtSqMDY58MMZYY2Mju+GGG1hQUBAzGo1s+vTpEgIk1sWTfDDG2OHDh9ns2bOZ0Whk/v7+7Oqrr2Y1NTU9znO5XOypp55icXFxTKvVsuHDh7N33323x3lr165lANimTZsGVP/XXnuNDRs2jGm1WpaUlMSef/75HglkvE0EL774IpswYQILDAxkarWaRUREsKVLl0pWLyK2b9/OpkyZwvR6PQsJCWG33XabZFXCGGNtbW0MALviiiv6rTclHPL25zmR9Da5DKROjHVndrz33ntZeHg40+l0bPz48V7b989//nOPbIW9gQa4tz+xnc+2tqfx0duf57g529qeJuve/sS562xre7vdzu666y42cuRI5ufnxzQaDYuLi2M33HCDV+FztrX9li1b2MKFC1lkZCTTaDTM19eXnXPOOezNN9/8Xcw5nhgs+WCMsc8++4xlZGQwnU7HoqOj2SOPPCKRP4SBypWLL76YGQwG1tTUNOj6D4Z83HjjjSwtLY35+voyjUbDhgwZwh544AGv/YaxgcmV/jC4nNUyzjguvfRSNn78+DNdjRPCN998wxQKhUQF+HvC+PHj2SWXXHKmq3FCkNv+zEFu+zOH33vbh4aGsnvvvfdMV+O0QN5Y7ncExhh++OEHvPvuu2e6KieEbdu24Yorrjjh7HtnEq2trTh48CDeeuutM12VE4Lc9mcOctufOfye2/7IkSPo6OgY3GZtvyMoGBtgxi0ZMmTIkCFDhoxTgJNOMiZDhgwZMmTIkDEYyOSjD/zrX/9CfHw89Ho9Jk6ciL17957pKsmQIUOGDBm/e8jkoxf85z//wT333IMVK1Zg//79GDVqFObMmdNnencZMmTIkCFDRv+QfT56wcSJEzF+/Hi+n4Lb7UZMTAzuuOMOvsmODBkyZMiQIWPwkKNdvMDhcGDfvn2SbaGVSiUyMzOxa9cur9fY7XbJZkFutxuNjY0ICgqCQqE47XWWIUOGDBmnFowxtLW1ITIyEkqlbCg4lZDJhxc0NDTA5XIhLCxMcjwsLAx5eXler/nrX/+KVatW/RbVkyFDhgwZvyHKy8sRHR19pqvxfwoy+ThFeOihh3DPPffw7y0tLYiNjYXRaAQA2Gw2qNVqKBQKuN1uuN1uaDQaaDQauFwudHV1gTEGlUoFoJtxM8agVqsln1UqFRhjcLlcfAtj2h23tbWVn6tSqWA0GmG1WqHX66FUKuFwOGA2m/nmfgaDAW63G3a7HWq1GjqdDjabDSqVCi6XC06nE2q1WlJHt9stqUtnZycYY9BqtdBoNFCpVHA6nfw5aJtol8sFhUIBvV4Pu90OxhiUSiU0Gg2/BwCuJVIoFFCr1dBqtXA4HHwTJrH9lEollEolFAoF326b2k68F2MMCoUCTqcTjDFoNBp0dXVBrVbz1YzL5YJGowEAOJ1OaDQafp1CoZDsOEzH6JnE3z1/o+NKpdLrPeh9KZVKyUZT9JziaoveCb2DwUJsj77g7XeqL7U3Y4y/h7MN1PcUCgVUKhVUKhWvq9vt5mOI/txuN9RqNe8P1B/Fd0rvT6FQQKPR8HdA13v2AYPBgK6uLjidTt4XNBoNf680TqhO4rtxu918a3KxnalP0liketEfnU9lUX3cbjefX+g56D5nA8Rn1+v1cDgc/BlUKhW0Wi2cTic6OjrgdDqh1+thMBhgMBhgtVrhcrl4G5AGWpyfjEYjHzsulwv+/v5wOBxwOBxwOp0IDAyEy+Xix/R6Pe8DarUaDocDvr6+Z7iV/u9BJh9eEBwcDJVKhdraWsnx2tpahIeHe71Gp9NxEiCCJgmVSgWDwQDGGJxOJ+x2O1QqFfR6vWTyokmBJkQSmOIECBwXBp2dnXA6nXzyoXOITHR0dPB7ulwuPvFSfdra2jhBcjqdUCgUfFDSeXQNTRI02FUqFTQaDScTVC96DtHcRPWlSdRut3MyQ/ej80nout1uOJ1OaLVafi7dS6PRcIFhs9kAgE84ngKa2kYUmqJQJ7JFQkIUXqLAdblc/J40kYvnic/rSSLpmCiw6BzxmT0FnnhPnU7XQ1j1B5FAie+CfusLnmUoFAouCLzd93TAkygMBOL78CaY1Wp1DwKs0+nQ1dWFzs5O6HQ6GI1GdHV18fNIUIsCnPqzy+WCXq/n41YcryKpJFJOY7Orq4sTFOrTRCzUarWEZFO7U/90uVx8p2G32w2HwwGVSsX7eEdHR68LGWqjU0kcxX5wom6ECoUCdrud9zNfX18YjUbU1dXB7XbDx8cHLS0tfA6luY8WNXq9Ho2NjXyhQb+J70ShUKC1tZXPFTSm7XY7f4+0Cy9jDA6Ho8fzyTg1kMmHF2i1WowdOxbfffcdlixZAqB7gH/33Xe4/fbbB3UvcQVvtVr5BEGrrNbWVj44aIIhod7V1QWVSsWFkNvthtFohNPp5IOC6iaucoDuia69vV0y+SqVSi6Yu7q60NDQAIVCISmHJluaPDs7OyW+LKQ5cLvdkglOo9HwVYtYD5FQAOATprhC0+v1XLg7HA4YDAZOvOx2O5/g6X7iiluhUHChTEJdo9HwCYSEi6ilIIFG99BoNFAqlejq6uLfRWHnqZHwJDW9ES9RO0PkRuwTIoEZiDbCarVKzvPU8Hg75kk0eptEPcv31BpRO3R0dPQ7EYurawA92nugUKvVCAkJgUKhQHNzMyeZ/UGn0/F+TGRUqVTyvkcrYxpX4nsLDg7G+vXrkZGRgQ8++ADr1q3DsWPHeB9yuVz83vR+fX19OVFmjHENomefpfYkbaP4TqjO9Lm9vb3HO6TP9CzUr+jeYnkkWEXCTfeh651O56Dex2+FwMBAMMZQX18PjUaD4OBgPsZdLhdsNhuUSiX0ej2Cg4NhsVh4e4oLEa1WC61Wy+dYQkhICDo6OvgcoVar4e/vz0mIzWaD2WyGQqFAU1PTGWmD/wXI5KMX3HPPPbj22msxbtw4TJgwAS+88ALa29tx3XXXDeo+omofOD4RE3MnDQIAPhl4CleaPGhFI05GJFxJCyJqKWhyo0mXVgN0HWk1xO80YBljXBhTGaRlIKEpXkN1MBqNaG9v52XTvagNSBVK9bPb7dDpdLydqD5EOoDjJhuCRqOB2WzGlClTcP7552P48OFYs2YNCgsLYbFY0NrayidgcYImkkMrSxIWZNYhodnR0QGdTteDVPTlcOZNs0DvUjwmCnJxNUbCwVOwe2qQeivT06TT27l+fn68PKvV6pUQ9EcuPPuXJzzv2Zt6X6FQwM/PDwkJCZg0aRImTpyIuLg4/jv1uyNHjiA3NxeHDh3Cd99912fdqH70nwSWSDZI+0D9g/o6nX/48GGMHj0a8fHxGDlyJIqLiyVjUhyvoqZSNAOKGkMyFRAxFwkn3ZcIEt2P+qp4nkjoaByL5El8flrRi6ZaWmScaq0HwZtp8UTKaWlp4Z/J3GKz2bimgzQ9LS0taGtr45oOu90Ok8kEm83GNSHNzc383URERGDp0qWYPXs2XC4XDh06hIceeggtLS2SdxoYGAi1Wg2XywWDwcBJioxTC5l89ILLL78c9fX1eOyxx1BTU4OMjAxs2rSphxNqf/C0rdLEI6prxckvOjoaNpsNHR0dyMzMRGBgIJRKJTo6OpCbmwu1Wo2amhrU1dVJVNJ0b5r4PFdb9N/TRCOujkSzAiBV/YurJ/Gz2+1GZGQkoqKiEBkZicjISHzwwQecgHhT+XvWl9qDIK7mxPYiTUlaWhpSU1Mxbdo0zJgxA0lJSSgqKsI333yD7du3S8oVV7We5iuxbqKK3Juw7Esgi6Ya8Rn6EtAixPfTl0lEfNfeTCK9ERV6ZpPJhOTkZG5SyMvLQ0tLSw9y53nt6YBarYbZbMacOXMwfPhwjB49GiNHjkRkZKTkPOqXpaWlEg1cXxCJnEhARE2WqAkQzUgqlQomkwlqtRoBAQGIiIjg9QCOv2u6RiQQ9Lso+OlacRzROeIx8R2IJiNxAUHPL5pTPMeoJ/Glfk1Cm/zOTrXWw9s8ROWKv/UHrVbLFyEGgwHt7e18biSfDRF2ux1arZa/Ax8fH764EZ9Toej2w0lPT8ekSZNQVFSEQ4cO8fuSiYa+E0GVycfpg0w++sDtt98+aDOLJ0RBChwXcvSbTqfjrF2j0WDy5Mmoq6tDXV0dVq5ciZSUFOh0OjQ0NGDdunVQqVTYsmUL6uvruTOU6Ffidruh1WqhUCi4elJcoTkcDr4aUigU/Ls46Gjwiis00g6IEx9NmMOHD8f06dMxadIkjBkzBps2bYLNZvPqGCl+J1s2tRH9kbpcBD2jXq/HnDlzsHDhQiQmJiIkJAQAcO2116K5uRn79u2D0+nk6leRgJEjGzmxiitfT18GAD2EgaitoOPkH0BtTiYt8qVxOBzc78bz+b1pSwY6SXtDXwRCq9UiJiYG5513HkJDQ7k5LScnxyvZ6s9Mc7Iwm81IT0/HAw88gOTkZK/+UtQn29racPjwYezfv7/X+4ntJ/YfemeewlZ8n2Tq02g08PHxwfDhw2EwGKDVamEwGHoQaCLt1EbUf6lMUcMgjnW6lpy/RbMPjSXRwVt8HvJFoHqIZhUS1KSFVCgUsFqtEk2op9mTHMEHC6PRyPu4y+WCj4+P5Ll1Oh13pKe5p6WlRWJG6u/+pH3VarXcF4Paht4Z+c14+tmQHxhpRwhEJHx8fAAAWVlZ2Lp1q9d+0dbWxtvUZDKhsbHxhNpKRt+QycdpBkVQaLVabrfWaDQwGAxwOp1obm6GXq9HeHg44uLi8Nhjj2HIkCESkgIAQUFB+POf/4zCwkLU1NQgPz8fFRUV3FmUvLn1ej13zqTJtLOzEy6Xi/uL0GREtk4ycVBdxWgX8Tlo4tJoNNwpVafTYeXKlUhOTkZXVxe2bNnCf3M6nfDx8UFbW5tkZUgESaVSSbzwCeKKUVxNUQTPmDFjkJKSAj8/P0lb33bbbbjsssvw9ttvY82aNWhububXU2SP6OdB6m4AvI0YO+7T4mnW8CQGarUaV1xxBR5++GEYjUbo9XqUlZVh//79eOutt/D888/jiy++wKuvvoqGhgaJ+pyeSRTyvfmWeMKTqPSnldFqtQgPD8fy5ctx9dVXw2w2w2KxwOFwoLCwUDJJn0gZJ4LrrrsOTz/9dJ/37ejoQF5eHtatW4esrKw+fT7EtiIh2FcbisSaTHBJSUk455xzeKRJbm4utm7dygU1CTaKhhJJMy0kyG+KxhKAHn4n5M9FfZLIqSdRIc2FSqVCW1sbL9NzJR4WFoabbroJo0ePxvDhw9He3o4VK1Zg69atPBqEFiaidvREol1Wr16NY8eO4auvvkJ1dTWef/55DB06FACwY8cOjB8/HsOGDUNERARfBPz5z3/G+vXre7Q/OZ6L0Ol03Gzq6+vLSZrn+KM5Jjw8HHV1dVAqldDpdDwyxWazScw3559/PpYsWYIJEybw8RAfH8/fRVBQELRaLRobG+Hn5we3281NPTJOD2TycZrhcDgk/hMU8dLe3g6dTsdXoF1dXbj11lsRHh7OVaMAuBMaTUwhISFITk5GSkoKampq+OqGJjZxMne5XBIBTGYFnU7HryFve+C4Old01qQQVNKakNaAMQaj0YgpU6ZwU1RbWxvX4tAqhJz7SPB2dXXBZDLxlRPdm8LqaNUmCgeq94IFC3DXXXdh5MiRMJlMUCgUaGhowMqVK1FZWYnMzEyMHTsWBw4c4M9D6m2xnex2O18piuGr5J9C2iAqX6wHfabnqa6uxv79+zFnzhy4XC4EBQVh4sSJSElJQXR0NC6//HJMmTIFFosF69atQ25uLmprayVECJD6hoimIm/C2Zs5yxtJIAK7ePFiLF++HEOGDIGPjw/Ky8tx9OhRNDY29vAVENEf4RioWckb2traUFNTg4iICF5ORUUF/vSnP+HOO+9EWVkZfvnlF/z0008oLS2F1Wod8L3FFbLb7eZCnsgCEWlqR+qLEyZMwJ133omwsDDU19ejoqICDQ0NnHDQOCTiTn4BdrtdEtVCxEd0ehXJPYVxkjZPdHAWx72ofRkxYgSSk5NRXFyM/Px8Pm4iIyMxduxYXH311fDz8+NhpatXr4ZarcauXbtQUVEBoHvuIU3CYH0xNBoNhg0bhsDAQIwfPx7XX389urq6EB8fz8nakCFDYDKZ+NiiOWnatGmoqanB5s2b+f1EzYRIdBsbG3lqAJvNBn9/fz5vULv5+PjwcWqxWDiJ8gx9p/+vvPIK0tPTERERgcDAQPz666/46quv8PXXX/M6UgQMaY7ov2xyOX2QycdvBFFFS99dLhe0Wi30ej0iIiIwceJEiSajra0N1dXVXLXvcrlgNpvh7++PwMBABAQEwGKx9NAq0ERG5IKEOpUtOp2KNlGCGDfvGeooEhkAaGxslHjPFxQUcC0C3VecDET7s2hnF7+LamLxmYxGI8LCwhAQEMAn98bGRuzbtw/l5eVgjKG2tpZrWkTS5mky8px8SXiIx72ZYMQ2cLlcqKurQ05ODtLT02E2m5Gfn499+/aBMYYdO3YgIyMDo0aNQmdnJ/Lz82G1WiX7A3n6wAzGPt4XqL4JCQkYPnw40tLSEBgYiK+++golJSWoqKjAoUOHvGo9vN2nt99OtK55eXn46quvsHz5cgDH1eB79+7F+++/j5qaGhQUFCAvL++EnBbFvkV9UHSwFn0tqP+Rts5gMODo0aOorq7mRFjsR/RdJIFUDoAefZzqQ9+JbItjioi+TqdDQEAAhgwZgtLSUsTFxSEjIwMJCQmIiopCdXU1KisreZ2DgoL4b6LvR0JCAtLT05Gfn4+qqiqv4ecDbVd6LofDgYiICAwbNgyhoaE9zvPMhUHjb+zYsfzZNm7cyBdi3voOlUUhxyEhIWhrawMAHp7sdruRnJyMjIwMWK1WfP/999yxlM6j+3d1dcHPzw+BgYEIDAyERqNBXV0dKisrUVdXx9ufiAv5eND7OFsjgv4vQCYfpxniqp9WWTR52e127qyZnp6OpKQkvirp6uriXv4+Pj4ICQmBVqvF+PHj4e/vj/DwcAwdOhStra2S5F8iyaCJkTQipOIkzQXVzTPfBE2GZLcVHd3ofpTXpLq6mg/SpqYm/Pzzz5L4e8+wVbVazbUQQPcKj8xBInGi9hLVw01NTSgsLERKSgoAwGq1oqqqCo2NjbDb7di1axdycnIwZMgQiYqZ2lwUliIJpFWp6NfizTdDfA5yZqupqcH+/fsRHx+PlJQUbNq0Ca+88goXWvfccw/S09MRFBSEzMxM5OXl9fBdoPfkqfHwJvh7M4d4nkvfR40axSNIWltb8fe//x21tbVQKBQoLS2F0+mEyWTi5jrGGDo7O7mA8IaTNcHo9XoUFRXh66+/xvLly+FyubBp0yasWbMGarUa69atO6loDLH9SAsCgK/GKUScQmep/9XW1uLIkSMYOnQoamtr0dDQwBPyicRVJPPUz0irQe9FTAJGx8VoNvIxErVuQHc00rBhw3DjjTfiiy++wOTJk3HllVfy0E+6nnyqPPMLORwO2O12tLe3Izg4GAaDgRMNMgeJJqOBwu12o7a2FtHR0QgNDYXL5UJrayt8fX15Yi8fHx/uh+Z2u/lCatSoUYiOjkZgYCC+//77Hn1LHGvUD8k8TBEr9Btj3f5ZU6ZMwT333AOLxYLc3FxYrVZ+X4p0UalU6OjoQHl5ORISEhAeHg6Hw4HS0lKekFHMnUJOpqJG8FQsBGR4h0w+TjPIE5uyi9KkZbfb4XQ6cdVVV+H888/H+PHjAXSndtdqtWhqasKCBQv4BBYaGoqbbrqJ7647ffp0FBQU4NJLL0V5ebkkbFfM5kcJuqgupCIGwCdeWmU4HA7u96DT6eDn58fJhagFcbvdGD9+PObPn48LL7wQYWFhWL9+Pd566y3s2LEDfn5+vNzOzk74+PhwYd3e3i4JcyRyQz4gZN4hskCTu9vtRkVFBXbs2IGFCxcC6LbJf/HFF6iuruYrQZvNJtEs0KrGYDBwYSOuWknYiw6o3iJVRIEmfq6urobFYsH333/P3y0JlDFjxsDX1xfV1dUYOnQoRo0ahaioqF5zLIg2+N5MLoS+fDLEz0RuGWO4/fbbUVtbi7q6Op4DRqFQ4JprrsHixYtRVlaGqqoqfP3111x701/53iBqCbxhwYIFuOKKK3DRRRdBoVBwbRUJtBOB2B4Gg4ETKBoD4rgDwDP5kolEo9EgNjYWY8aMgVqtxuLFi5GTk4MvvviC9x+RJIraNXqfIhmhPg6A+3uQLxE9pzgGHA4HAgMDER8fj3HjxuGiiy7CRRdd5LW9m5qa8MYbb8BisWDevHmYPn06/23fvn04cOAASkpK8PHHH6Ourg5dXV18PBJJGmjkELUp0O13Rs/U2NiI+++/H4899hg2btyIb7/9Fg8//DCGDBmC3bt3o7KyEtdffz2/x7Fjx3DPPff0m6uFFi46nQ5BQUFoaWmByWSCw+HgBOPpp5/G1KlTuYmHxjXNIa2trZg2bRrmz5+Prq4uLFiwAH5+frDZbDhw4AAeffRRNDU18fdmNpths9kkCybRJCb7fZweyOTjNINMECQYySmNPLXT0tKQmJjI7aYvvvgi8vLy0NDQIFH5VlVV4eWXX8Zll10GPz8/OBwOlJeXo7m5mQtOHx+fHo6SRH6IVAQHB6OtrQ1dXV3o6OjgESAkhPV6PReMdrsder2eR82QrVyr1cLHxwdmsxmhoaGor6/H4cOHcfDgQUnWQCJOJPAB9CBINFGLOQ7I34Keg2zr7e3tEmIxevRo6PV6vP7667j66quhVCq5k9m+ffuQlpaGjIwMJCYmYt26dSgoKEBjY2OPZF+iaUkUMJ4QhbFnqCYJckqKNHPmTPzxj3+EyWSSXDd06FBMnDgRP/74o+TeYmix+D5EeDNz9EYCAgIC8Pe//x0TJ05EUFAQnE4npk+fjh07dnAHR1pFlpWVobCwEEuWLMFtt92Guro6rgk6EXgjHdSmbnd3Ho2PPvoIlZWVuOOOO/gK+WTs62K7UH8Vo1JEweJwOLgQJmI+d+5cnHPOOQgLC4PT6UR2djbKy8slmUZFtf6ll17K/VWKiopw+PBh1NfXo7Ozk/dXIsT0WXynJDTpu9vtRnNzM5qamnj+CnGbgqKiIuzcuRP79+9HTU0NlixZgosuughhYWFwuVw8uuXTTz/F559/zk2Coo+HqNEbbJIxg8GAiy++GGazGYx1J7z78ssvsWfPHrS1taGtrQ1HjhyBVqvFeeedhzlz5kiudzqdEhNxbzCZTJxkNDU1obOzEwEBAdBoNDxEPDIykqcgoH4VFRWFcePG4U9/+hPeeOMNxMfHIykpCampqTxpo0ajQUBAAOx2O9d++fv7o729nY9hmhvF9yLj9EAmH6cZpD4EIJkEVSoVxowZg6SkJJ7O3el0oqysDEePHuUphUUBV1ZWhsrKSvj6+vLQSVIX0sRCZEKv13MHShE0EEnQU73oN9HsQ8ICALeJE/mIiYnBiBEjoFar8dFHHyErKwvt7e08dJZIBTnniVoH0mSIq3ZR+NOkTRMLTTI2mw2VlZXIysrC8OHDYTKZkJSUhLvvvhvnnnsud1IDgLFjxyIqKgrx8fEICwvDP/7xDx7VI2o9xPI9c4p4ml5Ee7n4LAaDAbNnz4bZbOYhfdOmTUNKSgrcbjf33fn555+xb98+bsOmtvckOwMlHt6gVqsRHR2NUaNGISgoCAEBASguLsbevXtRWVmJzs5OyYRqNpv5e6fkSt60PicL8R7kaErvqrOzU7J/z6mE2LeB40641MeoX0dERCAsLIzvPbRnzx6UlZXx/kj11el0uPjii5GSkoKIiAgYDAY0NDTg888/R3l5Oerq6lBbW8sJtFi2aOoQiQf1Abfbjfr6emRlZeH555+XXFtTU4PCwkIcO3aMk5mwsDAezVZVVYUvvvgCP//8MyoqKrg2hfq1QqHgYf2eC5SBgu5DWoarrroK7733HjeLkNbqnHPOQVBQkORao9GItLQ0ZGdn9xllIzrv0ngV+4VnNlm73Y4xY8bA398fM2bMwOjRo3HhhReiqakJpaWlOHLkCM477zxERETAaDRKfFWozeldUJmitvhkTYwyeodMPk4zPFe0osf9ueeei7i4OB7aRc5uJGhFZzayVefn5yMoKAixsbFIS0tDfHw8gO7VHplOdDod9Ho9jEYjnxhIsNJqikgCmUNIC9DR0SFx9hRNEKS2jYqKwogRI5CRkQHGGD799FMcPXqU15VICvmU0CrLM5SUBAFNAt40D6ITH9lvN27cCF9fX8TExCAgIACPP/44gONCmzQ2oo28qakJ7e3tknwLoi+ASD7Ecgni+aKDoclkQlxcHK6//nrExMTwSSwhIUGyaj548CBeeeUVVFdX98h5QGWLwsizPgOBUtmdSCw9PR0LFiyA3W5HfX09fv75Z7z//vuSfSsIgYGBCA4O5k68Q4YMQX5+PsrLywdV9kBAz9fS0oKuri6u8aiuru7T3DJQ4kXwbDfRr0kUxqJzY1BQEM/+2tjYiJ07d6K0tBRarRaxsbGIjY1FZ2cnwsPDcf/996O2thZmsxl+fn58g7OcnBwcPXoU9fX1fBwAkBAd6uOee7FQnSwWC+rq6rB7927ucyWOBaVSiaioKG7KtNvtsFgs2LdvH9auXcujPzwJMi0GyLQqkqOBwO12w2KxcPOSyWTCX/7yFxw+fBg5OTloamoCYwy+vr4wm80wmUz8WqvVCofDgbS0NBw6dKhP8tHR0QGj0QjGGE9LICYAMxgMqKio4H5vRqMRM2fORHh4OEaMGAEAGD58OHbu3ImdO3fim2++QXJyMgICArj/izinUgSN2BcomuZEQpFlDBwy+TjNEIUICX46FhMTwx3NyBRzww03QKPRoLS0FMBxJ08SfN9//z2MRiNMJhNCQ0Px3nvvYc2aNdiwYQO3Y1OUC22MR6FrpMpUq9XQ6/Xw9fXlZiEakMDxfRFovwlKDU1+KuvWreNOnwCwcOFCuFwuZGVlwe12c1ODWq1GYGCgxNueNCDUBmR3F/e68IwIAsAnoaqqKnzyySfIzc3FRRddhEsvvVTS1jabDVlZWZg0aRL0ej3/bfjw4bDb7RKzjSgQiBR604jQufSexPC8efPm4YEHHkBaWhrXGojCorm5GaWlpdi1axdKSkrQ1NQkMfuIdRHhTYAOBCNGjMCUKVMwbdo0xMXF4dFHH0VhYSFMJhN27doleQ61Wg1fX19MnToVCxcuRGdnJ+6//37U1dXh8OHD/J6eREn87OkDI66q+6pzQ0MDCgoKAAAbNmxAdnZ2r+cO5H4iiCSLAkX0xxGjV+h4RkYGIiIiUFdXh08++QS7d+9GW1sbUlJSsGXLFqxatQqZmZmYNWsWN4dWV1ejvLwcRqMRl112GaqqqlBfX8+dGcVtDShpFZF9GgdE+sWVtmiuIeJExDEgIABpaWm47LLLoFAokJ2djc2bN+Mvf/mLJDkZaRtFct/W1sY1czqdbtDJs6j9KQtpS0sLtmzZgueeew5PP/00WltbsXTpUgQFBSEvLw/p6ekAgM8++wwff/wxNm3a1K+px8fHR5KKnrKcUubZtrY2PPzww9Dr9UhKSsKGDRswevRovPPOO7j11lvx6quv4qGHHkJFRQUcDgdaW1s50WtqasKzzz4Lq9XKQ/vb2tq4kyuVR87AnvtayTi1kMnHbwCFQsH9JMiW63Q6sWfPHowfP557Z+/evRsVFRU8ARRBnHQ/+eQTDBkyBNOmTQMAREdH489//jPGjh2LG2+8EcDx/WRoEiMHTqVSyScOimog1ay4WR2pH2lAet5Pq9Xyya2lpQWbN29Gfn4+nE4n38iJBFJLS4tEAyBOyqSloCyJ9Lu49Tjt/Ennd3V1cQfblpYW7Nq1CykpKaioqEBOTg6Ki4sRHR2NN998U0I+aMIn0uNth0/R/4PK83T8JJPW1KlTcdNNNyE1NRVBQUGSaAcq4/PPP8eRI0eQl5eHXbt2oampyatpYaBCVSRD3hxSGWOYOXMm16hRXhYKBxbNRiTk7rjjDowePRpAty9DWVkZ33G5N0HhzSQjmooG8jxxcXEYPXo0Nm/ejDFjxiA/P5/nZ/HEYM0xRH49iSUd89QmKBQKHsLe3NyM559/nkeTxcXFobi4GCEhIXA4HMjLy0NZWRkcDge+++47WCwWXHnllUhLS8P8+fPBGMPBgwe5b5doIiCncIVCwc2aIhkXHVLF7J0UrfXXv/4V6enpiImJAQBcdNFFKCgoQFNTE78XgXxPRM0H3ZdW/IOB3W7H9u3bsWbNGixYsACZmZmIjIzk0WsKhQKXXHIJLrroIiQmJiI4OJhfS47nA/Ex6ejo4NoIeg6aO6xWKyIjI3nitPr6elx88cWIioriESo33ngj94OLjo7Gxo0bERsbi6NHj2L79u3YsGEDzz/kcDjg4+PDHZRpUzkxPxA5n8o49ZDJx2mG6Lcg7hjrdDpx+PBhNDU1weFwcG3Gr7/+isrKSslELtqKOzs7kZWVhejoaFxwwQU8m19rayuMRiM6Ojq42cNgMPCwNbqeWD2F55KPiKfQpf/i5EcrhA8++AALFizAkCFD8P7776O6uhqMMa5GFx226NlFm7voW0KEQhQwtCIEjqus6V5A90TY0NAAu92Ompoa5ObmwmKxoKqqiidVo4nYbrejsrISFRUVPZz4qD5UjqgGF+svIjAwEGlpabj66qsxevRonmcgKysLl156KaxWKyoqKjBq1Cjs3LkThw8fRllZGRoaGiShxOJqnjLNWiyWPgW3J/HwJCBud3fSs/r6ek4EGxsb4XQ64e/vj87OTqSkpKC9vR0NDQ1oampCUlISgoKCeDt89dVXKCoq6lEPT/+Xk0VDQwOOHTuGSZMmAQBmzpwJg8GAuLg4NDU14cCBA8jNzT2hXUVJyJHWQNxEkOBJaD799FMwxjBu3Dj88Y9/RGFhIRITE5Gamoqamhrs3bsXOTk58PPzQ2NjI1QqFfLz87lWUalUoqCgALm5udx5nN61uLkk9U2xr5EZRDQD0pglAejn54fx48cjJSWFmzqzs7NRW1srGW9Eboj4JCQkQKfT4ddff+WLDACDFqjUt/Ly8pCRkcE3hFQoFJgxYwaMRiNSU1ORmprKTRyMMTz33HP45ZdfUFNTM6ByRLMo5fWgZ6NU7dQ2zc3NaGhogM1mg91uR2trKzo7OyUbbRYWFiIkJATV1dUoLi6W7EhMUX5KpZKbdihLKrWhnOfj9EEmH6cZRD4YY9zDmiaaY8eOSYR/VFQUGhoauJ+G6LNAE5ZWq+Uq6unTp8NoNMJiscBisSAiIgLl5eV8lU8rKbqeVOLidwrD8/S9oD8iKOTA2tXVhc2bNyMxMRHh4eH4+uuveXZAiqsnrQgAScihqJYXBYE4wdDzimYZ0SZO9bJarbDZbGhoaEBeXh4nLFqtVrJyam9vx+7du1FWVoa2tjaJc594T9HXxJtDHp1jMpkQHx+PGTNmQKPRYN++ffjoo4/w0UcfITg4GDabDcXFxQgICEBpaSm3wQcHB/OcERT5pFB07wLs4+ODwMBANDc3SwSn2AfEevT1/eDBg4iNjUVqaiqSkpKg0+kQExOD2NhYWK1WzJgxgxO2vLw8BAYG8myxLpcLe/fuRVVVlUSD40n+ThQi4SLykZqaylfOI0aMwPjx41FWVoYPP/wQHR0d6OrqkuySPBCI2UhFLZc3jQ2B+vTMmTNxyy234D//+Q/Cw8MRFRWF7Oxs7Ny5k49Lt9vNc2ukpKTA19cXLpcLBw8exP79+7mJhMogUygJfxqbIgknsyjNBaSFDAwM5Js2JiQkwNfXFyUlJXj//fd5fhvPviKG+o4ZMwbBwcGw2+0oLi6W5BoZDBhjaGtrQ1VVFYqKilBQUIChQ4dCq9VixowZmDFjRo/zXS4X3w1cJPz9lUPPIkZc0fukd0AmNMa6s6I6HA60t7fDYDBwfzO9Xo8jR44gNTUV9fX13BGYtL2keRXnKoPBgNbWVk5gZL+P0weZfJxmkImBtmmn1MNAd0KgqKgorqKMjIzErFmz0NDQgMLCQkleDkom5HA4UFlZCb1ej/b2dtjtdpxzzjmIjY1FW1sb/vOf//DVAa0aNRoN9y0RBxbZQsUBbjKZJPuc0ACklZLdbsfll1+OsWPHQq/XY+TIkTh06BBX47a1tcHPz4+bSzo6OuDr6yvx+CfNjKj1EG3wgNRBlkwioh8ERUcQQSJiRiSJSEVNTQ1WrVrFBT9Nap5JzUS/GrofQfT7KC4uRn19PaZMmYLExETs3r0bGzduhFqtxgMPPICJEydi3rx5CAoKwowZM6DT6eDj44PKykrs2rULJpMJTqcTn3zyCXQ6HWbOnIm4uDhs375dYp4Sy/Z0viV4c8Tct28ff64//elP+Otf/8oFHuU6KC4uRm5uLvbv3w9/f3/odDq43W60trbiqquuQnNzs8Th9FRoOuhZqA+HhoYiNTUVQLdPkuhDNHToUMyaNQtarRZ79uzBpk2bBmV71+v1vE+p1WoehUXtRVohEmharRbTpk3D0KFD0dLSgo0bN+Kaa67BunXrcN9998Hf358n8wO6tYeUr0atViM2NhZ1dXXQ6/UIDg7mZlPSipCK3xuBIg0I3ZvIPmHRokV44IEHMHToUCgUChw+fBg//vgjsrOzYbPZJMJaXFh0dXUhMzMT119/Pc455xye7I5Ij81m6zfnhjfk5uairKwMGzduxJtvvul1U0AakyeTu8XpdMJqtfIFD/moeebwAbq1aJQFmiLJxo8fjwULFuDBBx9EQUEBamtrUVJSwtPli8Sa8opQFCCRGuobJxpyLqNvyOTjNEMUbrR6IIatUCjw5ZdfwmazYcKECdDpdPjoo4+wd+9erjakFQQJciIzLS0tWL9+PW677TaEhobCZDJh1KhRePfdd/nAIec6GjwqlYqTFMp1QGpKmjBo4ytaqYlbcNNkJZpMaJMtMvcoFN0JmEQ1M+3wSrH21BaikBfbScwVAkiTVokqa7qOBFpUVBQyMjKQmZnJnWmVSiXmzp2Ld955hwsAIl2ihkeMDBDrBPQU8m1tbXjwwQf53jxi+OqRI0fQ1dWFJUuW4IorruC2dpvNhrlz5/JynnjiCcyePRtbtmxBQkIC7r77bjzwwAMS05wIUYPmeVzsa263G7m5uaiursbmzZthNBoRFxeHhIQEOJ1OZGVl8eRw559/Pvz8/Hgk0ZEjR/DQQw+hrKzM63MPBP1dQ1ouPz8/mEwmrFixAvX19TAajQgICEBYWBiuvPJKjB07FnFxcYiJicEPP/wwKPJBGj1RGyaGnYpputVqNYYPH44//OEPSE9Ph9FoxLx587Bz504cOnQIzc3NqK+v59oOjUYDs9mM119/nRPJkpISvPTSSzh48CB38qb9kwDpBoJiO4gOoUSEaPzRe+3o6EBpaSnfvI36UmVlJR8L4oZ3op/LsGHDYDabcezYMbz44otQKpWwWq2D1np4EpuOjg50dHRg2LBhkg30CDt37sTWrVuxYcOGfk2JnuWYzWZYrVao1WoEBARI9sZqaWmBn5+fxERqsVgk7xzozhJbVFSETZs24dFHH+WROpWVlfxc6gsmk4kv4rq6unj2ZtJC+fj48DJknFrI5OM0g1aVpMEgVk0Dra6uDjU1NWhra4NOp8PixYuh0Wiwbds2NDc3c4c00VmTSAXZVslre/fu3ZKwNJE80AAm51NRwHuqpIHjEw59pv/+/v5IS0tDWFgYOjs7sW/fPi58GWN8MhI1J0RSxNBasRxa7VOZYjSImBNE1ECIv9NElJSUhFmzZmHatGnQ6XTIycnBzz//3GMPE8pTQPdQqVSSkDsyG3nzc6B6WCwWLlzEyZxMQTabDW1tbVzd29zcjLlz5yIkJIRrwO6//37ujf/rr78iJCSEZ4EV4Y2MeP4ufhbNFRQ5lZOTA5fLhaqqKiQkJGDChAnIyMiA2+1GXl4ejh49iuzsbFRVVQ0o2ZdIMogQe7aZN1BbFRUV4ZtvvoFKpUJVVRWAbo1FUFAQ5syZg8jISISEhGDChAlISkpCQUGBJD9Kf2WImjPRnEHmDfJP0mg0SE5ORmRkJDc/BQQE8GyoDocDJpMJdrsdoaGhiI6ORlpaGhISElBXV4eKigocO3YMOTk5PKkX+SkR0RL3UqL+75m8zJNQh4WFITAwEMOHD+fbLvzzn//E4cOHUVhY2OOdExGh8eJyuSQ7TyckJMBsNqOrq4sTXNGk1hfEspYsWYLk5GQMHTpUQpJEVFdXIzc3F1VVVYMyW5AZBABPnCaao/R6vSRpH82hpGUl/w2NRoOwsDDEx8ejoaEB7777Lk+AJr4P0v7S+6X3QAsGGacXMvk4zRAjCzx9OHQ6HaqqqlBZWYnW1lYEBwdj0aJFaG5uxv79+7kjFQlmMeLEYDAgLS2Nx9M3NTVh7969koElTnQ0QVHsvLdoBtHOL9aVoNFouFNZcHAwysvL4XA4eO4AOofuJdaF1Jui/V2MgBHLJmFLk7U3U4Q3M018fDwmTZrEV4nFxcX4+eefsX//foSFhXENj81mg5+fH9+7w3Nrb8/Ve2+Cn84RyQGpi0kYlZSUcN+P6OhoREdHw9/fH6GhoTwRmtVqxdq1a5GQkACr1dqDfIj1GIg2glT31P4Wi0XyDPX19Xw1d/ToUezfvx/Z2dnIysqS+Mv09rye7UHvYjATdmlpKSorKxETE4Pa2lre/mJEGIVTRkZGorKycsDkw7N/uN1uSc4M0tZR+Gt6ejp8fHy40CGTASUXS0xMRENDA4YMGcKJSlVVFXJycnDkyBGUlpaitrZWEi1G480zwor+k0nV0+wIdI+hmJgYjB49GuPHj+dmnf/+9784cOAALBYLj4YRxxE5gFJ/JCdLg8GACRMmcC1rbyaggWDEiBGYN28e3w4COB5JBoBrmWhXXop8GyioHygU3TvKUrQJmVRFZ1zSetLCirHuPCNJSUlITk5GamoqDh8+jM8++wyNjY2SZIe0cLDb7TCbzdwcTO0qOgPLOD2QycdpBjljkoCjiYIm0mPHjkGn02Hq1KlITEzkSYtowIqTk5+fHxfgoaGhmDdvHo9fr6urg81m4857Go2Gx8UD4N9J2JKdmVKm00qvq6sLvr6+/HdKXkZOk/fddx9CQkKgVCoRFhaGtWvXYtGiRdyuTjZaz/A+0W9EnKw8HdFIFQ1AsjJkjPFVCXB8te12u9He3g6z2YyYmBgMGzaM38vhcMBms8FqteL5559HYmIi3G43cnJyEBAQgHfffRe7du3izp9UNzH9NiA1CYkEgEihGJEDdAv3m2++GT4+PnwFyhjD/fffD61Wi4SEBKxYsQLz58/H6tWrcdNNN2HNmjV46aWX0NDQwNX8nqCJvTefEPpOEB1nRRNWdHQ0Ro4cCQC45pprEBERgZCQEPzyyy8Dmmw9NVcnk4adHKRJKIsCmyDukjwQkE8Paf7EvkiaP3L+NhqNyMzM5NvNd3Z2orq6Gps2bUJISAj+8pe/YMaMGTh69ChiYmLgdruxYsUKfPDBB6ioqOC7Ond2dnLHbVqpi0KexjSZXCmhH9WT/pvNZkRHR2PChAm46667EBYWhra2Nnz++edYtGgRVCoVtm7dyk0D1FZi9lKgW+P6/fffo6ioCOeffz7+9re/ITMzE42NjWhubh5U+nyxz7///vswm808SokxxtPCq9Vq7tw8ZswYWCwWHuU1UIj1J5OHj48PJxkNDQ2SfXRE6PV6ZGRkYOXKlTCZTCgvL8c//vEPVFZWSrR5lFuIFkL03iiXSGNjI593elsIyDh5yOTjNINWXDRYKHmXTqdDa2srV/WJwm7ixIm49dZbsXLlSk4USE3r6+uL2bNnY968eXA4HDy9M+3zIg4qWr2Rf0NraysCAgIk/hl6vV4Sg09+JaRxIH8Kus/BgwcxdepUNDY2IisrC2vWrOFRGkQSKJzX00wkOtYBxycBmkyINJHtFYBEOyP6Z4hmHYoWoXwhhKKiIlRVVeHJJ5/E4sWL4ePjw9vXarVi3759yM/PR3V1NS+L6iBqGEgL42me8mZ2IZDaWKx3TU0NFAoFKisrccEFF+Cll17CpEmTYLVacfjwYQwbNgyBgYFe+xH5qniW1Zs2Qvxd/O3ee+/FwoULeTkJCQlobm5GYWHhoH0BxPL7ApEwEgCehIiSnUVHR+Oiiy6C0+lER0cHD1mlfkXX9lempyaKCCJwfHsBUStI0SAUpnzeeedhzZo1vG4ajQb+/v5oaGhAbm4ubDYbfv31V54xl+5Pq29RS0n1IYdsIsSiNpNMBUqlEueffz5uuukmTJgwAUajkacIt9lseOedd3jqdNIK0FinZyGNl9PZvVvxOeecg8zMTG4yNRqNEifzwb5jGmeEDRs2IDc3F21tbcjMzER4eDj8/PwQHx+PKVOm4MCBA4MO6/X39wdjDE1NTTwM3G63o6mpiS9ADAYDzGYzzjnnHGzcuBEtLS1wuVwoLS1FYGAgcnJy8Mknn+Do0aNci6ZSqdDe3i7ZCZjC9anvV1dXc5M2kR0Zpwcy+TjNEAeuwWCQOMPRSi8vLw8ffPABOjs7kZqaCrVazR3ybDabxAfCarWiuroaVVVVnLDs2LEDX375JRwOh8TEQv/JIY2S64jOdpS1lAYfrcJE9a0YAz9lyhQYDAZUVVWhvLwcxcXFAI6r3kWfDSIxYtIwSn5EbSDa40UhKU7O4qpXdNCjOtvtdsyfPx/Dhw+X3GPu3LkYNmwY0tLS4Ofnxx1s6+vrUVBQIPFvEAWUpxqcjtF53t6t2F7eTFbidxKutH271WrFmjVruHOgqGkRtUCe5MebL0hfviEAUFJSgsbGRnR2duLgwYNobW1FVVUVV4/3Jdi9ldXX+VqtFnPmzOEaNqVSiR07dnCyqtFoEB8fj8WLF6O5uRmdnZ1YsmQJIiMj+Tb3ra2tqK+v5+9pIGTH09wh+g1RvcWxkp+fj9TUVISEhMDX1xcdHR1oaGjgURrkiNra2opjx46hqqoKdrudExNRu0V1FP07RJ8OMrmKpk0aY9dffz3OP/98jBw5Ej4+Pjhw4AD3CaPdm4nE0JiknVyJdIjaOLvdjn379sHhcKCkpAQul4unP29paRkUAaGyJk6ciKSkJH78008/RX5+PgwGA4YNGwaXy8XNijt37jwhQksLIMphZDab+UZ8FMJM4e5LlixBW1sb2tvb4evri4aGBmzYsAH5+fk4dOgQGhoauGOwy+XiuYrE/sBYtwM0aaPsdvugw7tlDB4y+TjNEIWkuDIhValCoUBZWRk2bdqEqKgoREdHQ6fTISwsDOPHj8fOnTu5UxTZnkmQajQaFBYWIisrCwcOHOiRQEusA63cKa6dJj5arXk6ghJxEY9pNBqMGDECWq0WVqsVtbW1XC3pGbUilivm06DjwHEPdbK/0/XUZiTIRT8QakfgeBSB0+lEaGgo/Pz8JM89fvx4jB49Gq2trSgtLUVAQACcTif279+PX375BSUlJejo6JAQB6pXfxOP+F7pu+fz9XYPirggk5ZCoUBFRQXfdK4/n4v+fvNGQKh+FRUVaG5uRnt7OzZu3Ii6ujpJSvCBYiAaCI1Gg/POOw9utxs+Pj5Qq9UoKiri9fXx8UFiYiIuu+wy1NTUoKqqCqNGjQLQrSGwWCzYu3cvd+QcTL3o3XgmtSMQAXC5XJwQ0x5LVVVVOHbsGDclUJ6IY8eOobCwkJvFxBw2nsSN/EyoLHL8pnqIScWIfCQnJ2PYsGEICQkB0L1tfUlJCfLy8vDLL79IsgDT+BAJr6ejtsPh4JFPBQUFGDVqFCddnuR6IO0aEBCA8ePHIyEhgR/v7OzkET7kyOrr6wsfHx9OeAYLu90OhUIBg8GAlpYWmEwmSX4k0q4GBwcjOTkZs2bN4lrggoIC/PDDDygrK+Nhub6+vnyeoAUXAH5PjUbDo5NIa0Qkj/qOjFMPmXycZmi1Wi7gyM5Mkwg5f1qtVhQVFWHPnj2YN28eDzEcN24cbrvtNrS2tiIpKQmPPvootm3bhhEjRmD48OFwu93429/+hvz8fPj6+vKEViaTiYe/0kRDq236TsKTJkUxMRHZrclfgyY7intXKBRoampCVVUV90PQ6/VQq9VoamqCv7+/xHeCtjgHjjvbek7UIpGgTe9oQqdVsOgURn4lNHm8//77CA4O5qnC6f5WqxU///wzPvvsM8yfPx9hYWF46623sGPHDu6DA0BiEvJG4LxtDiaGExOBEwWfqM0RBYNOp0NcXBxuvPFGvhndO++8g1mzZkkmxv5IUH9aDm8wmUzQarWwWCxYu3Ytn2w9/UgGev++IiZUKhVSUlIwceJEmM1mNDY24vPPP0dUVBQCAwMRFhYGoDvV+rhx4yQCvKmpCbt27cK1114Lq9U6IGJEK37qF2L7iVot0rrQ5xn/P2Ec0B2t9Msvv/Bwcdpy/b333kNeXh6KiorQ2trKhb24DxL1HzIlkjM49Wmxvbxl/P3yyy/h4+ODtLQ0uN1ujB07Fjt27MBLL70k0fbRooB8qZxOJ3x8fCS+EGTqJB+Wmpoa7N69uwc5GyhUKhWGDh2KyZMnS8jHCy+8gOeeew5ffvkl4uPj+fzicrmwffv2E/IHouvJbNnQ0CDRTDLGkJWVxTUuS5cuBQDU1tZi5syZuOaaa3i69eDgYH4fcvIFgODgYJhMJjQ3N/NEjR0dHdBqtVzjDHRrqymxmYxTC5l8nGY4ncd3qiX/CdJ+GI1Gyd4FmzZtQmJiIs4991xkZGQgKCgI//73v9HR0QGXy4XQ0FBcdNFFUKlUsFgs+PTTT7lwr6ur46SBdpgUfTpoYgwKCuKqxa6uLr6DI2khKCSYnPEonXRERATGjBmDzs5O+Pr6oqWlhUcg0KRIZbS0tPQQBOKER+QCAI84oHJ9fX15iB3QPdHQd7oXqeBJuMTGxmLChAmIjo7m19CKPjs7G/feey9aW1vx5ZdfcrIkRnVQuxEpo7LoXiLhENNii6trz5UnfRfLoDqT425UVBS6urpw4MABPPDAA5Jojt60Kr0RA29Ewdu5iYmJCAwMREREBD799FNcc801fOXa1728Qexf3laHNpsNTz31FCZMmIBZs2Zh9uzZkjw0VA75dhB++eUXvnoeKPGg5/VMHif2G3FFS+1bX1+PoUOHYsuWLbDZbDh8+DCuvfZa5OfnIycnB4cPH8bGjRvx888/o6mpiftLkdaSHLWpT4oOrjRuKUePGHIrZtlUKpVITk7G/PnzMXr0aDQ3N+PPf/4zfvrpJ9TW1nJzCQlOWiSIz9nW1sZ9tMgMQ31Wq9XCaDRCoVDwd0XZiAeKrq4uZGdn45VXXsGiRYswffp0AN1mvIkTJ2LEiBF8V2CaN07UbCGajqi9yGwsPltbWxtWrFiBV155BTfccAPuuusu7lhPe9iQZjYhIQGxsbHw9/eHQqHAnj17UFxcLNmSgszC9F7JnCbj9EAmH6cZtALRarWSVbYo8EigtbW14fvvv0dAQACSkpJQVlaG4cOHc18RUtd/++232LNnD5RKJQ4ePMht0KKgFMsUhWR7ezsPjSVtDHnf0+qfVvDkHMcYQ3t7O0pKSrB161aoVCr88MMPKCoq4uYfWpEB4LlHRNMNERDyMRFNHBSBQINe9OugewBSIsAY41okl6s7tfWUKVNQV1eHF198EaNHj8ahQ4ewe/dudHR0SLYSp7p5+o6Q0BD3uaHjVCZd501z440QiCSG4HA4UFRUBLfbjQ0bNuDTTz/tVUXtaQrrjRh4M/V4nssYQ0hICI90SEpK6jXtdV9lifDcM0WEy+XC0aNHUVtbi19//RX79u3DjTfeiPfeew8REREYPXo0ysrK0NLSgrq6Oq65Kyws5Bl6T0SAie/JM+cGaUTE/tXe3o5nn30WXV1daGhowN69e9He3s6jOCgCiXwFyExCURKijxSNAzHcFpCaPgFICLlOp8NFF12EmTNnIjExEWq1Gmlpadi2bRsXfkQaxL5K9ya/KtJWiqGioq8VkTO6ZrBt2tHRgXHjxkl8PoYNG4a4uDhuWhPzypzIuyPfDlqUUL3FhYvnfi91dXXYvn07X1gsW7aMk6v8/HzExMQgJiYGoaGh0Gq1eO+998AY46RQ1JRR2TRn6fX6AYd4yxgcZPLxG4AmQ5EI0OQn7vBKu2bu27cP4eHhqK6u5hEqtPFca2srtm3bhm3btiE5ORmFhYU8jbGn3RmQOk8yxiTJtIhsiJtjiaTA7XZz+2t7ezvKysqwZcsWdHV1IT8/H/X19fxZSNVLzySSD7E8UUjScSIFwHFbvKgxoMmUJlTxGUl41NTUYN++fTCZTPj444/R2NiII0eO8ElQNDV5vhsqRyzD054u1rmvdyyeKzoU0rHIyEgMHToURqMRzc3NyM7Oxq5du/rMvTAQEtCfZoSO19TUoK6uDtHR0dxu3tTUNOBU257kqy/ywRjj+w5VV1ejtLQUsbGx+PjjjxEbG4uamhoUFxejsbERVVVVqKurg8vlQmNjI6xWK1+FnugKmkCaBkC6USFw3FSzefNmAN39b/fu3dwfQKFQSEKxidSLOWwASLaz9zYWPcPHxX6t0WiQnp6OhIQEaDQaVFVVScYpnevZ70XSS/4KoqOt2AeJ4BN5OhFHUJfLxfcCovuEh4f3OK+jo4NH8g0WYuSPODZpiwgxcoaeu6urC7m5ubzMVatWISIiAlarFZWVlZg6dSpCQ0O5lo6cm+kedE9qZyLnSqVSkrJdxqmFTD5OM8TVEWk7aOAajUb+G5kdmpqa8MUXX+CHH36AyWSCUqlEXFwchg4dirS0NOzduxf79+9HQUEBdu/eDeC4qld0QqPVDuXecLvd3FNcr9dLtBzidbQiAI6TCgp1a21txccff8yfTTTX0KRKZhF6bjqPBruYY4QmJ3HipucRJwQxbFFcSdJ9KaPnv//9b7z99ttQKBRcvU/1I3IDgDueieYUMgXR5E2+LQB6EEaxfPFzb5oRcQU6d+5cXH311UhJScHevXvhcrkQGRnJo4Y8IZIIUWh4Ixdi/TxB9Vm3bh26uroQGhoKl8uF0aNHw2azoaCgoNdyPe8hPuNABUxbWxtycnJw7bXXAgD27Nkj6UueENXug3X4E6NbXK7uPW1I8yW+C+pbZIYjLR6ZUrRaLY9IM5lMfMVtNpu5KbOrq4uHjNMO0kRMSIjSuPBMCiau4MkUS/um/P3vf+cmTTFaTNSqiH9UHyIrREZEjSKZGDwdyQeDrKwsBAQEICMjg2tvgOMRPk6nEyEhIUhISDghR8329naeT4XSoRsMBphMJuj1epSWlvJzxeix8vJyVFdXIzw8HP/9738REhKClpYWPPPMM0hJSeGJHCsrK5GVlcX3eKEs02ImaL1eLyEfMk4PFOxklxUyvKK1tRVms1kSySFOePTn4+ODjo4O7tQkqvzJcY2Yv8lkQlNTEx90bre7h5AXkxcRKMadNAykwqUJjaJESMtB2gcS0LTZnNVq5QmcxD0oaNVMWg/K60B/lL6cVMzipnCkXhXNU52dnRLNCU2cpB0StShElsTMqp7mG5qUCWL0ASDdhtybv0Zv8DR1iOYZb+e63W7ExMQgICAA1dXVmDRpEvLy8lBSUtIj2yxB1NiIO6UOFuJ1Op0Oer0eer2eZ9EdSC4GkWx500KdLSB7P9nsPX0HqL+Qtk40PZGwJ2JA/UtMcEfOpA6Hg//m2TbAcdJEq3ZxXBIZof6fkJCA8ePHIz4+HgaDAffdd18PE5rY5vSZtIzitg2e5j6FotvfjPxnaD4ZzH45BK1Wi5tvvhkPPvggAgMDYbfbUVFRgZaWFkycOBHLly9HXV0dmpubsWPHjkFrP/z9/bmDuo+PD1pbWyVp0WlTP5pLIyIiOHnQ6XSS5HGk6RA3jKPN6ogUtrW1cWd5lap7c0qNRsN3ytVqtbDZbHxfGRmnDrLm4zRD9C+gAUC+CrQPBGkgAEiICXnIU6SKuH8B2SNp8zSyQ4ux/rSSA8Ad38jTnyZf8usAepIZ8sqnSZS0KKKpiAgEgVZ1ZDelvTVEWzXVT/R3oeOibVo0V4mOX6JamSZgsV1FW79oF6e6Uf2oTnQPz2iV3tCb4BVXoqLaWNSE1NfXo7m5medgIEdB8Xy6V19lezvuWZfefiffAM/di/u6vre6nKgKf7Dw5tPS17liFl3RrEfC31PVTteRdpL2ZCJToqgNJFIsmhepHE+thEhkPQm1SHRLSkpgtVp5WCljjC9caJzQ+1IqldDr9fwZqW5i24imH3pHVAdv/h4DJZQOhwPffPMNjh07xn3F2traYLPZEBAQgL1793K/rhOB3W6HXq8HY4xHHNGCg5x4aRFjMBjQ2NjI5zxqUxrbtOkjhZGrVCqex4WSzel0Om7OITJIWWgpYeOJ7P4ro3/I5OM0Q5zUadVFkxqtzESzBw0yTyENSDUnBNHG6/mdhDGVJYbo0f2JkIigyY/qQ0TAkyiIKy1xtSdOrGSyESdBmiBEswb9UTmi5oHqQ88uEpPeVoeeTqOi8BLbT1Qbi6r6/hzyvJGAgQjGzs5OTjpra2slBKU/eBKmvq7p735E8Hqrt7fnE/uopznoRDUgp8KnwxtE/yqgJzH0dBL2NB94Pp/nMTKl0OJBPE8kuAC4UBMdrcV+SFE45OPiWTdaSIh+QeK4o/Ekaq/EBY9IqD1NhyeC4uJilJSU8DBjWmCcinwYtOkfmb7Iv4RAz0raJCIWormU3oGofRVNvLRrLplbCeTj5nlMxumBTD5+A9DqymQy8cgLcZdb4HhmUBLOAPg+LBRmBhxfXdHgFIkAmWnEiYd2svXUAPTlG0A+IkSUxERk4iQjrjJolUbESiRA4mqQcn+QSUeM0vF0NqPnEHMk0CpUtFuLkQc0EYkTrGhOIa2RZ+SA58TtLXpFFFCeEIWoqA3wPE6gNvG8d1/liSs0kQiI54hleCNf3uCpdemtHnQfsUzP797u3dcETkKZ7t1bPQZDUOg9i0LX06dI7GOeDp2epkFRc0LniCSQtHLUd+k4XeNwOKDT6XiCPxGiAyrVncYHaQHFlPBUZzG0l0wFnqHaRqORj13K+0P1Jg2I+G4GKmipXV0uF7/nqRLSogMzmXFpbnQ6nfDz8+PaXtLUkrlY1LbSuyOTC81lVqtVElZPqQro2o6ODhiNRrS3t/O5ScbpgezzcZpAPh/Aia8wTgfIMY4ICNmuSaD5+voCAN9ki8LdREFNApzUoEqlkofXigl5aEIgkkX3ILUqEZXQ0FCu2qTfRNttY2MjwsLCwBjjW9VTnhRSo5JzLfkykH2dVmV6vR7A8SRTVD+amCiRmUjcgON7e4ikiwQS+ZJoNBruzOe5AiQzld1uh5+fHzedeaq4aZVMq1sylxkMBv6ZVMlUhii0PNXqCsXxDd9EEtibRoOeyzMZl7fzqT7UrlRnpVLJnTupXLLfk6mPMlaKGibRlOjpL0HpsKmtXC4X19wBx7UGniHdgzHTeMKTwIkkS/xO53ojedTWoiZOJOG9leuN3InleGr8PDUhvT2HWCfCiZpGThcUCgUf/4A0eZ/oROtJ8sVzRFJICynSPAHgafGp/4gOw6LpV5zvOjo6ZJ+P0wBZ8/E/BnGlKa7OSEMiakpoIJKWggY++Y2QoCeBKiYtIidXijQRtSWk/aAJo7m5mWeDpI2faLK2Wq0ICAgAcJwQRUREoLq6mgsj8n0h4aPX69Ha2sod6vz9/XldyLmS6k1Cy2azcTsvJXEju39bWxu3MdNOv/7+/rDb7bzNSJVLCbPoO7Ut+ViIJIHalkhTR0eHZAdgsjeT8Bb9B0SNF0GM2AGOa4oASFb2onnA0wQlCk261tPs56nVEVeRdNyTnIm+FfRsoj8S3cvT5EUrXipDNGXQb9TO3swTInojXeJvvWlfPEmIeEy8n+cx+iz6YHgSXG9kwxs8CUhf5Xr+Rvfvz5x4JsEY42OW+qiYWVj0Z6NzyAFehKd/l7d3Io4HOs9zfMk4vZDJx/8YxEFHq04SOqRCFkMAPVdL4uqYzB1ESIiUiDZwuqY3WzNNBFQvEkyiCpXIC/mniFlGRQEkpl+mOhBx8hTWnunLiYiJIbk0CYkmL5oAxVTNwHGBSn+UUl98bnEypPYnTQW1AV3v+W6IqHkTOnQv8Zj4nrwJVlEAiit0T42BZ9SEZzuK5EOEWAe6P/lJEOh5PBOdiXUQw1PpXdB3cdXraRbxxEDISG+/9WUOGsg5niv5wdbT231O5Dr6PJDnOVPw1OR4I1si+fW81nPO8ezv9NmTTFJf8vRlOxV+LDK8Q6Z3/2MgOyYJs/b2dr7BGYAeq0aa7MU/yrhqtVr5H6nOKZU87e1CPiPAcWFD21mTINfr9bBarXxTNRJS4p4Z5EHPGENLSwuvC6WTp3A5UsNTxAIlZqPMrkQcSENiMBh49AARFbIBk9khICCAa0DEjeioTiI5oTYjwqRUKvnzkiAmwUme9kC3mY7MFVqtFv7+/hKBS+0nOhZ77g9C9RV9XETQeXS9N98U0W+GngWApM94kke6Vkxk5Y0UUP8Q1d5E+sQoJbEMctykfkFRWlQuPQ/5HIlpy70JrhOFpzCkY+J/8Vxv8BSs3t5RXxAFpliWt/uK1wy2nDMJijYRx5BIfMUoNs89iTwJg6fmrjcCIi5uRLPNqfRlkdETss/HacLZ5PMhqs1VKhUCAgLAWHcom7i1uDeWL6Zop8mf9oPx3AGSyqJ9L4Djq1cSdN7ySYgOpRqNBv7+/hL/CcoySKtkCscjp1siMEajkcflBwUFobW1FTabDT4+PtwBT6PRoLOzEzU1NTzJm5i/RGwDyvxK5RiNRhgMBuj1elRWVsLX15f/RhofErh2u52TDprIaC8d8tIns4ROp0NwcDBPfMQY46GLdrudkxwxTFIU7qIGiODNZELCWjzXx8eHm80IonZI9NcRHR4JZCZSKo9n/qQ2o3wYIvkUCYSn/Z7KFv02KGU2QczfItaX+ufJrlQ9NT/iMc/j/V3vea/eVuy9wVvbeLve23Fv9fckImfjqp40qfROCeQzRJvEEcR8Q0BP3xfqTzT+Ojs7+WaZNG5oviIHeJHUkvZR9vk49ZDNLv8D8BQW7e3tkvwAoimGBDRlXQWOe50D4AOY/D0sFgtPKsbY8UiZxYsXY/r06YiOjsbtt9+O6upqiRAhe7/T6URkZCQsFguUSiXf+I40FQC4syat7kWHRp1OxycT8ldhjKGmpoY7khFBoDTZ5JtBoc60alcouh3efHx8eJIhsb5iZA4A7o8haodIAFLZ1I7kqa9QKPh38nMhpzZ6VoVCAT8/Px69QKtBz1wnooMs0NNEJoYsewoc0j6MHDkS7e3taGho4JuYiapo+k4kRlyNUp8RIxKoDNJOiD4rFK0jmvVoohczg3qaBTyPEwER7fJk/zcajYPaBdezrMGaNE7m3N6u7U2j0ltUkrcVfm9EpbdjZwso0oj6tkjgvW3y5qlFEgme2LdErZE4LsRFA5FdUaMi+sjJOLWQycf/ADwnV1E1TgPR055PQpqyQYrCSxQU4mpKXEkMHz4cs2bNQlhYGDfFeLM9e/olkMCi38kEI0YzUGQKTSCisAPABbVWq0VAQACGDBmCnJwcJCQkICYmBjqdDtnZ2aipqeEaFdKkiHWhPCliEjOFQiEhbdRuYv0ZYzCZTAgKCoLVauVkhDRPYh4V+k5aBrE9qX282Z49TQqeqnfRHOJJUADAbDZj3rx5GDNmDN/BlTEmyT1C8LSLe6r9Pc8lEkQOsCJxFevuWT9ReHreWzxPoVAgLi4OWq2Wp6Un4XEyanJvben5W2/P7e0+p1rIe6uDt/feV9m9mWzOFnjTYIh1pPfsrd6i3waRU08fN88w6960SuL8JJOP0wOZfPyO4W1w9ndeV1cX/Pz8OOMX4+TJJEGEgyIyaC8Y0mzQXhhiuBqtkjs7OxEWFoa4uDjExcXxKBTPyZDU8zqdDq2trXy1YbVa0drayiNPSGPQ2NgItVoNX19f+Pr6oqmpiZMgSqFtMpm4KYX2bRgyZAiWLl2KN998E1dddRXmzp0LjUaDBx98EFlZWTznio+PD/d9ofTNBoOBp2lubm7mWhQKLwa6Q2Fpm25Kf67VahEeHo6oqChYLBbU1tZCrVbDYrFwIkdmJaBbq2IwGHh4MXA80yNF6ZAGgd6jN9IHSCNcPPuFSFgCAwPx5JNPIioqCt988w0npQ0NDRIzidh/FAqFxPxDdSASRlov8oOhLJzki0E7KHva3ekcal8iL2Tjp7rRdWazGRMnToRWq0VJSQkncRSd1dt48NYuIlnpTatAdRN9icRIHYfDAaPRKMns6SncxPL7Q18mH/FdUF+iz3q9npvpvKVOP1MaD3GPHOoLvQl00V+D+hu9f1oIUN8TfTLEzyLhdTqd8PX15W1FWjFxsSXu8yQuQMTFkYxTD5l8/A5Bg4LCOkWbvTc7rjiZGQwGLuwBSEITxcErqufJAZMcQGnyIDMFTXRk97/xxhsxYsQINDY24rvvvuOrfzqHyqH9alpaWngiJRI2lECNyifTSmtrKzo7O+Hj48PTHwNAcnIyZsyYgREjRmDv3r1obW3FtGnTcO655yItLQ0XXnghT8bEGMOQIUOQn5/P26W1tZWbY2h/GVLzOp1OBAYGcnLS1dUFk8kEnU6HG2+8EY8//niv74nyjBDJ+fDDD7F161YYDAbs2bOHt2VVVZUkn4dn6LJCoYDBYOCJqsTJWZxIxd88SQqFJVP7Nzc3IyIiAgsWLEB8fDwuu+wyrl3yDHela8g/h8oicxU5CFIYNTno0vmiSluMWKG+KU7+VEeXywWbzYbg4GDMmDEDcXFxKC4uxurVq/Hll19i8+bNkqR71L8G4svgqWXxBPkIBQQEICUlBTfccAM2bNiA7du3Y+HChRg5ciQYYygrK8NHH32EZcuW4b///S8OHTp02rQJInlQq9VISEjgJD8tLQ3Lli3D1q1b8dlnn+GDDz7o816i1ux0geaDRYsWYfjw4SgpKUFSUhI+/fRTZGdne72G+rO42CF4anaImJMZjr6Tfwj5K91///0YPXo0Ojs7cc899/AwfbofLV7E9hXzyMg4PZDJx+8ECkX3Lrivv/46mpub0dzcjPPOOw8AUFJSgqysLLz55puwWCx9TiqUkEn8ToOOEnfRalRcxZFWg0iBZ94JAIiKisKjjz6KWbNmITQ0FFarFTabDVarlZscRFKjUCjQ2dmJwMBA7vwqCj3SCIg5OShKxGazQa/Xw2QyobGxEf7+/khPT8eiRYswffp0OJ1OmM1m2O12vPDCCzh06BCSkpIwZswYzJ07F3V1dWCMcX8VpVLJc4AQ2bBarTyBWXt7O1frK5VKpKenY9myZZg0aZLEhEX1pzTNlK2S8oRcfPHFyMzMhEajwV133YWcnBw0NjbC7e7e4E80HdXX13OhrlAouKAnguYZdir2FZp4RY0BmdGItBw7dgyJiYk8WdvYsWNRXV3N85GIJhTP/B5idAqtHNvb27kQEM0oYlisaC6jNhs2bBj3qSkpKYFWq0VaWhpGjBiBkSNHIjIyElFRUfD394fT6URMTAwuueQSBAYGIisrizsdi2V6g6e2yNs4USq7dzJdu3YtwsPDoVarER4ejtDQUIwZMwZtbW0ICAjgu53a7XZcddVV+POf/4z4+HiEh4dj8+bNvDxqL/G7t3r1V2eg2x/ikksuwaxZs7B161bcfPPNCAoK4n3LaDQiJSUFY8eO7Zd8nEoQ+fT390dTUxOuv/56zJw5E19//TVKSkowb948ZGZmoqOjA9deey2OHTvW673E/ir2P+C4Y7FI0sVxERQUhMcffxyVlZXYu3cvsrOz4XK5UFRUhJycHFRUVKCpqYkvtqi/iBsHiuYaTyduGacWMvk4y6HRaDB69GiMGjUKKpUK5557Ltrb22G1WpGRkQEAiImJgdFoxJ49exAeHo69e/eipKTE6/0oFwcNbPoO9MwBQsfFRD9AT7usuEoZMmQIIiIioNVqYbFYUFZWxkmF6ItAdaEVJkVdkOmBhB1NLKJzpV6vh9lsRmhoKEJCQtDc3Iy5c+ciPT0dZrMZfn5+qKyshNVqRWVlJb7//nvk5ubyzJpOpxPJycnIzc3lKlpxEz8iVZ7Jh0jdq1Qq0dTUhNTUVMTGxsLhcMBisSAgIICH7CqV3cnTSMi1trYiOjoaERERiIiIgFKpxKRJk2Cz2fj1Ytt4hgsCx5N8AccnYm8CThSs4mqR2tTf3x8xMTEICgoCABw6dAh79uxBfX29RBPhTUh7mhE89+gRIRIlz+dQKLqz62ZmZiIjI4Pv51FRUQGj0Yi4uDgkJCQgKSkJAQEBcDq7N1dsbW3FJ598grS0NAQGBkpMRN7Me97Qm3klISEBKSkpiIiIwPTp0xEYGAigOyIIAG8vT8TExGDOnDkICQlBY2MjCgsLuS9Kb+UNBiqVCjExMUhPT0dmZiZmzJgBX19fjB49mpMgWiC0trZKsgx7e85TBaVSiWHDhiEyMhJhYWEICgoCYwwLFizAqFGjoNPpUF1djXHjxiE6OhoulwsJCQmoqKjos45if6V+TkRB/E7n0LubNGkSJk2ahJqaGm6+HTt2LIqLi7kTu7jDtTh/0R+NLzGXkBxue3ogk4+zGEqlEr6+vrjgggtw22238Y2WtFot/Pz8OCsPDQ1Feno6pkyZggsvvBCPP/54r+SDSAI5UYqZOEkw04qU1OcEEnY00ZEwJJU6TYRAd4bPqqoq5OTk9EgMRqsNErA2mw3h4eFwOBxoamqShL5ZrVZJ+m6NRoOgoCAkJCQgMTER8fHxcLlcWLBgAfz9/dHY2AibzYadO3fCbrejpqYGBw4cgNvtRnh4OGJiYmCxWJCamopvv/2Wm4xEAuZyubi2RsyhQXC5XMjLy0NLSwuam5ths9lQWFiIuLg4mM1mGAwGMMZQXFzMzTRVVVVYvHgxfHx8+OQ3c+ZMtLS0oK2tDRaLhScqY4z18JWh9yI61dG7IfOUqFHwND3QhK1QKBAWFob09HSkpqZCqVTi+++/xzvvvIOysjKJzVtUTQPeHU9JmyXmRxAdcXub6FUqFUJCQnDzzTcjIyODtxmpwKkd2tvbwRhDeXk5CgsLceTIEXz00UdYvnw597Mgc52n/0tv/V/8T3XR6/WYOHEi/vCHP3ACTX2iPyiVSvzlL3+B1WpFTk4ODh48iNLSUkmUTl/w1IyIba7RaODn54dx48Zh6dKlGDlyJGJiYhATE9PjPpWVldi/fz/279/fgzCKzz1YAkIaRooYo3ERFBSEefPmYfTo0Rg6dChCQ0MRGRnJNXULFy5EW1sbzwzc1taGKVOmID8/HxUVFV7L8qwnzUmeOW6ob9HCYcqUKbj++usRHBwMABgyZAjUajUeeOABXHLJJfD390dCQgJaWlpQUVEhMU+KxIP6t6jFlLUfpwcy+ThLQZPzuHHjkJyczGPMv/76a7z22msoLi7GF198AZfLhdDQUAQEBGDhwoVoaGiQJMLyBnEvFwCSbJw00MRQWxL6KpUKNptN4hMCdE9O5557LhYuXIhzzz0XjDE8//zz+Oijj2CxWPi+K0RQyIeE1JsdHR1obm6WaBlMJhMPBybhQGnRn3jiCeTn58PX1xdRUVEwm824//77kZKSgiFDhuDpp5/m15KvxRdffIHhw4ejra0Nzz33HF5++WVO5CwWC28PkVhptVqYTCb4+fmhoaEBBoMBDocDLS0tAIBFixbBZDLB39+f5xKhdmptbUVERARqampQX1+PmJgYJCcnIyUlhe/xkpSUhIiICE5IKI27uLGYr68vlEolLBYL10DR+yBBDXRPyBqNhr8b0X+HJlZqVx8fH/j5+Um2Lm9oaOArQ0DqV0SmKBIC3hxZiZB4pk2nHDBEZqlv+fj4ICwsDDqdDj4+PsjJycGBAwcQERGB7du3Y8SIETCbzXj66aehVCpRX1+PpqYmbjZ8/PHHoVAoeCgm+fKIOWcGOs4SExORnp6OhQsX4vzzzx/U9SJMJhNCQ0MRGxs7KE0MwZt5Jj09HTNnzsSECRMwffp0roXxBGMM06ZN4+bE3uBJvgZSp4ULF2L58uXYtm0bXn/9ddTX1yMwMBBr1qzB4sWLUVhYiIKCAkRERKCxsRG+vr5QqVQoKyvD008/jSVLliA2NhbPP/88Pv/8c7S3t/dZppikTjSDUK4dmr/UajUiIyMRGBiI0aNHY+zYsbBYLHjiiScwe/ZsrF69GhqNBo899hiioqIQFRXFtZ4NDQ08ykxM/+9pHpYdTk8fZPJxFmLGjBlYsmQJEhMTkZycjJCQEDgcDtTU1OD5559HTk4OrFYrFi1aBIVCgZtuugkXXHABRowYgb///e88WZW3hF7A8egUz5TUnomiNBoNzwtCjpMAEBgYCLvdzne0tNvtPLSWVizjxo1DdXU1XnnlFYlzIg1uCoUNCQlBdXW1RKtCqw+TyYSQkBDU1tZKIluKi4ths9nQ2NiII0eO4PDhw6iurkZBQQEAoKGhgdu/Y2JiuMnDZDKhoaEBx44d6+FVT8nISMtBxMTtdqO6uhp+fn7c2ZMiU8ivorW1Fa2trT0mS2obX19fJCQkIDo6mpMUu92OLVu2wGQyYeLEidi7dy93oGWMccc5iiqiaAuCaAYiciFumkXaK+D4ZK7RaBAWFobFixdj2bJlMBgMePXVVxEbG4vVq1fjm2++QXp6OsLDw8EYw8GDB/HHP/4RH374ITZv3owjR47wvkH9hsgqlSmuSkkjRuSEHHgjIiKQmZmJCy+8EOnp6dBqtTh69Cjee+89WCwWNDU18Q31amtroVAc38nYcwM+am+ql16v56Ha/SElJQXTpk3DmDFjcM455yAyMtIrWWCM4Y9//CMn11u2bIG/vz+GDx8u0UAoFN1RTKWlpX2q6nszY3kec7vdGDt2LG699VbuZ9LZ2Ymmpibk5OTg3HPPhcFggNVqRXZ2NkaMGIHDhw+jpqam17JFDdhAUVlZiX379iEpKYlHkzU1NeHRRx/FO++8A19fX0RERCA5OZm/h7q6Orz++uvYsWMHfvjhB2g0GtTX1/NIsr7aRnQEpQ3fSLtHc9fQoUMxceJExMTEYPbs2TAYDDhw4ACUSiXy8/PR3NyMiooKTJgwAZs3b8b8+fOhUCjwpz/9ie+hJPpnefoviRpHGacHMvk4y7BgwQKcd955mDJlCrfLFxUV4eDBg8jKysKRI0fQ3NwMl8uFX3/9FUC3zT41NRVxcXGcUPQ3wGmQU0Ixb2pyWgGIq11Kdw4c38hsxIgRPH8GAGzfvh0///wzjhw5ItkxlsoRHSGdTicPyWSM8agWrVbLiQCF96rVaoSEhCA9PR27du1CeXk5iouLUVJSwjUmFE0xZswYTJ48GSkpKXC5XDznRllZGfLz87lqWKFQ8PoBx/1eqK6iA6joNElhwBSZ4nQ6YTAY+H3ID4D8LEaOHAmz2cwn5rfeegu7du2CWq1Ga2trj+ycjDHeLp5mK2/qeU+TCPUB8TrylwkKCuIEA+h2FI6JieFanMbGRtTX1yMoKAg///wzioqKYLVae+yHQ+1FoPclmuM8BW1ISAhXgZPPwmeffYaffvoJ5eXlqK2tlWhfiDSJTr2e9n9xN1zP+nn2e/Ez1X3q1KlISEjgOx8TyMxQWVmJrKwstLe34+DBgzh8+DCmTJmC6OhoCfkgn4u8vLweCd88yx8I1Go1SktL8f333+Occ85BW1sbjh49iry8PAQEBEjMlvv37+eLBM/+4antGEw9aEwGBwdj9OjRWLp0Kb777jvs3r0bZWVlaGtr4+QjOjoaixYtQm5uLrZv345ffvkFFosFdXV1Ay7PM2eOZx+i8aTRaGA2m5GZmYn4+Hjs2bMHW7ZsgdFoRG1tLSwWC1paWpCfn883pNTpdIiOjpa8F3GsiOWKKf1lnB7I5OMsALF6hUKBa6+9FhkZGfD19YXdbkdFRQV++OEHfPrpp9i6davX64uLi5GTk4Pp06fDbDZL1Iae8BRYNLGLEzqBVh+ivZUyjYrhvSNHjkRwcDAcDgdsNhu++uorbNy4Ebm5uTx6gLKqUupxcvBsb2/nphia6GjV73Z377Oi1Wr5aiU0NBRTpkzB7t27UVVVhby8PE5gjEYjTCYT9Ho95s+fjylTpiAhIYHn1CgsLER2djaKi4u5CYAxxsmHmKeBQmBJLUtCkEw5fn5+PISYiBq9R6PRiFGjRuHmm2/mO+7GxcXxZ6qursZzzz3HQ3fJVCJqLsikQMTGU5jTql8ULqQBoPrQnjSUXdRqtfK9Vei68PBwhIWFITY2FlFRUdz5ND8/Hz4+PnjjjTf4c4p1ECdtIjnkRyT2NdFUo9FoMGbMGKjVasTGxiIkJARutxvr169Hbm4uj5ahNiB7fkBAABobG3mOBtE2L9aLHKj7AtXb39+fk7uUlBQJeSHzU1tbG2pqarBjxw7U1NQgLy+PC6aAgACMHDkScXFxUKlUPDKquLgYv/76K6+nZ7ne6tMbSVGpVMjKyuIRSCEhIfj222/xyy+/YOnSpVwwdnZ24ujRoygvL+81u6s3IjhQEqLT6RASEoIRI0Zwp9KDBw/yreZpnOzbtw833HADdu3ahf3796OysnLQhEsMlRbNUKIPDC0yXC4XJk+ejOrqamRlZWH9+vUwGo3o6OiA0+lEZWUlfvnlF1x88cXQarUwm81YsmQJPvnkE67toPEihnqL8+BAwrZlnBhk8nEWICAgANHR0dDr9cjIyEBSUhLKysowefJkNDc3c3NFbygrK8PBgwdRXFyMqqoqSX4IT5ANn1bwJFwpmgCQ5qcgEwnQremIjY3Fww8/jK+//hrvv/8+wsLC8MEHHyA1NRVBQUHYtGkTjh07BqvVyolHU1MTD5sVN3EiEwat1ih1u9ls5g6fpFmgVWVpaSl30qRsqi0tLdBqtZg6dSrmz5+PoUOHIiUlBUajEcXFxbjhhhswfPhwHDp0CEVFRfDx8eETJ2kYyAueCJnJZOLhv+SYK666xdwljDGMHTsWhw4dwoQJE3DhhRciNTUVJpOJR8CQnZtCj+Pi4tDQ0MCFKk2AVD6ZXLRaLZRKJSdhVJ7o2Akc34MCAA8Pffrpp7F3716MGjUK48ePxxtvvMH3tKEEc/ROrFYr9u/fj+uuu46/OxLk9B7ID0Y0kdH7dLu7E3yZTCaJuYeeC+g213388ce8HSwWC++P5LMyYsQItLS0ICoqCkOGDMHEiRMxbtw4vPjii/jkk094HxUjrzo7Ozmx8zQ1ehOyjDHcfffdyMzMxMiRIyW/tbe346OPPkJhYSFaW1tRV1eHr776SpJymzGGDRs2wOl0ory8HKGhoXj77bdRUlKCmpqaHgTMm6ZqIKAdpltaWnD33Xfz4waDAV9++SWWLl3KU/arVCrut9ObWUfUag4GWVlZeP755zF+/HhYLBYEBQVh4sSJ+OGHH+B2uzFnzhwsW7YM8+bNg0KhwIUXXsjNe4OFGGVGix+tVsv7ERFMlUoFHx8fqNVqyR5V1JfIGVWpVHJHXcqNEhAQgI6ODm5GFfd6IWd4kVzLOD2QycdZgLi4OCxevBjXXHMNOjs78cMPPyA7Oxv19fW9qpFVKhXMZjMuuOACLF68GFFRUfjoo4+wceNGVFZW9lqWuFqmAUyrFwB8NUiCgwam0WjEkCFD8OGHH6K0tJQnp7r77rvh4+ODiIgI1NXV4YknnuDhfox1RyvQpECrDbVajcDAQCiV3XuatLW1Qa/XQ6fTwW63o729HWazmdv6KbEZaT7I/8LtdvOwWyIr/v7+iI+Ph9FoxN69e7Fz507ExMSgqKgIXV1d3Kwgtivt7SD6KngLtaMEWLRZGm1IFxwcjDFjxuAvf/kLoqOjERAQwHfLBcBzk2g0Gp6T5KOPPsLFF1/MiRM5d1JuFHIoJVNJVFQUqqurJfcUhQgdHzZsGMaMGYNp06Zh7ty5PATS398fBoMBl19+OdLS0iQmrU8++QTZ2dl8hU3kUHQkJdJFbUXt4al5ISdYUUsiZq9du3Ytli5diqysLHz44Yc4duwYjh49iqSkJIwaNQpJSUmYP38+zGYzdDod30No9erVmD17Nq699loJuSGCRvvueGpfAO8EID8/H+np6Zg4caLkXJPJhEsuuQRvvPEGd2A1mUx8QzPStlitVnz++efYunUrJ8Bi5k5vfhWe43ggZhnRRCqaz2j8bNy4EV988QU++eSTHr4u4jP3VuZA0NLSgtzcXLz66qu4/vrrMWTIEISGhvL6HDlyBJs3b8a8efPw3nvv4b///S927tw56HKA4/5oollY3I6ANMSRkZH83b366qucCBGJFcnE448/jrvvvhuLFi1CY2Mj950iLYrYLtTP6TNpeWWcesjk4wxj1qxZmDZtGqZMmQKr1YqNGzciLy8PBQUFvar81Go1goKCMHPmTFx88cVIT09HR0cHamtrUVlZ2afmgwQaAJ62W0x/DByPbhGdVg0GA8LDwxEbG4sPP/wQTqcTU6ZMQVpaGo4cOYKqqioUFBTwdNe0OhHt955JpyiM1dPeSkmT6Nz29naearypqQn//ve/UVZWxm3cZFag1W9lZSWUSiWys7OxdetWtLS0oKmpSRKeBxzfhl1M/UzOoGS+IRMFtanT2b2Lr5j22Wg0YsqUKUhJSYHZbOb3FcP1KHqFyEpYWBhuueUWbN68mQt+nU6Hjo4OrukikwljjGtHRGEkqoeVSiWSkpL4Ki8qKgrFxcXw9fVFSUkJfvrpJ8TExCA1NRUhISH8utjYWJhMJthsNjQ1NSE5ORlGo5EL8V27dklyftA7EVeW4gRO9RNXjIwxhIWFYcSIEUhOToZOp0NcXBwyMzNhsVgwb948hIaGIioqCsHBwRg6dKhkZ2Qqk/qSmO+EvtO7IC2eN4jPQOGh4n2oHc1mM8455xxYrVZubikqKkJbWxsnOaSJIy0RPadYVm8YjC+I57nh4eFIS0vDVVddBZPJhOrqavz66699mlv6aoeBgJ71p59+wogRI+Dv748lS5ags7MT4eHhiI+PR1paGgBg69at2LNnD8rLywd8f2/1E8mb6JNGnxsbG5GXl4fFixdLzKV0na+vL/R6PVpbWzFv3jwkJyejq6sLBQUFfOECoIfTvbgwG2w7yRgcZPJxhjFr1iycd955SExMxJ49e/DFF18gNzcXjY2NvV6j0+kQERGBCy+8EOeddx4aGhpQWFiI2tpatLS09MnUKZcEmVba29v53iQOh4P7eFBWzo6ODqjVaoSGhiI5ORlutxs//vgjkpOTMWLECDgcDvzyyy8oKipCUVERj4ARk0+JAp9WwSRgSbsiqlWJDAHgalV/f3+43W5YLBa89tprUKlUfOdbhUIBf39/7o/y66+/wmKxICsrC/v27ePqW19fX4lQI4KlVqt59AoRJyJBJIRF8iGq/GlSTElJ4SYMMlXRM9AzNjQ0AOg2X7W3t+P666+Hy+WCxWLh9nEKVRVt3MDx9O9ibg9PzUdiYiIuvPBCDBkyBO3t7fj2228RFRWF3NxcbNu2Dffffz8iIyMlKdZjYmIwbNgwVFZWQqvVIjU1FcHBwdx23tzcjMrKSrS1tXFnXtJ4iP4p3pwcRb8USlM+ZswY6HQ6DBs2DMOGDZPY9ak/tre3c+2Pr68vAKCoqIinLhf/6FoisgMNjSTzZm+YMGECAKCurg45OTnQaDQoLi7mO//SswI9VfPeNA69YTB+GIwxxMbGYvr06bj00ksBHN9luj/txskIUca6tzvIycnBli1bsHDhQmRmZkKlUiE1NZWHuzLWnW6eQtFPBJ4aCJFYEoFXKBSorq7G7t27AXTvxC2Oa5PJhOjoaAQHB6O6uhp/+MMfEBcXxxchomaFxigAyXFR0yTj9EAmH2cYBoMBPj4+8Pf3R2pqKvcD6AtmsxnDhg3DJZdcAsYYXn75ZbzxxhsD8ionswrQTWLcbjefLMRVLJlJnE4nwsLCsGTJEtx9991ob29HaWkpEhISoFarsX79ejQ3N2Pfvn3Izs7me72Q7ZaEFdmmLRYLgG6bP9A9saWmpqK5uRmtra0AugU85dXw8/OD0WiUmIasVis365DAGTlyJF/Nfvjhh7j//vvhcrng6+sLm82GlpYW7nehUCgkTqbkwEYaFLPZjNraWp4RlbKuknaESAulBK+rq0NhYSGCg4N5CF9eXh6qq6u5WSgwMBB79+5FXV0d3G43UlNTMXPmTAQFBSEqKgp6vR7V1dUICgqCyWRCU1MTAHAyI2paCETUaIK0Wq18Zejr64tFixbhp59+gtvt5mYN0u4QFAoF5s6di/nz5/NwaFJzt7e346abbsItt9yCjz76iE/wCoWCO8hSfUSnZNEnhFTh+fn5aG9vx4UXXgi9Xs9zQRAxJDL5wQcfwGq1wmQyISYmhvsN7Ny5E19//TV/5+RwSGWT4PHM8+FphqDveXl5iI6ORnJycp/jJTQ0FE899RR+/PFHvPnmm/jmm2+4lqE3M4n4uT8C0p+GRNRsud1uxMbGYty4cfycpKQkjB07Fr/88ouEjJ1qMMZgsVjwxRdfQKHojlq65JJLejggP/jgg5J2GizE0G1akIjh1dS3LBaLJIss1bGrqwvjx4/H+PHjMWzYMG4mpJw5F110Ef7xj39IHMvJrCtqG8W8NbLZ5fRAJh9nCAqFAn5+fhg/fjxaWlqwYsUKvP3227BYLBg5ciSmTZuGyy67DEVFRaipqUFhYSHefvttrF69GlOnTkViYiIqKiqwdOnSfjUlIkj1T0JNNIeoVCp0dHTw5FPkaBoTEwOz2Yyuri74+vri9ttvR2pqKsaOHYvAwEDcdNNN+PXXX7mDHE1EOp0OUVFRXF1NIapk16Wym5qaYLVauX8H2drpPHIQpYmhpqYGwcHBXLCFhYXh2LFjPDsqbQ5XW1vLBaRer+fkITQ0FE6nE01NTdzxMiIigvsQtLW1AZCmKidBJ+bvUCi6N3sLCgqC2+3mzra5ubkoLCxEc3MzAgIC4Ofnh4qKCthsNhgMBpjNZoSFhWHbtm3IzMzEY489hssuuww33ngjDwskIUoJ2QDw9iHhT0TS5XJBq9VixowZfK8aWtVNmDABo0ePhtvthtls5vV3OBwoKipCQkICqqqqYLVaMW7cOOzYsQO7du3iferBBx/kJh8iCaT5IMFJGhl6P2KafpVKBV9fX7jdbjQ0NODqq6/GbbfdhhEjRiA6OhqBgYHIycmBw+GAwWDAwoUL0draCrPZDH9/f95vKysrUVxczE1EotpcVJP3ZnLxFMh1dXV9pvj2xKRJkxAYGIipU6filVdewdGjRznROx3wdl9fX1+4XC7JWM/JycF33303oHsOhAz1B5vNBpPJhPj4eH7so48+wmeffYaAgADcdddduO666xAfH49nnnlm0PencGdyLKUIM9FHzW63IyQkBEOGDEFdXR1uvPFGKJVKHD58GADw008/ISQkBEOHDsWBAwdQX1+PqVOnYtSoUQgNDeVkg5IoitpO0nR6mhplnHrI5OMMgBw4H3/8cSQlJeHo0aNoamrC0qVLUVtbi5SUFEyZMgXp6emIiopCa2srTwk+ZcoUNDU1YdOmTairq+MJdQbqlU2CQgzhFKMmaPUg2u0pN8Xhw4cxYcIEnHvuuTzUdPv27aisrOTZRz0TYVFUCq1yRcFEZdA26OIKh8gRhTySuYicM0W1vk6nw5VXXon09HTU19ejsbGRR+pQmK7oQ9Lc3MyFJDm1tba28u3eyV+F6giAlymqf6ktGxsb8eGHH6K9vR1NTU2or69Hc3MzOjs70dLSAo1Gg5aWFn5dV1cXz1Tp6+vLTUpE+EThTis/vV4vyUwrkkNq623btqGzsxPTp0/HjBkzoFJ1bwVPhEX0FbHb7fjxxx/x0Ucfob6+Hl1dXUhJScGhQ4dw7Ngx1NXVwW6341//+hfy8vK8qvWpPYi8EhESVdbiOycT0+eff47y8nKMHTsWwcHBMJlMCAoKgtlsRkhICHc2pSicmpoatLe38wR4ImEWiY9IEvuD0+lEW1sbKioqUFNTg9bWVk6Shw0bBh8fHwQGBiIgIIA7/VKfoT1wBirI+9OS9Na24jFfX1/cdNNNGDduHNLS0sAYw1dffYU9e/agtrZ20ELyRIVqSkoKEhMTYTabAXRH2pWUlKCsrAz19fUwmUyoqqrC/v37T+j+no7UohlE9K0JDAzE0KFD0dbWhk2bNuHgwYN8vrLZbKitrUVBQQF+/vlnXHrppXzBRX5Ber2eO0iLPkRif+7tvck4NZDJxxmAyWRCYmIibrnlFqhUKhw7dgwxMTG4+uqrUVBQgKioKCQnJ0uybhqNRkRERKCtrQ179+7F9u3b0dLSwqM8BgoS6DTgRGdP+uypZgwODoZareb20uTkZJ718Ouvv+ZmG1qliCGotBus5zbt4gRjt9sl+3nQtuzkmyLus0LmDjLp+Pn5YdiwYbjyyivhcDhw+PBhFBcX81W4QqHg/gNku25ra4PRaOSCXaPRwGq1SoS0p+8Aeb6LOVl0Oh1cLheam5uxadMmyURJ7dnR0cGjEMhhjqJuhg4dyrUmlMWV3qVoHiGCBEAi3MXkYy6XC9u3b0dRURGam5sRHByM4cOHo6mpiV9PRIQIZ3l5Od599120tLRAqVQiODgY9fX1kv19Pvnkkx7+JaKAFMsnEiBmWQWkWSLJJOXn54eYmBhoNBokJiYiNDQUZrMZarUaBoOBm3UsFgt++ukn1NXVcV8Zug+9EypDdGTuT2jU1tbiyJEjqKurQ1FRERoaGtDQ0ACbzYYpU6YgNjaWO1cSyP9lMML+VAgv6muXX345z0mSl5eHDRs2IDs7W5KuvC9nVrFvnmg90tLSEBcXxzUUWVlZKCwsRHt7O3x9faHRaGCxWHrdW6o/iO+PyDcRD8+05yqVCnl5ecjOzobNZkNSUhJ3CFYoFCgvL8fRo0cRGBjI/cGoL4q7cou5YgAMqP/IOHnI5OMMYMSIEbj++ut5Z584cSIPG6OMiZ2dndi3bx/279+P4uJilJeXo6GhAW63G6X/j733Do/yOvbHP7srrbYX9V4oqogmusAGY4wBV2zj3uLEyY2dxOk3Xyc3sVOcXMex4+7EFfdugwsY03sXIAQqqPe6vUna/f2h3xxmj1YCYpObJ9E8Dw+S9t23nHPeMzOf+cxMQwPa2tr+oWuTotdoNGF9O6h4FgkvW33jjTeK8tOksN944w089NBDcLvdoikY9ewgmJ5qexBMTEgEwZ7A0Cbg8Xig0+lElkhcXJwI/1itVlGsjDYjgv8zMzMxb948PPDAA9DpdNixYwe2b9+OTz/9FBkZGQgEAoJHotPphGdMZarJwFGr1QKOpfHp7+8Xz0UhIyqN7nK5RAoobZbEl6BNi+BbSrH1+/1iYzSbzZg5cyZuuOEGGI1GtLS0wGazwe/3Q6vVCqOGUoIp9ZXGUIaDOSmvu7sbr7zyCj777DN8/PHH2LJlC7RaLbKysjB+/HhkZWUBGOIaLV26FK+++qog7ba0tIRt9nyjJy+RIxmkFDnHhzxKuTcGR9JKS0uxaNEiLF68GNOnTw9DEejZqN9MXV0d7r//fjidzrAUXzlcyPt9kIxG5nzppZfCFA5HIT755BMsXboUt912m2hQFgqF0NLSgsrKymGcmUjXk4XWLv/OSIaAfJ5QaKgrssFgQExMDGpra3Hdddehuro6YpiJP0uk5zvTvY4kGo0GEyZMQHJyMoChdfeXv/wFR48ehV6vx7e//W2oVCrMmTMHDocDv/3tb8/5GpGy37jxQYjjqVOn8PLLL2PNmjX485//jKSkpLDqsg6HA42NjaJ2TFJSEgYHBwX3i+r00D9a42TAjsn5lzHj4/9A0tLSsHDhQrERUCrbRx99hB07diApKQkZGRl45513cPz4cXi93mHNwv5RoSZKwFB4g/Mb+DEUcwWAP/3pT/jmN7+J//qv/xJeAVXyBE4rRFLMPEOEwjCEFpBRQY3yyAjx+XwIBoOiuBcp7La2NtGUjhRLf38/XnjhBUyaNAkmkwkmk0lcR6vVwmq1oq2tDVqtFtnZ2ejv70dbW5swiNRqtSDU+nw++P1+wf0gw4xacEdFRcFoNMLhcAhPm4p92Ww2AeOSt07PqlarRXow1YUwGAwIBAJISkrCT37yE+j1egBDLdtLSkpEqXVaF1arVTwvzRNHPkgIaeAbZ1dXF66++mo4nU4oFAqkpaXhpZdeEqE2p9OJL7/8UhgeHNrmJEdCyTgyxZWDx+MR4xITEyPmn9aEz+cTCkWtVgtDtqCgADk5OUK58DDaTTfdJH7evHkznE6nMHr4PXLFRHMaDAYRHx8Ph8MRZkyTcOXLvWwOsZOSIxQHAF588UV8/PHH2L17d8T3aiRlzlEqfv2zFZPJhOzsbNxzzz2iz1FtbS2ysrJQX18flsp+Luc+Vz6DUqlEbGysSOMmBU/vg9VqxZVXXomPP/4Yn3766Veq88H3KOJl8Ew4QsVCoaEKvW1tbUhKSkJhYSEKCgqwZMkS6PV6pKWlwe/3480338SKFSswdepUwS2j/ZTQO16bhurf0Pofk/Mj/5HGx29+8xs88MADYX/Ly8vDyZMnAQwpwh//+Md466234Pf7sXTpUjz99NNISkr6Wq5fVlaG3/3ud8jMzMTFF1+Mvr4+7N+/H/v370dtbS20Wi2MRiNqampEqOPrEl4YivMvuPBiW9HR0SgpKUFOTg78fj/279+Pzz//HLt27RJoCY/xkxfBQy28iBc9Cw/1xMbGCmY8KTFSzH6/HxqNRigZSvs1GAwwGAzQ6/Vob29Hb28v9u/fj+3bt8PpdIrNiowMqmRIvAFKuyWPmbJfqNIpIUMKhUIYJrQhkgFDBgFVICUSqFarFRwFIuHGxsYiJSUF+fn5mDt3rkgh7evrQ2VlJd566y0xlhSTpjbmwWBQlKjnypOPOc8somOo2ibN5/PPP49vf/vbItyRmZkZ1o6e4GcS2UPnTeV4GIo4QjTHMjqjUCiQk5OD6dOn4/rrrxediMnI3bZtG5TKoRbthYWFqK+vR29vrwi5ceOAnpun+1KYiO6TSvnLwnkvJPzdysrKEkjHrbfeipKSEvEdl8sl6nrIciYlHonbMZrw4yg8t2jRImi1WthsNlHjgtaq/GyRrvNViaYqlQpJSUmiLL3NZsMDDzwgMk4otNHZ2Ymuri6BOJ6rEGo2UuiTr4P+/n50dHSgoaEB/f39IvxCKeJdXV0YHBzEoUOHMHv2bKhUKrS2top3jNeOIQSE1jGAsJ/H5OuX/0jjAwCKiorw5Zdfit85XPvDH/4Qn376Kd59912YzWbce++9WLlyJXbu3Pm1XJuaoSUnJ8Pn86Grqwvbt29HZ2enyOo4X8KVFYnsBXEPMDU1FQsXLkROTg5sNhsqKyvx+uuvi5oVfAPkQi8tKXvu2crKhCtZMhKI40DXIO5LdHQ0CgoKoNVqBapw9OhRtLW14dChQ6JHiNlsDiOzEjoRHR0t+sSQx0OeDvEGyAAiNIOX746JiYHVakVubi7Ky8uFVy7X/wgEAqJaKDW6S0lJwcKFCzFv3jyh0GpqarB7926sW7dOhJOio6MFIZW8c61WK9KTI8X15fmje6KfvV4vvvzySyxfvhyxsbEwGAwYP368iH3L54nE8eDEPM634IgPhbLo+sCQYT9r1iwsWrQIc+fOhUqlgs1mE7A48WVSU1Nht9vR1dWFrq6usOvQmqXx5AgMN6KVSmVYmwDZMCDFI3u+hYWFmDJlCoqLi6HT6bBs2TJYLBb4/X5UV1ejubkZDocjzKiJFD6RQz30t3NFGoChgmJ5eXmYNm0axo0bh5aWFpw8eRLHjh1DY2PjsDDOucg/gnxQ1tLg4CDcbjdeffVVaDQaJCYmIj09HdHR0TCZTBGrzJ7LdbiDNNpaJ7L38ePHcerUKbjdbjgcDvT398PhcIisKEJFlUqlSPUnw5neEXJWyHiTia9j8vXLf6zxQf0vZLHb7XjhhRfwxhtv4KKLLgIwFB8uKCjAnj17MGfOnHO6jlxXgSQYDKK1tRWPPPLIP/YA/6CQ18hF3oQIrtbr9bj44ouxcOFCKJVKnDp1SvAgCDEAENbfAxgKfRDaQH1KCBIHICB8ern9fr/gYfT29iI9PV30UqFW8iUlJaJr7ne/+13k5+fDYrHAbrfjlVdeQWNjI2w2G3Q6HZxOJ+Lj40UKb1paGvR6vah+2dfXN8wz4wgN1aBwuVzw+Xzwer2wWCxwuVyIi4vDhRdeiAceeAC//e1vBclTr9eL4lher1fwFvR6PcaPH4/f/OY3UCgUyMrKQkpKCkKhEI4dO4b3338fmzZtQltbW9jGqlar0draKowR7vWR0cTnkgweOo5IuzQvxO2x2WzieUhh8HBNpE2XcyMo64crfjJKCC6nuil0zgceeADz5s2DxWIR6Nfhw4exZs0aKBQKfPjhhyJjizJxKLuEqs3SvXFUDUBYOIM+4ymUfN2TxMbGirBMMBiEVqvFc889h8zMTPj9fmRmZgoF1NLSgnvuuQcnTpwYtW4FN6pHeq8i/X00BXf55Zdj8eLFYs9ZvXo1Pv30U+zfvz+i4XGuyvJcDBAiT9fU1CAxMVEYw1dffTVSUlKQkZEBtVqNyy+/HEeOHMG2bdvO6V5IaM+gnyPtV4TA0Vr5+OOPRViWEBF6rsHBQSxZsgQTJkxAMDhULZlnR5GxwUN6MpI2JudH/mONj+rqalHtce7cuXjooYeQmZmJgwcPor+/HxdffLE4Nj8/H5mZmdi9e/eIxgcRCklIuXEY/F9BiKU+MDAQVreB4uYUp7darSguLsb//M//ID4+Xmyuzz33HOx2u+BGUHdbUojkdZDYbDbBkVCpVMIIIMKXWq0WGRlRUVGi2iqFSzQaDV5//XUUFhbC6/Wiu7sbF1xwgdh84uLi8Pjjj+M73/mOKB3+zDPP4P3338cHH3yA7du346c//Sn+/Oc/o62tDTabTUCtVEY8GAyKJlWkQDo7O6HT6cR1XC4XUlJSsGDBAtx6661IS0vDo48+ii+++AKrV69GY2MjBgYGRInwDz/8EAqFAuPGjUNRURHq6+uxYsUKGI1GOJ1O7Ny5E9XV1di/fz9Onjwpwkg2m030d6H6JtyTl40LTjYl3gPNDaFJtLk2Njbiyy+/RHx8PFQqFW699dZhFTs5ykHn5R6h1+sN4zGQ0REKhUQZfNkQSEpKgtVqhdvtxosvvgiFQoHDhw9j+/bt6O3tFcYuGTlarVYQi81ms3ivyLih7CEyzLgnTKm4kUib9LdAIIDCwkL4fD44HA7ccsstyMzMRGJiYpjSefrpp/HUU0/B5XKJCq+RhIywr1vofbBYLPjkk09QXV0tmiECw42NkZ470rHnKv39/Th48CCuvPJK+Hw+5OXlCR4VpZB/+OGHqKiowPHjx//h61CoEji9HnhDReB0ejWvxkz3SKRoqlw8MDCAadOmITk5Gb29vXj99ddFFWgaLzoHR9BozZ9txdwxOXf5jzQ+Zs+ejZdfflm8QA888AAWLFiA8vJytLe3Q61Wh6XYAUBSUhLa29tHPOdDDz00jEfyryikiLjnSp4G95x9Ph86Ojpw6NAhzJ07FyaTSRTj0mq1gqjJPQgeK6UXlyoEci+Dp8HSRkPkzGAwKKp7BoND1VePHDmCadOmIS4uDiaTKcxbD4VCMJlM+N73vgelUgm73Y4PPvgAH3zwAU6ePAmbzYbHH38cJ0+eDCvI5ff7BZGV4Fra7Mgo4xUVBwcH0dfXhyNHjuDDDz/Ewv+/oNecOXNgtVpRV1eHrq4upKamIjMzE5dccglCoaHMlri4OKSmpkKtVuOLL77Ajh070NHRIeojUMowNScjhU71TgiVofGReTOkWCLVAKFnIiMiKysLCoUCDocDq1atwl/+8heRKi17g8BppIPmk9AhjsSQcLidPktLS4PNZsNnn32GL7/8Ejt37oRCoUBfXx96enrCUEEyKDhvhAwPMn7JUKZjVCqVKMQmp2OOtP5NJhPuuusupKSkoL+/HxMmTBCoDMmuXbtw5MgRtLW1iVADP4fMaeFCfz8X71k2GlQqFRYtWoSioiJER0cjKSkJp06dGjXNl8aPDMNI9yaPxbmEXgYHB9Hc3Izdu3ejvb0dy5YtCxsDnU6HL7/8EjU1NWd9zkjXoGchpEu+X/6Ph+Rob+GhuFAoJNA+jmqSkcL3JBnJHYk/MyZfj/xHGh/Lli0TP0+ePBmzZ89GVlYW3nnnHVGM6lzlF7/4BX70ox+J3x0Oh0ib/VcSGa7lGyXPd+/v70dPTw+2bNkiyhS3tbWJYlk89ZKEzkkICik9vqHI3uPAwIDgYgAQRg2Vfvd6vWhoaIDD4RBl1xMSEmC322G320UcnsrUU9O99evXw+v1wm634/Dhw6JDKnnLnBhLHjORSkOhkAgDcQXr9XrR1NSEnTt3YseOHZg4cSKsVisWLFiAjIwM9PX1iXLp8+bNg8/nQ09PD3p6etDa2orW1lasW7cOX3zxBRQKBTo7O+Hz+cJQC9kTozEk5RqJP8CVIf3Pwyd8E+3r68OxY8eg0+lE593RCIqcJBzpGB4f5xk3pBDUajVqa2vR2NiIzz//XDQepONprcjhCjIEqKorrV1uoMiptyMpC9kIMBgMSEtLw4wZM5CYmDjs2EAgIBAoynr5qgjCSIo+ElKhVCpFLxy9Xo+GhgZUVlaiqakJDofjjEbNSIaRzKM4Vw4KAFRVVcHpdKKpqQlJSUlhvZEqKytRUVFx1tWWR7v/kf7OnQ4AIkzCDWIgHLlrampCR0cH4uPjkZmZKUK5RNKWjWhexHAs7fb8yX+k8SGLxWJBbm4uampqsGTJErH5cPSjo6MjIkeEhAo4/atLIBAQPUtI6fKURM7HcLvdePvtt7F06VL4/X5s2bIFr732Gsxms6ibwdESMjIoRTQQCAgUAzjdoZaElIXBYEAoNFRPgxrZEUeEiKLV1dVobGzEwYMHcd999+Hw4cOin0xfXx8MBgMuueQSTJ06FSaTCXv27AmL4SYlJQmjw+v1ht0/gLAQC5UEdzgcgscBnC5M1NPTg+uvvx5/+MMfUFpaioyMDAwODiI3N1eEHQYGBmC327FmzRq89957qKmpEehZR0dHmOImw4P60PD+LESg40qab5QyG5+Ui8zDAYaU9FNPPRVmyMibLG3GdG45pMH/FikbgWcQBYNBNDc348svvxSZQLxKKRm5lJpL9y9nYfGS7ZzMys8T6Xt0Pvqfh6feffdduFwurFy5MkzZUAXT4uJipKamRiSY8vPKP8vjwdc5jeNIwsMKkyZNgkajQVVVFdasWYOHHnpoVE4JnV827kcyQv5R2bhxIzIyMpCTk4Pt27fDZDKJsv0ffPDBVzo3cDqkQvdM40/GBQ9jczSOI2L0fUIQDx06hMTEREyZMgWzZs3C+++/LzLiCGGUs7zkPW1Mvn5RhL7qavk3EJfLhczMTPzmN7/B7bffjoSEBLz55pu45pprAACVlZXIz88flfMhC/WnAL56vPXrFMosoQwKQjI48kEKkeo2GAwG8eJTNgoA0YWU4vLEKueZKrRBcIIqpZmSF2O1WmG32wUkzpvG0WZkNpuFIUEdaukeKPyj1+sRExMjUiLJMLJarWJT7u/vh91uR1pamnhuaidPhoPX64XBYBApm7TxqVQqgbB0dnYiPT0diYmJMJlMOHDgAFQqFRISEhAXF4e6ujoxHsTKV6lUsFgsovCaUjnU8IqKkfHqjEqlUvTToT4UWq1WhI4Ikqaxpvnj3qG8EYdCIRGyouci9IfGkhdcovPSM5ABAUCQSvV6vUBvdDqdeAYZGqdMGB6Tp0wjn88HjUYjuihTPJ7ui98zkWep/LpCoRDEXkLjuBEiK+tQKAS1Wo3rrrsOVqsVGo0Gf/rTn/DFF1+gra1NKKUnn3wSbW1tYTyukcIrIwlXYvzfSEKfxcTEYNq0aVi9ejX6+/uxceNG/OxnPwtDGmX04kxoBuc30HH/qFdP7wLNPaEM/2iGCxdaX3SPwOmMOjKoeSo3rUPO8eAZWUqlEnq9HjfeeCOuueYaFBQUYNasWaIJJzeg+bnI+aFns9vtojbRmHw98h+JfPzkJz/B5ZdfjqysLLS2tuLXv/41VCoVbrzxRpjNZtx111340Y9+JHLXv/e972Hu3LnnnOnyryhyfxAgvGgZsf/JK+XZLRQiIU+DNhuqAAqcLnhFIQ5uBHCvhnvlfr8fRqMRoVBIoBI8g4J6bnBiGSEkweBQrxaqgRAVFYXU1FQAQ/UeAoGAKHxFCtBsNmNgYECgDACEMiMDi7wiChvRGPEuuE6nEx6PB/39/ejr6xMIRnd3N/r6+sKUJhkJbrdbxJ9J+ZMQckDcDrpvMgTJmOHoFI9bc+9ezrIihcE9SQBhkDUdJ8fM6e+0KdMck7KnZ6Bme3RtOVuBFBQhQxSuIWTD7XaL5+E1ROj8HG4nxUBjwdG7Myni/v5+bN++XSBZ9fX1IgRGiq69vT1ikbJIMpJRIhtwZ+PnkfFYW1uLBx98EAMDA2hqagoLo0UyYs723PT/V/E5aR7JOP+q/mskQ4qMIx56pDXIDTkKUdK40bqhd5T2oI0bN6KmpgZ6vV5wnLhBxtcWvyb9PiZfv/xHGh/Nzc248cYb0dPTg4SEBMyfPx979uxBQkICAODRRx+FUqnENddcE1Zk7N9BeD8Q+pm8YN4+ml4+Sk+lv/FiPPycPCOCFDmH9Oma5O3KJDHyWnw+HwwGQ1iVQ6poSF4PlR8n4fdF/0hpUzgHgEjHI8Xl9XqFQcURAPqflB6vl0Epq7zSItVmUSgUYb9z5UqGAA+pcGXN0QBuANCY0n3LHI1IMDw3SPjzyJ9xRR7pnLJSIeSJH0fIBs0TJ6hy40gW7mVyA0/mbnCjiishroA50VU2VCLxH0KhEJqamsS91NXVDYPdv0qsnz8v/czv+2w4NDabDV988QWCwaBAF/hxfEzO5X74+vmqfIavA+mQRTawaM1zY4M+jyT0nvD1MTAwgLq6OjQ1NUWsWCrvaWcTUhuTry5jYZfzJJHCLl/V4/i6hDgfHo9HdEuNjo6GXq8XZDEKL/h8PrjdbuFhktdOHrrL5QqrJ6FQKJCcnCy4ErRhkLHAPXhgaEzi4+MRCg1l2LhcLmi1WsG38Xg8ovU5pZAmJiaKlEOqI9Lb2xu2GRuNRnFd6mIbGxuL6OhotLW1Qa/Xi4Z1FosFPp9PbPwDAwPQaDQYHBwUIQ/a1MgQiI+PDyst3tXVJQqbUYlot9sNq9UKk8mEjo4O8cyUQtna2iqUL6XWklKmLsEE/3JjkIwgmUsg8xvUanVY/DyS90xGlJwtQOeWOSX0Oz0nldgnRcEVPcXj6ZnpWnT/hJoQnwWAMITpHBw5oXNS2Xv6R9+j6wwODopxk5W0/P7xMfwq72YkQ4uPFaEstL4iXYv/jdauPAcjGYYy+hXp+YDwhmq89s5Iz3MuMpJRfC6i1+vDasRwZ0hG/HhmC31Oqez8neHrR86goT2N7peuwRFQAGNhl/MgY8bHeRIyPqjiI5Xd5jUKnE6nyK6hFEZCASg+TsjEwMBAGDmKCuxQF1ClUinKb9Nm7vF4wlItqbonCfckgJG5KXwDp+9E2rRl2DTSefg5KDxAtSP4d2UlGcmbPFuRPftI9ySfmzY5MkBIScqxbRoHQpH42PBmcFqtNix1l+6LMlzUarXoUUNwv0KhECEw+jtPtR1NRvKKZRTgbL4TSUbynrmylD8jsidHkjjZE4DgsRChVEa4ZMVKhci4sXQ2oQBqEkio2JmgdQoljXReboDTu8aVOxmZkUIM9Dt/Pk7sjSSjGVT0t0jn4EYK7R+kwPmzEAGbtz2g9UrnIW4YXYMqAlPn5N7eXuh0ujDyOK/SS/dHY0Y1PihkS0Yqz6IyGAyiqjCR0RWK0xWF5Q7K5GRQ0Tqn0yk4apyHRvdE+zUPI7vd7jHj4zzIf2TY5Z8ptPnQwifvz+12C4Ier6hHLxyRKE0mk7DCjUajgGB5TQO32z2MPEjH8M2CXmzu6ZLIG/tonpl8HPeY5XONZEzQPwpD0GfcA+f3xz34kbzZkRSnfG357/zcJLw+CW2wZJBQUSV+Xpm7QefgSAb9jcIXFGahueJFwSjeTZuvrCBkZRVJ5GeVx0xOox0prTbSOMtzQMpENhjkceaGFRlt8jzTWHGvlcPt/PrcqyVjkSM3HDnhQg0OzWaz4ADwcSBjQj6fbBzQZ9z4pPmWx5aej98vV77cW+dhu0gePEdG6Bn5GMmGRyQDXEaVeJjC4/GEpaTz2hjciOJFCwlJJSOAr2n6x4t5kfFCY8VJnvRcZLhTc0UqTsg5S3Tv5LSRUaVSDTUIpAq5dP80B+RQcOeH19OJhPyNydcnY8bHeRYOY/MGZfRycDIjbV4EzXJvSzYu6BzEWyDPAUDYhklW/Ejev6zEzsbb4kpI/m4k6Hek88qhgtGOHe1+RvtdlpEMEVkImRnpGXhqqHx9rihoM+Us/ZG+T/fHDQVSsLI3z5U+v/ZozyTP/9nMET/3SHMb6d7lv9F5OP9npHVCa5WjIfz++PicKwpGMjg4CIvFgqysLJSXl4sGgCOhJrLRQD/L9y4fz8ch0rNGQpsiGcOyRFp3keYp0r1Gete4oiUHiM8F8agi8TxojRJaRf9onjnKwfc0Pv90HK/ay8eN/vHv0nvFx5qnigPhxel4xhv/jI8ROURk2J0PXsuYDMmYWfdPElI+9D/xA4BwT5lqIRCvgqB2im0TLE2NzyJtHvRSAkMxVGoVzw0R/uLLG0EkiaRQyDPhn/NNT97w5E2PNhC+2fANS97o5U2Vb2wyEZN/J9J983NF+i6NM80ZbUoE79IcyZs7GYUAwpQZ9yrJu5I3USLq0nkJviZjlI9zJAU80vPTsdwbjvR9WRHI8x/JC5SfgYedaH1wo4vP8UjGIl8XwOnUbW5A07zTWPO55OeQkREu2dnZuPTSS5GamgqTySRSyEOhUFgGF12bzk8Kjp6P/s6vJ88Dd0LkLAr+bgOniZw8jEd7ACfU0rX5z3xu+RhGyryR30dCAuS+OYRY6fX6MM4FAEGwpvAVD31QlhdVEuYp+CS0vxHaRJlu1K7C7/fD7XaL8gD0TnCDgo4jBJnmMRAIQKvVwuv1ht0XpYPT/fJxJrSYxo+Hqcfk65Ux5OM8i8ViQTAYhMPhCNuAKOsDCN8YeREu4ocQsa6npwcajSYMvqaNT61WQ6/Xw+PxhDVYohRQzgLnsCbJmdAGfnxcXJzwUBwOh0h1jMQk598fyePi3hBXFvQ/eSFc+GbBY8f8HLLIG/FoniUhSvw47mERn0ZGSMhrIsiax5BpA5W7stL3XS5X2L15PJ6whnh0fVIcBGHTM8neOf9dLjseyZCLhJ7w8EKkcAq/Lv0sG6R8HGld8nkjo0U2juj8xOmQQwmECNF1SYFG4jrw3/V6PbxeL7KysrBs2TIEg0E8++yzCIVCsFgsguAsf4/udXBwqN4Jn2tOrtVoNGHvMZ9jMlBCoZDgZpFxSYqd/k6kYgrlcONLRjK5A8ENHH687OVToT0yiHmoSKkcqgNExjAwVB2XOGp8/+FzKwvneMh7HhmmdH+8jxEJDy8Hg0FB8iZjhjf7o/VJdWdiYmJgs9lESfVQKCSMEB4GNRgM8Hg8YanVvOXEmJwfGTM+zrM4nU4AEBsbFVHiXjO9YLwuBG2kGo0GFosFBoNBlBQHEMb0D4WG6nB0d3fDZDKFKTUKAfDaFfQdYDh8zz/jwj2T3/72t8jOzhax2A8//BBbtmxBeXn5sHNxkT1sEhnq5mgDXZv+Hh8fjwcffBDB4FCWSkJCgtiou7q6UF9fj40bN6KyshI2m02USI90fdmo4PdNjdl4dgaVfKdMFM7zoPmisZY7vPKiWsFgMOz8Mp8FgCg8RsdHOoYbZeQ9ciUkVw3l9yrPATdA+O90Xm7McJENmDNxDahQGh3P4Xn5nFxZ8jg9KWNaG/zZZOMVGMp8IjJ2YmIiXnrpJZH9pFKp8Oqrr6K3tzcMmh9NOP9BhukViiFysE6nG1bwjMZCTkMPhUJhDfKA0wR0+h5fT9zA48dwo5Y+40aH/F7KBGh6NjofGcxkQNPcUIaZ2+0OMyRHMvpp/XASJ/0+0neISE/GJd8PvV6vGFtqvkjf4UijQqEQyAcZiNwIonOS0U8kYQAihD1mfJw/GTM+zrMQH4N7noODg4KwyL12ErLaJ02ahJSUFKSlpSEuLg7d3d2oq6tDa2ur6ARLLyJXfvzl48pEjofKSvhMEhUVhaKiIkyfPh0TJkwQntPatWvD7p8bNJGUHP9bpGMi3XsoFMK4ceOwcOFCLFq0CKHQUEM56oI7ODjU+K21tRUWiwWHDx9Ge3s7WltbUVZWNuK1zka48pW9R1LspCC4d0ybGW1oBoNBfE+n0yElJQXt7e2w2WzinLRJEsmVKw7ZSJPvhY8pf9bRvNOkpCSkpqYiJiYG+/fvDzsn/3kkkc/HFR6/nzN970y/8+eKZATx68jGFb138fHxmDFjBhYsWIDOzk7U1dXhwIEDqKurE+cc6dz8+jQX/O/c+CNjUQ6jyOfi98kNKvmYSD+fzVrmBkek4zkCylE12q+4cUWfy+m/HEk9k8hOBXC6Rou8Xuid48Y537/ounQ+uh8e0uQIJH8+QlrpueTU20jG+Zh8/TJmfJxnIUubsl1iYmIQCg3V2CBYk2BAQj5UqqEy3CtWrMDcuXMxbtw4xMfHo6urCxUVFdi6dSsOHTokoEK73Y7BwUHRGTVSnJ3qLPB4p3yfowl5VnPmzIFerw/b2CorK9Hd3R3xfPKGGUlJ8o2YNg3OCyCZPn067r33XiQlJQlSW29vrzinVqtFQUEBcnJysGDBArS0tODw4cOorKwMQ0DO5tm5V8YLkwEQRgb9je6F5pYUiUajEZt3KBRCZmamiJsHg0FMmzYNu3btwokTJ6DRaKBUKsM4P+3t7WEF4eT6KHzjlzNDeBiA/sbng2Ty5Mm46KKLYDQacejQobB5oGfnBOZI5xhpLPlGr9VqRQ0HQiEoa4jWKydV07PExMSgt7dXIH3ca+VcGHlcuFCdmpycHCxbtgwqlQr79u3D2rVr8emnn4YZHLLhyyUSCZneb74+gCHon1Lg5bCT/H1Z+dPYcLSLk5bpenwuZOMECDcu+LH8eWgtk4dP3yHDmQwGWku8jwoAkY1HPAm6R569Q/NFmX5kwKhUKuh0OlElmITWAGX9Aaf3L8r2o+fiYRoaJ6qPQ+UJKL1bvg96Xso6JN4VraszpV+PyVeTMePjPAv1IKE0W+rXQS8rLXyCEU0mk+BqvPvuu7j11lvR3NyM9957D6FQCHPmzMG1116LpUuXYvfu3XjrrbdEulpPT4/YGCgFl+BS7q1w4d71SGlldIzH48HOnTuxbNkyxMbGigJTS5YsgcPhQHd39zBeQqTzjCZcScpe/smTJ/Hee+/hhz/8If7yl7/g+PHjaG1tRWVlJRISEnDVVVdh3rx5eO211/DEE09g4sSJyM3NhdfrxWOPPRYWh6dzcuGKkxCrUOh0yIW3qafvKxSKsG643NikfjV0/O9//3tMnjwZsbGxYqN+6aWXcPjwYSxcuBCXX3453nnnHRw4cABKpRLvvvuuUDoUO+f3zg0DykYgpcwVhzzPXG666SbMmjULPp8PM2fOxP79+8MUAYVIOLwvC1eg3FChdahSqbBq1Sr8v//3/2C323HPPffAaDQiLy8PH374IUpLS5GVlYWUlBSkp6dj3LhxqKioQF9fH2644QYsWrQIUVFRSExMRFxcHDIzM3HixAmcOnUKLS0tcLlcYUYs8RS4cZKdnY2MjAyoVCrU1NTgL3/5C8rKysJ6t9Cz6PV6UeodOO2d88w0Pg+RuE6k8LiSGwlplP8+0jsiZ0vJCJP8HDICKhsoFI6ivYhziDgaIIdNuKH11ltvobq6Ghs3bkQwGMTmzZtRXFyMiRMnorm5GVarFUePHg3rdUTPKKdZ07hxLgwJocWcXMvnggySpKQkaLVaURyRUnO5UIViqnvEa5lERUXB4/GEoS1jGS/nR8aMj/MslENOMX673S5eXiKO0uKmn7OysjB9+nR8+9vfxhNPPIHu7m7Y7XacOHECa9euxe23345LLrkEJpMJixcvxtNPP43PPvsMwPBiSZxHwgmNJHzD4x4NCfeE+/v7UV5ejjfffBMrV67ERRddBGDIy4tECpXPQ9eTj+PfJeVJXjBwWuHV1NTgjTfeQF9fH3p7e9Hc3IyTJ08KNvsbb7yBTz/9FG63G7/+9a9x3XXXYeLEiRgcHBReE1fGZwoPcY+V/0yMeBnWpk2cNlby1nJycvDnP/8Z48ePF8WbBgcH0djYCGBog9u6dSuOHTuG8vJyNDY2wuv1htVD4J1d6XryuMmKXzYUuDdK8vLLL0Ov12PatGnIyMjAwYMHhxkpo8H9dE6aM1k5xMTE4Pvf/z4uvfRSxMfH48SJE3j00UdhNpuh0Whwxx13wGg0IiYmRiiemJgYZGZmYmBgAFarFW+88YZAA8iTPXLkCHbs2IFXX31VICk0VrSm5DnNzs7GsmXLUFZWJjxm+XnIyCZFTO+O/PyEcMkhGBLerZfGnI+jXq8P41zIilg2SDgaolAoYLFYUFBQAL1ej8HBQdTV1cHpdMJut4uKnfy6NKeygcPDPkSGpu/QM9D9cYmPj8cjjzyCkpISgZ75/X5897vfhcVigdlsRigUQnl5OdxuNxobG8PGiUKLVI2USPP0jBxtoXGme9Xr9Zg6dSoWLVqE4uJiWCwW1NXVob6+HldffbUgdrtcLqxZswbp6enYsGEDtm3bJioWU4Vmjqjw+ia0lrnBNCZfr4wZH+dZOBGNZ5xwIijfaAipAIC0tDQ0Njaivr4edrsdDQ0NaG9vx8aNG+HxeODxeHDZZZcNawvNNzKCUMkbBs7M9ZAhdh4OcTqdSEtLg9VqFcd3dXXB5XINU1pnE5emseD3xL1sfj7axDZt2oTo6Gh0dXUJNMPv96OtrQ0dHR1iU6urq4NarUZJSQkuueQS7N27F/X19cOefaQwFN0/Qec8jZQgXR464oqYvKtJkybhoosuwqRJkwRxz+Vy4cCBA7DZbKiqqkJVVRWcTidUKhV6e3vhdDoFj4d7z7L3OpLHzJ+HfxbJ487KyoLVag1LMYw0FiONk3yMfF/BYBBJSUmIj4+HRqNBQkICJk2aJDKkiPdSX18Pp9OJ5cuX48CBA9BqtYiPj0dUVBQmT5487HoOhwOtra3Izs4WpfU5V0FWlqR0KDxGCibSO8C97jOtYTnsQcgXIT7yXND7OHXqVGRmZqK7uxvl5eUYN24camtr4XA4RAiAzqXVajFhwgSB/qSkpMBqtSIzMxMA0NPTA7/fj4qKimEG6GgiZ7fw9cVDW8RB4ygRkb9VKhU8Ho8odNjU1ISGhgYkJSVh+fLlqKmpEeNNbRw4v4a/++T80LVlAimF8ebPn48FCxZg/vz5iIuLQ2xsLFwuF6qrqzE4ONROgcLLV1xxBbZv3x7WroCuTXNC16V5o4xCvk+PydcvY8bHP0EI4TAYDGFeCOdf0KZkNBpFGeLGxkb4/X50dnaKRliDg4NYu3YtvvjiCwBAYWEhQqEQjEYjXC5XWEycNhKy8Ll3TtckiaSYZKWjUqmQlJSEFStWIDc3V/y9p6dHpAXz80VSeFy4gcTJnHwDAsLDHIFAABUVFWFKgWd5UMpefHw8WltbAQA333yzSFWuq6sb5gGONB58Q6YNim/OFG7h80dGnkKhgMFgwAUXXICbbroJAwNDDezIKHr99ddhMpmwZ88eVFRUCE4NT98l748UmTy28ljKHryMVESaj0WLFiEnJ0cQdkcyYGQYnF8n0t/oO4FAAH19faJDb25uLnw+HxwOB+x2O2JiYnDo0CFs3LgRLS0tmDZtGt555x0kJCSgsLAQs2fPFmgRJxVSqnNWVhbKysoE4sIVFkervF4vWltbUVFRgZycHKSnpwtjVR5HqpJJa4sMAXmt8N9JcdH35fXEvxcTE4Nly5Zh+fLlqKysxKuvvoqrr74an332GU6dOoWenh6BdqnValitVlxxxRUAgGnTpqGkpARmsxkejwdOpxOnTp1CWVmZ6CDN54zPhzx/tP/Q2HJEVq7VQcgtSSAQwLFjx1BQUCCuPzg4iFdffRUulwu5ubmYOXMmOjs7RXFFt9stQsS0trVarTAKyRihDCheLZWHQa644grMmzcPCQkJOHXqFFwuF8rLy7Fz504oFENdiru6umA0GvHUU0/h0Ucfhc1mQ3x8vNgjOSnY6/UKA4kMDTL+eShqTL5eGTM+zrNQbwPidMTExECn00Gv16OxsVG8BKTsxo8fjzvvvBOXX3457rrrLuzevVvEtImwFwgEEAgEkJiYiJKSEsyaNQuXXXYZvvGNbwzLWVephhpxySmNkYwN+l82OijtLDMzE0ePHg1LAwSAhQsXoqOjA62trcNam8veOglHNwhVAMLhcq5wyLCQwwo8FY/f81NPPYVvfvObuPjiixEdHY29e/eira1NHCOHDuT7o2wkIvhR8SOeycJbeSsUCgHXUx+fq6++Gnl5efD5fMjNzUVPTw8efPBBvPDCC8Jbo2cKhULwer2iIBwZMcHgUAlqg8EglBKfP27MykKKkFCrSMbDT37yEzz44INYsmTJsLXBx5SUFM0ZCe9hwhEg+nlwcBDl5eUoLCzEzJkz4fV68Zvf/AZHjx5Fe3u78NrpuhMmTBDGm16vR0FBAW6++WakpqaKZoHHjh3DRx99hCNHjgjFRUqLwilarRbR0dHw+XzQaDTo7e3F4cOHkZiYiMceewyrV6/GM888g5///OfDxoSE1hzxAygsysMftGZ5ETgKtcroCw+NfeMb34DJZEJ+fj6uvPJKAMCNN96IhoYG1NbWoqioCGazWawHGve+vj7YbDZotVp88sknKCwsRFJSkkgVpnHkoZyR1oZKpRLp3D6fT5QC4MRl6iDNa58AQyjkm2++iauuugrjxo1Dd3c3brzxRpEB5/f78ctf/hIzZszA4OCgmGMyQKKiokQBMVozZHCQkNNG98sRyLq6Omzbtg379+/H0aNH0dzcjN7eXtTU1KC7u1s8w6effoqamhr09PRg3bp1uP/++8PeIVrTfK+hewIwjBM0Jl+fjBkf51l4PQKqjEkvHW+iFBMTg7i4ONxwww3C27v44otx7NgxEcMlCD4YDCIhIQF33HEHampqYLfbcezYMVGAh0OlwWBQxNNlYhz3xuQwAwkp98TERBQVFYVB1fT99PR0GAyGEYlZI8HWPBwle5UcPudKDThdqImO4yERDtE2NDSgvLwcs2bNwvXXX4/q6mpUVFQMM7BkhU4/83oEdC2C691ut5gXruQVCgVSUlLw3HPPweFwICUlBQaDAU8//TRUKhVqa2vF98kg5MqMe+wxMTFCsVNYSx5TXuWSRKPRIDY2FqWlpXC73airq0NNTc0wo0uhUCA7OxtGoxEejwfNzc2jIh/y9wGEKQf6X4b9MzIykJCQAKVSifj4eIFkEIJB65U4B3R9j8eD8vJyPPLII0IJh0IhuFwuOJ1OeL1e4b3SHFH2BBWa4mFMl8uF48ePY+XKlfjmN7+J/v5+ZGdni1AciVy/hTInOJl61apVWLx4MRISErBx40Y899xzYYoqFAoNqxVB4+LxeLBs2TLMmzcPU6dOxYwZMzB+/Hg4HA40Njbi4MGDWLt2LQwGAwwGA5KTk3HllVdCpVKhs7MTbW1tqK+vxwUXXACLxYKenh7k5+dj79694vo8zRQIN7BpjrjRFxUVBafTOSyEqFCcLujFCdtkHCoUCrS1taGyshKJiYl4/PHH0d7ejvLyctTU1GDLli2w2WzCaKOsEy4clSVkQq1WQ6PRCDIoZeb4/X6kpqYiMTERra2tWL9+vXC2lEql4NQBQ2nk999/P6xWK9rb2wUCw9cs74KsVCpFA0i+5kcrnjgm/7iMGR/nWQitIOXBmyfxvPWoqCjMmDED06ZNg8/nw4YNG3DixImwds8UMqGXRqVSoaWlBW1tbairqxMbOBkQPG2Mx1HlND0uMlQcHR0Ns9mMkpISXHbZZeLaHJEwGAyi7DEnrY4WK+fX4wZDJI9eNnb4z5G8dTqnWq0WFRk7OjqERxpJCUe6V87XIYSCE/LkFEu6ntFoRGZmJtxuNxwOB8rKyrB+/XoAQG1tbVgqH/e8uGcsh5VIIUYKr8goDjCESFxzzTUoKyuD0+lEVVVVxPG3WCyi2SCFRjjKFGm8RzJQ6G9ymrTf7xdoRnR0NBYvXiyMD8rQ4mEz+t7g4CC8Xi9aWlrCyJ3cIJXvha9tmXzqdDqF8bd7927ExMTgggsuQFtbm4DZ6Tl4rJ/uLS0tDWlpabBYLFi5ciWmTp0Kg8EAhUKBF198cZiXzAnBfB0Hg0EcP34cOp0OXq8Xvb29yM7ORlNTE06dOoWqqip0dHSINgpmsxlNTU1QqVSw2Wyw2+2IiorCb3/7W4EUyPyV0VBH+pyHFWXkke85kbgjWq0Wl1xyCWw2Gw4dOoTy8nJcf/31mDFjBg4ePIhjx46hoaEBLS0tYSgR58GQITDSnNEeSXsXvS9ffPEF0tLSYLPZwlLt6T0lZIWQYbVajeTkZIwbN058zkNyFC7l6cx83sfk/MiY8XGexWg0wuv1Ck4EtWePiooSVRDJ85s6dSpycnJw/PhxrF+/Hl988YVoH80VICm99vZ2WK1W1NbWorGxUXgMwGn0gBAXSr0czTCIpGCio6MxceJEzJo1C/PmzQtDBOjl5CgEKZnRzi9vZpHSEDkaEckg4RsDKTselgGGFGtycjIA4MiRI+jp6YlYZnyk+yUlxzMf+HXJs6QaLbGxsYiNjUVmZiZcLhfMZjOOHz+OdevWYffu3aJkO38GHnsmb5MrUlIMMTExYemffOz4c1itVuj1eqSlpWHhwoVobW0NI/nJc0HIm1KphNVqRVRUFOx2Ozwej7hX2bg504bMDTZgCHHgWQMrVqyARqOB0+mEw+EQtT84b0hOU6Xz8vvhx3I+CH9GrkzpGvHx8di7dy/mzZuHyy67DLt27UJjY+MwhIJziTQaDYqLizFnzhzExsaiuLgYVqsVarUa06ZNE5U2+dqSuQLcOBgYGEB7ezu8Xi8qKythsVhQVVWFnp4euN3uYUbAhg0bwsZep9Ph//2//yfGWeZcRUI6+LsBhCM8AETqKV8rI3n9er0e11xzDXp6etDY2Ain04n/+Z//QVxcHICh0AUZHvw5eI0NCmXJ40QhR7mmCb0nr7/+OvLy8pCfn4+kpCTY7XaxVrVaLRITE6HRaJCVlYW0tDSoVCokJiYiOzsbg4ODwiEhA4Qby4RG032P8T3On4wZH+dZent7oVarYTQaRdyUiorl5OTAZrMJpVRVVYWBgQEUFRXB6/XipZdeCmseZzKZBEwdDAZFi+n29nY0NzeLHhharRbBYBA9PT3Q6XSiBgTB62cSvvn4fD48/PDDKC8vxy9+8Qu89tprYQaOUqnEtm3bwqDrM6Xd0ibChadncu+TSlnLhhOH6oHTHhqvf0AoBDC0WRsMBsHB4UZHJC6EVqsVY02bNm1wMvufNrqVK1figgsuwNSpU9HS0oLm5mZs3LgRb7/9dhhCQlA2KQ7yuKgoFV2P5o2M1TOJQqHAf/3Xf+HSSy9FUVER1qxZgxdeeAF1dXURj1UoFGhvb4fD4UB6ejpeeOEF7NmzBxs2bMDBgwfR3t4epsC4QcGFzwuH+mmO09PTER8fH/adGTNmICMjA9dddx1MJhMOHjyInTt3or6+Hmq1GqdOnQoLA/H5Hq3GxZkMo1AohK6uLpSXl2PevHlYsWIFFAoFfvzjHwsOFr0j5EF7PB7Mnz8f11xzDSZPnox169bhkksuwR133IHLL78cer0eM2bMQFlZGTo6OkSKKucvRUL16J2RDW9+r1xxcwTB7XaLuRgYGEBHR8eIhGBas9yQ55/Te8z7pEQSXlwvKioKGRkZKCgowIIFCwBAcDsmTpyIOXPm4MMPPwxDIgCImjn0DCNdh5POqeEiIT89PT1ISkrC7bffju9973v45je/KbJqFi1ahPvvvx8ul0scp1KpcPToUezYsQN6vT7M+SGjlK6pVCoFCgYML98/Jl+fjBkf51lcLpeoXSBvSH19fSIWajabBbJAMdKf/exneOONN0QsljwiggYnTZqEgYEBdHV1oaurS+T8E2GKsmtICXAvZiRvn39G/26//XZMmjQJc+fORW9vL6xWq3hZQ6EQ9u/fj6amprDNcSQEg2/GHLngGzCdl5SyXGWTuBf0OW2GdF4SIvqGQiG88cYbqKqqEujBmbx5ztUhtIRSazkEXFpaiquvvhrBYBCLFy+G1WoVKYW/+MUvcOLEibDUWyItUr8JIq7SvPFNj7ImCF2R54yQEmAobEehseLiYiiVSkycODHsWfg8qFQqGI1G9PT0YP369QgEAli1ahUmTJiASy65BDt27MC3vvWtsO/Iyo3D9ZHWD23aH3zwASwWC+bPny8+NxqN0Ol0SE9Ph1KpRF5eHq6++mr09/fj5MmT2Lp1K7Zv3x7GY+DGKUclAIjMI0ISyWgnwikVqOLzS+/e4sWLRel7El5vIjU1VRRji42NRUlJCVavXo2XXnoJr7/+OlQqFT744AO0trZi06ZN+OMf/zisLgx/BnonOUGUlK083vz7PP1TrVZjw4YNuOCCC5CRkYE//OEPWLx4sQgtyuE8brDLCIy89nl5f1orCoVCVGgGgJaWFsyaNQt/+tOfMGPGDKSmpoq04LKyMqxdu1Zw2Sh8Bgw5UJTBIhfwovVMnAsaLyIa03t1zz33IC4uDlu3bsVPfvITPPHEEzh58iTa29uxYsUKBINBvP/++9i6dSsMBgNmz56NvLw8+P1+sQ8olUPVhMnQ5IRhAOJdHzM8zp+MGR/nWWgjJsIaKU36fXBwEMnJySgqKoLFYhEt26Ojo3H55ZfDarViw4YN2LlzZ9iL6vP5UFVVhVmzZokGTERgBE5Dlzwjg5CRs71vkoaGBkHeM5vNGDduHCZMmIC0tDR4vV4UFRWhubkZbW1tw6DxszFyuBfLPX9gOCGUfufn5cYL9+QMBgNMJhMUCgWWLl0Kn8+HI0eORPT+RhIZeqXrk/cdFRUFi8WC/Px8aDQa7N27F/v370dycjJqa2tFYTeO5nBlwhUMESc5VM09Vvk++e8xMTG44447RMM/r9eLpqYm0Rk3Pj4eqampmDVrFpxOJ5xOJyZNmoRgMAij0Qiz2YyGhgZER0djz5492LJly7DrnCmcBpwONfA10Nraip6enrDzEJJFBpZWq4XFYkEoNMTVoVTc5uZmtLe3D1sDshcvrzt6F+RGdqFQKIz46PP5sGXLlmFeOEe8oqOjUVBQAJfLhSNHjmDdunXo7e2Fy+WCRqNBfn4+0tLScOTIEdTU1AwbG5pHfk7+Myk52Qjm60YmRfPsokAggKampmFF5+i6/HgunEQr3zMPD/JjyNgPBoOoq6vDmjVroFarBfF127ZtOHTokGigyd8fQjEj9VTh64jPFSfK05gdPXoUmZmZiI+Px5///GfMmDFDlO/3eDzYsWMHjhw5gpaWFnz44YfIz8+HwWAQa42/d/K+QWuDxmrM+Dh/MmZ8nGfhJFBewIYbH1St0Gq1wufzwev1IioqCpMmTcLEiRPh8Xhw9OhR0cMFGDI+Tpw4gSuuuAImkwnAEKteq9WGGRu8Wl8gEBAhk9FEjg0Hg0E0NjaKNL/ly5cjNjYWqampCAQCyMjIEPfAN7/RzklCGy83GshDo/Hjv9P98N9JacvjbjKZEBcXh2AwiIsuugiHDh0KazLH7y3SfdFnfKPnzxIKDZEYOzo6cOWVV6KtrQ0nTpzAunXrMGPGDBHmiYqKEmExuje+JmjT40XoQqGQQDsI6aH74hsmPb/RaMRVV10lir9RNVqVSgWr1YqMjAxceumluOWWW1BVVYUTJ07gwgsvRGxsLPr6+tDe3o79+/cjEAjgvffew44dO4bNn8yXofuRDQM6nn72eDzo6upCU1MT0tPTw451OByiJoPZbIbX60VCQgIKCgrgdDrR1taGDRs2hGVmcA+ekxX5NUlh6XQ6OByOiMaHz+eD3W7Hjh07IhofwBACQtyByspK7Nu3D6+++iqAIe84Li4OF154IaKionDixImITQxlRJCjGvx37ijQOqHvy2ueDDeVaqgr65YtW4bxXfh1I6GDfC45isZDhLJw1GpgYAB1dXU4efIkEhMTUVlZib///e/CEZJr9VBNDT4XkQxanrlGKblkSA0ODmLLli2YNGkSpk+fjieffBI/+MEPoNVq4XA4MDg4iDVr1ggOz7p16/Dd734XwFCLC16/RH4uHtLja2pMzo+MGR/nWYg4RYQ0vsk5HA4AEMS7Cy+8EPv37xdhl4MHDyIxMRGlpaXQ6XR48skn0dbWJjaSxMREpKeni7i0UqmE1+sN40fo9Xr09/cL0mkk4yCSIuafkyHj9/uxYcMGPPTQQ8jPz4dKNdQA7/e//z3a2trCYFS+qZwJbeFoBx3L01vlMuv0d9pg6bk498Dr9cJoNCIpKQlerxcvvvgiysvLw56J35tsHMkpsGTY0b1STY6amhq89957uO2225Camoq77roLq1atglarxbp16zBu3DjExsbiRz/6EXbv3i3QJ4PBEEZwBIayQqiEODceeQvzSJuhyWRCTk4Oenp6YDQaxTwcO3YMpaWlqK6uRnNzM5YvX46oqCjs3bsXL7/8Ml544QW89957GBgYQENDA9544w0cOnRIpAFzGW0OZXKjvLFThkJXVxfefvttMY4ejweffPIJ/vu//xvXXHMNbr31VuzevRt33HEHCgsLMX78eMyZMwfbt28fVg+Czz9XGPw++/v7RWaIXD8mEAigs7MTDQ0NWL58OdasWYPe3t5hSjclJQXPP/+8yPhSKpX461//CpVKhbS0NMyePRu33XYboqKikJmZiQkTJqCmpgbR0dFhyAInxRKaQsZnIBAQ4QlaezIqQceHQkO8mrS0NFRUVGDixImIjY3F1q1bxTtDx3GDRw5t8nEiQ4bXK+Fjyddceno6Fi1ahHnz5mH79u349a9/LVo+VFRUAIAwpAmBo+tR2fOYmBgoFArRXJPeAwqDcOOcaudQ6IfG8eTJk6iqqoLP58MjjzwiDCaOXHDjjIr70V5CGXtk1JKT5vP5YDabEQgERiXPj8lXlzHj4zwLpaASmctsNgMYQinIqp81axa+973vwel0Yvv27di5cydOnjyJuLg4+Hw+3HzzzViyZAnKy8tx+eWXY926ddi/fz/S0tKQnp4uSFSUWktezODgILq6uoT3TWl5MuQLnB1Rj/41NjYiKSkJSUlJAIaKI23YsAHHjx8Xx/PNQjZ0Ink63JCQy1JzoicdO1JMPTk5GT/96U9RWlqKzMxM9PX14b333gvLBjibzYR7PRS7BiA4N1arFS6XS5R8v++++2C1WmE0GsOQBgolPProo2hra8Orr76KTz75RGyqpIBCoZBIeSVCMj0zbcIjyYwZM/CTn/wE2dnZiImJQVtbG6qqqrBkyRI88cQTgo9zww03iIJRVA+htbUVhw4dwmeffYaqqqph2Q6cMzAaBC2HxPg4B4NBlJSU4K677sJ7770Hi8Ui+mmsX78e/f39eP3117Fp0yZcf/31OH78OMaNGwebzYZvf/vbcDqdYo5J+fB7HIl8yj9Xq9VifVH6+o4dO+Dz+fDmm2/CaDQOM7AoE+izzz5DXFwcmpubUV5eDpPJhISEBGRkZCA7OxsTJkzAb37zG2zcuFGkNPNie7SG+DiScUJKku6Tvx8cAeDrcXBwqM3BihUrkJeXB4VCgR/96Ee49957BV+ClCy9J5wIzOeG1jXvHssROV6/58Ybb0RWVhbsdjt27dqFkpISxMTEoLS0VDQFXLVqFTo6OoTxpNVqRUVTSi2mEBOtAXpOeic4t4WegfYqMiTp/qjhYySkVavVYsWKFUhPTxfZVZT9xcM6VCOE+FeUYRgVFSU6hY/J1y9jxsd5FrLaecVR2qRpY29qasK2bdswc+ZM1NfXC/5ET08PoqOjsX37digUCtx0001ITk5GdXU1fD4fVqxYgYqKCjgcDsH7oBd7JDRBjivLL+2ZuAUAsHbtWmi1WmF8xMfHiwwb2bDhG2mkcwGnlUek6/KNKBKfhI9zVFQUYmNjsXDhQowbNw5qtRptbW2orq5GSkoKpk6dirS0NAHfajQaOBwO7N+/f9g9yd4hzzZRKBQidZQMg71798JgMECr1UKn0yExMREHDhzApZdeioULFyI7OxuJiYkYHBxESkoKnnzyybDnILSKx+q59zqacm1tbcW2bdtwwQUXoLm5GXV1dSgvL8fnn3+OtrY2Qfarra0Ni9kHg0G8+uqrKCwsxKJFi4T3LF93tGuPtH7kv1dXV+Ptt99GT0+PIF+HQkOdit1uN/x+P7xeLz7//HMEg0EsW7YMFoslDC2IhNCRpysrW/pOVFRURGQMgMhCA4A77rgDH3/8MTZt2hR2jZiYGMyePRs7duzAwYMHRVXVjIwMXHLJJZg4cSKef/55bN++HQ0NDREzRuR3itZfJCIpKX65nL4c2vL5fIiLi4NOp0NbWxs+/PDDYV1j+TvI30sSCqPJKCc30v1+v+CqRUVFiW61zc3N+OSTT1BXV4dZs2Zh6tSpMJlMuOqqq7Bp0yacPHlSpN5TyI6PPTe6eZiDj4ucEk/7mpzOLO8HZGjGxMRgwoQJiImJQUxMTJhxz9Pz5bni4aexCqfnT8aMj/Ms9MLIWQFkKAwODqKjowNlZWXIy8uDRqMRJau9Xi8sFguOHTuGQCCApUuXirb1KSkpWLBgAZ599ll0dnZCrVaLlF2eNsa9Ksq4ACLXtzhTeISOoSJIJElJSdDr9WFKJ9JLPdLvsqfNRd5Y5N9VKhXMZjPMZjOsVisKCwuRm5sr4udKpRJ6vR4TJkxATk6OCEsNDg7CYDCgoaEBR48ejdi9UjY+uAKgMtF6vR5GoxH9/f1obm4Wys9gMMBut0OhUCAnJwdarRZ2ux3FxcUwmUx48cUXRQiOb6o8tCBnP9DPfAxCoSHeRF1dHQYGBlBdXY3y8nIcPnwY69evDxtbQk+4F1lZWYlJkyYhOzs7rKAdH2s+HmdCjWQDgX4/deoUamtrEQqFkJqaKkIfVBY8GBzqybN7925kZ2dj7ty5iI+PR2JiYljfFI56cINipHAijWWk59HpdIiNjUVdXR2mTZuG48ePhxkfFC4tKSnBhg0b0NbWhu7ubiQnJ6OkpASTJk2CQqHAG2+8gerqatGhdbQxobGn95QbBjy8KKM7NJZ0vN/vFymsLpdLdGzlx/N1Eum+aM3JhopsfFCTv9jYWPh8PrhcLthsNmzYsAF79uyB3+9HVlYWoqOjsXz5ctFtOioqSrxvvEge/ZMJsvKakY1wuj/uQMmF3GjegCFUJy8vT4Rf5HYIdA+RjED6fayr7fmTMePjPAtZ6WQcUDiEqp4CQ+WnFy5ciLy8PHz/+98X6WoUrjGbzbDb7bjmmmuQnJwMt9uNrKwsmEwmbN26FTU1NcK7BU6/wBqNBnq9Hg6HQ4R5gPANgI7n/8tCLz0df/PNN2PmzJni88WLF2PXrl3YuHFj2Pn5OWXSHd8YucFBGzNHAjjMKnM0tFotli9fjpkzZ2Lu3LmYMmVK2DikpKTggQceEPdA40/Q6759+/DJJ5+gqqoqbIOm4kcUciGyHFcSUVFRKCwsxEUXXYTo6GisXr0ara2tYSz/zz//HA0NDSguLsaGDRtw7bXXYtKkSRg3bhyOHDkiNnsiQGo0GuGpeTwekUJK60cePwCYO3cu/vjHP8LlcmHfvn1Yt24dduzYMSpyQpyhxx9/HGvWrMGTTz4ZNq5nG+vmio0TGrlCJeOCjv3hD38IADh69CjWr18Pp9Mp0i8BYPbs2SIFV6/XIyoqSnxOz0NrhtZ1pI68pKQtFgtcLlcYfE+ftbW14cknn0R7ezsqKyvFd6OjoxEfH4+0tDQR9klMTITRaMT111+P6667Do8//jjeffddeDwe9PX1iWeUCdByOIV71lxIEfIQCY0jhWnkcwJDodzLLrsMb731llijNAe8dLls2PP3jOaPirvR9aOiopCXl4dLLrkEP/jBD3DRRRehpqZGIFcOhwPPPfccPv30Uzz00ENYsmQJ1q9fH3Ytencp84ijiIRGcJItHWMymeD3++Hz+cLuiWoX+f1+QeDn683n8yEUCkGv12P58uUitETojVarDVtPer1eOGfU/Zb2CTl8NiZfn4wZH+dZ6MWgltMOh2NYvPXw4cP405/+hL6+PnR2duL48ePCc9bpdOjp6UFXV5dQhNQx0uVyoaioSIRoCCL0+XyigqrL5RI1DDweT8RUyLMVUkxz585FTk6O+Ht/fz+ysrIwbdo0HDp0aMTvjiTk5dEGwuO+tJnzjdpiseAHP/gBAoEA7HY77r//fmi12mGZPNRDp7e3F0888QSWL1+OlJQU/OUvf8GCBQvg8XhQU1MDh8MxqmfocDgEr4Y2PYVCgUcffRSlpaXQ6/V44IEHwgi9wJAH1tjYiNbWVhw7dgzd3d04ePAgtFotbrjhBrS3t6O3t1dkKfDQAY0Drx47kge7du1akRrr8XjCsgNkD5h+V6vVmD59OuLi4nD33Xdj8uTJuOyyy8RcccOF/peVKJ9XHtrj35OLxmVlZSE3NxfFxcW49NJLceDAgWHjv2fPHuTn5yM5ORkfffRRWEEthUIhFDGP2fMidbLY7fYwA5sUZ2NjI0KhEA4ePIg77rgDfX194jtEVq2ursazzz6LlStXYsWKFbDZbPB4PGhoaBBoDr8/MiRlkcMuPAREyAAvI87ngJ6Ne/yURk/vDhE7SWQkQzY8yDmhz5RKpSA0K5XKsHRktVqNxMRExMXF4ZprrhGcM5LBwUG0t7fjD3/4A1avXo1Tp05BoVAIw5CcLZoHqt1jMpnCKjjT+qfmdIQc8rVLNVsAiH2B0nH9fr+Yf6VyqM/Lo48+iu9+97vYtGkT3n33XeEA0vUIOeJIMdXgORskeEz+cRkzPs6zcKIZvdDcuyHSVXd3N2JjY0WJa41Gg82bN+Omm25CR0cHKioq0NPTA7PZjGnTpqGwsBB///vfcejQIfT09EChON1US6/Xi9ANwbsKhSKs8VwkdCLS75E8ZiKQkQdjNpuRmJiIxMTEYQqPSySlxmO+I6ExtHGWlJRg8eLF6O/vx5IlS0SjKavVGkZao3THpqYm1NbW4uTJkzh8+DAaGhqQkpKCqKgovPbaa8jMzEQgEBAGoRwy4GWXuZdIm+S+ffuQkpKCuXPnwmQyCW+JiI38XN3d3bj22mtx4YUXwmKx4IknnoDT6RQeO80XPbfcX4IbYzJS5fV6w5AvjiZxJIMbD0ajEddeey0MBoNIl4w0X1zkUABdaySCKo0nZe+oVCrk5+cjIyMD8fHxiIqKQlJSEurq6qBQKJCcnIxvf/vbmDVrluiUKhcVI2SMrs0VNr8nOpbmi941rVYLm80m5tTj8aCtrQ0XXnih6Ku0ZcsWdHd3Y9KkSSgqKkJraytiYmLQ09ODU6dOoaOjA2+99RYOHjwouurK70qkd0f+nB/HDVdCLCIZjXycaV5jY2Nx6623oqmpCSdOnEB3d7f4XL6efE3alzjJW15r1PCODDIK3/HsNoPBgKuuukqkbcvVXeme6Xe6Nj+GEEl6d+hnbjhFRUUJUi2VZ6d3hb+vodBQ5dJdu3bhm9/8JiZMmIAZM2bgo48+Eg3mlErlsDGQS+zz+xmTr1fGjI9/kpCXwhUYzzn3+XxwOBxQq9VIS0sTXsHUqVNF9dKWlhbk5+cjJycHarUaZWVlOHnyJFwuV5h3zF8kziUAhhP3uMgKWBb6bm9vL9xut0iZMxgM0Gg0Z1UCPNL1ZINEVnD0eU5OjmhuV1hYCJ1OJ75HhlZ3dzc2bNiA/v5+1NbWik62AFBTU4PY2FgsWLAAe/fuhdvtFgbbSPfGjUdSZuTR22w20YwtNzc3rEEV56Lo9XoEAgGsWLECBQUF6OjowL59+wQ8zMeWc4Q4yZaPydmERPg4RppznU6HBQsWICYmBu3t7Th16tQZ5ynS2iCDhMZIrtzJr69SqQQ/iJqmTZ8+XdSL0Ov1uOOOO5CWlgaXy4X6+nphYPLzESeCIyuRDCUaT1qXvDIuCRkber0ekyZNQmpqKnQ6HQ4fPozCwkLk5+fj8OHDqKmpQUVFBcrKykQxLV41ld8DXXukLBzZiKRn4iTT0Yx4SrWl4w0GA+bPn4/ExETU1tYOO8dIwhEa+dpciff19aGqqgo2mw1msxlZWVmipLvT6YTRaMSECRMwZ84cVFVVoby8fBjiJq8fMkDkceH/c8SH7kd+P8jgl9HBYHCorlFDQ4Nw+HgmDx8fjkTRPHBDZkzOj4wZH+dZ3G43NBoNLBaL+Lm/vx9utxtarVZA+B6PB48//jg6OztFy+8ZM2bgqaeewsSJE3H99ddDrVZj5syZ+Pzzz7Fp0yYRX6VNxOl0QqVSweFwQKlUQqfTQaPRiOJkFHMFwsMuchbASDyBUGio8VJ1dTXS0tIQGxsrPrPZbKIXyJmMGPm8xE6nuC4hAcDpuLhKpYLf74fL5cLixYvDNkcyiPr6+nDy5Em8+OKLwmuWr9vV1YX3338fSqUSx44dE5/J9ysrb0plJm/bbrfj7rvvxpw5c6BWq7Fq1Sq89tpraGlpQSgUgtlsxvz58zFr1izk5eWho6MDkyZNgs/nQ319vYhXU4ydECqtViuyBCiDiRsfsvc7ErFX3mB5dhUwZAxTm/uYmBjo9fph88TXAZ0jkodPQhs399pDoZCAyakeTVdXF6xWK8xmM37xi19AqVTioYcewpo1awTXw2azhVXMjbR2yDMFhlfrJIODhzA8Hs+wbBSHw4Ff/epXSEpKwm233YbZs2fjZz/7GZ5//nmcOnUKu3fvRmlpKR566CFUVlais7MTg4ODiI2NFaRZenZgaJ1qNJqwbq18vuheOIeJHAa+1jgvhMaVxsJiseCOO+4QczYwMIC+vj6cOHECvb29w8ZppPeRDMXBwUFhgFNp9ejoaNHbqKOjA/v370dlZSW+9a1v4YYbbsDx48fxhz/8ATU1NZg7dy6WLFmC9vZ2gUSo1Wr4/f4wTgkZG2q1Wlxbbl/v9/thNpsRDAZFiis9O39P+DNS2XVqWsfRZbr2q6++ir/+9a9iHCjFl88X7Y16vV68mzSeY/L1y5jxcZ6FNgjqb0CkJyIQGo1G8Vl9fT08Hg9efPFFvPnmm+KloJdsYGAAOp0ON954I6644gokJSXh1ltvxY4dO1BVVSUgfzo/efXcEwAiGxWRJJJyo/uQ/56QkICsrCwcPHgQQHglxzOJ3MiJe9O0WYwfPx6zZ8/GhRdeGPa9QCAAg8GAP/7xj9i1axdqa2vh8/kE6kPnkj1TQoRGQgcIiqXrqFSqsAJIBoMB999/P6ZMmYLS0lLcdNNNuPfee0W5/Ly8POj1erHRBoNB/O1vf0NVVRVOnTolNjqKq9OmSqEx2jzpnrjyIS9Pzobh2QuR5o+H2xobG7FkyRK8//77aGlpwYkTJ8LmnY6P9Ls8d3zMSLHK6aPA0Ib/xRdfYNWqVcjIyIDFYhHl7++++26sXLlSXOuDDz7A3/72NzidzoghFXpOjkzx++D3JYekqAw33SNV7v3LX/6C9957D3PmzIFWq0VzczOqqqrwxhtviHkhpdnX1zfsvaF783g8oqhgJP4HcLpoGClL4ivRs9A/Wgd8rrVaLRYtWiTq9jQ0NOCee+5BQ0ODCFPQOpGNUC4coSKDgbgTHJWjufvggw+Ql5eHadOmobS0FNdddx327t2Lq666ChdddBGeeeYZrF69Gj09PWL8efo/bwPBwyl8/qKjo+FyucS9UfYfEULljCy6fxp7n88nCrYFg0EkJydDpVLh1ltvRWpqKn75y1/CYDBEJLHTOFGRPYVCEcYxGZOvV8aMj/MsFMvl8DARRwcGBkQefSgUEmlpFK90uVxhlQfJc9ywYQPq6+uh1+tFPQt6mWNiYkRDNYfDEdbtlZSTLNzD5Sx6+kx+2RsaGnDw4EH09fVh4sSJqK2txd69e0V4gySSURMJVZHT6SJtCn19fejp6YHdbkdcXBzsdjt27tyJTZs2wWazYe/evWhra4PD4RhWAVMOPQHhFVQj3SvPOKBicPzeVCoVamtrYTAYkJmZiX379qG3t1cUZdq2bRuMRiPGjRuHuLg47Ny5E2vXrhVQNb8O3S95blxxcCSD3yNXKnT/kTKCaMxl3oBOp8PChQuh0WhE6qQ8b3IdiEhrgVeUlDNbyPjk4RKXy4XnnnsOu3btwvTp03HjjTdCoRjiexCStnHjRtFnhhsxcohupLDEaKJQKEQlWbpXqsTZ19cHn88Hm80muFjUOXqkseXC74eMRS7c0OXn42RZjnzIf6f5pgwWAGJvoOwsHurhaaSjjRNdg6MQslEeCASwfv16nDhxAps2bRLrPzo6WvCFNm3aFBYSi4mJgc/nE/udxWJBZ2enOG8wGBT7IF2PjDLKeuG9joLBoOhKLWfkEGoCQPA4iNdERRbVarUw9Gg8CHGla9I90+djfI/zJ2PGx3kWzv4HhhfO4Zv7wMCAgPbpZeKbDv2rq6tDc3Mz9Ho9tFqtYNvzDZpb9jzPPpIXebZCG8bx48dhs9lQWVmJxsZGVFZW4sCBA2hqahLHjXYOYOTy7vSZbHw4HA5UVlZi48aNSE5ORm9vLzZt2oRPPvkE7e3tYTF2IsPKCps/s6zQZFEqlWL8OQJB51epVKLxWUVFBfx+P9rb22EymWC1WlFVVQWtVovc3FwkJSVh06ZNKC8vF144Tw0kZcMRH3mMIhkAMlIjK8fRwl/R0dHIzs5GQ0MDmpubhfERaTw4khJpPDkhkF8z0rwODAxg+/btaG9vh8fjwbx585CWlibIn319fdixYwcaGhqG1aDgRqQ8RjKyNRriJo8V/Uzp72Qc8nRvPqZnI6NV9pWNj9G4GaR0yRDJyMhASUkJDAaDWKNOpzMMyZFFNiZGMpx4eEc29ILBIE6dOoXe3l5xTQDIzMzEoUOHUF9fjxMnToiqsDR2fIzlysU87ETCibQ0hmQA8HPQe8j5NfQ7fc55TfSMRBznRi03lmXHJZKzNiZfj4wZH/8E4Yuc4FvgdPXTwcFB8YIRxE/GAuWdU6fP1NRUAcEmJSXhgw8+EEqSQgPAaQ+JiK5A5GJHMtoRSXHIBsOGDRvE5sJffpkUyWHfkcZFhs45VM83P7/fjy+++AJffvml+C6/Jm2acjgFOF3PgL5HrHogvMOljIzwDdtoNMLv96O/v1/8nYp61dfXi3kkD0uhGCpERhuiwWAQ6ZEAwsiK3PPkiAYfP7niJY0ND43I4829Xv6MFJaorq7G4cOHUV5eHlY0jkTezOX5lceWjDIaV0LruEdP5Gq32422tja88soruPvuu9HS0oKysjK0trZi8+bNqKurQ1dXV5iCiqS4+LPS81P6bSQDJBQaqv/AoX1e7I34NvQ856J8+HsSqdIp59/IRmIoFBpWBItQS86hufLKK/HDH/4QqampAID29nbU1NTg5MmTYQbPaKgeCVfChFQQekBhPboXCptQphBlgTQ2NqK5uVmMvcvlEnVqKJxKnBLiYtD+RfVbZMOewkmDg4MCyQUwLPNEoVAIbgndM++pEx0djXHjxol9kD6j66tUKlEckYfHqAz8GOpxfkUROlfcckzOShwOB8xms+j2yhu70ctAXnBMTAx0Op2oz0AbB0HipCB5Oh5lU5CxQUiJwWAQCo7gZXqR6NpA+EYZKW4eyWPmx9CGRMgAESf597kBIXuoka7FoWRu1ACnMxzIiKPfaQOl74zkncv3zhU1D/uQkAKjDY42UtrEiLBGCorizDQulBLIDQyCdcnwoX4z9I8jLPQ/1SWgjXekkAZdIxKyROPCm5vFxMSgoKAAfr8fnZ2d6OvrG4bSyQhLpDmTx5vGmsaAp1TS3+X74kWdaP456sGvJxNvZYVOVUmpqBiJnOkAQJAUKXOLlNDZ8JTonLT+ZEVFzcnIoKTz07NwpJJfjxvk8roNhUIoKirC4sWL8fDDDwMAHnvsMbzwwguoq6sLe7ZI6z3SeqH3qb+/X9TXIE4GKWfipPEUYPldp70lLi4OTqcTXq9X1Bni64MbPFzo3SCuFnAaPdLpdOJd02g0op4HH3f+3tH5dTodpk2bhrfeegvPPvssnnzySdHZlsZfq9WK95m/r5RJR71o7Ha72MvH5OuRMeTjPAuH6cmboQ2Seov09/cLIwM4zQanfHTawHhefTAYFOQq3ripv79fhG7onFSGmfcpiATpj/YMJJEgb94PhCua0c4rhwjo/0gKVIZ/+Xe5IcLPMdL9k0TyPvnGLCt5HmcnQ46UHYfR6btkDPG4vVKpFCnB5KWR4uzv7w+r9UGIAW32kWBw+RnlcePzIYcrAoEATp06JYxWmRNzprkj4SEOeW1wRc7PJyM+kY7ha0g2XrnikxUZvRfy+ETKhKFxIN6BjO6cSbiBxBEetVodRvQeTSIZyvK6JFEqlZgxYwZWrVqFUCiEU6dOoaGhQbRc4M8pG9QyakXn5nNEip+QV6phIiOMdH5S/HSPRMQFTnOmOHLFQ4vyM9P1aX5lo4uQQc4BASBQEnJ++vv7YTKZBBH99ttvh16vx5IlS9Df3y86EtOeSpVOyfihd5few3NZD2NybjJmfJxn4dwL4DTBkMdXOUmPb8i0eVCGDCk9Dvvz2hJEqOIvPfewInn4wJnJaLLISkpWXPL35GvyDYk88jMZDXxDjmS40DGRDBb53iMZG6M9P58rblhw7182Zug7/LoUmuGwsLw5841V5vBECj2cSWTFTRIMDqUycuQikvFypnPRvcsG6Ujo1kjKVjYy5OvzMZHPJ587Ekk20vqisSYDL5KCHk24Ucl7/wCRiYryOzDSZ/Iz89+Tk5ORn58PYKjIXW1t7bBsnpHmT76ePEb8/slo5ka2PAf8XPQO+Hw+gSjR+ufveqQxpfNROJQb7Hzt85CNfO8cEeXXdLlc2LlzJwYGBhAfHy8Kk8nOC3+/FQrFiHvSmHx9MmZ8nGehhU6L3Gw2Y3BwED09PQJu5i84GQ/UOIoqeBqNRnR0dAj4kTJayAPhMXaKYVMPA2Jvk6d9NjKSEudKh15OvhlFUhgydE7HUyVXXnI+kjKM9DfZ+x7tO7Jw40X+uzwGtClz4zCS4cIRCuA0F4KMFfo7bcjkeXEjhtIIySClHhY016MplrNVbJGUNn+ukc4hj10k9IMbzKONK78e5zOQ8BAbEJ4SSkqIp/9Gysrh7xSvHMs9axLe9VZGDs7G8+UGIyngSOMm399I4xPpO3QvLpcLPT09UKlUeOutt1BWVga/3y/ulyOAkeZINhapxg7V5OB1ZwCIECEfN5kHw5ESujaAMG6NQhHOz+BCqGIoFBJZX6FQSKQqEzplMBjgcDjC9lPKFoyKikJMTAy8Xq8o1mi32/H9738fGRkZSE5OFiFPucQ61QOhfXdM/jkyxvk4T0KcDw7HEuuaE0ypzgEv363T6RATE4O6ujpB3oqJiYFarUZ7e7uIU/b19cFkMgnoUKPRCAVGsXSdTieUu8FgQDAYFHnsJNTjgV48IqkqlcowQhidk0JHSuVQTjzBnMRZkRuMGY1GsZEQgkMVLrVarajQKnubIynESJu1nHFxrsta3qypV4asmLkC5NlEMTExcLvd4nfuXfHz0/9UjIvfL49fKxQKUXBsYGBAGJTy84/2nGfrBcte5EjXiPQ5Twul9c0NKvKEKa2clBmdgwxifl4y2EjJabVaYUBQkz+K0QMQ9XCioqIQGxuLnp6esHOOhsJFQk7oGeSxjDSu8rkjCc03J4DS+gHCWzDwMaCf6XdCWOg8ZChEui4PRfL740abbCzw56JrUeiPOzVK5VCjQ6PRCLfbLcIhfH3z83LyO90vNXjr7e2FWq0We0FnZ+fXjjbwfeNcwyh0L2Ocj69fxpCP8yzEvqfuskD4JuX1esVmTZsBpdyaTCZ4PB54PB5RAyQxMRFer1ew6cmgkJU/nY8IksBpL1FWoByJoDx4hUIhlCH3Av1+vzCY6EWmMJFSOVQQiYqbUaYOryBIRhjPCJE3q9E88JEUr0ymkw0ZLrIClTd++pnGjTd+o/HjSARxbjhhlJNjOSwciWRI9yCjClSULhL8fjZyNorxXI6P9Dkn+pJwpIJCgwSn0/oij1auE8JhcVLKnIAYDAZFJ1TZIKRKnzKHhB8XiXMgP2skEi3//2znQz6er1F6F0OhkID4I4XyZDIqoWBykTk59Cff20j3zrOTaBxpvqjOUCgUCkNzyHGgysl8vIl3FgwGRTE3QktozuicTqcTMTExojWDnJ78dUmkfWVM/u9lzPg4z8LzxklZqdVqaDQa2Gy2sFijRqOBx+MRhDmeb843rf7+/rDUXCJLcSVJxgPfHHiaKOeBcA+eNgeuNIFwUibFtwnu5EYKbyJG5+QQp0IxVDWQw8TyBnsmiWRYnI2HL59/tGuN5PlyI4GfRw4FyNwEOqccShjJQ6fznK8N+esUXg+DiM00JpwrQM/KQzTy3MvPS+NF64inSfLzceNYrifBRfbOz7Re6L7oWDLmk5KSRNG70Y7n16XP6H2X14b83ZG+z8/Dn0n+7pnWOiEYoVBIoFJ8LOmc9I9zOIgACpzeb4i4KY8pX/e0LsiQ0mq1Aukak/8sUZ75kDH5KkLQud1uR0xMDJRKJYxGIzIzM6FSqWA0GsUxCQkJQrHzQj4EWWo0GnR2doahBd3d3QCGwjcEexOkz+FZn88Hj8cDp9MpNlE6llICgdOZNnR+ignTpkFloAOBQFjBLOD0JmO32xEVFQWj0YhQ6HTNA/J+tVqtUExUfv5MClbejOlvX1X4Bs43eF7SmZ6NPDi5NLRCoQhLUyTjgzw9OpZiyzLKwjd6HnKgc/wrb8y0lsg4oHGjrB4e0qOQIKV+cwOUFDJB+zT2NEbR0dEis4F+pvAjV5AjoVmyQubzzT8fKfREnAOr1Ypx48Zh2bJlyM7OHoZWRVrH8rXouWmtkEFDY0B/5+8xN6joHumzSOEOmTAa6b4IwaA9h8aXeigRwkfzSv+oGBtw2uGgfYHufXBwEA6HQ4RadTodDAaDKI5Gzx0Kna7m/K9uZI/J1ytjyMd5FgovxMTECEjYZrMhEAggJSVFlHQeHBxEXV2d+I5arYbL5RIQNRWoUigUInWWvudyueD1esXmQeiCTqdDV1cX4uLioFAoRHdc2vjkvhMyAsK9f+KdUOEs6h3jcDjC4pw2x6EAAQAASURBVNOUdUOFhQh25RyPnp4e6PV6KJVKEYo6Wzkbg2M0RTCa8M2de/Pco+bnJ++VDC6uiHhWE6VacxSKevvw69DmDkCgW7wCKic2/qsIrUMyKokMScqUoHXu/er1erFWaGzoM0JNSGitElpGGQ/EEyDDxel0Cu7TSAYB/U/rUybIykYCcNqgfuSRR0QzxRkzZqC3txf/8z//g5MnT4oaMLKi58/BCctknHIjn8aQxk0eh0ihH/7+khEoZ7vJ35fFbreHhVx4+JRKzHOUg5wWWpO8PgqlLHNjmfeLoePpGJ6uS3M/Jv85MmZ8nGchb9ntdiMUCkGr1QIAXC6X2Cx5+EGpVCI+Ph7jx4/H1KlT0dPTg/T0dOTk5CA+Ph5Go1HUEdixYwfMZjM++eQT7N+/H4FAQJDzaDOgDYRfgzYbnU43rC04N2oUCoUoZEbe1+DgILKysuByuWC326HVauHxeJCTk4OcnBwkJyfjlltuQUVFBfbs2YPNmzfD4XAID57i9RQu4lUxZcUaCengYZpIIQs6ZqTNdjQ4mm/sFALjXig/JtLGzgsw8foRHA3hYTZClXi6Hy/KxTdqGvuvKnSP/N9XEYvFEtafiNAsguaJBE3PzxEe3k6AjC0iNJOx6vF4kJ6eLjgiOp1umFFH36V54zU7IoUOeX0O/t6RkCJWqVTIzs7GM888g+zsbEEEJ2JrUlISkpKSYLfbwzK2IokcpgNOZ8nQuJHRT88/0vxwA4afVw5Jcc4RrxFE3yGDgpwCmif6DtXMoCJjtK/wZ+AGA90zf5/1er3gr2VnZ6O2thZ5eXkAgM2bN8Pj8QgHbcz4+M+SMePjPAuvSqnVakUVP1LuWq1WKERSLtnZ2SgtLcX48eNx4MAB5OTkoLS0FAkJCbBYLKL7qdlshsFgEBUFT548KaqikjcWCoXCusYODg6Ka/KYLTcu6FhSlLw9OXA6N54ydGJiYjBu3DiUlpYiPz8fF1xwAdLS0qDRaFBZWSnCM3RN3tGTGx90zGgSyUDh3mukY/4R4Y26ZMVJxgP9PJLRRMZGJIY9N2ZkD5kbVOeS8jmS5ObmYvLkyTAYDFCpVDh16hSqq6vhdrtx8cUXo6urC52dnTCZTOjt7UVHR8cZESl6Ro4gcM4L5yHwMeTxfXo2i8UCYGjM+/r6EBUVhfT0dCQkJKC3txcXXHABQqEQOjo6sHXrVpFCTqEbesciKetIxiL39COF84Ch+Zk6dSqWLFmC2bNnCwTE6XTio48+wowZMwTJWOatnCncMRIiIYeO5M+BIYJ5YmIiSkpKsHnzZtjt9rBiXyOFlyLxqshQIEORc7dobnmasszfIuOZc8novGq1GvHx8fB6vZg4cSKKioowdepUtLS0IDs7G263Gz09PTh8+HDE5/4qwuf0q7w3Y3J+Zcz4OM9C2SwajQZ6vV5svkrlUGlfi8UChWKIrKXVahEKhVBSUoIVK1agp6cHra2tyMzMDOMDUIXU0tJSAEPQaSgUQlNTU1ipYL5xkAwMDMBkMiEUCqGzs1PEeomPIPMzKNWWWPYAYLPZxEbl9/uRlZWFqVOn4qKLLsKsWbOgVqtRVFQEtVqN3bt3o7GxUWwGhJZQKIl7oWcSWbmQQiBvmHt05KXJZaDPdH763+l0hnlwI6EO/H6IcEcxdPKs6TycA0KVa+m+ZC4IPQfxeP5Rr9BkMuHSSy/Ffffdh6ysLCgUCrzzzjt466230NbWhkceeQQHDx7E/v37kZOTg/LycmzcuBHHjx8f8Zx8HKmOA6VOEm+D137gBdK4Z09k5dTUVFitVgSDQezbtw8xMTGYPn06Jk+ejN7eXtx5552IiorC4cOHsWXLFoHYUWiCV73kfBwaV16kiuZS5uzIylqr1eKKK67AD37wA3g8HmE4VVZW4he/+AV+/etfo729HYFAQKCaMpoUyQCJZBwQesPXDw8fAac7DKelpWHhwoX4zW9+g5tvvhmVlZWw2WyizQI9E4AwXgVlyPB54GuV88u44ubcDt49Ozo6WpSQ93g8InOJUqGNRiNKSkpw7NgxlJaW4vLLL8fMmTMFKtPQ0ACHw4Hq6moRuqVU3H9EiB+jVqsFhy4UCok1wtfLmPxryFidj/MkvLcL8R8AhOW0+/1+mM1m0T/g0UcfxZw5c5CUlASdTofe3l4sXboU9fX1MBgMmD9/Pi688EIsWLAARUVF4lpffPEFNm3ahK1bt+LgwYMC0idPlreclsMSPG6sVCpFepxarYbBYBBhGVLovEETKZHt27cjIyMDarVatEWn4wOBACZOnAiHwyGuS8YCjcu5IB9c1Go10tLS8NBDDyEnJwdJSUmIjo7G5s2b8dlnn2Hv3r2orq4W5z0XLggpTvIOSfnThq1UKgUPhIon0bG8fDd5/TRmdC+8iRiFFPi8cAXyVeTTTz9FQUEB1Go1UlJSwpSPHJIAhpqs/fCHP8SLL754Vucn5ItSqu12O7xeb1gBOYLV6RqkWAm1+M53voOSkhJMmDABycnJeO2115CRkYHi4mIUFxdDp9OJDsbPP/88vF6v4D3ROalQGG+JLnNkImUbceSMh1sWLFiAW265BVdeeSWCwSBuueUW9PX1we/34/jx48NCftzAoXnjY8uLdZHI90bf48Y48YfGjRuHiooK/OxnP8P9998PtVqNpqYmNDc3Y//+/fj5z38eRkrlqbh0Hr626DmphDq/F+Ke0Jqm7LxgcKiAGhHgyTDRaDQwm80YP348LrvsMlx44YXIzc1Fd3c3srOzw1L5g8GhyrpdXV04efIkbrrpJmFgU2flf0Ryc3Mxd+5cXH755bj44otFT5qenh44nU789a9/xauvvhqx4d9oQuMyVufj65cx5OM8C3/xyKOhdFqDwYC+vj7Ex8cjPz8fer0esbGxouPo6tWr0dLSAo/HA7/fjw0bNqCjowNOpxN+vx/Tp08HABQVFSEQCKC8vBx6vV4U/rHb7UhMTBSELyKK0sYUqRIjxfB5B1ej0SgaLXV1dQllarFYkJCQgISEBMTGxgoj4osvvsDu3btx8uRJsaHQxkNeHill4NzTHdVqNX71q18hPj4eKpUKM2bMgMFgEATECy+8EAaDATNmzMDRo0fx/PPPjwqzRzJGKOwyUtydPD1gSJGVlJRgzpw5MJvNiImJQWpqKo4dO4bo6Gjo9XoxX7GxsXC5XHjrrbfw2Wefic3QaDQKpcm5CHRtntJ8JlGr1UhMTMT999+PadOmwWq1hj13pDEgJdzU1CS84LMRpVIZFqJSKBRi4/d4PGLNk1FGaBwZbQqFAhMmTEBCQgLUajWysrJw9913i7lsaWnBH//4R9TV1QmkgXpwENfEbDZDp9MhGAyKjBo+jjxMxqvNyuNAHIUbbrgBt9xyCxITE9Hb2wuv14uamhp0dHRENGqA0zwL2eiINMb0M/+7fF80tgUFBZg7dy4uuOACJCQkICcnRxgySUlJaGlpgU6nw+9//3v87//+r1hPPMzF0RVOcOY1WmhvIE4W1ZghPg1/F6KioqDX6zFz5kykp6dDq9XCZDJhzpw5KC4uhsFgAACkp6dDqVTCZrNhYGAASUlJAjVpaWnBww8/HHYv5yoajQaXXHIJFAoF5s6di6VLlyIjIwN6vV48Z3x8PKxWK6688kpkZWVBr9fjt7/9LXp6ev6ls8j+E2TM+DjPwuPRcqyZyhirVCpYLBaMHz8eOp0OFRUVWL9+PTZt2gSn0ymge4fDgZMnTyI1NRVarRYVFRW48sorYbFYMGHCBEybNg179+4V1yYSF20evMIq30BpA6JNjYwTCvFwQiR5/VQ4bcKECdDpdCLVjjanxsZGHDhwAG63WygAmS9B93guolarUVpailmzZomCa4cPH0ZDQwPy8/NRWFgIr9eLvLw8xMbGIjo6Gh9//DF6e3uHGRLyZi9zL+TaBJzoGh0djbS0NJFCuGTJkjDjIy4uDllZWQIBCAQCGD9+PIxGIzo7O6HVanHdddehrKwMp06dilgRleaC7udspaCgAMuWLcOFF14Iq9Uq5h0Y8i6513/w4EEkJycjMTERLpcLn3zyici6Ohsh5UGhQz6/ZHBy7gzNgcViQVJSEjweD1JSUkToxeVyITU1FT6fD01NTXj77bexY8cOOBwOkfbJidOcj8OziWSRvX4+zvR7UlISCgsLceGFFyIvLw9lZWXYtWsXAKC3t1dkbo0mkThIkYTzeSIdHwqFsHDhQkyfPh3Tpk1DSUkJEhIS4Ha7ceLECZSVlWHp0qWIjY1FYWEh9Ho93nnnHdTX14d595wzFMngpPEj54iPI6EunCxuNBoFQlpUVIQ5c+ZAr9dDq9ViwoQJSExMFPOs0Whw8OBBmM1mxMXFYXBwEC0tLTh06BC2b9+OioqKsLVxtqRqlUqF5ORkFBYW4uqrr0Z0dDQmTpyIiRMnCj4bPR9lkBUWFiIhIQE6nQ5lZWXYunWraKw4Jv83MmZ8nGchTwyA6NfBWe0mkwmxsbGwWq2YPHky7HY79u/fj3feeQfHjx8XniRlyXR0dKCiogIejwenTp3C3LlzkZ6ejpSUFFxwwQV47rnnhGcZExODnp4eABCVRykcwl9ypVIpoHPqE0EbAW/lTiEXSrule6aMBYJlqX8N1RQBTjP0SWhz4yGKM3mKodBQBsiyZctE2qPdbscLL7yAt99+G5dffjluuOEG+P1+zJkzBxqNBk6nE6mpqbDb7cNSi0cSjjYAp7kc/DkMBgOmTJmCzMxMpKSkYNmyZcjMzIROpxPfy87ODjsncTzo2f/7v/8bb731Ft5//31UVFSEHcs9Vv7ds5Hi4mLcddddSElJCStnDgA9PT2w2WyCp/C3v/0N06dPx5QpU9Da2oqXXnoJzc3NYd8ZLVzFOS10LKWNUqVb+j7n91gsFkycOBExMTFIS0tDZmYmTCYTTpw4gejoaLS3t2P37t147LHHxFqVkSiuTImAyu+RK/ZI/7jSA4CsrCxcdNFFmD17NkKhEL788ks89thjoox4pPXIOSOcKzGSsSN/j4w2Tuakf7fccguKi4thtVqRmJgIt9uN6upq7Ny5E3/729+QmpqKoqIijB8/HoODg5g4cSL6+vrCjA8eXpXXAt0L8c9CoRA8Hk8YJ4ZX7bVYLBg3bpxQ6sXFxbjgggvEHmE0GgFAILV+vx87duxAaWkpsrOzMTg4iJ07d+KVV17Bvn37xNog1IcMnZFEoVAgPj4eGo0GM2fOxBVXXIGVK1cKg4PIrxTCBCCykKxWK9LT0xEKhXD33XfD5/Ohq6srYpG4MfnnyJjxcZ6Fe/0AEBcXh0AggI6ODgDAQw89hIsvvliknz344IPYsGEDjh8/HuY1ezwe6HQ6AEBZWRna29vx7W9/G7W1tdBqtaJuBlUqVKlUYSS0/v5+kcHAS66TN0nxcofDEdZ4icILhHp4PB7o9Xrk5+djzpw5uPbaa8V9uVwu7NmzB7///e9RVVUleB6c+EnplbTpU72LMwltgP39/Th+/DiuvPJKGI1GGAwG/O53v8PAwAD27duHvXv34r//+7+xdu1azJgxA1arFXV1dcOIhWcSIqnJc0lwLmWKLFy4EOPGjROIkHy/8jOoVCqMGzcOzz33HABg5cqVSE5OxpNPPomjR4+K44jESZlKHHk5k6xbtw7t7e1Yv379sM+SkpLwwQcf4LnnnkNPTw/6+/uxfv16KBSnScXydYifEskAIjifoHgKs/X398NutwsInMaP+AVNTU2CREpr0ev1imySzz//HFu3bhXKgVfFlbkzdI8UduGkSRI5w4ajfiTNzc0oKyvDz372M7z++uuoqKgQcx0pHXwkfs5IGUqc5ElcC5lgSmmp48ePx6RJkzB+/HioVCr09PTgk08+wZo1a7BlyxYAwD333IOf/vSnuPXWW6FQKESWm3xNOi+FXeg9cLvdou6PzWYT9U9o36HwbnR0NIxGI9LS0rB06VLMnz8f06dPF87M22+/je3bt+MnP/kJAODpp5/GBx98gKSkJLzzzjuIi4sTYZwf/ehHgoRPc0fvBfF1RhKz2YzNmzdDqVQKg4zE5XKht7cX3d3d2Lx5MxITExEVFYUf/vCHGBwcxAMPPIB77rkHCoUCM2bMwG233QaLxYKnnnpqxOuNyfmVMePjPAsnuJlMJoGEmEwmOBwO7NixAykpKSgoKAAwRJyqqqpCfX093G63iJtTVVBgqGrq4OAgXnvtNWRmZmLcuHEi/dBsNqOrq0s09CIGejAYFOQ/XpMhJiZG1KWw2+0wGAxC0VB1QmBIMZCn0tfXh+rqalgsFhQUFIQhBF1dXaiqqoLP54Ner0d/fz98Ph80Go1QVOTBEv+FQjajCYdy77jjDlitVnR3d6OhoQHHjh3Djh070NLSgsHBQTz44IO488470d/fj3HjxmH16tW4++670dvbC2C4YRDJW6awAY9H87BBVFQUCgsLUVZWhvvuuw8FBQVYtGiRqEL78ssvo6+vD9/4xjewatUqbNu2DW+99RYuv/xyrFixQmzoWVlZcDqdIuuJx/55dVUiAJ6NpKenY/78+RGf1el04oILLkBBQQHS09OxY8cOfP755ygvL0dRURE2b9487DpE5owkpEjIuOVcHqVSKQxgHtoLBAK4/vrrcd999wmvmZR1dnY2fvWrX6Gurk6QGwkJkPkwHKFTKE4X1qP74KgDzeVIPKPHH38ceXl5MJlMcDqdyMjIgNVqRVRUFDIzM2E0GnHxxRcjMzMTzz77LKqrq0csBMYRDPla/N2jtcR728TFxWHKlCn4/e9/D6vVil27dmHXrl3o7e3Fpk2b0NHRIZ794osvRlpaGiorK/HMM8/g+PHjw1Kk6RqRnlur1Yp3l/YUYGiv4s8WHx+P4uJifOtb38KUKVOQkJAAlUqFrVu34plnnkFVVRX6+vqwe/duMV8WiwVNTU3weDxISEhAd3c3Xn31VbEHEmnY6/WKujAjpXdnZ2djwoQJKCkpQU5Ojhgr/ixNTU3YtWsXNm7ciL179wrnxu1245vf/CamTp0aNk9HjhzBtm3bIl5vTP45MmZ8nGch3gQVT6JeCry8NN8kdTpdWGYEV4b00gWDQUFapWyU3t5erF27VnhpZHTQBk4bi06ng9vtFpsRHUddRwmpkWs28DTfyZMno7CwELNmzRJeKxkGeXl5IhOGql66XK6wsss83k3VKmXhGzdtgoRGrFmzBg0NDfB4PGhsbMThw4fR0dEhxqKpqQl5eXmIj48XGyH3XEeLx8sKg8aCzwmda9u2bejq6kJdXR06OzvR3t6O6OhoOJ1OHD58GG63G2vWrEFnZyeqqqqwb98+DAwMiPTpiy66CFarFXFxcZg0aZLgFxABkEPQ50KOc7lcaGtri/iZTqdDdnY2srOzER8fLzKU6urqYDAYYLFYsHfv3mG8j9EQI75W+PiQkcC5HwaDIayFvdvtRkxMDI4fP44jR46gp6dHpGFyo0/OyqK/E2+KFDKFJ4HImSU8pZl+T0lJQVJSEjIzMxEdHY2XX34ZbW1tqK2tFRWE8/LyMGnSJEybNg0DAwM4duwY3G432tvbsWnTpmHhnUjjJYdf+JiFQiFce+21yM/PR3Z2NsaPH4+NGzdi+/bt2LNnDxwOBxobGwWyMTAwgKamJuzfvx+VlZU4cuSIKGcuXzMSykNCxiKtN3oXOWozfvx4XHHFFZgyZQpSU1NRU1OD3bt349ChQ9i7dy9cLheCwSBaW1thMBgwfvx45OfnIy8vD2azWRgKSqUSXq9XoHkxMTGiyq98TS7jx49HaWkpFi9eDI1GM+z93bp1qyDi79u3D83NzSKUZTAY0NbWNoxETWt9TP7vZMz4OM/CayAQskBKNCYmBklJSWEvASlkIiByJU2kMF4NkrJXuru78f7778Nms0Gn0wmvxu12C6ib4FeCfOn8FNoh2JvY6vy6/HmmT5+OFStWYP78+WFwtkajQVFREQwGg8j9J7icb4qUCkxG0tkQ9IChjdTtduORRx7BwoULoVAo0N3djcrKymF8gOTkZKHoKEvhbMmtfNwBCOORwkNU8n7Lli0wGAzIzMxEZWUlqqurw0ICKpUK27Ztw7Zt20Q8mzKBZs2ahYSEBEyePBk6nQ6FhYXCa5QNPxr3sxWHw4GGhgZ4vV44HA5h6CYkJITNB1WrnTBhAoLBIBoaGjBlyhT4/X60tLQIpT6akLHKuQzcKyV0jfOGFAoF2tvbceTIESQlJUGj0aCiogJvvPEGampqRJ8PnqHC74MreTI+6Bl5+i0Pi8gKmH6Pjo5GUVGRUMKBQAB//etf4fV64Xa70d/fj/b29rC+LhMnTkR1dTVaWlqwd+9ebNy4MeycZ0uc5PcZGxuLu+66CyUlJaJk+Zdffondu3ejtrYWXq9XhGnovWlra0NZWRk0Gg36+vrCyO2ReCayUcSNO9pvyDnihQHHjx+PFStWIC4uDjExMThw4AD++te/oqOjQ7SAoD3CYDAgKysLCxYswHe/+92w6rcWi0UURaP3n6eXjxRajI+PR2FhoUDzSCjM9v777wsng4xm4hyNGzcObW1tw7gd48ePR3FxMXbs2DFGOv0/kjHj458kCoUCycnJ6OrqEryHxMREzJ8/H/n5+eI4u90u0gmpjgYZIwAEbOnxeOD1enHBBRcgPT0dDocDycnJgkxIDboAhLUo7+7uhtlsFl5IMBhEd3c3oqKiYDKZ4Ha7RWExXrqay6lTp+ByuWAymcJIbB6PBxUVFZg5cyb27duHxsZGuFwuwQnh3g95qSaTSfBfIkkkEiowhDpEgrXpO1dccYUoxGQwGETY52x4EwqFAgaDIayAFpVaJz6N0WjEr3/9a+Tm5qK3txcffvghPv74YzQ3N8PpdIpxI4ORx/UHBwfR2tqKX/3qV/j5z3+O6dOno6amJmxOSOi+R0qNjiSTJ0/GTTfdhJ07d+LPf/4zamtrYTQa8fLLLyMQCODo0aNobm7GypUrUVVVhcLCQuTn5yM3NxcTJkwQyEdrayu6urpG3Jw5YZLmlgo8kVFAx5CCImXV09OD8vJyXH/99VCpVEhLS8OkSZNw4sQJ0ZiQFCFlWvB3gdJCVSoVbDabQOdsNptQhBwx42sDOG00GQwG3HDDDbjoooug0+lQVVWFtra2YajToUOHUFpaCq/XC6PRiIkTJ2Lt2rV4++23wxBMzkmRC5nxe+D3pNVq8eijjyIuLk6EKBUKBY4ePYrW1lZBBg0EAjAYDEhOTsb8+fPx4x//GH6/H0eOHEFVVVUYWia/E7TuOOcjEAggLi4OodBQDSAi1tI5qHorhWFozHp6elBdXS2McK1WK2q8GI1GrFixAjfeeCOcTieMRiNaWlqwb98+PP744+J4YCiDiNf6ISRElg8//BBmsxnXXXdd2N8DgQA2btyIDRs2oLa2NmyfSk5OxqxZs/D4448jKSkpjBQNAPPmzUMoFMILL7wwVtb9/0jGjI/zLLGxsVAoFLDb7WKTohfN7/cjMTERJpMJXV1deOKJJ/DJJ5+goaEBAwMDiIuLC6viGAoNVd4kcp/P58PBgweh0WhgsVhw6aWXoqmpSWxsBDXSNan0Ot+sgdMbsZxVQAx0UiLJycl49tlnodfrkZOTIzZ58q5JcR49ehROpxMmkyksXEMkNx5/ljcFkjPB1nLWQaTvEdKTmpo6LEY8mlAhJKrSScqEN/0CgKNHj0KpVCIuLg533HEH3n77bXR3d4cpTDqfQqFAWloapk2bhvz8fJhMJixevBjZ2dnCg+UIFSFc3CM/WyHjoaCgAOXl5bDb7WhtbcXVV18tULeBgQGsXr0aGo0GN998M0pKSvDyyy/jqaeewre+9S1ce+216O3txZIlSyLG4mksCaYn40On08HpdAriKvX+oU60KpUKTqcTx48fR2trK+rq6vDYY49h5syZMJvNOHLkiKigS+cg4i29CxTiUygUokCf2WxGVFSU6EHCEQBawzQvvPcJGYUNDQ2ora3Fpk2bxHvADYra2lrs2bMHer0eDocDt99+O4qLizF//nxRdCxSWIV+5p/Lv1N4MiEhASaTSfydFOPg4CBsNpt4byjkYjAYRAlzq9WKKVOm4JZbbsHEiRPxyiuvQK/XY/fu3Th16tSwMC4AMVf0vMQZo661pMxPnjyJDz74APfeey+8Xi+WLFkCi8WCzZs34+DBgygqKkJRURFOnDiBe++9Fzk5OQgGgwJlS01NxeTJkzFnzhx8+umnggdEvXvOZm339/cLVJbGx+1248knn0Rra2uY4aHVanHzzTfj+9//PhITE6FSqVBbW4u+vj7MmDEDwJDh09nZKUizY+jHP1/+LY2Pbdu24eGHH8bBgwfR1taGDz/8EFdddZX4PBQK4de//jX+/ve/w2azobS0FM888wwmTpwojunt7cX3vvc9rF27FkqlEtdccw3++te/ipDE2Qp5DBTf5i2yKcZKZYsbGhpEfJLHgrVaLXQ6Hex2e1iYIxgMory8HHl5eUhMTERcXJyA1ImAR94yKTAe96UMDV7hkIhadM8UIhk3bhzmzZuHadOmQalUwmg0hsWtm5ubUVlZiU2bNqG3t1eckzYFXpeBhApFnauMZpjQPd98882YMmUKAoEAmpqaImZxjCY8BZPOS9emlL5gcKiUOHE84uPjkZaWhq6uLkRFRSE/P1/Ur3A4HDAYDJgzZ45IT87NzUVrayuOHTsmnoEbU9xAPJfN0eVywe/3i14p9Owyj6OnpwcajQafffYZjh07hrKyMrz44ou49NJLkZ+fj8TERHznO9/BmjVrcPLkybDvco4DV+QUqgBOF0YjdIzqZCgUQ5k1vb29OHr0KD7//HPMmzdPFLgj44AMPUKsyCim3kCBQCCsBH2kUvqcxBuJixEIBHDgwAGUl5ejra0NVVVVYeegOaDjPB4PCgoKRCEuaj0faUz432Xh9xcdHY3c3FxhrJKkpaUBgEhhJ8Ohv79fhNCio6ORnJyM2267DYODg5g5cyYSEhKwatUqREdHizb2ZWVlw+aPuDQ8VEYoldFoFCm7JpMJqamp8Hq9UCgUgsx+2WWXISUlBfHx8UhPT0dRURFyc3OFgUDk+r6+PtTX16O2tlYUpAMgQmU8jBapkB7NfSAQQF1dHZKTk0UDwerq6mGIoF6vR0JCAlJSUgAAn332GVpaWqDRaITxYTQaRXFEak8xJv9c+bc0PtxuN6ZMmYJvfOMbWLly5bDP//d//xePP/44XnnlFeTk5OBXv/oVli5dioqKCrEB3HzzzWhra8OGDRvQ39+PO++8E3fffTfeeOONc7oXDin6fL6wOhAWi0XA0cTMJq+UjIKBgQHRGZLilmRcEBJCljvFxmWSK23aPH+fSigDw0tNE8GSV0XMzs7G3LlzRWM7rpibmppw6NAh7NixA2+88YbIqCGInAivXKnSpk4l3yOFTmSR/ybH8bk3fvPNNyM/Px8+nw/19fVh3XtlkZUF/xtdhxttpABoU+3o6MAzzzyDefPmQa/Xo7u7G1qtFqWlpZg0aRLS09MFIjVlyhTk5uaK8evq6kJ9ff2IaZkyRH82Qoq5ubl51O9SbH/Xrl0i7Pb8888jMTFRZFBROvepU6eGKQbOy6A5JAOD0rlpzVO6OL0LtE57enqwd+9eZGRkID8/H1arNcz4ABCGWhFRkTgrZIzwbsB8Dsn4kOvJkLGkUqmwe/dudHR0CJSBlCeFjshAPnHiBPr6+jBlyhQoFENZX52dnRENG9kQGUkIxTSbzYIwajabw45RqYY6BXOhNgb084033hiG1CxZskQY+/39/Thx4kRY9VfgNCJHjgYnCJPjQgiG0WiEx+NBV1cXamtr0d3djeuvvx5paWnw+/2IiYlBcXGxWLMejweVlZXQarVobGzE/v37cezYsbAsGuKtyWifLBROO3nyJJqbm1FcXCxaBeh0OlFPhr6r0+kEbykUCuG9996Dw+FAVlYWLr30UsTFxcFisSAjIwMTJkxAY2PjOTkmY/L1yL+l8bFs2TIsW7Ys4mehUAiPPfYYfvnLX+LKK68EAKxevRpJSUn46KOPcMMNN+DEiRNYt24d9u/fLyzlJ554AsuXL8ef//xnpKamnvW90ItGqbaU+aHVarFq1SokJCSIl76jo0OEIiijxe/3i8ZWVLyLCippNBrce++9yMzMRENDA44fPy68EpVqqCkcL5BksVjQ19cnNl+1Wo3e3l6BvhD86/P5REXUuLg4dHR0oLa2FocOHcKqVavCYuoKhQLf+MY3hAdCnpMMp/JNmDYH2tR5hsKZlCV5afx3IuERtyUzM1NAvryA0kgeaCTDQ74GjTdxHAKBAB544AFER0eLbsUdHR247bbb8M1vfnPEEA9HMhQKBUpKSuD3+/Hggw+GhQToPngI7B8xQs72uP7+fvT09KCvrw+HDx9GQUEBSkpKYDKZkJmZifT09IiVT8kjpwwdo9EIp9MpDGidTie4CER65RkPNpsNixcvRn5+PlJSUvD3v/8dM2fORFtbm6gDQ/8Dp8va0/mpRQHNGa8dwdcHT5MGhhR6ZmYmcnNzRaiFzjd//nxoNBo0NjaipqYGnZ2dACAQv+nTp4sQHJ9nHr7kn0UyrkmotcLTTz8NrVaLGTNm4KKLLhoWYhzp+5GMLTIKlUolkpKSkJ2djcTERNTX14cdT0R3v98vUA4ySF0ulzDy1q1bh6NHj2L9+vX43e9+B61Wi7lz5yIqKkq0eCCjsLu7G3a7HYcPH8add94JvV4vECoqWsgJxMnJyejp6cHAwAB0Ol3E3ivBYBBr167F+vXrMX36dEycOBHLli3DlVdeiYcffhgvvvgiDh06hPr6eoH4bt26FSdOnBAhPnIIoqOj8ctf/hJGoxGpqam47777sGvXrrNuXTAmX5/8Wxofown1iLj44ovF38xmM2bPno3du3fjhhtuwO7du2GxWIThAQAXX3wxlEol9u7di6uvvnrYebkyBSDi5EajUbCyOYze39+P7du3Y/HixTAajdBoNPjBD36An/70p7DZbKLkel9fn1BwSqVS9CTIzs7GH//4R6SlpUGtViMnJwePPPIIjh07hoaGBlFdlNj//f396O7uFgYGNQJzOByiMqHX6xW9HagfTCgUwhNPPIEZM2aICp60EQYCAdTX1yMmJkZ4LUqlUtRZIEiZoHfasGVS5UgoB32/uLgY3/nOd0RX1oaGBqSkpAhEyO/344MPPsDGjRtRXl4OjUYDq9UqFMhjjz0mMijORkKh01k+nPfBM5BIqfLNetmyZUhNTR2VW0JEVDL4OJmYZ7lQOiplh8jNv86XBINDHU4JZbNYLMjLy0Nubm5E48NoNIqquUQWJAUTCAREA0XK+OKZVsTR2Lp1K6KjozFz5kykpKQgNzcXXq9XhO/IkCTFzsOSFBak3i7UjZjWH4U3ySOnPiivvfaaQDWioqJQUlKCgoICFBcXY/ny5fj444/hdDpHVO7A6YyJDRs2iHvhEgkJkf/e1dWFXbt2oaamBkuXLsXHH3+Mp556CsnJyZg8ebJIi87Pz4+4rl566SW89dZbqK2txauvvor8/HxhAD733HM4cOCAyMyRr0/hJE7oJaK6TqcTSIlarRZF9R577DEUFhbCYDDA4XAITlt1dTUuu+wyLFy4ELW1taisrASAsCrHAERIl6S5uVl8TtWYI0koNESKPXjwINxutwhdLlq0CG1tbaL/VHV1Nerr69HU1CTWARG/qbw6SW9vLz766KNz4lONydcn/3HGR3t7O4ChSo9ckpKSxGft7e1h1fOAIXg0NjZWHCPLQw89hAceeGDY30lZkSIlhUMpfIcOHYLJZEJRURGSkpKQlZUFt9stygJz48FqtYoW9rNnz8bkyZPF516vV0DjtNlS9opOpxMhGuKXEIJCCAsQXn2UPIiJEycKb4P4LrRZOBwOvPrqqwJNIUODUneDwaAoKkWbNnElaBMgVEaWUCiE/Px8LF26FNnZ2Zg1axbi4+MBAAkJCbBYLMLoCQaDuPrqqzF58mR0dHTAarWKjB69Xo958+ahoaEhrDMtPceZkBY+h+Q587Re7l3X1dWho6MDDocD7733HkpLSwV5z2QyIT4+Hps2bcKJEyewcOFCFBcXCyJgZmYmmpubhcfKU0b/kdDLV5Hq6mrs3bsXubm5SE1NRV9fH7q6uiIeS6mUwGnFwrM96HkoFETzz4uOHThwAPHx8UhJSUFaWtqwarHAaRI0/y59n3NwuNBcceShv78fBw4cwKpVq0Tq6KJFi6DT6USZd4/Hg6KiIhw9ejQsaywxMRF5eXkYP348HA4HqqqqUFlZOWxu5Foi/H5oLXHy6ODgIDo7O7F7924RzqutrUVbWxsyMjKQkZGBffv2ISEhQVyfUKO6ujpUVFSgu7sbTz/9tGjQFwgEsH//frS3t4vWArz4GYVGOMmZr2WeAkvGeFtbm2goabVaBbmX0Ca73Y49e/agu7sbvb29UCgUAtUk9Iu/S2RgE4fnbCodBwIBmM1mgdBqNBrMmzcPvb29ImxuMBgwMDAAk8mEb3zjG9i1axcCgQBSU1NxySWXiMKKDocD5eXl55TGPiZfn/zHGR/nS37xi1/gRz/6kfjd4XAgIyMjLL5M/wha7+3txcmTJ5Gbm4vi4mIR+6XCXPRy8l4ser0eqampooU8bQzd3d1Yt25dWJExrVYLh8MhNgDyCsn7BCAqZ/JiYrxgEzUdI3SEpLOzE2VlZfj000/R19cnvgOcVkI8q4XXrKDrjiShUAjp6emYN28ebrjhBqEkyCOn89tsNthsNsTHx2PixInIz89HKHQ6o4Y2quXLl4sMEEJAIoVb6F650qfn4pszV2p0XHR0NKqrq3Hs2DFkZ2fjtddeg8/nE6TPxMREpKen4/3338fu3bvh8XhgMplEATSLxYLW1tawDCQeKvhnGR8KhQItLS2oqKhAU1MTkpOT4XA40NfXF/F4HhYiJcR5IGQIk5K1Wq2i0J3dbodarUZVVRWKi4sFcTAuLg56vR69vb1hiAedl65DxgetZ77GePiB85P6+/tx8OBBfP/73xcF8YLBIPbv3y9SnQ8fPozExEQEAoGwe8rNzcXUqVORmZmJnTt3Yu/evSgvLxfzw4mT8non4cfR76R4jx07JpRzT08Pent7UVdXh7i4OERFRWHx4sVISEjA+PHjAQz1eerq6hLv9UcffRRmMMtrRl7vFCblc8mNEwql0Xmys7PF/kC9oLq6uuD3+9HV1YWYmBhRCI2ei2qWRKqSS6gVGZBnG1qMjo6G3W5HVVUVJk+ejIKCAjQ0NKCiogJ6vR7x8fHo7+9HfHw87rvvPqSmpgqUZu7cueLZHQ4H6urqxoyP/yP5jzM+kpOTAQy9uMSGpt+pBG9ycrKI85IMDAygt7dXfF8WarYmCxkbRLBzOByIioqCTqeDzWYT/RhUKhVSUlJQW1sb1tiLNjJKB0xLS8Pu3bvR3t6O++67T6QaVlZW4uGHH4ZOpxPt7fv6+iKWlSbjJxgMwmq1hqVG0jFUR6G+vl5sJnzDfO211/DEE0+EcSAIWeAhDsrwoYqDqampAh0YieQVCoXwy1/+UsTWk5OTsWPHDqxZswZr167FzJkzccstt2DDhg148803RaooZfucPHkSBQUFyMvLQ0pKCubNm4f7778fL774IjZv3iyyfuTNkIwnHv7gYyLXbeBoiN/vR3t7O55//nm8+eabCIVC2L17d5iRR8oTAJ588kkkJCRgxYoVMJvNopomR6545hGN89kIV27nSqSjuQeGiMQlJSWIjY1FQkLCsLCLQjHU6IuysKKiogRhmpQXPTswVIDqzjvvxOzZs7Fu3Tq8/PLL0Gq1cLvdSEtLw8yZMwEA11xzDTwej4DhOY+Cr2dCEPv7+wVJlBrm8THgykWpVCIrKwvBYBBdXV2w2WwoLCzEiy++iBMnTsDj8QgEiiQYDOKqq67C1KlTUVhYCJVKhR/96EdoaGgQnBc690jzJCNnMqmWhBu2vb296O3txalTpwAAv//971FUVCSOJeInXY+vr0hGtfy3mJiYMNI5tU+gMeX8JJPJhD/+8Y+IjY0VdYbUajUaGhqwd+9ebNu2DR0dHdDpdMJoARCGHPEmlRS6dLlcYZ2yzyb7befOnaiursbu3buFwbV06VJceumlEY+//fbbh/3N5XKhq6sL7e3t/1RUcUxOy3+c8ZGTk4Pk5GRs3LhRGBsOhwN79+7Ff/3XfwEA5s6dC5vNhoMHD6KkpAQAsGnTJgSDQcyePfucrudwOETmCRXRIfhZq9WirKwMU6dOhVKpRGJiIv73f/8X7733Hj766CO4XC6kp6fjpptuwpVXXomuri6kp6eL0MiePXsQGxuLxx9/HGvWrIHRaIRWqxUcEyr609/fL5Q/bc4k3d3dYax32iAXLlyI7373u5g+fbqAMWmjeuaZZ1BWVgar1YpTp06J7xGEytMiAYiYMj0/h+pliY6Oxp133omSkhJkZ2fD4XBg5cqV6OnpQWdnJzo7O7Fu3Tps2bJFGDxvvvkmPv/8c4F2UPgoJSUFJSUl+MMf/oBLLrkETU1NolV7U1PTqNkvMlmQpziTYUBwMUcrKIWUNnbaiGUFMTAwgHfffRcTJ07E7Nmz8fOf/xx/+ctf0N3dLa6lVquF8Xk23plCocDKlSsxY8YMTJ48GZmZmVi5ciWqq6vP+F0S8lJbWlrw2muvYfny5ZgzZw66u7uxf//+YRs1ed2EOMmZRzQXVqsVubm5+PnPfy5SOc1msyDpUgM1AHjllVdEWitxNoxGo+gFQoRoWm8mk0lwFyisyeeEDBaaKyqSN2HCBFH47+GHH4bT6URjYyNeeOEFbNq0CV6vFwkJCfjOd74jQo9msxl79uxBcXEx3G43GhoaxPPKWWN8rOSQh2wg8cq4MgJAP//973/HqlWrBF8tLi4ujKwNnC5tT7wa/n3eT4bCYKTs6RjiZZHhrVKpcM011+C+++4ToVC6ZiAQQEJCglgv1KSO0AyaP16o0Gq1wu12IxAIwO12w2g0iiJmZ0v6JEP/xIkTYc7BaFwrWcrKyrBly5axLJf/Q/m3ND5cLhdqamrE73V1dSgrK0NsbCwyMzNx33334Xe/+x0mTpwoUm1TU1NFLZCCggJceuml+Na3voVnn30W/f39uPfee3HDDTecU6YLcFrZUIYKbZjkYSxdulQQW0OhEHJzc8Vmv337dpjNZiQmJiInJwcZGRmCv0GbpF6vx/79+0URM9oECa3gYR66Fx5G4Js0eR4LFizAnDlzkJqaioSEBOGpEKHvxIkTOHXqFLq6usI8GUrt5d4UKV/yVGlDI84HxXm5x5aWliZIuAMDA6KfRF9f37D0R4VCIepacCVNELper0drayt27NgBpVKJ0tJS0YRuNOSFpwfz0BlByT/+8Y/x+eefi3HndTBIAdNmyg0YMkr6+/uRlJQEnU6HmJgY5OTkQK1WD0vplcvGjyQc8k9OTsb06dNhMplw33334aOPPsKXX355Vh6eSqXCwoULsWTJEmEwcuMpkvB4Pk9rJQSEDKxFixaJ+jCFhYWiiRuFHOl7M2bMQFdXlygZrlAoxPtDUD0hdUqlUtQCkVEHjv7w8XE4HNiyZQuio6Mxe/ZsmEwm0ePGbDbjmmuuQWNjI8xmM6ZNm4YLL7wQmZmZ0Ov18Pv9IlxKoSg5JXokJcjDU9zYIJHnnj6PiopCUlISpk6dipSUFLjdbuzduxeffvqpWHe0RuWwHV8bclhFXg+UWcQNkWnTpqGoqAixsbGiZUNnZye6urpgMBig1+vhcrnQ3Nws+GRkvAAIQ1QBCJ4JIbD03p5L2IXWVkdHB+655x6RdTNlyhRs27YNU6dORWNjI9rb23HJJZcgEAggIyMDqampwuhyuVxhqMyY/PPl39L4OHDgABYtWiR+Jy7G7bffjpdffhk/+9nP4Ha7cffdd8Nms2H+/PlYt25dWJGf119/Hffeey8WL14siow9/vjj/9D98JgnT1MdHBwUxElqBU5dLUlxpaSkIDMzE1qtVkDUfX19qKmpwebNmxEVFSXIqZRmSxsLZUrIhgcZB9zToE2JiFnp6ekwm83inru6utDS0oK+vj5UVlaitbVVpFRSRgKl93I+B/e+yCiic5IBJm+GXKn09PSgoKAA27dvF6z0SLFjGa4NBoNwuVxoaWnB9u3b8f7776OgoEA802ieEvdK5bEEhkJpxcXFcDqdohx1V1eXeH6PxyOMLdpk6XxU+Emr1WLmzJlhxGeOFtEzcC95tI2Zjuns7EQgEBDnveKKK2C321FZWYnu7m6RwSALGY/R0dEoKSnB5ZdfjpiYGLS0tKC+vn4YPM0VO80XIROEfpGCnTBhAkpLS7FkyRIAEGRAKqzFOycfOXIEarVapEVSSi1VPKVKqZzPQW3fgdOtBPjcyuENt9uNPXv2IDk5GZMmTRJKlTKQ5s+fj4MHD4oy6hSiaWtrQ19fH44ePYra2tqwCsIjhVBkDgofO/49meDJv6tUKhEbG4vJkycjJSUFHo8H27dvx4YNG8II8Pwd4ufja1k2dvjvtE5p3alUKsTHx8NqtQqiaUdHBzo7O0VGXmxsLPx+v0hl5WsikjHISd+EitCxI9X5iCSh0BCB/m9/+xuio6OxcOFCtLa24sMPP0RTUxMqKyvR0NAg9oYlS5YIx9Hn84lGkGPyfyf/lsbHwoULR92oFQoFHnzwQTz44IMjHhMbG3vOBcUiCXkgCoUCiYmJoieLz+dDQkICHnroIVRVVeH+++9HXl4eNBoNpk2bhpkzZ4owEM+Lb21txb59+7Bz506h+MkrJDEYDEIRUsM42gSIm8LRAwDiXABw8OBBFBcXIzMzE8DQi75+/Xo8/fTTGBwcxNGjR4WCoJRiCiUReY6fl8acvA61Wi3gekrtJQkGgygrK8OKFStEiKWoqEjU2JCh5NGkv78ftbW1+P73vw8A2LVrl/AARwtjkKFEnih5jORh9/f34yc/+Qk++OADTJw4ES0tLaJY2vHjx3Hw4MEw5UznIgNNr9djyZIluOeee2C1WtHS0iI6unLPkdJ8aezOtDEHg0Hs27cvLEXcaDSitLQU/f39eO+991BdXT2snDTdW05ODmJiYhAfHy9Ce6tXr8aePXtE6iTNJY0TQedkRNAYEck0FAohOzsbqampovic0+lEZ2cn7HZ7GOpXV1eHRYsWCQ6AQqEQaAP3nslIoLElUiOAsDRbOi9HFMgoLS8vR05ODmbMmIGsrCxB/FUqlUhOTsYDDzyAvXv3YuvWrVi9erXof0S9cfja4IgGD7/Ic8PDGZSOTIYHPxfNifz9pKQkmEwmtLW1Ye/evWhrawtrAMfJ0TxMStlA3DFRKBQChaPvUjYchQUHBgZw6NAhTJkyBfHx8QgEAlizZo0o5Z6RkQGj0SgMQKVSKcJfsgGvUCgEMkLzRMR4n88nMtNsNtuoazyS9Pf3Y8OGDSLl+fDhw2JMfvWrXyEqKgoWiwWlpaUAAJvNhu3bt2P9+vXnfK0x+frk39L4+FcSk8mEUCgU1v+EFExXVxcsFguam5vx/vvv41e/+tUwZj4VDAuFQmhra0N5eTnWrVuHrVu3CnIiKXFir+v1etFwi5Q7T/cl6BOAMESA05yFcePGISUlRWwafr9fVDE1GAwC9na73WGVEEloYyXviafzUTEw8jZlb3pgYADr169HfX09BgaG2s/LBs25CPcGOXE2kvHCPUU5W4FIquQV3nPPPUhKSoJWq8W4cePwxBNPYOfOnTh69ChKS0tx1VVX4ZlnnkFjY6PgQjz55JPo6emB0+nEVVddBa1Wi+7ubjgcDsyZMyeswy9vREde4tnU+iBUhcRoNGLOnDmiDwmRBI8dO4Y1a9aIfjOTJk1CRkYGJk2aBJPJBLvdjn379sFut6OhoSFijQ+6T8oKofvjBasUCgVWr16NrVu3YurUqXj88cfx5ptv4ssvv0RLSws++eQTtLW1obOzE+Xl5WHdVWkNm81mUXCPQjCkvIjkTdcn4SGHSNLV1YXXXnsNa9euxZVXXok777wTDocDR44cwdGjRzE4OIiqqipUVVWFkUo5X4KUK58fbgBwkYvWcbSGMoHIeOGZY6FQCHFxcXj22WdF2MBqteLhhx/GFVdcIdLkaS7IsObEXBpPOcyoVCrh8XhEdVseItHr9ZgyZQoqKirQ09MDn88Hk8mEyZMno62tDYcOHYLP58MvfvELHD9+XFyDFznkXaBpfPhzEQpHoVm58+xXFRprubbIG2+8gYqKirMO8YzJ+ZEx4+M8C1UnJW+fM8gBCNLa7t27sXnzZsyaNQsGg0G8NKTwlUolXnnlFezZswenTp1CT08PgsGggIvJ6/R6vaLkMxUJ4+S8gYEBWCwW4elwHgZ59fHx8ejr68OaNWvQ2tqKvr4+bNu2TTR3AsJhes7nAIYUHhFLuSLhHBMiY7rdbkGspDHx+Xyora0VoaSvixTGFchonwPhfVWolggp08HBQbz77rvQarXQ6/Xwer247bbbMHnyZGRlZcHr9SI7Oxvf/e53RVhmcHAQ+fn5AiHS6XTo7u7G+++/j+3bt8NutwvUAECYwUjK7mwkKioKW7Zswfe+9z1cd911yM/Ph9lshtFoRHFxsajsOWnSJFEOPi4uDlarFXq9HlarFTabDa2trWhra8PGjRvR1NQU5s1z+J7zPQh14LU3CLlwOBxwOp1QKpUYP348+vr6oNPp8NBDD6GjowM2mw3d3d0CceHZFjzVnCMLtLb5uPHuq6PxMILBoEAGN2zYgIaGBlHllbJsnE4nXC7XMD4CD6XRfZDhw42MkfgVodDp/jTyeqOwKLU1UCgUIrzwm9/8BqFQ6P9j77vD46rO9N8ZjabPqHerWdWWXHFvGNu4BLDpJYGE7AbSIclmk002vzSSDQkJJAQ2ZQMGAsGAjY0xxTa2cS9ykyXLlm0Vq9eRZjRVM5r5/aHnO/rm6I4kE5RNsvqex481M/eee+65557v/d6vHNTU1ODDDz8Mi5fi16PnwLO2ZGaE3BH0bno8HrEFBGVdeTwe3HDDDSgtLYXX60V8fDyKi4uRmpqKlpYWPP/882hqahLgjKrPynVOqMAgHcMBCL1btD6Nxw6z69atE/VbqD5IQkICMjMz0djY+LFfb0LGJhPgY5yFKmVSPAVfjOi7rq4uVFdX44MPPhBBkvRCHjlyBHFxcdBqtXj//fdRXV0tLBRiPbjFzn2opBjoOKJHOZ3P26AFw+FwoKqqChUVFaivr4fNZkNra2tY7ApVSaX7o0WE2BeyBskCowWRL+DUHt8ZFUCY9fzXyFhdNByUKMUKcCYCGFS4ZWVlSExMFLRxbm4u0tLSEBsbK6qvzp07V4xNIBAQNVh8Ph+OHj2Knp4e7N27F3v27BEp07K7QA4WHk38fj+qqqpw4cIFmM1mdHd3i0wRqhERFxeHzMxMTJ8+XZzn8Xhw+fJldHd3o7e3Fw0NDThz5gwuXLgQZvnL4yYrPcoGAobSzKmgnc1mw+HDh9HS0iJYqO3bt6O3t1e4BmmsaB7zwF+aVxzAk+InMDvS81cCA8FgELW1tairq1OMaYnEkMm/E4Dn7rZIrIvcDxq7SK7A/v5+nD59WgArm82GXbt2hcXvyOBCvhf5Png8CTGO/B0NBoOw2WwCMF++fFm8qwRW9uzZI8AZAFFwTL4eLwYnu/x4nAcfl49TEhIS0NXVhYqKClGs0GKxjFhraELGX1ShCe5pXMThcAiLE4DYK4G/fLSY0gKUkZGBvr4+QTFHR0eLYmFURpyXrqbS6LR4EAVLMR8UxEqLlslkEkW6gKF4DLPZjGBwqNIpVQ6lBZGXQyflQqXNOzo6YDabERsbC41Gg/r6egAQG4sZDAbY7XZRh4F8ujqdTlDoBLZoTP7WIvvZKVWZZzFYrVZB7XOlqFarodPpYDabsXz5csydO1eU6u7v74fJZBKVYc+ePYuGhgZUVVXhxRdfRHJyMpqbm0X1ULLkOQgiF4rsVhhNKLYkJSUFTqcTXq8X69evx49//ONh1X0BoL6+Ht/+9reRlZUFi8WCjo4OPP/888OsdmC4Yub+e4o1IkuWADftzEzxSZT+TWwctcn/joqKEu4Aivug6rlcyXI2hMdV0PtFMVOUscTrkBDbp5SxwpUhz5jh987nEI/fkFk2XjmY18Gga5H7Sqkdk8mEm2++GY899hji4+NFhVzOCJI7k4M/GYzIfSamgeI/yO1Be+lQ8HBBQYGIjSksLER7eztOnz4tYuL486JS+BRbQ2sFBRB3dHSEuQ/JpTaee6vk5eVBr9ejpKQEr776KsrKyvCLX/wCb7311qgp7NRPu90Oq9U6bn38vygT4GOchMAHMKhAzGYzurq6wha5qKgopKamCvdCdHS0qORJaXw8LsJkMoniPgQqaNHigVwmkwkqlUpkwZCo1WpMmjRJFBUji9RqtYpFeCTGgRYp2sVSq9WKgFNaQC0WC3p7e4e5SnQ6XVjOPy38FPDGrcC/tSiBD7L2ySrl8RcUG0OWE3+eVPmR7oOeFbkOKJCPCjrRQkyKgNonBUVBqhxcjlVkS5KK25F1Stcxm82wWq1hYMhut0dkPLgSpv1aCJCRG5CsXKPRKDJVaIdmXmadLGkae6fTKfYPIpo+MTERbrdbgBqa81yJUZwT9ZnPPw4YOFNDVj5PESXArQSwZAaKM44cpNBc4NekNGreB5m1INcEvz79rtVqsWnTJnz44Yd46aWX0NvbO8yVw1misaT/krvT7/eH1VShcZC3vCeQScYQ1Qii9vlcpmdhNpvD1ifanZdca0lJSbDZbAgGg7BYLCPu7/JRhdatWbNm4Z133sGGDRtQWVkZsWovlwnwMX4yAT7GSQh8xMbGisAuWoRoYerr6xMR5/QdgQJSUmRB0oJL1jYpJ1q4oqKiYDabw2prkOVBi7zFYhHBekB4hguBAZ77TgsksRTA4IJFAIUyGgCIQFSn0ykWNNmnCwwuOsQA8fogo1nX8t+RRGmRjXSefKwMPvjCyv3YZGlzJUxKkcaMxoXYAKpiSwqK18Oga3N2iRZvnkEhp+J+FJGLgBEbEB0dLTYTo1iISNfiVrnRaAwLKKa0a/L903zjQZgEpmiO8PbILUig1Ov1ilojxGDo9XpR74aUFTEvBOJkS3+keSHHKCiBA/4bBzBKxysJz8ihc0YDCHJ7CxcuREdHB65evTqMIZOBu9ymzNwACFs/AoEAEhMT0dvbG5b+LovssjUYDGGbUBLDw+OleFyZXKGW1gKVanAvqfGqvaFWq0XGy6FDh0S822gyAT7GTyZiPv4GQtYMLbK0uDocDrF3BMU9UNoZpbxxWpD8skB4+i0wFABK+1xwUAEMWWdutxsmkynMPy5T3SQye0ELDi0ocjYGZwS4O0leZOVx4Z/HynxEWhwj+bpHUkSjXVNuQ1Y+XGjh5UGRlM1An3n9DqXgO953Ok9OH/2oIj9TUgJer1fsQKr0rCKJPE85GAOG0kep6iXFGJGQRUzjxhkD+p8HkfJ74IwDXZ+3PZoogQc+B0dS5iMBBVLokdw09LvcFyWAwNs/evToiHNgLO+PzAJxoMDBmMzccEZHZmf4XObuKnncKJCWf0cgl68X42EPUwzL22+//bG3PSEfTSbAxzhLb2+vKIxE+7jwNFOiqSlzxOFwCPBBYKG/v19kO1AhNHKZkNALS/U7eH0NAgVUq4AvfGR1AEOpvQQuyGolvzAtkDExMSK9klv2FO1O//Ooe+57ltNmubJTWoBGYy6UQI0MPK5lQVM6XvYNc4DFA+5kS5Z+58fyZ0UMAZUGl0Elv4eRgk8/6qKtNHbXIsS2EcAyGo3iPihuhiscvr8H3ROdS64HPtd4ICcpxYGBAdhsNqG0qC3an4QYpWsBazK4kBW50t+R2uVt0X3I2Uuc6eIsVKR2lQB8pL4q/caNDeoDVSQmQ6KrqwvAIKAk9wg9G9q/iWezBAKBsEBpqpCs1+sFi0FrALVLaxYxbjT3KSjV5/ONaSuBCfnHlwm3yzgJuV34wkLsAPnG6UUkhaJSqRATEwOfzwen0ykoTa1WK2IsqE6IbBFT4CMV7+IsBRe+MI+k1EeaFjIl/VGmELeOeCyDrFDo3uSFWu6DkpUqC3drRErfpbao9DfVJuCWPSkUKnZFiyrFPtD1ubuBpzvKcQH07ChOghQuKWSVasjfTgpICSCNh9WopNhoLlP/6b5Ikcl90Ov14t54ETBeZI7GRU4p5uxGJKUsM4CRnu3/pnDXpZJwNk1mYEYSGTSRKDEP8t+0/ii9OxysRGINI1070u9yO/y94OfIzzkSczqS8LGUXY1KLislobXa5/NNuF3GQSaYj7+B0ELLFRHfbImEYkMACOuRFmvakI77UjUaDVwul2Ar5GA4lUo1TBnwTbbG4rpQWgTHwkpEEr64RbK65UWLu6xkZkGmsOV7ot/5Yiq7CDhtDAyCFKpnQuMvb04GDNWfIGaIFlLu5+aLq+wS4IyIx+MZBk5CoZBgwIihGinllj/TsVrISuOv5I6Qj+MMDU/PVFJ6PH6Ez1P6R/cmp8rKz4buX953Rx7Tv2eJ9O6NNo/pXH6sPKfluCR5PsggXZ4r9Az4HFcCBpG+k69Bz01m77irZzQAII9LpGP4uhKp7Uj/K7UDDAXFTsj4yPC3fUI+VqEgOIrz4AqO/qeXlhceokwKTt2TRUz/aCEGIAoD8cWDkDswtBBwGQ04RHpJxyJKimEk0MKvpbQIy4ukLGazeVhQn9zuWCxJEh71T/9IAXJLii9Q3L0kj3Uk2p4DGq7Q5bGiY+SxkJmQSGBytGc50veR/lGfOUMT6fo0lvJzJgAnz28e40FjxseUp5QqgZa/RxnJelcCjbIiVPo+kvJWUtgf5X3+KMZFpHuIxM4ofRcJjI4mMviR+6/UpgzKuHyUtW9CxiYTzMc4C6VdUpYHT7mkGgfAIEihol3AUPYED0Kjmh8ENLxer8hQILqathQnq5nSHslNcC0yFmUdSeGMtLBEUlB0jJIvnH8nux9UKhUmT56M3t5etLW1hbE9MujgVCy3luTjKcuE/gYQlnpI8TGyP5/a4C4V3l/ZLcDZEiUri383EgCLNLYjfa9kbSsdqyQcgPD0YHnzv1BoaGdlYkH4NTlrRHOUPvM9eLiC4EXF6Dnwiqh/j6KkhDmbx90E9J38PY/5kWM4OGtBx9D3MoCPxIQpzS9ZgSu9S5GYUfm95e5L+o73k9+jSqUKixEZ69jy68pjQH2Qs1yUWFX6ntjjCfn4ZSLmY5yEYj5okaRJTEF1er0eDodDbCUeCg1W9aRFmpQsRfqTm4UzGFR0jBSU2WyGy+UKU5aUzUCP2WQyjZnx4IshX2AiBcaNVWlRe9Qm1W/gv8uLJSlzpUUFAJ5//nmo1WqcO3cOTz31lGJbcv9H6xu5vWj/EL5LLaUEUvogByQ8A4QseTnIVqVSicwmerbknpDZHxIOYng7ke5D/p3GkmqR6HQ6kVp5Ldk0/PnzDBVZsZByISYjFAqJIFs6Xn4uVJqf5qx8L0oKjFyUdH9/j8qC5hDdD68sTECLjiFwwZkwes9pDCgWgYNxyoajdinQl7MIHCxwwCYzssDIhkWkuSK/Q0rzWAZa1FYk9my0ecndmQMDA2FGAQF7mh9U+G6sQteciPn4+GWC+RhnoYWSXgAqNkTBdwDC4gMAhC3W5LLh1jkvJMQpaypARp/liPJIUeTyIjDSy07BkTk5OUhMTMSBAweQlJQEt9s9YhEsJUBDQosUt5joeyVQwr+n8w4fPoyenh5UVVWFxYjwdjigUbo/3i4fMwIO9By4ciMFTNY9ZQ6QIuFZHPQbT1MkRcELesnAKhLg4IonUg0QUvRqtRoJCQlIS0vDunXrMHv2bLzwwgs4duwY7Hb7sLoekRSPksjH8d1UOWgEhpg5jUYDnU4nMiLy8/NRUlKCKVOm4JlnnoHD4RD3R0qVLFqluBE5VuHvUfjz5e5QYCgWhn6ne+bgkY4hxUqfucIlEMLdUvw6ssjvxWjBnTfccANWrFghdkouLy/HhQsXcOXKFXR2dqKurm5YFWfeh0jvs5LwwHMSXgKeRF7XOFtGzBsAxTi7SOMxIeMvE+DjbyD8xZYXE65k+Hf00nDrhNqhsuUxMTFob28XLwuPG+CBqUrBndciXNlptVrk5eVh0aJFKC4uRlZWFoxGI44fP45z5859pPYjuRKUjgGUo9+Tk5MRHx8v3BzV1dVhC40MrEa7Dik9HpPDnxW3pnixJvl6HAjSokh9JMtUDsCj68kVK3kfIwET+fpGoxGxsbGiwq7VakVRURGWLVsm9hRyuVxh1qDSGMkuARoLHogb6Th6Xmq1GgUFBYiNjRXjkJeXB7VajaysLOTl5SE7Oxvvvfce6uvrwzZ14xY/j23ipdNHe7ZjlejoaEybNg0OhwOdnZ1iu4HCwkLk5OSI406fPo3W1lbk5eWhrq4Ovb2917wxGge7MnDiz1V2TxD44PNAyX3I59NILAX/n/8ug4XU1FRMmzYN119/PQKBANLS0lBYWIirV6+itbUVr732Gtrb2xUNEdkIUHpeSsyWUl8jtS2/r/L7JbcxlrVnQsZHJsDHOAt/CXiRJaLmSRGpVCqxsyRZ3EQREttAx8bFxSE+Ph5JSUlip1y6BlH5AATTwq2rSH0ERl+MNBoN4uPjsXz5ctx8881YsmQJQqEQ6uvr8Ytf/ALnzp2LuKiMRp3yayopM67IlOjcpUuXIicnBw6HA++88w6effZZUaeEqpVya5n3UVaYAIYpM05nA4MWPFWcpedIpdSjo6NhMpngcDjg8/lEKXBSGHScXLVUpqJpvtD1ZYuPrFw6Xj5fpVIhLi4OU6dORUZGBl544QVRGjsmJgb33Xcfnn/+ebFpIG9XFiXFRX2Ui9pxFwgxFWq1GgaDAUuXLsXChQtFavKXv/zlYcqA5tXly5eFe4uuT7uSyvUm6PNHVSIEbGgDvgceeABXrlzB6dOnER8fD4PBgAceeAC33HKLOOenP/0pDh8+jLvuugubN29GeXn5sLHkwueyHCvD75+zmhzEEtgg4MoBCa98DAyxo7IijvRMRwMG9O7FxMTAYDAgGAzC4XBg8uTJmDx5Mvx+P3p6elBRURG2Fw+/Do/noO+V1h7eD9nFFwlsc1eUbCwQICSwLBtz/B7/npmzfzaZAB/jLNxC5PEcKpVK7KfAYzL6+/uh1+uF8po1axZWrlyJOXPmoL29Hffccw/MZjPKy8sxb948AUiAQfcNVZIEIGqC0AtOm7h9VLFarXj00Udx9913Iy4uTnz/hS98AefPnxefR6JSI40RLQScHeALKwGnSGl6r7/+Om6++WYsXLgQn//859HV1YWZM2ciNzcXr776KiorK1FXV4eurq5h4Iq3R9/JZZ5l5Ux9IqBx7733ori4GMAgSPvXf/1X3HrrrTh9+rQo3kQlwakYFjBUrExeNCmYUgkojXVMY2JikJmZiYSEBFG86yc/+QmKi4vhcrmwb98+NDU1XfOeMdySlgMCuauF+uH3+1FYWIiFCxeisLAQa9euRUJCQsT277vvPrS3t6O8vDyM/fP7/bDZbGFzgV9XtnCvRbKysjBjxgxcf/31+OpXv6qoIOWx/853viP+nj59Op5++mns2rUL7e3tEa/D338CCLQG8NLjAMLArhyzIafMRzIgeHtKgEKe15GAk0ajQV5eHh555BEUFRWhoaEBc+bMwde//nX4/X50d3cjKSkJU6dORVRUFC5evIjLly+HXXek4mHUFyWXJp3Ps6Vkkd3KdC90fHR0tFgXKWBfziAisDMBQP42MgE+xlnIeiErjXz7soVC2TD9/f1wOp0wmUxYtWoVSkpKMH/+fMyePRsDAwNix9rExET867/+K7Zv3w673S6CIfk+CrTpF23qNlrlQCXriItGo0F+fj4MBgOioqJgt9vx7rvv4sEHH8Qbb7yBXbt2iXau5RqyS4W+4wurvCDIi/E777yDEydOoKCgAA899BA+97nP4eTJk9i9ezcWLVqEO+64A7t27cL+/ftRUVExLMZE7hOBH25xkS8dGMpCUavVMBqNyMvLw8yZMxEfHw+tVovTp0/j7rvvRm5uLs6fPw+j0Yhjx46hr69PBBdSJVqyZrm1SiCFrsdL4MvWmtIY07/i4mJ0dnaioqICjz32GCZNmoTo6Gh0d3fjjTfegMPhGFZ06VqenVw0jFfM5awMMBh0ec899yA2NlZRoXs8HlRVVeGVV15BVVWVmM/0fFSqweJvLpdrRCZmrLUZKDjY5XLhe9/7Hq677jqkpKSMuUQ7n4PFxcX4/ve/j+XLl+M73/kOOjs7IzJIBDhkto0zGXxslJhA+puD1cTERPT19Q3bn0l+f2TAQseNpHSjoqIwadIkEaTc1dWFO++8E1u3bhU1agBg48aNCAaDOHHiBB555JGw9pXWIKW5zFnOUGhov5ixZjSpVCosXrwYCxYsgN/vxy233CJ21ab2X3jhBbzzzjtobGwcNgajrYMT8vHIBPgYZ6EJrbSJFqBsdWdmZmLatGm46aabkJOTg7S0NPh8PpSXlyMxMREGgyHMxcLbJOTOX3ZSYpHcLmOV/v5+XLhwAfPmzYNKNegmOnjwIJKSktDb2zui8hrNt6q0uNL3ShabfE5HRwd6enrQ29uLadOmYf369TCbzUhNTcX06dMBAAkJCWKn4UhuBn59uZy5UunzYHBwE7rjx49j2rRpAIZKUre1tSEnJwelpaUivmH//v04d+6coN15MDGPZZGpY164bKTxI6F+1dXVoaOjA+3t7UIpEdNSXV09YnDgWIQHBUa6B51OB7PZjISEBKSmpg57nsFgEC0tLbh48SLee+89HDlyRLgvuIImACinXcvpnGMVYmP8fj8WL16MnJwcESgcSZxOJ86dO4fk5GQkJyfDarVCpVLBZDIhLy8P7e3tMJvN6OzsDDsv0jzmLhg6jp/Dj5UlKioKU6dORU5ODvr7+5GXl4fu7m7U1dXhxIkTI7I2SiIDG846ABBuDWAQSHq9XjQ2NkKn0yEzMxOzZ8/G5MmTER0dLYr08WvLYxBpjimtZ/LaxtujdjQaDTIyMmCxWLB06VKsXbsWgUAACxcuFNtSkLS2tsLtduOll14ads0J+dvIBPgYZ6GXmF5ai8UClUolAvw4MAiFQrBYLJg7dy7uvfdeLF26FBqNBp2dnaisrMTvf/975OfnIzc3F36/H01NTQDCrXSZbiXgQy4C+k1J5JdZXihcLhd27NiBDRs2wGq1wuPx4MSJE+jq6hI73Y4mkVgP+ZrcFTMaXUzn+/1+9Pb2Yt++fUhOTsakSZOwcOFClJSUYPv27ejq6hqmvPgz4Nch9ojalSlpPuYulwubNm3C/Pnz0d3djWAwiLS0NOzbtw8bNmzAAw88gJaWFixatAgOhwPnzp0Tz4R2OeZl3Om50fcqlQpGoxEOhyNsDEYa02AwCKfTiQMHDgAYrDdz9uxZMQ8HBgbCtkRXakcGeUrzhruugsHgsP1pKEZp0qRJmDx5cti5gUAAnZ2dUKlUOH78ON5991385S9/CYvP4deljC5+bbk+yliVh9lsxtKlS/Htb38bWq0WiYmJYrxp3yJKSeaKqaurC3/5y18wY8YMzJw5E3l5eYiPjxftqtVqUdsnEjtDawIHaXKFYiV2g1yqtFZERUVh+fLlWLNmDdxuN0pLS9HW1oYjR47gxIkTYdeUa24ojRdfQ5QAYl9fH7q6upCamorExES0tbVBrVYjLi4OJSUl+H//7/8hJiYGfX19YTvj8jnC3xt+Lf6ZBxNTCrparRYxUErMkEqlgsFgwOLFizFp0iQsW7YMM2fOFPdMsXZ0v9dddx3sdrsAH/JzmZDxlwnwMc5CCh8I3/G0v78fsbGxw6j2u+66C8uXL8esWbOQkJCAX/ziFzh79iwuX76M06dPY968eXj88cfxyCOP4IMPPsCKFStQUVEBn8+HmJgYuN3uMItcq9WGbW8fiQqWRclS8nq9OHXqFM6ePStSJltaWsTmUh/lpaWXXt7NFAgv8sNTNuWFmZ/jdrtx/PhxtLW1YfHixVi5ciVmz56N//iP/0Bra6vi4hKJZue1OSigNBgMCraA9iUhIPmNb3wj7B5uvPFGDAwMoKysDE8++SROnjwJr9cLi8UCh8MhAjUpoNjpdIpgVB5QOTAwIFgLJWaIvpe/A4YKcqWlpeE3v/kNkpKSxP0YDIYxBWkquXvoM990MBQKic3HOMu2Zs0a3HbbbbjpppvCrtXU1ITS0lKhNBsbG0UhPM6k8M8UdEnzjcaerjfWGg5f//rXsW7dOmRmZoo+ORwOtLW14dSpU9i8eTNWr16NO++8U9TisdvtuHjxIjZt2oQ//OEPSEhIwPLly7Fp06ZRr8cZGmBoh2q5RkokwKfX67Fy5UrMnz8fU6dOxcDAAMrLy8U7v3LlSlFUsK6ubkzvotIxfM7xY/r7+3H48GG89957iIqKwoIFC/Duu+/ihz/8Ic6cOYOuri4kJiYCAP7rv/4LTz75pGiTsxVKWSfyfObuOrlgIDGA9Du1ZzAYMHnyZHz/+99HTk4OysrK8Oyzz8Jms+GGG25AaWkpMjMzAQy6TN999128/vrrin2ckL+NTICPcRZykfDdIQGEZQmEQiHExMTgm9/8JhYtWoS0tDQYDAYcOHAAR48exeXLl9Hd3Q29Xo9HH30U8+fPF2j/iSeewNNPP40dO3bA4XCEBZzyTImx0q78fxKu4KiQFhXfKikpwYULF0RapJJEcqnw3zizwC0QmUqXqVfZT05j7fF4kJ+fj8WLFwsrkY4nhcsXfE59E9PAU23lAlB6vX4YG0JBnQQw8/PzUVBQgClTpuDee+/F6dOn4Xa7w54LteH1ekWFW5/PJzYRpGJgABRjHZTGkj9Dq9WKu+++Gw8//DBSU1Oh0WjQ3t6O2tpapKSkoKGhIWJ7kdrm11DKwiHWhurZ7N69G5cvX8YHH3yAp556SvRNo9EgJycHNTU1cDqdYWCC2ie3ImeEZAtZvuexyMGDB5GVlYX58+cDABoaGtDZ2YkrV67g5z//OZqbm3Hy5Ek888wzYfPF4/HAbrdDp9Ph7rvvxl133TWm6/GYHWKIaE3g806j0SAhIQHf+9738OKLLyIuLg5z5szBggULYDQaBQhOTU1FTk4Otm7diuPHjyM9PR319fU4e/YsTp06pTgeshuGvzORWEZZampq0N7eLo774he/GBbz4XA4MHv2bNx11114/fXXh12H9ysS28n7y12fVBtJruny85//HLNnz8akSZOQkZGBU6dOYe/evTh8+DAGBgZw7733hhUICwaDuHz5csTSALwfEwGo4ycT4GOchRZNrmRp4SS62Gg0IiUlBVlZWcjOzobJZEJ3dzdeeuklXLx4ETabDV6vFwMDA6iqqoLBYIDNZsO6deswZcoULFu2DDabDXv27BkWs0BZFMAg4ley8q9l0Q4Gg2htbYXD4UBcXBwWLVoEYHBR6ujoGPHcsSrOSNY8feZKJ1LfY2JikJKSglAohF/96ldCcSu5EJR80rJSJWuQrHFSJrLSJdFoNLBYLNDpdHC73di/fz88Ho8itU73xOcKBdfxgGWl8YrESpDcdNNNWLNmDaZOnYro6GhcvXoVFy9exOnTp9HW1iauLTNKY1FG8v1zsAAMBVuTa4XqewBAW1sbzp07B4/HA6fTKUCH0nPhY8D9/9zylYHgaBIXFwez2Qxg8LmdO3cO5eXlKC8vR01NDbxeL2w2W8TzP/nJT2Lt2rWYMmWK+K6jowONjY3o7e0d1hc5poC7D0jWrVuH9PR0xMXFYcqUKVi/fj1MJhNycnKQnp4u1otQKITGxkbk5uaKLRtMJhP0er0AlvJYKj1LGfCPRVpaWtDU1ITOzk4kJiYiNTUVwCDjeODAAbS3t+PkyZNhgZwjMatK46TkCqT+y+m7wOD6mZ6ejrS0NLz44ou4dOkSzp8/j5qaGoRCIZjNZmEEhkIhvPPOO6isrBSF7JT6Odp7NSF/vUyAj3EW2suFKzNaoCkTJS4uDjk5OYLe7evrQ3V1Nf785z+LRZeo81OnTqGurg41NTWYP38+4uLiMG3aNDQ3NwukT4qRrCtqg7svxiLyy0gvb0NDA3p6epCRkYHly5fD5XLBbreHWURcxvoi8wWGuwPkRVL2JfO26ff4+HhYrVb09fXhySefhMfjCVvI5GvIbdBzItDBx5WyOmQ3FmdSiNlyOp1obGzEli1bhqXv0kJKgafc6ieGjEAIuRWU2KOR5M4778SCBQsEe1JVVYWjR4/ixIkTaGhogMlkErVQlEqajwRyZMVAY0NAitJHfT4fvF4v/H6/YHOIWejq6hJuQVmoL7xWCCltGTBeq3U6Y8YMTJ48GaFQCA6HA1VVVdi1axcOHTo04nkqlQp6vR4PP/wwioqKYLFYxG/d3d1oampCV1fXiEqV3AnElAGDYPfGG2/E3LlzkZCQgMbGRqxduxb9/f3o6+vDlStX4PP5YDAYoFKpUFVVhcmTJyMtLQ15eXlIS0sT889msw0bk2AwGLZxpRJYU4oLkZ9/S0sLrly5gpqaGuFmAQYZjzfeeAMtLS2orKwUAIi3IYtcE4a+432T9/aR3TZ6vR5OpxMulws9PT14+eWX4Xa7Ybfb4XK5YLVaYTabhfu5o6MDL774IioqKsLmkmwUEFicYD3GTybAxzgLuSh4mW3uBjEYDMjMzMTcuXNx44034vjx43j11VfxyiuvCNpaq9UiPz8fe/fuRUNDA1577TUcPXoUP/vZz/D9738fBw4cwPbt2wVVz2lKvV4vKkIaDIZr2vdCBhLcsqUXf8aMGTh69OiYNq0bCYRwUKG0h4lciGkkkAMMKgKPx4P09HT813/9F/7jP/5DxCcACIsxUQo49Xg8iIuLg0qlgtPpHKaYCcwRDc7rk9Aivn//fkRFRWHatGnYsGEDNm3apLhRFjEc8sJLv/H7V2InRhKqL0Ny6dIlHDt2DCdPnkRSUhKWLFmChoYGXL58OWJ6KIn8G39mPJ6JC803t9uNpqYmHDlyRIAhk8mEvr4+AdZUKtWwmA1KL6e/aWxJcVAAJsXhUPG30WTt2rWYM2cOPB4P3nnnHWRkZCAjI2PU80wmE+bMmaNYcyIvLw9FRUWK1+dKVAbWKpUKiYmJeO6559Dc3Iz169fjtddew0033YTKykrs2LEDlZWVgrmkDSZvu+023HXXXeL5JiYmIhQKhcUH8QBPmq/c7cVjO0ZLxQeA2tpaHDp0CLGxscJlBQzuffLyyy/D7/eLZ073xuNauMuEg0g6PtL6JL979KxXrFiBe+65BxaLBV1dXXj99dfR1NQk4lC++93vinenoaEBX//61/HBBx+IsYiUli27Zifk45cJ8DHOQv5vvV6Pnp4eEQVOJZvvuusurFy5UuSk2+12URlTr9eLIlaxsbFwOBzIz89HcXExAoEAvvzlL8NkMuG2225DbGwsvvWtb4UFY4VCIbE4ExhRSkVUUiry99zibm1thd1uFxUPL126FFa866OMUST6ExiKWZFpeO73pd81Gg2sViseeughzJ49G52dnfjDH/4g6qso3auSG4cqaVJBokAgAL1eL/pCCzxlE8l0cSAQwKJFi7BgwQKUlJSgtLQUH3zwgWgTgLCaKWhVVlD0mZ6dEhhUGjMCmitXrkRhYSFiY2PR0tKCO+64AzabDT09PdBqtVi7di2+9rWvYePGjaiurhbnjuZyicRI0d9kYZN1T/fY3NyMr33ta3jzzTdRUFAAjUaDl19+GRcvXhwWuGo2mxETE4PU1FQsXboUKSkpCAaDqKiowNatWwXIo8wU6u9YWSFyW1itVmRnZ6OioiIsPTSSxMbG4vbbb8fkyZNFwb5QKISenh78+Mc/xptvvql4Hremeb0YEpvNBqfTiQ8++ACNjY3Yu3cvdu7cCZ/PB6fTKSqG0nz0er3YvHkz1q1bh4KCApw/fx4//elPRRo3MNydJrOeXNFzto/3l54xH1ev1xuWeQUAubm5KCsrw9mzZ/HCCy/gvffeE7+N5jq81jRXur9AIICKigp4vV5kZmaKwoyFhYXIz88fdk29Xo+CggLs27dv1DL4f4+bE/6zyQT4GGdR8k2TFU00vslkQlxcHC5duoS3334b586dE4tMVlYWgsGgKOi1fv16xMTEIC0tTQTp8ewCUshcEdD3o73cIyk3LtR+f38/rly5InLmI4ms2JWuo9Q3rVYLq9WKRYsWITU1FVarFVqtFu3t7WhoaIDRaITVasXFixdRX1+PtLQ05ObmIikpCQsWLEBUVBSuXLmCpqYm4b7gC6zSvVI/OKAgAMkDRfmGZ9zy5immZ86cQV5eHqZPny6yKviCSPQ7pRRyF5mckjgaQKPvCBBmZ2djxowZsFgs6OvrQ0NDA4LBIDo7O+F2u2E0GmG325GQkIAVK1bA6XTi1VdfFe4Ruez7aM+WP0c+//i89/v9SE5OFkxSRkYGvvrVr2LHjh04d+4cWltbUVhYiNLSUmRlZSElJQVWqxV5eXmwWCwIhUKYPn06YmJiMDAwgPb2drz//vthdPlYLdVXX30VAwMDuOOOO5Cbm4v+/n6cPHly1PPovSVGia7Z2NiImpoakf4ui7wOyGNH87OhoQF2ux02m03xnQ2FBtPxV69ejRkzZiA+Ph5utxsVFRWoqqpCT0+PuA7NGa7c+bNUeq5KrBs/NhQKwWq1DmOJiJ31+Xy47bbbEB8fj1deeSXs2XCRASwHnlwovZYbGXxudXd3Y8eOHVi1ahWKiopw7tw5VFRUoKCgAJMmTcLTTz+Nr3/961Cr1WhoaMDp06eHufm4S1x26V6Li3NCrk0mwMc4ixx8RwqNMin6+vrg8/kwMDCAgwcP4p133kFLSwuio6ORmZmJ+fPno7W1FU1NTdi6dSvS09OFT7mrqwv5+fnw+/3CMpYVgPy3kkRSLpGsX6vVCoPBIOp8tLe3D9syfiyKi19fPp5AVXx8PO655x7k5+cjKSkJFosFdXV1OHXqFOLj45Gamoq9e/eirKwMxcXFmDNnDpKSklBcXIzW1lZ0dXVBrVbDarWKBV6tVgsGItKY9Pf3h22DLgeEEptENVrIkqLxjo6OxpEjRzBlyhQsXbpUBOYRDU1KjBZCcltxhof7nSP54pUkPT0dixYtwowZM6DX6wUNnZSUhAsXLoisgatXrwqGJiYmRigwp9M5ohKX54WsPORYAw6Es7Oz4fF44PF4kJCQgH/5l3+ByWRCfHw8qqqqsHTpUtx0000oLCwUY8Zl5syZSEtLQ39/P8rLy3H8+PEwd9FYffRvvvmmALYmkwlGozEsLT6S+Hw+1NbWivHp7+9HR0cHysvL0d3dHfE8WbEquc2CwSB6enrQ3d2tGNdCn00mE9auXYtFixYhFAqhrq4OJ0+eFMwqb49iZbhy5X0gkUGCkhKmv2NjY5GZmSli2bq6umC325GRkYHY2FisXbsWBQUFOHbsmJhjvO1ITIcS+OCuId5nGjuXy4UtW7YIY23Pnj3YvHkzFixYgNLSUvzyl7/E5z73OWg0GjQ3N+PYsWPDXC18HOg9n4j5GH+ZAB/jLBSYCAxS+TzIyeVyQafTiYqA3/ve90RMQFJSErZv346cnBzs3r0bmzZtwjvvvIMHHngAAwMDmDZtGh599FGoVCpkZ2dj6tSpACBSQCktkCx2Suu91iqnSgsW0fkulwvvv/8+Ojs7w/zckRYtJcuCvlcCK0Q5b9iwAQ0NDUJRl5SUoKSkRCyolHEji9lsRnR0NK6//nokJyeju7sbDocDUVFROH36NLq7uwVjwxd4+kcuMtrgj9wJ/f39MJvNAkAo7QND49Ha2ooLFy4gOzsbBoNBBAEDg3EQVPqe+sGBBhclZU9/82NCoRDmzp2L//iP/0B6ejpUKhVeeukl/PjHP0Z/fz/cbrdgXFpaWkRMxcyZM/H888/jpptugsvlGpFl4YqQtnLnljZ9Rwwf0fcejwevvfYaPvOZz4RteHj33XfjnnvuGXbPkQDWrFmzMDAwAKvVinvuuQe///3vw8rdj1Vh7Nu3D1/72tfwiU98Ak888QTq6+tHPcdut+Ott97C9773PVitVrS0tOA3v/kNdu/eHZH1AIZofAKr/P5oLGn85D1e6Fh6vm63G8eOHcMNN9yAsrIyvP3229i8ebPYQBEYZCJ4rAcPWuZt8j4oGQpKrhdi/mw2G+Li4vDMM8/g5ZdfxhtvvIHS0lJERUUhISEBe/bswYIFC9DR0RF2vlJNDRmIUX/IpcaPI6aC7vX48eM4ceKEYCF9Ph9qampgMBgwc+ZMREdHw2g0CsaMCzGYJBMxHn87mQAf4yxEqwMY9tLExcVh9erVmDlzJqxWK372s5/hiSeeQFNTE7q7u/HlL38ZP//5z1FdXY0LFy4IYLFw4UKsWbMGKpUKZWVlePPNN7Fnzx643W7hIgCGqG56Kem70US2fuRzKKNBr9dj7ty5KCsrC6twqmTBRKJfeZu04PIYDFqsjUYjtm7dipdffhlLly7F7bffDrfbjfr6epH+m5iYiIKCAtx4441obW2FXq+HxWLBfffdB71ej+effx5nzpxBbm6uSF8m5ShbVPSPFlpyi1BBML4RmFI9FYp3OH78ONxuN2644YYwpoQWPB4ECwwFKAMIC04dKw2sUqnQ09ODy5cvIz09HQCwaNEi/PSnP8W8efNw9OhRvP/++6iursY3v/lNUW5eq9UiKysLa9euxa5du3Dp0qURr0N9IXcTZWQRaKM5bjQaBRChGib33XcfVq1ahdtvvx1z584V9Udk6e3txa5du/DMM8/A6XQiNTUVt99+Ox544AHodDpotVoYjUbExsait7dXPJ+xgg9KGd2/f7/YH2k0yc/Px5YtW0RV04GBATidTjQ0NIzoeiTgSmMxMDAg2C6edkvziX4n8ECW+Ny5c7F8+XKsXr1aAMimpibBZpHLhWrF0Nzk1UG5+1OumSGDApmxBQaDTg8ePIhbb70V3d3dUKvVMJvN2LdvH/Lz80WKeXp6Ot577z089thjirEwI81l2R3Dv5efE2cpyHU5Y8YMrFixAg899BASEhLw5z//GS+99NKw9SxScTclN8+EfLwyAT7GWejlJmVEFohWq0VmZiYmTZoEtVqNS5cuYc+ePejv70dSUhJSUlIwffp0fPjhh6KEOSnTmTNnYu7cubDb7WhubkZ1dTWuXLkirCZgyELgTAMPYlQSJdeHkrzyyisIBoNYtGgR4uPjI/qUqa2xAh5u3QFDgZg+nw9RUVFwuVy4dOkSvF4vmpubRTn1UCiEvr4+EevQ09Mj9qBJT0/HgQMH0NnZiXPnzqGnpwehUEi4SeRCVbw/Wq12mLuFFjiqbqpSDaU083GmcfB4PGhqasKmTZvw4IMPYu/evTh+/LioPivv10LPh2IK6BpKxbyUnh0wqLTr6upQWFgIAKiurkZVVRU++clPwu/3Q6fToaOjA4sXLxauJZo7y5YtQ1VVFS5dujQmoMPjZ4iu5vEqfOt32vSto6MDR44cQV9fH6qqqvC5z31OlDenc/x+P1pbW/HBBx+gqqoKOTk5gtYnhRQVFQWj0Ri2ffu10OQDA4O7C49lV1+VSoX09HTk5eWhra0N6enpuHDhAo4dO4ZLly6F1dNREjkwmr7jAICEvwcE7Ego+DkzMxNnz57FmTNnUFtbG5Y9wlPEgfBMMVm4MpaDjWXjgz57PB709PQIQNLf3w+/3y/icjig37t3r6j5wdciJZZFad2JNKaRYkboHaF9nbKzs7Flyxbs3LkTFy9ejDg/eBtyyvEE+BgfmQAf4yxKLzDtOGu1WmEymcQ+LUePHoXX60VKSgqys7ORkZEhCvYQ8CgtLcXs2bORlZWFhoYGnD9/Hk1NTXA6nWL/Fl5O/aOCAX48EA5M9u/fj7lz52Lx4sUwGAxhv8vnRWpH/k3JAtFqtTCbzSKwU6/XQ6vV4sKFC7hw4ULY+UlJSSLN+NSpUzh16hRCoRAyMzPx/vvvo7a2VihCUjZyUKfcZxo/DhA4O0NUP9/Aj1uVlJ3Q19eHAwcO4Oc//zk8Hg+qq6vhcrnCtkWXLS66Nm+P/ldytfD76OrqQnl5OZKTk+H1enHw4EGcOnUKnZ2d8Pl8SE5ORnx8PAKBADo6OhAbGysyN3JycgQbIl9DSTj7w4uwcQWYkJCA2NhYWK1W9Pf3o6WlBTabDcePH0d7e7tghcxmM8xmM/r7+0Ucw+nTp5GRkYEFCxZgwYIFyM/PDwv0dLvdYRlE46UoVCoVsrKyUFRUhM7OTtTW1mLv3r3Yu3cvampqRqXrOTigNYCDAyXAIaejarVaGAwGURb/9OnTOH/+PFpbW8W9y+BDNkCU+sXvUZ5b1C4/PxAICFaOmDy9Xh+2WzGdt3v3bly9ejVs/ir1g46PZAwoidLaRP2Mi4tDZmYmdDodDh48iIqKCnR3d0dcf/g9ysbURNzH+MgE+BhnISTOtxsna6GhoQHt7e2wWCxITk7GvHnz8OGHHyIQCMDtduOJJ57A9OnTMWPGDKSkpMBms+EHP/gBYmJi0NbWhp07d+Lpp5+G0+kM872TEiD3ANVJcLlcI1pBSi+zLBqNBvPmzUN2dra4v0giW1CR2oy0MGZlZWHNmjWisNLkyZNx/fXXY+vWrWHnBINB3HXXXZg/fz5yc3Ph8/mQlZWFAwcO4KWXXhrmi+fAAAgHIfIx8j2Se4GyYSi2hoSUMAkFE5eUlMBgMGDq1KlYtmwZ3nnnHbjd7mF1QpSqedL3NFb8fz6+9H9VVRXq6upw9uxZXLhwAW63GwaDAT/5yU9QVVUlMl5SUlKwbt06rF+/XtRsqKioEDuyRlIS/JlpNBpRoIyE3ATkLvvUpz6F66+/Htdddx2MRiMeeeQR9PT0wGw2o7a2Fm+88QYKCgpQVFSEFStWwO/34w9/+AOee+45TJo0CW+++SbS0tLE7rh0jfb2duzatSusdPl4gY9gMIiMjAwsWrQIGzZswBe/+EUcOHAAdXV1Y6orwhUaAVhiKQkkkHDQy9+hlJQU3Hzzzbj77rtx8uRJnD9/Hp2dnWFFDDlTxvuupPTlseL9GI1lo3swmUwoKipCW1tbWPlzAKLPJpMpbBNDGSzwsYm0nsjMLWdrqL/0m8FgwMKFC3H33XcDACZPnoyzZ88Ouy4fa7m6MLlaqZ7PhHz8MgE+xll4br/BYBALTjAYRHt7O44ePQqLxYIZM2bgf/7nf0QOP9G4iYmJ6O/vR39/PxISEuDz+fDb3/4WmzdvxsWLF+F2u8OobaK3Q6GQCGikzeZ4FPdIwhdyvmDRAkA1NPr7+1FdXT0i5awEOpTa5UCCvqurq8NLL72E5uZm/OxnP0NLS0tY/QBgsLDSf/7nf4paEJ2dnbjrrrugUg0WB1MKKCVWiC+wMvAgfzsPpKTPFHxKixK3YumZU5BqMBhEV1cXfvOb3+Dmm2/GiRMn8P7774t9eDhYoZRbao9ADoCwVNyRaGlOjZeVlQkWzOv14o033hAsjkqlgtvtRltbG1wul2CEXnvtNVy6dGlEtoMDHSpbT0CEfqdxCgQC2LBhA+bMmQOVarAw3WOPPQaNRgOz2SxiG3hcUkxMDG6++WYUFBRgw4YNSE9PD4sJcTgcOH36NHbt2oWKioow5ujjktzcXFgsFqjVatTX1yMrKwsLFixATk4OXnvtNRw4cEDEWoxFuEuA3lEekEvKk++JwwEEsXu0kdxzzz2H06dPi3R72iWZW/E8xozYOvm9AyKn19JvBGZovttsNlRVVeHYsWOYMWMGli1bhpSUFOzYsQM33XSTYNEA4P7770dXV1cY+yE/K6UAVN5Huh8ldlQJJD399NNYtmwZ/H6/qPxMqeby9ZWABY1jMBiMWIRsQv56mQAf4yycRuXBp/Rda2srzp8/j1AohHnz5kGlUgmfNwU3ulwuNDU14dlnn0VJSQnOnj2Lixcvwul0ClaAAiBpi3GlvUHGkkrIRQkgqNVqEVDm8XjQ19enuPAr0bfy9/IYydceGBiA1+uFSjUY9X7dddfhpz/9Kdrb29HS0gK32w2z2Yzly5dDpVKhu7tb1EmgseYLjpJvOFKf5FL0BAi4xcQtUzqW0968/UAgAIfDgeuuuw5er1cATRkQUd94mqQS2IjEIPG/5UJKvMQ8XZcK2hHgIkuV2A/+PJTGiYM0pf1KgsEgGhsbMXnyZJF9k5aWJhgfJVGpVJg2bZqI85CVallZGbZt24bDhw9fk1WakZGB4uJiVFdXY/bs2UhKSoLVakVubi5+8YtfQK/XY+rUqYiPj8ekSZMwadIkJCYmwm63i8yWN954A06nEx0dHYrVaiOJHPMhZ7Lwiqn0WZbi4mKkpKRAo9EgLS1N1GOJxGoQ4JDBMfWDz9FIyp+XCqDj+vv7YbPZUF5ejqlTp8LpdMLj8WD9+vW4fPkyMjMzkZKSEja/qE8yAzTatTloojUhEviOjo4WRRgTExPR19eHLVu2oLKyEj09PYrX4GNBIldinZDxkQnwMc7C3S6y5RodHY36+noMDAygqakJJpMJ2dnZYkO4zs5OZGVloaenBxcvXsQrr7yCFStW4NKlS8LiIUuJlB4VvOJVQEk+KjUtKyx+TUrpG2s7kZTYSAuRz+dDc3MzSkpK8NnPfhZNTU2oq6uD3W7HwMCAqI3Q09MjNpNS2i+EA0GlfvHP3F/OKV/6W+4np5qB8MXaZDLhuuuug1qtRkFBAQBg48aNIhVa9vkT+OBswGiBclxG8qnLi6zdbofP5xNgICYmZkyl8uX7BhA2v7mSbWxsRHt7O1JSUkSW1GhCRaxCoRB6e3tFP6OiorB3717s378fFy5cCLseHR9JkpOTsXjxYiQlJWH16tXIzMxEQkICSkpKcOrUKRiNRsyfPx8pKSkiZiAtLU2c//TTT2Pv3r3QaDSj1kKRRZ53MhNHY8lBg/zMi4qKkJSUJOYmHUvvJG+LnjVdRw6iHGufOUjhc9vj8aCxsVEwaVqtFnPnzsU777wDg8GAlJQUABCbBkZi6CKJDKjonRtpzDUaDfLy8pCUlITo6Gh0d3fjwIEDaG5uFq7R0a5L9z0BOsZfJsDHOAspEa64SbkNDAxgz549UKsHy2Hv3LkTjz/+OCwWC+rr6/Hqq6/iRz/6EU6ePIktW7agpaUFzz33HLRaLUwmE5xOp/C3Uy0PshL5RmS08NDGVH+NUF+jo6Oh1WpRVFQ0jB7mNOpYKHElHzWdEwgE8P777yMjIwP9/f24/vrrUVBQgJycHIRCg7t7LlmyBCUlJWhpaQmr1UCLCLkyqF2+2PM+cuXA02Zl1oQKH9H33OUlx3xERUUhJycHmzdvRl9fH1paWtDV1YXo6GgRKMndLlwoCBPAsHLW1C/+/1iUikxjd3V1hbmmWlpawtKm5WvJ33k8Huh0OjHP6PuoqChotVq43W44nU7YbDZ0dXUJACL3h/dfnjOHDh3CgQMHUF9fj6SkJLz22msiXkaJSo8kVqsVJSUlePjhh5GYmBgGsjZu3Kh4Dh9jAmtUiv5aRHbzAQgDsbweEJ9P/Php06YhKSkJbW1tePfdd0Vdj1AoFHYvxELRZmrAUD0WPsYym8fvl7cFDJ9bBPD7+/tRWFiIgoICdHR0oKWlBVlZWQJIWSwW0bdIxcUiCR1H9xgpGJX6FhUVJQoR+nw+tLS0oLOzM+y+5boedB0+LmMBKBPy18sE+BhnoWwWDgi4kqHKfP39/SgrK8P69euFcrfZbDh48KBIOfV4PCLAj1OD3OqmWAJ64XU6nUgPvVY0z19KYjkKCgqg1WoRDA5WZz1y5EgYvc/jI0jGCkS4u0FWxH/+859x+PBhLFiwAF/5ylfwyCOPID8/HwsWLIDL5cLx48fD0mHpmuTu4m4R+p6ntdIizO+X7otcYZTZQd/LG+BxwEJtL1u2DOvXr0dvby9OnTqFM2fOCF89MRvUjtvtFp/VajU8Ho+ID9Dr9eKzfE26ZyUQMhK9HgqFEBsbK5gIlUqF+++/Hw6HA83NzRGfkyzktqEsF3qWpPieeuopnDx5EjfeeCPefPNNPPfcc8jJyQEwWBTvxIkTSElJEYDy2LFjOHjwIFpaWrBu3Tr827/9mwhojI6OFmCJs1A0d0aaX4cPH0Z1dTX++Mc/YsmSJWNieILBIFwuF3bu3Ik9e/bg8uXLYx4XLiNV6STwTcwaufRoPiUlJeGZZ57BjBkzcPHiRezduzesLQK9dA53+/HnITN+SuvBSJU9+dj29fXhv//7v/Huu+/i0UcfxcMPP4y0tDR84QtfCIvP4e3w1GJ+/3QfMghSeq/kLCDOLJvNZuTk5CA6OhoVFRV46623cOnSJTEPVSqVoptOdpPyZyTf94R8fDIBPsZZ+EtPC6dKpRKBoMHgYClunU4nAk3JZRAIBNDb2wtgiLalRYZb8Xq9HirVYIAlfyE5javkbhhNuCIGBhXFihUrYDAYUF9fj/r6ekybNg07d+4ctohEYg0iWdD0Oy2k8vler1cUcmpvb8eFCxfQ3NwscvflKHi+eHBKWsmykWllYHjNA55KyxUFfzb0jOPi4rB8+XI0NjaKtOg9e/agqqoKFRUVuHTpkojBoedJQnEqVLiJNk6jwEZ5gRyNSh/td8q4cjqdMJlMyM/PR2xsbMSx5CLT+TSXab7xEuSU6tjU1ISf/vSnmDJlCpKTk3H06FG0trbCYDCIjfZ6e3vR3t4Ol8uFiooKtLS0CJeO0o6plJ0QSbmQBAIBdHd341e/+pXYlE2psipJZ2cnGhsbcfr0abz22muoqqr6yHS8/F5wkB4KhUSBNu5u4ONvMplE6nlsbKxwZchzkL+zZKDwv7nIcSf0P+9HJIBA76TP5xMp/6WlpcOY1Y6OjjCwKLchX19JIgEhfk5UVBRiYmJw6623wmw2o6urCzU1NXA6nWNKJ5bbHgmETcjHIxPgY5yFJjIpFPqn1WpF6itV0eRuGfkFCAaD0Ol0iv5TEmIN6HxSAFyhjbXPIymctrY21NXVoaqqSrAg/PeRFpJI7XJXiFLgIjCYKuxyuXD16lWo1Wr09vbi6tWrYeePdE/y/VFflRQ0X4C5r1kGH0qLNC2ELpcLAwMDuHr1KsrKytDU1ITa2lq0t7cP6xtfkOlvKhVNhaVkdwW/r7G4XJTGqLOzMyx+oa+v75oj/CMpFC4dHR3o6OiAXq/Hu+++iwsXLiA9PR27d+8Ou14oNJgiTuDv/PnzACAyYvj7RHItc9vv92P//v1ih+Lp06fD7/ejoKAABoNBzIcTJ06gubkZDQ0N2L9/P44cOTJs/6JrESW3BQci/BjZUPD7/aipqUFJSQn0ej1MJpMIdqbzZPBB7fC/I73X8lware9c/H4/Lly4gN27dwvGNT4+HlarFQBQX18Pu90+7LxrYRPkY5XWmOTkZMycOROlpaWCqaRMQN6O7Lrhn0cbhwn5eGUCfIyzEKgg94rZbBafqbrkwMAAHA6HeDm0Wi30er3IWpGVEQEYspZoJ1JOuZJQyiMwtO/LWERpoerr68Pvf/972O12NDQ04MyZM+ju7g5bPOXzlJSkUtv899GULCkIefHmwqPk+b4a3N3Cz1cKQqXvyXdO2Sf8GHKT8Kwcl8uFP/7xj8jKysLp06dFVoTP5xPpp3RdKhMuF26iLCdyzUSipJUWzEgMjtJ4Uxq2VqtFf38/XnvtNVy8eFHxWCXhQbiUIgoMleCXwXIwGITT6UR5eTnKy8uHzUm/3z+s5Dw9QwpspIwuYgeB8L1TxmKter1eHD9+HL/85S/R0dGBJ598EtnZ2QiFBt1qn/nMZ+BwOGC1WnHlypVR2xtNZHBGRgd9JtcsPSsC9aFQCE6nE8899xyWLFkSZkxQe0pzIRQKKRoyXDhYofa4waOk9GVGoLm5GU1NTdi/fz9qa2uRkpKCFStWYM6cOQiFQjhx4gTa2tqGtfXXMAs8bo5k8eLFeOSRR0SbJpMJiYmJw86VDSVuWNAc/igu6gm5dlGFJmDeuIjD4UBMTAzi4uIQDAbh9XphsVhEJgpfdACE7R8CDC0MRK1T3IdOpxMLENXzoBRaCkDT6/Vi4Q8Gg4IK9Xg8wrr7qBIKDbp5qE+jWbz8PL44csaAUgblY+kf+bIJECilISpdj/6nMeL+YUpljmTVmUymMAuKxpraNRgMQmFw8BEdHS1AIr9fckkQiwEMxePQmCoFegIQwZt8nMbCdCiNh9JnvV4Po9EIo9GIvr4+AWYjnStb16TcKNOKAAUvYU9p4AAEgOYpoDxmQ26f74ESKdthLMWxZKE+0DtCwdp+vz9ss8CPY4kkQ4ML3SsPguRuE64ANRoNfvjDH6KwsBA6nQ6nT5/GU089BYfDEQbo6RzOgPL2+NjyqrRK7oiR3C78ODpfp9MhFBoMMqX3p729XShzpbgkmeGVhddDGUnS0tIwf/58bNmyBeXl5fjLX/6C119/HQ0NDcOOlfdg4usJNzpojACIdOsJ+fhkgvkYZ+EKg/yPBDSIxiXEzf3XVKSKClHxHWmjo6PFS0mZBtQu38U2FAqJreRl2v6vkbEWVuIiK0u+yMqLH7fW+eLE/eFc6N6VFiiy1uQgX/l4zpQAEMxDf3+/sIZIQqFBfzcpVGJESPl6vV5hgfN4G15EjMf2AIhYM4IYhGsFHZF820qLP/XF7XaHWdWjtU/jRu0MDAwIcMtZIf4O8OdAypDmKn/W1E+umPk84ZU0+UZ21wIU6PkAEPFS19rGtYiS8pZZPP49/9vv98NgMKC1tRVerxerV6/G7373O5EFxd8nurdI7UVyNyqBSvn7SELziOYBlQKQWQSlMR5pvEcCHhy4dXd3o6amBgCQnZ0NnU4Hm80WccxJ+GZ8VPiut7f3msH9hFy7TICPcRaugMjKIPAh+8r5C0+Lg2wx8IwCAhucMiVFxRcWUsCRAMBIL/dYRV64ZJaDX0cGHryNSABCPibSYi2zKnSOnGbIlZzSfXLwIFuhwPCS2NQWVyYyuOEp17JFJ1u+Sgs/pWtypank44/03Eb6nhTcaOfJrBQPZCQAx8EAHxd+H9zCHK2/vC1eEyWStf5RKfPxJIEjze2Rriufc+nSJXg8HrhcLqSmpiqyQErv3bX2Z6TjI7n5+Gdeqpwfq/Qej9av0Y6hZ+7z+dDR0YF9+/YhEAigsbFR0UiS33t5bvP5OJ7zYUIm3C7jJuR2MRqNAIaUFbEZZrMZXq9XVJ2kGA5e9ZJKLHOlZrFYxMttMBiET53+kXuA3DRU1In7SUeK0eAykjXGf1eypscidJ/kLiKRYzCUgAQXHucy0v0oMQH8HP5dbGwsPB6PAAjyQkbjTADQ6/UKa58YEPqdniWVEw+Fhtws3NUg3ycfC71eD4PBEFbX5VpfXZlh4jISiOGfaa7SP4/HI9x+xNpFcn2oVINZG+QS9Pl8wk0VDA6mg8tuRyVGg65N8xlAWDzOR2Hmxlt4bEukehVcZJcH/U2GBAFfOUX8WoRAIgfjstEiP3ulPtLf1E/+u/xdpHula8tp7/K5NC9oPeTzTaPRICMjA319fSK+ityr1A4H/TKIBjCsHhCdN+F2+fhlAnyMkxD4AIZeLvLbkw/f6/WKxZioSo1GIyL7+/r6xE6gRMuTG4ZiO6hYVSg06GKx2WxITk6GTqdDV1dXWMCfWq0WfQoEAvB4PMJSJWtcpVKF9ZEADo9VCAQCosiYVqtFX19fmELgi79sqapUKhgMBuH3t1gs8Hg8CAaDItjQaDSKvlF8Cd84j6hW7lriNTn4Qg0MBXb6fD7h46X4GlpsTSaT6AMVfOLnK7FLnB3htQ2IDpZdEpzxiY6OFnEhSiBPydKkuAQKIub1C1QqlQjEJOaFV9XVaDQwGAxhaY8+ny8smJWUPV1Xr9eH7dtDbapUKrH5IZ9btIiPxIIpKV6ZARxJqUVSaDJDxK/PlYgMauT7omNkq10O8FQCyxww89gkmn8j9V+JSZBdUPxvObBWBtDUJ5l14sfwGBpyG9K9KbmC5Da4kiahNSQUComKtDKI4sBGvsZfu4nbtTI6o8kE+Bg/mXC7jLNwpcuBAykO2ulWpVKJTaN40S4KGqXFhvzowKA1FQgExP4aBDRorwWfzxdmhQaDgwWT6HhgaNEBwv3PtEi7XK4wpUlKl++7ItcXoABBWsR4zAYwCMworoUsedqWm0ABxbIAgxYa1TIh8EBgKBQKwW63i7Eh0MBjZXhwbCgUCht7ea8dDni4EpAXW+4yoOPouXCwwf8REOBtkcUul8PnVi59lt0ZAMKuyecN9YGzMzzWhSs3Op6uyQGG0gZ8NO5GozGsOipda6SgT7n/NBYjARYuspKNxLDw5yS3LZ/D439kABbpHDqW/ud/y+CR2pRdeZyNlIEDHxdumXPgoDS2dLycDq7kiuJzQAnkKc1xeTz42MrHyG5Jpecmu9T+Wpmwpf9xZAJ8jLPICzwpfr6IR1r4eKVPvjCR8I3qqH0KjiSly69PlhC/hpznzgNTyTLi1UHlhYhvZ86Pob/lRYiAAC28PBKefue0MrEefAdQUti0mPNiSnyh5kwJ0a8UyMv90vy+CcBw5kK+Zxpr+m0scQvy+MgxKLIVyH/j15ctcFlJypYtfc/Hgu5bLiEv3y8dr9Q/Dlr5eCgJH6v/LeUgz0n6W6vVYsaMGYiPj4ff70dPT0/YTrn8neQisxKym5D/TyIzAJHGRWZ/lI7hx8rXigSW5PPkfo52Hgcx/LocaPF5zfvMs5vkeCU+JhPyf0cmwMc4C7dqPR4P4uLioFINUt6clvT7/aLYk0ajgU6nQ1RUVNhOpADCrFuv1yuqZKpUKlgsljCFQDUq6G9uxSrFTZCSp0VDLtdMCw2nmHkaLLd8uQVGMQEceMgLHpWMDwQCiIuLE8eHQoOpexS5bjQaRblxYj/oOgRK6Pr0OTo6Gg6HQ5xLLAEdwy19svaV0nmVlAoHZDKok4GADN5orOTFmIMoefHmwl1BnCWhv3k9EQJ5lHYdCg2laNNnniXF+8P7QGCQswtcZCuen680lkrX4X8rtaOk+Lgy5aA7EiggV0haWhoefvhhzJ07FzabDWVlZbhw4YJgHHnbfBzk/nMXRySgyhkPDpoJEMtAkwNOnpXB70G+L36ObFjIz0FmIpTcOHRPPNZCvu+RgoupfVqLKMOP2lTaX2ZC/m/IBPgYZyFL2uv1ijQuskgpCE2tVos4CGBwA6z4+Hh0dHQIJUWKIhAIiC3tbTab2PPD5/PB4XCEbU41MDC4+yQVNnO5XAgEAjCbzSLoj+qFBIPBMAqdKztS8nQs7UGi1WqhVqsFiCKGwWg0or+/P2xB1el0YYGFFEvAr6PRaMReOLQo+f1+dHR0AIAovNTS0iLOI6DgcrkQHR2NxMRErF27FlOnThWb0W3cuBFtbW3o6emBzWYT16VFjwq+EdPj8/lgtVoVlS+NrVJUPF9ECdjwxZjT7BwcyGwRtUmuJHnRp/GjOiGk1MgFR8HGVLyMKxA6n5gguUw3gVUZwHBFQ32Tg/lkNk3J5UHCARqNSSRRAiIjiQyM5DgTAgCf+tSn8JOf/ARxcXFQq9WorKyESqVCRkYG6uvrw6x5ua8Eyul3vhcLd5vQ+8uvL8eL8BgprvTl4Ep5TCKNB51HzKk8L0mI7ZOZMzpWjgciNykfU77lAMVVcbDF342+vj4xRjxGjK5zrZV1J+QfWybAxzgLX5AJ9ZNFrtfrRcwDAKHc+/v74XA4kJ2djXnz5sFsNsNisWD+/Pmw2+147bXXsGvXrrDFnyxlv98vQAEwuGjQSz0wMBCWxREMBmE0GsMKnfHiW9ySBIYsX7PZjISEBFgsFnR0dIjqrLRI8+2rqT4BvyZnAAhUER1LljXFq9BiRcGoVCXW7XYjNTUV06ZNw5133omGhgaxW+xDDz0Eo9EInU6Hvr4+OJ1O/Pd//zfUarVQ2BRsqVINZRVR2WoKpFSK9ZAVufyc6b55HA1/PvzeeVArjQFXcNw6JgVGQJQsSdoriCqUEnCjAEfOAFDwMI07Bf3yZ01xPLJComdAIJOUCgcv3A0msx8kxMAtWbIEN998M2bPng2fz4fz58/jyJEj2Lx5s+I5spuC+qYkHFhGYgjMZjPi4uJgtVpht9vR2NiIPXv2YMeOHejq6gq7Ln/G/NnzseG/8/eFv58j3RdnLei3kdx+Iwm1yYGHzFDI46jUR55GrQQQOdsWCoWGsUWcgZIBqry2yPc8If/8MgE+/gZCCy6lvvKXnqd4RUdHo7S0FMnJyUhISEBBQQFKS0sFmIiNjcXkyZNRVlYGq9WKjo4OmEwmuFwuARqA4XtFcOuVLA0AosiVTAvzRUheAKmN4uJizJ07F21tbdi2bZsoKkTKhwAWKV2ZwibFS+CCuwDIkuTjwvtCY2a1WpGfn48VK1agvb0dPT09AICioiLRltlsxoIFC/Diiy+ip6dH3D+3VLmrht+vEmUtKxuSSG4CPr6y8oqNjUVpaSlSU1PR3d0tMpU0Gg3a2tqQnJyMiooKtLW1iQwjTmNzan1gYCAsUJaDHbo2AQjOTnAFGAoNumJSU1PFvwMHDogNELnwNpRESZnRc46Li8O0adOwevVqTJkyBX6/HzExMejr68PmzZsjsiVK30VSyjKTJEtCQgJiY2MRCASwY8cO1NTU4OzZs7h8+XIYeFYSme0Zqa9KfY8Enq7F9SAfKz9nQDm4N9JnPhfk9pSuLa8xSteT+yPHv432jCbkn1smwMc4C1mtZGFz2prcHhqNRliza9aswfz581FUVISEhARRDbOjowNvvfUWli1bhrS0NMyaNQtlZWXIzc1FQ0MDPB5PGO3LXQukhDQaDdxuN6xWK0KhkNhEjBZwUnAk3IoFBhcJk8kEAFi0aBE+//nPo6WlBR9++KGojskDZAl0eb1ekT5MFDPd78DAgNjLJhgc3PeDxon6FR0dHRaAarfboVYPpg1nZ2cjMzMTWVlZot98wTQYDJg5cybS0tLQ3t6Ovr4+aLVaUQqa2ARyLdECSmmrwFBGCQdgBJAIQMnKVrYSOcikRX7SpEn4zGc+g6VLl6KiogKVlZWYNWsWLBYLzp07h0WLFuHXv/419uzZg5aWlmGbBhJzQVZnfHw8PB5PGNjj8TgU0yIHIRPjFAgEEB8fj4ULF2LJkiVYtGgRvvSlL+Hy5cvo6+sTbjPObMjASramSQhEJiYmoqioCNOnTxcgkRi4hIQEcTwHUDKzwkXuA1d0SqwC3WtSUpLY/O93v/sdampqRMq3HGDKDQZ6n+XAS+qL/Mx5fFQksCEDqEjAVz5nJBBD5/H5qiQjXYs+83Z4W2azWTCtPBuNyvPTO0Tzkc6V3XHcSPkowrcpoFICfE7zlPAJ+fuRCfAxzsJLQ3MKXKVSCcBAx2m1Wly9ehWzZs2CTqfDgw8+iDvvvBNmsxmdnZ3Yvn07fvOb3+CLX/wifvvb38JisaClpQW/+93v8Pbbb4vYCKPRCLVaLWI4SIiep30rtFqtcD9QP9xut1CQ9I8WD7PZjHvuuQe33nor4uPjcfToUdx2222irggVC6NYA4ph0ev1YQsQMJRiTIqfrHJKBaZxongOfg9RUVGwWCxYunQpPvvZzw4bc3lB1el0uO222+ByuXD8+HEBsjwej2CMjEZj2A6yMlvEA4epr/Q7gDAlT0pOSUHPnDlT7OZaWloKvV4vXEgHDx7Eu+++i/T0dKxfvx5WqxXf+ta3cMMNN+C3v/0tqqqqwuog8H7w0u7E7lANFTrW5XKFxYkYDIYwRkqtVmPGjBlYv349Fi9eDKfTiccffxxPPPEE9uzZI+6DXDNms3lYam2kRT4lJQWzZ8/Gd7/7XXHfNJ4vvfQSDhw4gFOnTonjScHxgET+DsnHyc9fdpVxRQoAFRUVqK+vR0xMDH71q1/hoYceQm1trbgGgWTZxULXJCBICpOn0ZPIzGYkRmc0xajEvKnVamRmZsLn84n0fF40jLc9EjMkB7BG6gvFj9H7l5ycjMceewxbt27F2rVrcc899wg37J///GccOHAAs2fPxokTJ3DhwgW0tbWJ68nvBTGwH9Xlcvvtt8Nut6Ovrw979+4FALHzdnl5Ob7//e8LVnRC/n5kAnyMs1AGCVn43PLnsR46nQ6f+cxncOutt6Kurg7/7//9P1RXV+OJJ55AMDi4MV1nZydUKhV2796NK1euwO1248EHH8Q999yDWbNm4Tvf+Y4IBORFsGiLcqWALipERYqAmA8CHrQgZGVlYdq0aZg3bx5UKhV27NiBnTt3wmg0ikwVsrSpSJdOpxP3S/fKN2SjBYhiVQCIaqy0wFOQKQ9ijI2NxcDAAFpbW7Fnzx689NJLwuIym834/Oc/j2XLlgkQFgqFsGzZMhw8eBCnT59GMBiEw+EYFhDH039lEAGEL9jcEqTz5SwIAk/Jycl4+OGH4fV6kZqaiqSkJNx3333Yvn07Xn75ZcTFxeGGG27ABx98ALvdjujoaHzwwQdYs2YNbrjhBrGnB8XDEOsRFRUlAER/f79QDhTk3NfXJ44nMHjzzTejs7MTly9fhsPhCMuUCQQCKCkpQUZGBtxuN15//XVUVVXh8uXLwlVHwcYEZsZirf7gBz+AyWSCzWZDYWEh6urqcPDgQZw4cQIrVqzAc889h4aGBvT19Sla7Hwe8ngKeiajuS/kQldRUVF47LHHsGLFCrhcLmzbtg29vb1hbAY3FLhS5IwMfeYbQtJ3StkhvH98nhCjSMwhsVN33nknWltbUVdXh6997Wt47LHH4PP5kJWVhdtvvx3XXXcdYmNjBZD+xje+gatXrwoXaCQZqV/8GF5tlLJyHn/8ceTn58NoNCIjIwMFBQVISEgQ95uYmIj7778fGzZsgNFoxPXXX4+jR4/i1KlTKCsrC9sFm48zfw/HKnQfs2bNEqCejJmEhARYrVYUFBRg8+bNqKiogM1mG/NYTMj4yz8l+Dhw4ACeeOIJnDp1Cq2trdi6dStuvfVW8fuDDz6IF198MeycNWvW4P333xefbTYbvvrVr+Ltt9+GWq3GHXfcgd/85jcwm83X1BdS7JzOlQMJc3Nzcd1112H27NmIj4/HmTNncO7cOdhsNrjdbgEmyFVRV1eH9vZ2+Hw+pKSkYP369Zg+fTqWLVuG/fv3C/cBVSmlxZKuy+lgvkhyvy+xJFQG3mKxwGAwoLm5GaFQCFeuXMGVK1egUg2mDWdmZiIjIwMGgwGHDh1S3OKcK2u+6NB16TcecErWnLyz6cDAAC5cuIBAIICDBw+KRScpKUnETBC1DkBE4cusBfWDPyNifpQKkFEflYCcbP2npaXBarUiMzMTc+fOxYkTJ0Rg7LJly9DR0YG6ujqo1YMZQ42NjYIiJqDZ1dUFh8MRlonEARGfV/IiSs85FBos57548WKsWbMGdrsdFRUV2LZtmzhXr9cjIyMDCxYsgMViQVtbG86dO4fz588Lq1GOIRlNtFotbrrpJqxatQoGgwEtLS2or6/H4cOHsX//fpw6dQp2ux2XL18WpebleUISyf2gJPJYyK6DqKgoFBUVIT09HW63G2VlZXC5XIruCvnaMgBVEn6efIwMPMg1GR8fj6lTp6KjowOVlZUwGAzIz8/H1KlT4Xa7MW3aNHzmM59BMBhEcnIyli5ditzcXFgsFrEtQ3x8PFpaWkZ+KCOMaaRxJHC0Zs0aLF++HJmZmfB6vdi2bRvy8vIQFxcHt9uN6upqVFdXw2AwIC0tTezAGx0dDZPJhI6ODvT19Qm3aqRxG4totVrEx8djw4YNWLBgARITE+Hz+fDiiy8K0JGXl4eYmBgBhE6fPo329vYxX2NCxlf+KcGHy+XCjBkz8C//8i+4/fbbFY9Zu3YtNm7cKD7LW15/6lOfQmtrK3bv3g2/34/PfvazePjhh/GXv/zlmvrCt1YnVwP56MmynzNnDr7whS9ApVKhra0NTU1NsNvtwn9PCwBZOF1dXcIS2bp1K6ZOnYobb7wR9957Lz788MOwwEyTySR8sKFQeJVMrnyJgaAFx2QyITk5GZMmTQorFf/hhx+iqKgILS0toq3+/n7k5uZi+fLlyMrKwpkzZ4TC4oGR3GLkCz0wlAEUCoWEO4hKnXM3kEqlEinFFRUVKC8vR39/PywWi3CxxMXFobW1FXq9XpREvnz5Mnp7ewFA+KnlOAACFATy6Dcec8BrgihF6tNz0uv1mDJlCpKTk5GZmYnk5GScP38ep06dEllH9fX1aGtrg9frRX19fdh4OJ1OHDhwAAcPHgy7Lj1Hem7y86R7oXEmRicuLg4PPPAAVqxYgUAggKKiIrz33nsC1JhMJsyfPx/Lli0TzEhtbS3a2toEMON7t9Azi+RKAAZZrC9+8YuYNm0arFYrioqKsGnTJrz99tu4ePEi2tra0NjYGHYOsWd83CO5sOieZeHgg+YcPT8aS2IhW1paUFlZGbarsGyREyvEr8vb58wcZ2w4UOOxEvw+oqOjYbVaUVxcjE996lOoqqpCT08P4uLikJ6ejrlz5yI7Oxu1tbX4wQ9+IFxCfr8fVqtVzDuKseCMkDwmsshjKoMReu4WiwX5+fl45JFHMHnyZKjVajQ3N+PnP/85br/9dixYsABpaWnYsWMH3njjDaSlpWHp0qVYuHAhEhISRBxTXV0dOjs70dHRIbK0lIDdWMRqtaKkpARPPfUUoqKicO7cOezatQvPPvss8vPzccstt2DNmjUwGo345Cc/iVAohK6urmHgY4L1+N+Tf0rwsW7dOqxbt27EY3Q6HVJTUxV/u3DhAt5//32UlZVhzpw5AIDf/va3+MQnPoFf/vKXSE9P/0j9UqvVon4EbXxkNBoRCoXgcDhQWFiIJ554AidPnkRbW5tIA6RFy+12Q6fTiZiEQCCA++67D7NmzcLkyZNhtVrDAkaBwVLmsbGxUKvV6OvrE/3giyUpNG4ZbtiwAd/+9rfR09OD2NhYeL1eXLp0CXfffTd27doVVmNDq9Wivr4e586dw9y5c2E0GuF0OkUfqaprMDiY4kp73JAC5/UoKCWX+kR7khCDRCwQpXyS753cOy0tLfjOd76DV155BcnJyQAG2acLFy4I2pUoZRIeBBoKhcLiIoCh3WQBhBXikuMBNBoNYmNjkZOTg4ceegitra3o6uqCy+VCR0cHysvL0dbWBp/Ph29+85th401t8EJi3ErmabiyZU/9p/nBn61Go0FKSgoKCwuF66++vh4nT56ETqcTgMtgMCAlJQUAcPbsWezcuRPV1dWiH/SPYmT42JPIrIjf78fevXtRVFQEq9UKnU6HVatW4amnnkJra+uwe1Fya3GKno9PJLaHH0tzTs7ooZifffv24emnn1ZMF+bXkIvOUZv8vY4Ul8HBrVLgaVpaGpYvX46nnnoK0dHRWL9+Pf7t3/5NBGiTFBUVQavVoqKiAidOnMDZs2fx4x//GPHx8ejp6cG2bdtw9uxZAbD5WHAZScErsTmhUAj33XcfnnjiCTF/ysrK8NZbb6GnpwfPPvssnn32WbGm6HQ6TJ48WWQS0Tb1M2fOxFNPPYWbbroJv/zlL7F///6wcbsW4AEAM2bMwEMPPQSdToempiYcOHAAr776KlpaWtDS0oIDBw7gRz/6EZYsWYIXXngBKpVKrH8T8vch/5TgYyzy4YcfIjk5GXFxcVixYgV+8pOfiGj7o0ePIjY2VgAPAFi1ahXUajWOHz+O2267bVh7VLGUxOFwAECYpWg2m0VEPUliYiKmTJmC4uJifO1rX8PJkydhs9mEog6FBjcUowI+5I6gIMmDBw+ioKAAvb29eOONN4b5yEmR8mJAlGXDq1kSiEhPT8ePfvQj5OXlweFwoKenBw0NDTh58iQ+/PDDsEBBYKi8+pw5czB37lz89re/hdPpFG1GR0fD5XKFBdbGx8cL/z4V9+KxMMR8cIuRAIdOp4PD4YDZbBaKhOpXxMXFYcqUKfjud7+LmJgYqFQquN1uVFVVYe/evaitrRWAj2qskGuCmBDZpcHdHJwZ4oqPL/AFBQVYtmwZLl26hPnz52PPnj149913sXPnTjQ2Noa5QuS4AR6USwszp+5DoZCoaOv3+0VBNm5Fc+uXWJFly5bh85//PBITExEVFYXTp0/jrbfegsPhEGmumZmZ+MQnPgGtVovOzk6RXQOE74FDhfFofkZKO42Pj0dJSQk+97nPITk5Gfv378frr78Ou92Ozs7OMEUsZ5hEAjR8zHgwtHwsBwJyOrDJZMITTzyBgoICxMTE4I477sCZM2fCnrvcN5p7chAr/ePgVAZgvE2Z+QiFQmhubsauXbvwm9/8BqtWrcLAwABqa2tx9uxZ3HnnnTCZTOjs7BQKtLOzE+3t7XA4HHj00UdhNpvh8/lQU1MTNhfk6/P+8vmtNF409/x+PwoKCpCcnAyPx4OYmBjce++9qKqqgtvtDnOfULslJSUoLCxESkqKmD9nz55FY2MjLBYLfvCDH6CmpiYMePDU/9GExrGvrw/Nzc0ABlnN8+fP48qVK2HHajQaZGZmQqPRYMWKFVCr1XjqqafQ2Nj4kYNbJ+Tjk/+T4GPt2rW4/fbbkZubi5qaGnz3u9/FunXrcPToUURFRYkaC1zIL0tR27L87Gc/w49+9KNh3xNdTgqDmAuv1wu1Wo0bbrgBc+fORUxMDCZNmoRjx46FFYKiDBIKwOzv7xdugUAggI6ODjQ0NAiKNjc3F9u2bRPVGlWqoRRfbj1zIYslJiZGALLY2Fi4XC68//776OrqQk1NDWpqasKoUlL+5KJJTEzEpUuXwvZOkal5cllQO6TQyaImFoSndcouDgJYvIgSD+qdNm2aCLSkiqXt7e1wuVxhbfLUYHrGHAjJSlDJ2lapBku+r1u3DgcOHEB6ejrmzJmDQCCAixcv4vLly+js7AwL6iUQyMGHPEby9QGEBSwTmJMta4qNoTG+8847sXr1amRnZ0Ov1+Pq1avo7OyEz+cTc5KYgOzsbNTU1KC2tjasui5XoHz+jJTlQvM3IyMD0dHRMBgMiIuLQ319PW6++WaRmulwOFBbWyvqbpw5cwbV1dXDsonktun6ShLJxUD/01hQBocS7c+ZQP5Zp9MhOzsbc+fOhdvthsPhgNfrxYkTJ8L2OeLsotwHLv39/ejs7MTOnTuRnp6O5ORkBINBHDp0SGQnORwOHD58GMBgphF3MwKDLrpDhw6FVUrl72gkUVoL5HOKi4uRk5MjUtPdbjd6enqE8UD3SkUQV6xYgdzcXGRmZsLpdMJoNKKqqgoHDhxAIBDApUuXwkqsczA0FvaD+mY0GhEXF4eqqiq8++67OHv2bJjrLD8/H9dddx2WL18OnU6HzMxMzJ8/HytXrsSrr74q+jAh/3vyfxJ83HvvveLvadOmYfr06cjLy8OHH36IlStXfqQ2v/Od7+Ab3/iG+OxwOJCZmRlWEdLn88FkMkGtVsPr9SIjIwPr16/HnDlzoNVqMW/ePLz99tsAhvZa4f5mygShYlO0F0xzczN8Ph8efPBB6HQ61NbWorKyUlgJ/B9/0bmFbbFYkJ6ejqSkJGGZaLVavPnmm7DZbGE+b84IhEIhxMXFiXgUu90ulDopB67AyOVEf1PsCy1EFHxJoIWsObI85QBenhJrNBoRHx+PpKQkAEBfXx+6urrQ3d0tapoAQ/vj8IqrZN3SNekZcAaCC2clLBYL/vVf/xW9vb0oKChASUkJ4uLisH37dly9elX032w2h236Jz8LAiXcZcCvq9VqBRilAFse40HMB427yWTCgw8+iOLiYsFskdWXnp6OxsZGUaOBFvOdO3fi0qVL6OrqCssAoueoZP0rCYFZmsOZmZlYsWIFnE4n7rvvPqSlpSEqKgotLS04ePAgCgsLkZmZiZdffhk9PT0ivsRutwvwLMd+jKbY5edFYLSnpweBQAAulwvt7e3DgAa/Dj1/k8kErVaLhIQErFixAg8++CB6e3vR1taGzs5OXLp0CXa7XQAQni0muxZkN0N/fz9OnDiBGTNmoKSkBFqtFpcvX0Z5eXmYC4jOIYaSb2/Q0NAwDIxxcMHHioMtDgCU7j89PR0pKSkiRT89PR1NTU0YGBhAXFwc2tvbYbFYkJeXh/vuuw/Lli0TVZobGhqg1Wpx6tQp7Nq1C62trcP6wsfjWsBHQkICJk+ejFOnTon3jN93UVERPvGJT2DVqlXQ6/UABlnm6667Dps3b54AH38H8n8SfMgyefJkJCYm4sqVK1i5ciVSU1NFzQySQCAAm80WMU5Ep9MNC1oFhoI6ExMT4XA40N3dLRT2vn37kJSUJPZp+Z//+R84HA6xqVxPT49gAqg6KoERHoNw/vx5JCcn47777hOpdtw/TsGivb29In6C+gYMWhF5eXlYsmQJOjs7sXHjRrS3t6O3t1dYhtzKBYYWKLPZjNWrV+PMmTN47bXXwgqV+f1++P1+REdHCyUkn69Wq0WfSIlSYbKoqCgYjUbY7XbExcUJxUobVKlUKuEuiYuLw9e//nV85StfEdfYvXs3Nm/ejN27dwt3F7fayQViNBrR1dWF5ORkAezkze+IYeHjxosbZWRk4E9/+hNCocG4lXPnzuGRRx7Bpk2bsGnTJmg0Gtx1113o6urC5cuXcerUqTBlQWCL7sfj8Yj0aFqce3t7BfgiK9dgMECv10Oj0cDn8wm/NqU5ut1uuFwuJCcniwyB5cuXIycnB3v27MEtt9yCKVOmYPr06dDpdKiqqkJHR4e4DhV0kwupEduk5HaJiorCjTfeiN/+9rfieKqYesMNN4S9H8QU0fk//vGPkZSUhClTpiA+Ph6/+tWvcPr0aXR1dYVl/IwmskKjuePxeLBx40ZMmzYNkyZNwuLFi/Hss8+GgaxgMCjcW/TdLbfcgoKCAhQWFuLGG29EIBDA5MmTRbunT5/GoUOH0NTUFAZ0gOGMkZIEAgH84Q9/EGnSvGaH/I/mDa0NmZmZOHHiBBYsWIC2trZhbEKk6/IaKjLrQ4bAzp07ERcXh9LSUtTU1ODcuXNQqVRYvXo1vv3tb+OHP/whVq1ahfvuuw9GoxEqlQq///3vsWPHDhQXF+PFF18cpuhllu9ai4sRKLruuuuEC4i7bCizprKyEvfffz9UKhU++OADvPnmm9ixY8dE7MffiUyADwBNTU3o7u5GWloaAGDhwoXo7e3FqVOncN111wEA9u7di2AwiPnz519T22TZu91uoWTJOtLr9YiOjsbVq1dx6NAh1NXVCaVDixC3vHk9DACivsD06dNx/fXXw2AwIDMzE1OnTkVVVRWuXr0KlUoFu90uFhhuzZIipzgSrVaL7du3C0qeFjmeNkuAgCLsfT4f8vPzMWnSJGRkZODEiRNobm4OW1Ao4JQWOu7u0Gg06OnpgdFoBDCUiUJZKgRGqCAb9YGyiLRaLQwGA1atWoWioqKwha2trQ21tbUAhmIVAoGAqD9CQMPtdsNisaCvr08s+LTZHhDut+eWIt0DZSxs3boVOTk5KCgowDPPPIPY2FjMnDkTv/jFL/DTn/4UGzZsgNVqRV1dHX7+858jOzsbZ8+eRU1NjQATVMALgGA46FnJAIAXluKbymk0GiQkJODOO+8U28VTOmZxcTECgQCKi4tx+PBhxMbGQq/Xi91uk5KSkJ2djf7+fjQ2NobtUUNjwWMhlIRYM3qmdD7dg0qlQnNzM+rq6uBwOAQwiYuLQ1dXFz772c/CYDBArVbjySefxJNPPona2lo0NTWhsrJSMVZBSTg7QvFNJpMJ3/zmN0UcQ3JyMtatW4fjx4+L58/ZRmKsEhISsHDhQsyaNQterxef//zn4ff7MWPGDPzkJz/BypUrUVdXJ1LROXvA+0PjI39Hx/ECd0qMQCg0WMXzwQcfFLVB2trasHXrVhFrJTNDSu6kSELAOyoqCl6vF3a7HRcvXsTx48exdu1a/OUvf0EoNBiHlpiYiKeffhpGo1H0pa6uDufOncPRo0dx7ty5sDg4fg3OYMnPajRZtmwZpk2bBp1Oh7Vr1+LKlSs4dOgQLl++jMmTJyMjIwMzZ87E/Pnzw+6VwPRYrzMh4yv/lODD6XSGBR/V1dXh7NmziI+PR3x8PH70ox/hjjvuQGpqKmpqavCtb30L+fn5WLNmDQBgypQpWLt2LR566CH8/ve/h9/vx1e+8hXce++915zpQsqWR77zflqtVpEN4XK5xMJEypWnVvLIfRIKIiSlRRQ1tUNxI7wP1FYoFEJSUpLwv1dUVIjiW6TkuXVP5/Gy4gMDA6isrMTUqVNRWlqKK1euCOuP3CmytUzxADxokNPVdA0COPSZu19UKhUmT56MGTNmoLS0FHPmzAnb0wUYLIxWWloqdijl2RkUH0LuC+qnXImSRCl1kp6n3W7HU089hfLyciQkJCAlJQXl5eViF+OEhAT09/fj2LFjSEpKgkqlwl133YWcnBx4vV40NjaGFTbjc0dWIrzWCHfREPjQaDSCxZo9e7ZwiQWDQTG/CEBOnz5dPFdiyWbNmoUrV66I1E1y85AbkJec53Er8liFQiF4vV48/fTTWL9+PdxuNyoqKtDe3g6r1Yr29nZcvXoVHo8HcXFxyM3NRUZGBlwuF+69916xC3FJSQluvfVW9PT0oKqqCo2NjcjIyEBzc/OwzI5I75+sjFtaWhAIBJCUlCRqsNTX14sKu3y/oZiYGMycORPXX389tFotzp8/j+7ubtTX18PpdEKtVqOqqgptbW3DYhlk8CDXtqHnKX8n918WrVaLoqIiAdxra2uxe/fusLR+uS0lF0wkIMJZG4/Hg/Pnz2PLli1IT09HSUmJYDiIgQAG16srV67g6NGjqK+vh9frDdvhlvdDvq9rAR4A0N3djcrKShw6dAjz5s1Deno6pk6diszMTKxbtw5xcXFITExEamqqaLehoQEVFRUTgaZ/R/JPCT5OnjwZRu9SLMZnPvMZ/O53v8O5c+fw4osvore3F+np6Vi9ejUee+yxMLfJK6+8gq985StYuXIl1OrBImNPP/30NfeFWzkUSEogoLW1FfHx8WKxJj83BQHq9fqwnUTlTJaoqCiUlJSEtXH16lV0d3cP20GXU8hcmVmtVlgsFvh8Ppw+fVosPNRPYhlISRHlT+mHKpUKp0+fRn5+PvLy8oTLRU5fpesSpc3TF3klVKKxuRuGn0uLXnR0NEpKSnDvvffihhtuEKW+6dirV68iOjoaWVlZUKmGslh43ALdHwEcXmtkNBDA+2S32/HrX/96WIaKXq8XzIvFYsH27duRmpqKgoICPPDAA0hLS8OxY8dw4sQJkeEk++F5X6n/dF1y1dBnYhaSk5Mxbdo0JCUlobe3FzqdDhqNBpcuXRJgRKvVIi4uDn6/HzabDR6PB6mpqcjNzRWl5mmsaO5QZhL1hceX8HkVDAbR09ODc+fO4fHHHxeus/feew8XLlxASkoKnE4nurq6BONGe/SEQiFMmTIFV65cQUdHB1JTU1FaWgqLxYLi4mLs378fhYWFKCsrE1Va6drc1cCFxhEYZBb279+PSZMmYf78+Vi0aBHmzp2Lixcvor+/PywTQ6vVIjExETfeeCOWLFmCc+fO4fjx46ivrxf7Mfl8PtTX16O8vDysgiZ/dhzU8ueqFGcxlvVEp9MhKytLuNo6Oztx6tSpYVVW+TNREpnZ432h82hM2tvbMXnyZMTFxSEhIQGhUEgUIXQ6nejo6MCVK1dw+fJl9Pf3izIB8vOQQZDMJo5Frl69isOHD0OtVmPhwoVITU0VhtLKlSvFs+FbKFy+fBmVlZVjan9C/jbyTwk+li9fPuJLt3PnzlHbiI+Pv+aCYkpiMpnCAjRpAff7/fjggw+Qnp6O2NhYFBYWCj87p2epngL5oHmsQmJiIv7zP/8ThYWFiIuLg8fjwZ/+9CeUlZWJoD05U4SuTS9rTU3NMKubL1zEmlAbFPRKiwa1HwwG4Xa7UV5eLn6n61FbxFxQ1g61GxcXFwaQVCqViCcwmUwCANHvMTExCAQCmDZtWljlWroOANx3331oaWkRYImyi4DBxdVsNqO/v19U1oyPjxeKnYBQJFqfniX9Rq4Jrkx40CowWDH3+PHjyM/Ph9VqRTAYRHd3N/Lz87Fo0SJs27ZtWI0P3jb1m5dXp3opHLxqtVqcPn0adXV1iImJwXvvvYcFCxZg0aJFePTRR7F+/Xqkp6cjLS0N6enpiI6OxsaNG7F371488cQTOHv2rKgN43A4YDAYhHuHYokIjHKwx8crFAphy5Yt2LJlC4Ah8E/H2e12MVYENC9cuICLFy8CGHRxGo1GZGdnQ6fTobu7G7fccgvmzZuHXbt2Ye/evSgsLMSJEyewadOmsDFTAh5cyfl8Przwwgv4yle+Itybn/jEJ5Cfn4/f//73ePrpp8PYJKPRiM9+9rMwmUwIBAJobm7Gxo0bcfvttyMlJUWwb1/84hfD6shQSjtnIeVsJ86EyiXgqc/yfCB3R0FBAVSqwcyd6dOnD8vE4ucqiazwObNJQjFH9P499dRT8Pl84v2bPHkyNmzYgB07duC9997DbbfdhltvvRVZWVlITk7GW2+9FXZf/NnQdZTucTTp6+vDqVOn0NjYiC9+8YtYuXIl+vr6UFtbi3//93+HwWDAihUrsGjRIrS2tqKjo0OwnxPy9yP/lODj70mokh8tdMBQFcdly5YhMTFRlNDOzs5GU1OTWNyp1DYHDJSuW1RUhMcffxwdHR1IS0sTGR45OTligy6j0RhWy4P6QfuluN1uxMTEiEWSB7txK4hTw8R6cEaluLgYaWlpMBgMSEhIEAGLAMQirNfrxWJGbhZgcDElXzUVFAuFQkLJBoOD+7CQmyY2Nha/+93v4PF4UFxcPGy8KZthzpw5ggKmdleuXInExES88sorQump1WqxOye5riillS9WPGiQKwzOOJDIliQtvP39/Vi0aBE++clPQqfToby8HGVlZaiqqhJxBkoLNbEMXPETQCMWg2cCkfvgW9/6FhwOB06dOoW33noL9fX1qKysRE5ODmbOnAmVSoVf//rXOHr0KOrq6nDHHXcIENPf3y/+0fWjo6PFfjEEMDnVH0mUQC0Ho9wC50D28uXL+K//+i8kJCQgISEBFosFGo0GCxcuhM1mQ3FxMX7+85/j+9//flgGFQeBMgNAz+/555/Hpk2bMGnSJGzbtg0HDx5ES0sLkpKS4HQ64fF4hKK3WCzYtm0bfD4fsrOzERMTg0984hMwmUyor6/HunXrxD45CQkJmDNnDnbv3j0sUyqSS4T3T55D8nxITExEbm6uiO1xu91hcQxyLEWk9kno/eYgV3bLcED9P//zP1i8eDE2bNiADRs2iNighoYG6HQ69PT0IDk5GdOnT8e7774bxsbw9mkt4oDsWqWrqwurVq0SYMjlcqG7uxsqlQonT57EwoUL8cwzz8Dr9eLQoUNhbsMJ+d+XCfAxziIXauJuhYqKCpSUlMBisWDSpEmiXDIJvaSk6EnJcStu6tSpsFqtuHLlCv785z+joaEB3d3dAIYK8sgFrOg3CrikWAgebwEM7bTLlQItqPzz/PnzkZWVBZfLBafTKQAKKVSKKeHnAEMLpVxBlBZcUqTU77S0NEyfPh2ZmZmIiYlBfHy8GKsjR46I+gN1dXWwWCyYPn06CgoKUFRUhNraWqxYsQKJiYno7u6G3+/H+fPnRfofZ4hozDi7QWMux13QPXCrkZSqrPDoXmlstmzZgsrKSnR2doZdgz9/EmK8lNxHNFac5lepVCJFuqWlRVDg06ZNE66Vnp4eVFdXo7W1FU6nMyy+g8aE30MoFBJbAhD44aKkQLmLQVaQvF25Hbqfnp4e9Pf347333kNjYyMyMzPxhS98ATNnzoROp8Phw4cVx0z+TgZzLpdL7Ab73//931i4cCFuvfVWZGdn49lnnwUwCORpI8X8/Hyo1WoUFRXBaDTi/PnzcDqdaG5uFmmuOTk5mD59OtasWYN9+/YJABvpHpU+834qfTd79mzcdddd4hkdPnwYW7duHeaek9uXWQ16BpzVVMpc4s8jKioKDodDBMUbDAYcOXIE1dXVaGxsxMaNG6FSqZCbmyviuXh8Gb82EJ7S+1EkGAyiqakJnZ2dgqkipjUzMxOLFi0Se8vwAPIJ+fuQCfAxzkJWKaWO0os4MDCAo0ePYu3atcjIyMCkSZOQnp6OmpoakUYKDLleiPpUqwdLtMfFxcHpdIqy2efPn8ezzz6L5ORkuFyuMP+yHOzKLXdaVEj4Trvk5+dggc6hNoxGIzIzM2E0GtHd3S32kSGQRAqXovhpIeaLJKegeZVGSjGmNnJzc3HDDTeIgmyURQMA+/fvR3Nzswh0W7x4MbKzs2EwGLBkyRKcPXsW06dPh9lsRktLi/AH22w2eL1eEfBKixg9N7pvEhpPINwq5ePMaX4aZ4vFIgI9/X4/mpubsX///rBYD/laPJiTGAk+btz9w91bZMkGAgFERUXB4/HA4/GIMtfZ2dkIhUKoqalBQ0MDbDabYDC4ouAxRuTqI9aD+hrJNcX7Qn9zFwjdp3yPckwAMLhX09GjR3HlyhXMmjULn/vc51BYWAi/3y+q+spjx8+XmSnOSHi9XmzatAnr1q3DjBkzkJeXh127duHixYswmUwC4BYXF6OnpwculwsbNmzAZz/7WTQ2NsLhcIh3hkrrz5gxI2JGixJAUxo/eW7RWOXm5mLBggXifioqKsQ28nK7/NryGMvf0fONdA65/OhdpPi4uro6Uetk27Zt0Gg0mDNnjsgclNke2dXzUYEH7xsvLkYSFxeHtLQ0tLS0ICUlBQkJCZg0aZIINp5wwfzvywT4GGcxmUzweDzQ6/VISUlBV1eXUM5Hjx7F1atXER8fj7i4OKxfvx7l5eWieiDPBKH01EAggAULFmDDhg2YO3euUJK0T0dTU5OoE0ILGFlgtHjQZ3KJkEuDrsndEF6vVygMAk8EpEwmk0gXJes5JiZGpCwCg+CLtvimQle8XDUPbOQWIlXqBIYCY2fPno17771XuJiAoUV6//79cDgcmD59Ov70pz8BADo7O+F2u5GdnY3JkycDGKx1kpeXhxkzZuDAgQOCrqd4Cb53CF2bPnPFT0CMnhGxWnwhJ0ATGxuL22+/HSaTSSiOxx9/XFhk5O7h9y9biwDEos9ZB1IMxNaQK4lAB1XCJAaJ3AadnZ3YtGkTKisrxfPisS78H/WFnh8BFZPJJFxmJPxZAsPBBQeanFWSrWH+bEOhEFwulxgrEoPBgJycnGFZN7KC46CQu3oIVHV2duLEiRMwGAwoLi7Gxo0bcdttt+HgwYOw2Wz4whe+gOjoaGzbtg07d+7E7Nmz0dzcLOYX3Wdtba2YpxSjRGNCfeGiBDj53JPvJxQKoaGhAWfPnhXFEM1ms9jNlr9DcttKVj+NAe+j3D85FiUqKgqJiYnIy8uDRqNBYWEhEhMTxfzTarU4c+YMTp48GQbAZdBM7XPg/NcCES6bN2/G/v378elPfxrf/va3cfvttyMxMRE/+tGPYLPZwrYMmJD/HZkAH+MsXq9XVPyjHTzpRW9pacHVq1dFOeLrr78ev/zlL8VLT+4LILykODECodDg1utPPvkkXn/9dbE40wvt8XiG+XIp5oJedKqSSOdQMGgoFBJAQX5JyXWQkJCAT3/600hJSUEwGBQ+VwpKJaBiNptFv6Kjo+F0OmEwGET7dC0Awlqna9A43H///bjpppvE/jvyGL/yyiuibyQGgyHsMzCY3nz06FF873vfE3tDeL1eaLXasGwnpWBKDi7oN64YXC4XcnNzUVxcjFAohEWLFsHr9cLj8WDGjBmYMWMGjh8/jldffRXHjx8Xwa4jUfJciRqNRqHsDAZDWLwJlQvnmUk6nU5kPcXFxeGb3/wm4uPj4fV60dLSgn379oVV5TQYDGK+EpAhoExxMwQWAYi+8D4S8OJBlkpMBwFdAmm8nUhitVqxfPly8Uw7OzuxY8eOsPkpu8MIYFC2CWcUafz8fj/ee+89dHV1YeHChVi9ejU++clPIj8/H8uWLUMgEEBbW5vYafrSpUtYunQpysvLYTAY8Ktf/Qo+n0+U+/76178eVoCNMzncRScHXcpuKZpXHDjQO0ayZs0aGAwGPProo4Il5MJBtOxK4YBafjaR2DgO2oDBfVuamprC2EoOgsjlqwSIZLfSxwk+BgYG4PV6YbPZRA2nJUuWYNasWcjIyMChQ4dw/vz5j+16E3LtMgE+xlncbneYNUhpj2SdOhwOuN1uYTlR8Ce9rKRcdDod4uPjYbPZoNfr4fF4sHXrVtTV1eHIkSNob28XtDgpAfmFJwUKDFnWBC64tay0HwsdS+m/FBRYVVWFZcuWYc+ePdi1axeA8DoBZJXKIIr+hUIhkerL96Ygi4sUR319Pdrb2xUtNCpoJS9etPhcvXoVLS0tsFqtIiaktrZWBNZqtdqwCqyRYi9oTPluvJSO+bWvfQ2bN29GTk4OFi9eDLPZjMzMTPT29qKrq0v0p7a2FuXl5eKZczeO7PagMeJuHcqWov1vqC+0wZ5s/RJdHhsbi4ULF0Kv16OyshK7d+9GR0eHYHu4/51nXdH1CLjScXIANVeqXOHKCliOAeCKVQZd/F9RURFmz54t4gkAICMjAw899BC+9a1vhQFCpbbo2nyMqd+BQADnz5+HzWZDTU0N3G43Ghsb0dLSgvLycng8HqxevRo2m028C5WVlVi0aJGozmo0GrFv3z4cOHBAxCDw7CreDznGQmYC5Hvg7/DVq1dRVlaGO++8EyrV4BYLPT09w1xg/BwlFwOtBXIciBw3xPtEc627uxs1NTVYvHjxMKZwYGAAJpMJiYmJmDp1KjQaDSorK3H16tUwo0fpmX/c4na7cejQIfz7v/87dDod0tPT8eUvf1lkxkyAj/9dmQAf4yyU4klBenKsg8fjERVGe3t7ER8fL/Yi0Wg0mDp1qgAIJSUl6OzsFHsqHDlyBOfOnYPL5RLKiEAEXzjkAE9uefCFkOj5SOCDL2jB4GCp6rq6OqSlpaGnpwfl5eWiXb6oEICidsj9Q21ydwFf+KhfvH9KQtYVHRMIBOBwOOB0OuF0OlFdXY1Dhw4hNjYWoVBIVJKldnkqM1lrPCpeBh9qtRrZ2dnivtLS0nD//fejr68PiYmJmDNnDsxmM/r6+mCz2dDX1yd2Iq2qqhIpwFzkZ8QVOr93GiMaLx6EqmRVZ2ZmIiEhAYWFhcjJyYFGo0FrayuqqqrgcrlE3AxXOnJqNWcIaDz4M+IiKzul9E0+rnQs1ZuhY2knZ5VqsKz8vHnzcP311yM3NxdRUVFoaGhAW1sbcnJyRlVocoCw0vxsb2+HzWZDY2MjQqHBeJju7m7Y7XZRK4WeoVqtxsWLF7Fo0SJYrVYcP34cer0e27dvFxvM8feOrsvvWak/srLn55G0t7ejurp62P2ZzWb09PSMCL743zRX+BqgBF6UnlV7ezsuXLgAAKK0Oe93bGwsioqKcMstt6C9vR1tbW1oaGgIc00qMUIft/T39+PixYu4ePEiDAYDUlJSsHr1arz//vthz2ZC/ndkAnyMs3ALLxQKhVGjodBgOi0BlNLSUqxfvx4ffPABjh07BpPJhI0bN6K2thZnzpzB7bffDq1Wi3feeQc7duxAWVkZLBaLcBcQc5CcnAyNRoOOjg6x9bpKpRKBlWSBkMVLrhcOErjSp5ROKnNO4CMYDMJkMgnlrdFowvamoftLSEgIU9wGgyEsvbe9vR0xMTFi4zRytRAw8Hg8eOihh7BgwQJFKzEQCMDtdgsGo6enB/v370d2djasViuuXr2KLVu2iBLtwGDlVxoLYmcoNoXKgistwCrV4EZy3//+93Hp0iW0traiv78fNpsNn/rUp+D1etHX14f6+nrs3r0bR48eRWVlpVDcsqUvKx0acwIBBFppXEixqVSD+79QcCzVoaA5QKDl4YcfxoIFCzB58uSw7CMqTEdFmChuiFvjNK48c4lnwtA84sqE0+xAOJUv0/kkUVFRuO6667Bo0SLBCOXn5yMzMxMAsGPHDtx5551Yvny5iHH6wx/+gLfeektk6ZDIlD7/nhgiuiZ/HgRau7u78cYbbwgQT4bDn/70p7B78Pv9ePLJJ/HrX/9auAfJHSGzOpzx4O8dB5icqZTrvfB5Qfv3UJvTpk2DwWDA22+/jbKysjD2UAaJ8rvDQSb1j/dJBib0f319PQ4ePAgAOHXqFFpbW6HX68Vcyc7OxpIlS/DpT38azzzzTFi8GAfKHHzIYO3jlG984xv40pe+hPvuuw8pKSl46aWXJliPvwOZAB/jLLzEOLewfT4frFYrtmzZgurqaixfvhxf+tKXkJqaigceeACf//zn8cc//hGBQAClpaXQ6XS45557xCZ0vb29okiW7Bemss9UJIlnybjd7mFZKLQohEIhUbiKrBT6n/5FR0djxowZKCgoQE5ODpKTk/Hd734XZ86cEcqSlJJGoxFVNGnBoQWP/lGMQm9vr3AvuVwuAQAoIPRb3/oW7rjjDjz44INISUkBMOhvPnz4MFpaWnDLLbfA4XCgoqICL7zwgtjFllwHtNjRAunxeGAymUT9EZfLJfrk9XqFxU/PkBRXKDS4cdz27dvxpS99CTk5OUIhqtVqvPfee/jTn/4kqsxSYJts+dLiTgqOzpctVnmvF5ktMpvNUKvVgrGizcasViv++Mc/Ij8/H7GxsYiOjkZjYyOioqJw6NAhvPXWW4Itou3SaZ6QK4oK5HE3E1cgSv3lLhWZreGKjAOQr371q1i7di3mzJkj2EC9Xi9StFeuXCmAZTAYxL/8y7+gtrYWPp9PBFry8VVi7TjQ4/1RAilKVjgHAZR9xt04MrvDAYgMuJQAKAFg2T0l98Xj8aC7uxtXrlxBTk4OoqOjYbFYsGrVKly4cAG9vb3DAB/dq6zclRgY7ubjx/E+TZo0CbNnzwYAPP/882hpacHp06fx3e9+F1/96lexfPlylJSUIDo6GjfffDOqq6tFBVk5gFV+RuMhdXV1+O1vf4vy8nJs3LgRqampMJlM43KtCRm7TICPcRbu96W4ArIQAaCjowPl5eVwuVzQaDQimn7t2rX48pe/jI0bNyI+Ph5arRYtLS1hiwm3hOnF5TEfxCBQrjspfw4EuPLjmRJkzYVCIdxxxx1IS0uD0WhEUlISjhw5gunTp2PmzJk4f/48vF6vULKcZufuAf4dLUJk4dGYkLVOwWLEwmg0GtTW1qK6uhpNTU1ISUmB3W6H2+2G0+nEO++8g6tXr8LtdqO1tVWk3FJ/rFZrWB0PCqjl1+MuMWC4EiIFQc/y/PnzouAbldl+9tlnxc6mPHaHzpHb4wqQL7z0PQE/UnD0PKiv9Eypv2T1kqKhWhi0HfrmzZtRV1cnFAEJ9Y2UvRzbwlkMlUolrqsUuyBb27K1S/fHZf/+/QgGg2KzuYcffhjt7e2w2+1ITEzEpUuX0NTUBK1WizVr1qC8vBzt7e1ip2JZuFWtFDgpW/P8PP6P95UDLjngWMkNJX8nu1dkkb8fSRF7vV5UV1dj0qRJYlPDtWvXYuvWrfD5fKISLe9jJFZB6To0/+RxAwafdXt7Ow4dOoTHH38cDz/8sNjC4Oabb8bKlSuRm5srNnL85S9/iSNHjgh2isd8ybE34wU+gsEgJk+ejLlz5wIAbrrpJjQ2NqK5uXlYttaE/O1kAnyMs/A4BGCIhiYGhKxjt9uNQCCA6upq6HQ65OXlQa/XY9++fYiJiUFycvIwpUlZNNwy4S+1DDb47rTA8DoMpHC46yUpKQlTp05FRkYG9Ho9rFYrOjs7kZaWBr1ej6amJvT29opsFhKuWHlcAfWD6GU5PoVAGoEqAmkOhwOXL1/GwYMHYTabUVtbi/r6ejQ0NIh9QCg9mIMevncLEB6/Qgqejwv1Ub4XOpcW4tbWVnR2dqKrq0vEALz77ruoq6sLc61FUrgknIrnIluG9I+nqnLwQW3ReAKDcRQESrq6unDq1CmcOXNGsCl8oz1+HQ4WucVMbjIaH3kvkUj3KDMhMtiqrKzEwMAA6uvrcenSJRQWFsJut6OzsxMpKSmorKxEXV2dCNZuaWkJs/CpzUiMB782HcuVMQdHkZ4bV5Ay0yLfZyRAMpLI/VdiPUi8Xi+OHz+OJUuWiKyx3Nxc4aKT26X7kef2SHMz0ngCg+9idXU13njjDSxYsAClpaVIT0/HmjVrUFBQAKPRCKfTiZMnT+L9999Hd3e3YlqrDMzGOlYfRajOBwCkpqYiISFB9HNC/ndEFRovuPl/XBwOB2JiYmA2m6FSqYTPn9JnDQaD8G8DEBaVwWAQDInb7RbxEwDCalKEQiHx8nAWQfa3Ew1PipxcEFyoXbVaLdJO1Wo19Ho9Vq1aJTaxcrlcOHXqFP7zP/8TXq8X58+fx7Zt29DU1CRiB3jgKzC4iOn1emFFk9+arHq+iRkxNjExMbDb7YK5oO+DwSCMRiPuvfde7Nu3T7iXKPZBXkzpXu12OywWS1icAsWUkIKQo/5pgzz6TECK4lACgQAeeeQRFBYWor+/H9/5zndGtORkhkNmDsjdxWMqOKjkhb0otsNisQhlSMCA0mv1ej0OHz6M2NhYNDc34/Tp03jhhRdw8eJF8bwJvFL/KPaIV2HlfaJnRuXXeaAh9ZPaUhKlsea/URuRGIJISlJugz87+VpKLIjMzPC+0jVGU44y8OCGQCAQCEvjVmJc5HuRDQN+rEajQWxsLA4ePIiMjAz4/X60trZi1apVaGtrG8ZakBGidH0eaxKJweF/y+N566234pOf/CRuvvlmkS4fDAZRXl6O5cuXizpHFFSvNGZ83Mar9sbKlStx22234Ytf/CJefPFFvPPOOzhx4oQofxBJqI92ux1Wq3Vc+vZ/VSbAxzgJgQ9SEKFQSNRF4Ba5yWQSrgiyJCm2grsFiJHgixgwmPcvB44BgwuwyWSCw+EQFrFOpwtjNihwjsd0yCWzKR6AL8Ac6BBjwxUk7eVCClW2tmiR0Wq1sFqtouiPRqOB2WwOqzfCwRUtflQEjax0n88n3E2yIqQ+UkAs/evt7YXVahXAqLe3FzExMVCpVCJolkS2doFBvz93o3G3Eo03jwXgNU1kdwvdB1/8KcOJABRnaOh4+kfjSTE6BPRiYmJE7AyNA1dqFP/D74kABwWg8mJmlGpN84aCj5Wsa9mKJ+EslxJwoGtxoDKSNc+PJ+GMDl1LSZErtanknuDKWYktpPO4i4oHkRJLqdTXSDISK2EwGDBjxgzMnTsXpaWlyM/PR0pKCtatWycqeCqBJ96u0vecJZXHhf/NQYLRaERiYiJmz56NN998EwBQVlaGQ4cO4f3338exY8fC9iNSuicOwsdr75XY2FjMmzcPW7duxZ///Ge8/PLLOHLkSESgTDIBPsZPJtwu4ywGgwHAoCVLe2dQUSi+mZlKNehzBwZfRnlnVXp5acMrjUYjdgfl1UCpfDddjywP/vJTrAdttERghLMT1I+BgYEw1w4pBO764YsYZdbwIEquOKkYFgEuu90ugBEtgPx6FHjIs2OoVDvdjwzayCVAistqtQq2iMaGW750LDEClN1D9yu7ImgMeDs8lZj3iT4T08LHio+jvODzQmt0rKxUDQaDALEUMAsMsQd9fX1wuVxhMTy8zD3NA1Ka0dHRYRshUv94fQ/qG/WbjpetYhlYcMUlSyRXAD9HCcCOpsg5qJP7FQkA0X0oPRMOHJXcM7Lilp+3/P9oICSSYuzv78eVK1dgs9lw/vx5UdKdwGWksZDvXb4+AXz5PPqfsxJ0b36/H93d3Th58iTuv/9+pKSkoLGxUdTlkWPS+P3zd4p/Px7idDpx9uxZPPDAA7h69SquXr06rtebkNFlAnyMs9DLJQdjAgjzzwPDK0Xy4yjjglfeHBgYQGJioqDBebYJCS2i3GrjVCv/nbs55EwApcWeFJGsDGgRk+NcOBtB5/v9fhGcxq+jFBdCfeUKhQMl7hohRUA0tRw8SdlA/Nlwq0t2m0Sysuk36ivvhzx+SgovkigpMmKDZJYlkjVOz5QrHX4fnO3iz4QzK0B4tVe6TzrG5XIp9j8SqyH/Lo+z/F2kMRttLPm9ys8uUjwFB6TyuUr9V2Jr5M/y9WQgNZIoMRAEArq7u+FwOGCz2dDa2ir2KFICQUqMgxKwiuTmof+VMnDIiOjo6MC2bduQmpoKl8uFvr6+sLk31vscLwkEAqKPwPC4own528sE+BhnoY2nQqGQiKXgdSkIVJBFLgeFBoNBUXDJZrMhNjZWpOrqdDrk5uaivb0d7e3tYlM3YlhonxVSLETjk/+VF/0hS95sNsPj8YSdw0ttk/uC0/u8v6SMyBVELzixNcQw6PV6EbwYFRUlLGiquMk3lCPaloTiEYh5oT7Q+BmNxrC0UJ/PFwZmiOWhqqrR0dFibxwCeDz1kRQ1faZgT54BAQzFUNDYcaaEW8F8XHhwMLdICZjxyqvkIqL2aadaYrFo3GVgRgprYGAgrBIsBSjSP4o5ovui6qb0/Kn6LQeBY2Ek+OeRLGsaD94n+Xz+Wb42V/Sy8uXKlbsl5HGP1J9I/eXPWT6G5pqS4aEEjOR2I/1NxweDg4UJe3p6cOnSJfE8+LyT2+DXoz5xMKvEStA5Mjihe6O5MDAwgKampjDWSO5LJAbkbyWjuVkm5G8nEzEf4yQU80HUODDEYJBlT/U0SHlwF4BKpYLZbA4L1NLpdOIYbrmSEg0EAoiNjRUuG/L3k2+egAX9TsqSFDlP3eXxBPQ9uWhoMaW2ExIS4PP5BGgxGo1iYeEpu2SJE/DiymIkS5j6wy20SApPibGItODJiy3/Xa5wqrT480VTyS0jKyhejpyeO/WZYlc4iyLvvkm1CTizwa8vK375b265Uh/lcRhJGfL2+FgToPF6vXA4HIiPjxdgTafThWX/dHZ2ir1/KNCW6on4fD50dnZCp9PBZDKJTewoiJneI0rtpnclLi5OANmBgYGwPY74+0HX83g8YYHXoVAIBoNBZI5QuXJSzPSsaH4nJCTA6XSKPqlUQwHlHJjROKnVavT09Iy4myofTyV2ZCxsCYH7SG38IwjfvgEYDsDoGSvdFwfE3JXIwTcw9C5Q2/RecvcwCV1nIubj45cJ5mOchbs56DMw+KJQdVCKcyALnBQ9X0C5xUkLIi16tKjKyogyH2jRI2aEPnM3DjEBPLsGgABIxGRYrVbY7XahuDQaDZxOp2iT7oGuBYTXSqCxoAWdvidRWjRlsCFH7nMlIlPInFngbciLGwGqsVjv/Lo0jrx9pfPl32U3iXy8ElWvZLVRmzxYUEn5cAucP3tekIrmKu+zEojiTAEBTWL2CFhQrRaj0SjArkajQWJiYhjzQICLgzcCWV6vV7AuVECNrkNAQKfTCcUQCg3GuRCY4UHQVMOEzpctfAL5NG+JpQQQxvgBg+weGQIyqOTzikA3vYMjiQwoI4HmkUTOFPlHAx7A0DyW93aKxODwGDX+XvFMI/oNgJhPHMjwjK4J+dvJBPj4G4isbIGhxZ4WLpr8vNQ5nUuMCc9o4HEbcowBLYL0Pd/Zle9Uq6Rc6Fz+P78eKS3+MpNyocBR6rOs5OhaPFuGxuKvGdtI1rqS9T7S+bKMtZ2x9H+0PgKR6WdupY2mUPg8oM9KrI1SWyNZ3Er3yJkFlWrQTWOxWMKAEqVVc4DC53RfX18YqOZuPWAo3kRma3g6N2ce+LG8j1xIAVGf+N5CHJxxIEfHUduyS0NmhWSWIxKoUHouH5WxGMt8/3sXDiZIZLDBY5Dk35XmsAzu5eNlkUH7PyKI+0eQCbg3zsJfJgIc3BdMizNlLdCiTKmyBoMBRqMRRqMxzPoiipAWal7kKxQKCR89MSxmsxkajUbsBUM7stIiGRUVJfz9/f398Hq9IhOHgEwwGERfXx/0er3IKiH6nBgPg8EgLEez2Szum2IVqCIojQ134SgpRRlc0SJCY0nKQlYKSkqdj72s0GX2RF7A+TVlK4w/X6VjSHg/lUACL9mt1KbSIsgDQ3mbfKHl1+Z9kOMj5HgLPg6RshI4m0Xl9Ol3nU6Hvr4+8fz8fj9sNpsAK5SKHQqFxJyj1HOVShUW70JxUTQvqR+9vb0wGo1wu91wu92wWCwizZuYHGIpaK7JQcqUVk31dygui1hCOpbeEeojDwQnq5tcMX6/H263W6Sd87EbycpWmr/XKpEU7T+CyPNTSXgQOrlVaOzlgG/OGHNmChh6N/hGmjQ//pHG7B9VJpiPcRbyLZtMpjDrjAAGUYPEHnR3dwMYctfExsbizjvvxJo1a3Dx4kX84he/ED5vYJCiJlcJlfnmliFlJPBFngI4CcBQcCbR3FxJE8ChF5T22KAFgtcjASB24+W5/X19fQKcUJoxV6oOhyOiBUKLhmyRyosDsUUync4/c+U8WuAZdwnJwISEK3oeoCorahqHSACCjuP3JltwHGiNRMcrgaZIx/GYD6X2qE9cWct97ujoEP1zOp3w+/1ISkoS8Rrk+tNqtTAajYiKihLzjNiS2NhYUTcEGHwHiEWjmCkK3DYYDIiJiRFUeUJCAtrb28U7FhMTI86nd8zv98NoNAqlQru/0pykWjV8h1YeTB0VFYWYmBgRL2U2m2E0GkXxLJVKJTK2yBCg9Hc50FRpHOXnonTOtUokduvvXeT+8mrHAMIKmREwJGOGlwqQQSb9TTFBHDDT98BQFhxdh9LvJ+TjlwnwMc5C1TtlKg+A2H+EFAr5H3U6naiHkZSUhNTUVOj1euzYsUPsAUPsBfkvSbHz1Emv1yvqjNBvfHdVyqShl9NsNos+cZaGp6lS8KDFYkF2djbWrVuH2bNnY+vWrXjvvfeE0ubuI26B8FgVYGjhiBRESsKzapQAAe+z7IaSAQu3PvlxstUlsy2ycOtSPp4Ci6ltOSVZKSNBBh/UJ2CoNosMpnjGjbxwczefEuiSx3KswIX/npKSIoJl7XY7YmJixBylGi3UNypSRsGXAEQhPK1WC4PBgN7eXuj1ehiNRmg0GnR3d0Ov18NgMIj+0HcEXNVqNUwmE9RqtQAidK/9/f1ISEgQLARl9FBGGIFyyrIi65kD60AggL6+PsTFxWHKlCn47ne/ixdeeAHHjx9HfX29ACwUN0KMDqVe8113RxOlGCV5zDlrNZrb4B9ROFjnAJA+c6BADDJfrzj7oRTQLrt2aA3ljAd3EcuxNBPy8cgE+BhnIWVDixFH4Lz6p5x5oNPpMHv2bEyfPh1ZWVlwOBy4cuXKsDRBILzOBIEDeinlyHEeK8LZDfqOjqUXmFgRYMh9EQgEMGXKFNx4441YtmwZiouL0d3djc7OTpw4cWKYS4MXIuMLQyQmQF48ZRfASMfKx0eyACO1x3/nwhW/DEj49/Hx8UhJSUF8fDxsNhssFgusViucTqeoh0A73ioxOErjwUHNSMfJY6DRaLBq1SpoNBp0dnbi2LFjEc9Xorrl+1MaL0r/pQBnyjQhhSC35fF4kJ6ejrS0NMTHx6OyshKFhYWChUtLS0NTUxPsdjscDocAz3z+8ABungVDYIIHi4ZCQwXn6B8Hgjy1nd8/gSW6rs/nQ0ZGBubOnYvi4mIsXLgQjY2NIrWUA1d5PPkmfmOR0ebmP7NwxgIYPk85mymDZg7MOYin7CliXO12u3B3c1Ga5/9Xn8PfQibAxzgLvQRUNZOQOS22xDxQsB1ZZzqdDg888ADmz58Pm82GsrIy9PT0ABgq7EPggCsmnsZKiyb1g6ebRUVFCeaEQAqVOKdz+eLLy4kHAgEsWbIEn//852E0GuFyubBw4UJER0ejrKwsLMCUWABeBI3oeG55jxZ8OtqCMBZFqQRARjuHhGJrlGIfCEjFxMSgtLQUCxcuRGFhIS5cuIC8vDzk5eWhpqYGPT09OHLkCE6ePCn2UZGvL4MM+p0vuvQdWWv0mSvAqKgoJCUl4Tvf+Q60Wi2OHj0qwIfcPjEUGo1GMAQ8O4O3q8QEUXVVk8kk4iqoem10dHSYy81ms+H666/H/PnzkZWVheeeew5f+tKX0NzcjObmZtx///1i342LFy9CpVLBZrOJjBG1Wi1iKNRqNeLi4uB2uwXrQHOUA/2+vj4xvhSPwa1oeV8kHtQNQLwn2dnZmD59Otra2jBv3jwcPXoU5eXlIg2Xv2PUB6XnORaJdI7M1I313PFiQwjkkouLM686nU5kwo3VjcTdi9Q+MAQ6uCFFY0HGDR1DrDC5f1NTUzFp0iQkJycjKioK586dQ0tLi6iTI793E5kvfxuZAB/jLPRC0uLucrnEC+L1ekVMBdHMtNcKAOzbtw/Tp09HX18f2tvbh1l1VFSLXBe9vb0AIBZX8rHTQuv1ekUePQETOpfACFmyculwAGJxLy0txY4dO/DGG29g2bJl2LdvH77whS9g7ty5MBqNsNlsIjMnNjZW7BwZHR0t9gYhAOX1esNiSGgBH20BkBenj2Nh5W3Ji7W8XwZ3aQCDY75t2zZMnjwZfr8f6enpYVH5N9xwAwDg9ddfBwC88847w5gf7krhfeI+bL748nM40xAMBpGQkIB3330XSUlJqK6uRmdnZ9h5vP377rsPd955J9LT0/Hiiy9i586duHDhgvhdKSWapKurC2azGYFAAJ2dndBqtUhMTER/fz9sNhsyMjLQ2toKALBYLKL+DT377du3w+Fw4IMPPkBZWRm++c1vYvHixbj++utRXFyMxx9/HGazWaTPAhD1aiiomlyVxGhQbRBiQnj6eCg0mHJusViEG9Dv94t3hr+D5CrU6/Vwu93YtWsXuru7sXXrVhw7dgxqtRoWiwVNTU2C8aEAVopJUKkG6+sQAPpr5aPMdwII3KD4uCQ+Ph6lpaWYN28e1qxZg1mzZuHw4cOoq6vDnXfeia9//es4evToqBu4kURFRYk4Gr79AzAUu0EGCy/QSJ/JGFu0aBHmzZuHuro6PPHEE0hISAAwOG5bt27FH/7wB+zbt09cl955uuZoAG9C/nqZAB/jLMR20CZehNL9fj+sVis8Hg88Hg/UajWsViuMRiOWL1+OO+64A3PmzEFXVxd27tyJ7du3IyoqCllZWVixYgXS09Pxhz/8AV1dXULxkN+bIvWdTmdYJVFiHThdSRY4KXuK8aC+8jRaevEvXrwoFucPP/wQHR0d2LJlC44ePSp25aVFwWazARiqSkrBssT2kHCLWrYYucJUWgyo/wUFBZg+fTqWLl2Kzs5OpKenQ6vV4t1330VtbS0aGhrQ3d09zKVDSigSdQ6Ex2PQ8SR6vR5r1qyB3W6H3+9HbGws9u7di+bmZpjNZiQnJ2Py5MkoKytDRkYGHn30UbHFPfc3837J8R9KY8HjA+T0w76+Pvzwhz/El770JSQkJGDOnDkRrd++vj40NTWhqakJ7733HhobGxVZITkQktwWlBXFM6mioqIQGxsLu90u4jXcbjeWLl2KSZMmoaOjAxUVFfB4PCgqKkJlZSVOnjyJrq4uAQB6enqQkJAAu90OnU4HjUYjXDFmsxn9/f3o7OwMi9EgNw3NQaUqvjTH5Tgc7v6k+9TpdJg+fTo+/elPIz09HfHx8XC73QgGg7Db7bDb7UhKShLMBz1PvkljJCD9UYDEWI/l90DP6a9RpCrVYE2XG2+8EVOmTEF8fDy2bNmC3t5ezJ49G7fccgumT58Oo9GIJUuWYM6cOUhISMAPfvADPP7449i+fTu0Wi26urpG7AdPgSYQINfqoHHT6XS49dZb4ff7MWnSJEyZMgVFRUXQaDSwWq2iSGNsbGwYQ2g0GsU6RTF59P7IKds8Tm5CPl6ZAB9/IyG6lysPygQAhmoVEHL3+/3IyspCWVkZamtr0dnZiVAoBIfDgfb2duj1eqSnp8Pr9YYVEiN3DtHJ5HPm9CiPLZF9qMR6EPigRRoYov+JMaGNyJKTk5GWlob09HQ4HA50dnaGlSjnBYNoEeD06miulkjHqNWDxdWys7NhsVgwb948LFmyBDNmzIDdbkdCQoJIn6ysrMSBAwdQWVmJ3t7eiDEPJDIQ4cqY94e+j4uLQ3d3N+x2O/R6PY4ePYrKykpER0cjNjYWKSkpmDdvHrKyshAKhZCbm4uKioqwVE753vgY8GOUwJF8PwMDA6irq4Pdbkd8fLwApvJ1iJI2GAx4++230dzcHDYnRxJSSHw+BQIBOJ3OMPCqVqsRGxuLrKwsbNiwATqdDt3d3airq4PL5UJlZSUuXryI9vZ2eDweXL58WQSZzp8/H83NzWhvbxcghFgz2oCQ4j4oO4ayV4ChNEoCIkqBu0A4k0Vl5YuKilBaWoq0tDQsWLBAZPFQxktxcTFUKhVycnLg8Xjw4Ycf4vLly4IhlN06SuNHY3wtQY16vR7Tpk0TWxa4XC4cP358zOdfi6xcuVIAvYKCAsyfPx/Z2dmwWq0wGAyw2+2YMWMGCgsLRQXQ2NhYAINzsqCgAOvXr0daWho0Gg3a2tqwf/9+1NTUKF6PrxEEqrlhQPEcJSUlWLZsGWbPng2DwYCUlBRkZWUhIyMjLHWWJBQKibnGwYzS+z2asTMhH49MgI9xFpq8VGaaFmNetY/oXp/Ph/T0dDidTpw8eRJLly7F2bNn0dbWJhawxsZGOJ1OpKenY9asWeK77u5u4aunBY+qS3IFR0wIWYG01wu92D6fT4Agyqrh9DRfEMiqnD17NtatW4fs7Gxs2rQJJ06cEECH0g4p8JUWFl6aWk5nk7NTeEYGSWJiIjQaDUwmE1auXInU1FQsWLAAs2bNEuNDQWW33XYbpkyZgmAwCJfLhbNnzw57RkqLFaCs4EnhUd/ICm5ubkZMTAx6e3tx6NAhnDp1SrACUVFROH/+PDIzM8VxxIrxWBLOrvDxksEPZ6sixRWQAnS5XOju7lZkPnJyclBSUoJJkybh0KFDYfVi5DGRgYtKpUJ8fHzYPjnk8tDr9bBYLGKupaWl4frrr8fdd9+NI0eOIBQKoaenB+fOnQsDoVqtFu3t7SguLsa0adMwZ84cNDc34+DBg7h06RKio6PR19cnAnhpnut0OsG6KKXA8oBTSqPkjBMHJATUVq9ejbvvvhs2mw1JSUniXdDpdEhKSsKqVatwww03oLS0FB6PBzabDbW1tYIt5ICHjxll1fBnNxbwQedQ+r1er4fVakVHR8cw8KH0rD6KIn3ggQeQlZUFj8eDZcuWiToooVAIJSUlYfOyr68v7BrE+K5duxa33XYbVCoV/j977x0e1XWtD78zmt7Ue5eQBAghOshgigFjio1b7NgOtuNe4rgkN3ES/1Kc4lzfJI6TOHESxwXbxD3YGEwHA6JKgCSEKkK9a0YaaUYjjWbm+0Pf2qw5OiOKkeObq/U8PGhmztmn7bP3u9/1rrVqamrQ1dUVEHzQs6DzJbBH7dK4MX/+fPzgBz9AV1cXwsPDhaCUKnjTPpGRkQAgxN67du1CZGQkHA6HADpyIlY6l/Nlph23S7dx8DHGRh2YCq5ROmqqg2EwGASbEBERgd/97ncICQlBWVkZFixYAIPBgL6+PpFAqb+/X4Qazpw5E9/73vfw0ksv4cMPP4TD4fBLHc3ZDjoGV95TeC0J6kiDwsPMdDodrFarXzQDz2fR39+P//qv/8LkyZPR0NCAPXv2iNwmNAByHQslneKDMK/UKo2UoYlWOnBu3LgRBoMBTU1NWLp0KZRKJVpaWrBz507ccccd+Pvf/47PPvsM9fX12L9/PyZOnIg77rgD0dHROHHihN/zIeMDDw1+0qgNMp6OfXBwEJ9++ik6Ozvx7rvvora2Vtwj0gUsWbJEMFrd3d3YuHEj+vr6/IS2HERIJyz6n08i9AykrA3fLzo6GsXFxVi/fr2su4nAQmRkJB5//HH88pe/RG9vrx/w4/dJepzw8HDYbDaR7txkMsHr9YpJwmq1IjQ0FAkJCZgxYwbCwsJw4MABnDlzRrAUxKKp1WpYLBbMmTMHd911F5YvX47e3l4YDAY8+uijqKurw7/+9S+8/PLLflFcFMXQ19cHq9UKi8UiXC10fVSckWuvyEVCyf4IyMTFxWHu3LnIy8tDcnIy4uLiROZWYNg1EBERIVbzXq8X+fn5yMjIwPLly7F3714/Ae7AwIAA2GazGYmJiUhPT0d9fT1aWlrQ1tY24tmR8RD5CRMmwOfzISoqCjfccAP++c9/Ii0tDXFxcQH3J7tQwSc3AnoxMTHIysqS3cZmswkG9I033hCsk1KpRHR0NN544w3cf//9uPHGGxEaGorf/va3KCkpCXhM7q4CIBZIBCiGhoaQkJCA2tpa/O1vf0NCQgK2bt2KBQsWYM2aNXjnnXfQ19eHI0eOwG634+jRowCAsrIy1NbWYtWqVVi1apVg0aRFK32+4To/JJC/VNA2bue3cfAxxkYrLaowSwN7UFAQQkNDBRNCk/rf//53REZGCgEfH5iB4VWZy+VCb28vNm/ejNjYWKHaprwe3GVAug5aRajVaiF6pegGHjdvNBr9wkA52yFlKoKDg7FmzRokJyejsLAQn332GTo6OoSwlSYgYiAow2pPT48YSGgCpxdcynJIgUdwcDCef/55xMfHw2KxICIiAlu3bsVLL70kElGpVCr8+te/hlarxaRJkwCcm4jT0tIQFhaG7u7u806s/D5y14KUKqfPJSUlfr5qWvFnZWVh0aJFouCaWq1Geno6uru7RwgApQCD5/HggI7ORUrp0ypuaGgIVVVVsFqtmDFjBsxmM+655x4/+tpsNuNb3/oW4uLiUFBQgL/+9a9wOp1+7fPzkj4Ln8+H0tJSMdErlUqEhYXBZrPB5XIJwOx0OrFnzx7U1tYiJiYG06dPR0dHB06ePInY2Fh0dnb6aYG2b9+Ovr4+5OfnAxgWUjscDnR3d6O6utqvkF1/f7+IdqGJA/B3t9DzUKvV0Gg0QofEn7HX68XixYuxZs0a9PT0YM2aNYiLixPvBIGb7u5utLS04LnnnsOUKVOQnp4Ou92Oqqoq9Pf3C6YLgF8OER51ptfr8d3vfheVlZUoLCzE559/jpqaGj+9Az3nGTNmYNGiRTCZTPj000+xcuVK3HbbbUhMTMTcuXPx0UcfYceOHbhYGy1/hdlsRnp6Ol577TXEx8cLQNnV1QW32438/HwUFBTg4YcfxsMPP4zm5mZ4vV5YrVZx3tHR0XjggQfw4x//GFOmTBG6i+9+97toaWlBTU2N7LF5KDQAkYCRgGFUVBTuvvtuREREoKenBx988AFKSkpw5MgRvPzyyyIicPLkybj22mtFuzU1Ndi0aRPKy8tht9sFeJWyXvzeU58fZz/GxsbBxxgbp+54dU9pJ1epVIiNjUVUVBQmTJgAi8WCyspKFBcXj6hsSwOpXq9HTEwMpkyZgpaWFuzZs0eEy3JKnoALgQk+gUnBBR0D8M/1QRMibev1emEwGLB69WpYLJYRCYC4wI0GVPrMw4MJLJDJAQDab8KECVi4cCEWLFiA4OBgnDp1Cnv37kV5eTmOHz8uIhvMZjMWL16MxMRExMfHo6ysDBkZGXA6nejr6/Ob3Gmy5+JN6blIz1/ud4VCAYfD4Qf6cnNzERcXh/T0dMybN0+s9Ds7O9HZ2TkiqkXO30yuFzkwIL1P0t+IWaFnxrfR6XSYPn06Jk2ahDNnziA/P19MIoHOhx+HfqcKsdRfOGPCJ5Le3l5UVVXhgw8+wMSJEwVg4QJNAqtDQ0MoKytDR0cHLBYLWlpaBMPAWQKKIpOGk1P6czpXcr2QS5G7Xui5R0ZGIjk5GZMmTYJKpUJycjIMBgPcbjdOnz6N8vJykbivrKwMRUVF6OrqQnl5uWAjFQoF+vv7/e6DQqEQ7x8wnHTQarUiKCgIWVlZCAkJQUJCAgoKCpCYmChclB0dHRgcHERUVBRMJhNqamqwYMECJCUlCYbz1KlTKC4uxtmzZ3GxNtpqftKkSbjrrruQk5MDpVKJ5uZmlJeXo7i4GL29vTh16hQqKyvh8/n8UgCQRUREICoqCjNmzEBycjJCQkLE86ZFSSCT9nU+rpA7OTk5GWlpaejr68PevXvhcDj8GFWfz4cZM2YgNTVVtBsWFobw8HCUl5cLkCs9Bgci42zH2Ns4+PgSjHJoDA0NiTL3RMeS7z4oKAiZmZnIy8vDlClTEBoairNnz6KmpsZvZWcymUTIakREBNLT00VkwK5du8QqgU8a5AbhKaxpoKaBmAZ+ykJJ5wdAROgQe0HUqEajQXZ2NtRqNcxmM8LDw/2yDNJqWLqSofOhqBwyObcCt4kTJ+LWW29FcnIyVCoVCgoK8MILL4hBKSQkBCaTCcHBwXjssccQEREBh8OBoqIipKamoqmpCVVVVX4+ZGAku8InDulKlAMOHhrLgRnlmlixYgWioqIQEREhtCg1NTUoLi5GTU2NrIBUegx+bLntOTCSul8o4qm1tRW1tbV+YEen0wk3SH5+PoqLi0eshEcDOGTSOj2UzZOLW3m+jffffx/r1q0TtHx1dbXQvlBYusFgQEdHB5qamhAbG4u2tjaEhIQImnxwcFC4ACk9OuX+6O/vF4CEQL9OpxM1YSi9Nk2AJKieOHEiUlNTERkZidTUVGg0GvT29qK5uRk7d+7Exo0bRcXekpISeL1elJWVoayszI8hpHtBIfG0eiZzuVxobm5GUVERZs2ahdzcXEyZMgUxMTFYvnw5wsLC4Ha7UVVVhb6+PtTW1qKoqAjbt2/H66+/jsHBQZSVlSE3NxcHDx5EfX39iGdyITaaGyY7OxsPP/yw+FxfX4/PPvsMmzZtEgnyBgYGUFRUNGJfrVaLxMREzJgxA3l5eSN+r6mpgd1uD3hsYhqoP/McHgMDA+IZRkdHY9KkSSJkmvYlYb/BYEBISIjQophMJsTHx4twaL7okGNaOfM4bmNj4+DjSzDqzKGhoX7Jt3iYpdFoxOzZszFhwgTY7XYcO3YMH3zwATo7OwVS93g8or6Ey+XC7t278fDDD4t8GiRcJUBD1DOF8prNZlH4jQARP0daZVPuBBq8aUKhyY4G7M7OTjzyyCP417/+hZ6eHhHlIp2MqZIucC6fCEVC0LnxcwhkVqsVlZWVWLRoERQKBdLS0rB06VIcOXIEs2bNwpo1a7Bw4UI4nU4kJiZix44dOHPmDB5++GFotVp89tlnWL9+vXA7SXUN/DzkInGkTAcZv2ZiOux2O+655x4kJyeLdt9//33885//xL59+0R7HGzx1NDUPj1DaU0K7i4g5oBfC4HFd999FxERESOEpB6PB+3t7fD5fJg2bRpsNhsKCwtHgLBAQJDuV2xsrEgkpVAo0NbWhrCwMCiVSj93IE3OlNPj6quvxs9+9jN8+9vfhlarRU9Pj5gkyLze4dw0UVFRsFqtQnjNNQDEwJHQkNwuHECTK4lCgOn9IddjZmYmvvnNb2L27NlIT0+Hx+OBw+HAiy++iFdeeQVpaWmor68XExe1z2ssEbtCgFqn04nzlPZpl8uFJ554Aj/72c8QExOD2tpadHR0YMKECdBoNIiMjMT06dOFVsxqtUKj0SA1NRXp6enwer3o7OxEdnY2amtr0dzcLPtsLtfESQuOysrK826bm5uLCRMmIDo6esRvXq8XGzZsCCg25UZ6M75Q8Pl8aGhowFtvvQWfz4fVq1ejoqJC9H9aeJlMJgFCAODNN9/EgQMHBMCmsRE4V3WZuxUp5wtwcVFI43ZxNg4+vgSjSYUmWvJf0ktFiN5kMiE6Ohp79uzB+vXrYbPZ/PQg3GUSFBQEh8OBt956CzabDdXV1X6ghgY9irABIKhn4JzqnpJ+ESiiF5nO2e12+wnn+vv7xSpVr9cjISEBGzduRFNTE2pqahAUFCQGdjoen0i1Wq24Dp7ITOr24BM9ADz66KNYvnw55s2bJ+7r9OnTERYWhqamJkyZMgURERHweDzYsWOHyOqZn5+PmTNnIi8vDw8++CAmTZqEdevWjRCSyYla6fhSNw1nPAhAmEwmzJ49G8uXL8fy5csRGhqK+Ph4dHR0oKysDH//+99RXFws3AaUPImzFVzfwcEFnQf3PdM+PMkYN9p35cqVmDZtGlwuF7Zt24be3l6kpKRg7ty5eOSRR3Do0CEolUpERUVh5syZmD59OhwOBxobG5Gfny+b40DKiJjNZvE8nU6nuAa1Wg2r1SrcI0FBQejr60NDQwNOnz4NrVaLiIgIGAwGDA0NwWq1wmq1Ii0tTfRvotSDgoaLu5FbhVbAJCKlFbNGo0FPT49fXyLgRrlq6NlpNBpYLBZERkZiypQpYmW8bds2LFiwQBS1O3v2rBAgAufchsSg0PtAz4FciQSO5PJ8uN1u/Pa3v4XFYoHZbIbb7Ybdbse8efMwY8YMHD58GLNmzUJiYiIeffRRJCYmwuFwiFDu2tpabNq0CdXV1SPapr4k5647n5nNZhiNRvGZ+u+xY8cQFxeH9vZ2kdgwPT0dN998Mw4fPoyDBw9i7ty5uOGGGzBr1ixkZmbKtk+asEBGCxsCT+S6A869A9OnT0d6ejrCwsLw8ccf45133kFISAgmTZoEj8eD2NhYBAcHw2w2AwAqKipQUVGBhoYGce4E4um50TOid0zax8ft8ts4+Bhjo0GQFOtcPMhru1BiHB7aysWI3HdMAwr50XNychAVFYXTp08LfQjtT7k6OGih9ghgAOfCfTUajQAP/LzpXIjezsnJwbx58zBv3jwcP34cp0+fxpkzZ/wmUDrXwcFBMfhzIMRX8XyAlLoQfD4fmpub4XA4RA4BYDjkUK1WIzg4GCdOnIBSqYTb7cbWrVtRVlaGw4cPo6amBq+88gpyc3OF4FBO3yE9vvS8pNvy/ekaV61ahSuvvBIZGRlCpGgwGBAZGYmEhAR0dXWJ55GWlobdu3eLey0n5uTMyGjASAqkODBpbm5GWlqaqKocHR2NuLg4kbNi7969mDFjBrKzs/GNb3wDiYmJGBgYQGNjI1QqlUh7zisPc0DW19cnBnMC1+ROJDcJFzSTm6SiogJerxc33XQTKisrRXG5hIQE4TKh66Csu9QPBwcHBQCgnDPSXBDSZyUFZyqVCikpKZg9ezby8vIQFxcHtVqN/v5+RERE4K233sLBgwfFypvE0bweEj8WgRN6l4k5lHt2NLF2dnaKiDdacTc1NeHIkSNobm5GbGwsOjo60NLSgtbWVmzfvh3Z2dmYMGECYmNjAyYvk177xdiiRYswa9Ys8Vmv12Py5Mn4+te/DofDgcOHD8NqtUKtVuO6667D9OnTERMTg6SkJMyaNQt5eXlITExEWFiYaKO+vh5NTU1oaWkRgs/znTdnAHlJCgA4fvy4yHJ79uxZAdJiYmLgdrsRGhqKoKAgdHd344033sDx48fR1tYmnqFU18TvEwci47qPsbVx8DHGRsidXCEcYXNWQKPRIDQ0VCTFooQ9fPIjGpcSgTmdTrS1teFrX/sakpKSRPIeGrxJY0ITPq/bQi81iWAJfOh0OhEDz0NhiZqkFezMmTNx2223YfLkyfj4449RUVHhR//SQE0DMQlaKbpHTucg97LT78XFxcjOzhaVU51Op4ge8ng8+PDDDwXtun//fjEp6XQ6HDt2DJ2dneju7kZFRYVf23RcHjpL9106IMkN5pzhSUpKgsVigc1mg9VqhcFggNFoREpKCpYvX46IiAg0NTXB6/XiyiuvRHl5OZqbm/2YIv7M+fnwe8EHTOkKTapJKSgoQFhYGDIzM4WLJTQ0FArFsEC2pqYGOTk5SExMFKHckZGRyMzMhMvlwsmTJ9HX14eenh7ZZ0QVbMlFQlQ53Xtpngaj0QiHw4G6ujp4PB788Ic/BACRjXfatGnYv3+/YC9I1wFAAGoSFtN+1D6dH9cYEfvHgTxtEx0djZkzZ2Lt2rWwWCzo7e1Fe3s7AGD9+vVoaWkRETzk1qE2qX8REOHRW9LwcSkw5BMgMZMKxXDBs6qqKigUwxEx8+fPR29vL4qLi9HV1YXKykoBYJctW4bw8HDodDpRvkD6fEZ7n+R+CwoKwvTp0/3Cak0mE6ZNm4apU6dCpVIhIyNDCIDvvPNOKBTDuV5ycnKQlpaG6OhovxwmLpcLpaWlOHz4MEpKSlBZWTlqxlDOTAHnXGX8u0OHDqGnpwf19fU4evQoXnjhBSgUCrS3t4u8HtQ3Nm3ahLKyMvH8eAZnepb8fwKP0jpO43b5bRx8jLHRxMY7MmkupD57EroRACHfPHAuTTuJQonapeqfwcHBuPfee/GLX/wCPp9PtCMdeCkig+q48GJ2LpdLrDIIvADnUqsDw4NlZmYmJk+ejIyMDPT29iI/Px/t7e2CeaAkZRqNRtTzoGMolUo/wSCF+3KmQzoA0cB84sQJbNy4EXfddRcKCwvx8ccfY+fOncjLyxMTFr/Pc+fOxYoVK3DzzTdj9+7d+Oijj/ySMUmjTeh50TXz+8YzL8qxJEqlEvfeey8SExORmJgIl8uFK6+8EkuXLsW8efOwbNkyzJkzRyTDAoYB1a5du8RqkANDmqCI7ZImRJKKS+mzNPx3+/btMJvNiIqKQkpKCv77v/8bO3bswLZt26DX63HXXXfBYrHg6NGj+Mc//oFDhw7h17/+NdasWQOTyYSIiAhxvrxdMqVSKYBDYmIi7Ha7EDWTPoNqDBEg6enpgcFgEFEc06ZNw9e+9jWkpaXB5XLhxRdfxM6dO1FWVoaQkBCcPXsWiYmJCA4ORmtrKwCIPkW1OAhQUfZa7g6h0gYcKCgUCpHt8r777gMAnDx5Eh988AHeffddKBQKhIaGIjExEStXrhRhvrW1teju7kZfX5/ow+3t7QKI0PvOIzp4P5O6z+TM5/PB6XTi2Wef9ftepVIhLCwM06ZNg9PpRHR0NEwmEzo7O8V+0n7MhZXSvsuNQMSJEyeQlJSEOXPmiLZ4JNyqVatG7EvFE+WsqKgIW7Zswfbt21FVVTXqddN5UF+nyBgCcnQ+brcbxcXFKCkpgUqlwrp16zA4OAiz2YxXX31VRJaZzWbceOONOHjwoACz5KIjFk36TtNzHLext3Hw8SUY+b+JouYTCqdzY2NjodfrYTQaYTabRcZAchcMDAz4gROXywWbzSa2cTgcgu71eDyw2+0i8oKOx0WjFBZIzAQVuwP8xXm8Da1WiyeeeAJXXHEFPB4PPvroI7hcLpFdsre3V4hZCQRRVkSu/XC73cJFRG4mqb4COLea6+npwZkzZ7Bv3z50dHTgwIEDqKmpQUtLi0iwJl2plJaWwmQy4eGHH8bg4CD6+vpESB61zY2vlule8YFbuq3U7eFwONDc3Ize3l709PTg1KlTeP3112EwGKDRaDBx4kTcfffduPrqq9Hd3Y0nn3wSq1evxp49e/DjH//Yr306Jq0SaVDm90ZKIRPLRsCNrmfr1q04cOAAuru78Z3vfAderxfBwcGIiYnBG2+8gaKiItTV1Yk8Db/85S/xu9/9TkSWEDiUc0F5vV4BlKnOEPVxYs/I1dXf3w+bzSbuWWtrKx577DFYLBbcf//9uPfee2EymfC1r30NLS0tOHnyJKqrqzE0NISGhga0tbWJdsm1ExERIe49zx7MwTMA4S6k+xkUFISUlBRceeWVosqy0WhEREQELBYLZs2aheuuuw5Lly4V0Vk2mw21tbX49NNPYbVacfz4cZGfgxYHtJDgffpC7HzbEXAqLS3Frl27RNSXNGFXIGbuQo7f1dWFlJQUKJVK7Ny5E8uWLfvCEzGVXLjQcGAaJzwejxAKU5gu9XHuQvN4PLBarWJBVVFRgRkzZqC4uBjbtm3D+vXrYbVaxT2gfkPtUX/iejkqGSCNxhu3y2vj4GOMjVwtNBBzdwan1wcGBvCb3/wG999/P3p7e9HR0SFqVdBkTgpumlyCgobLpvNKnHq9XmSbpMmfjOcbIDra5/ONCH0lQECaBVolKBQKkemRp9QGhhkROjdauRPLAZxbgfHCXvTyc5FXIJ0DRWcUFhaivLwcra2tgkol4MEnyKeeegphYWGwWCwoKSnB9u3bUVdXJ+uqIJPTXHCTuj2kQMnr9QoASKHR3d3dYkKkwnMHDx5EdHQ0br75ZkRHR2PatGm46aab8Omnn8qGAVPb/Dw4+OHnzgEC9TuHwyHuVVFREZYsWYJVq1ZBp9OJWkEtLS1iUO/q6hLH5kyKnNuF3CgEOiwWy4iIG5PJBIVCIYookgaJdA42mw07d+6E0+nE9OnTMW/ePMycORM1NTXYuXOnmAx4H6VzcjgcQsTs8XgEaKZzJRaProdYvJycHCxevBjLli0TGhISUQ8NDYm6M8QseL1emEwmTJkyBSqVCmfOnBEhzPT+8Xed11riUWVyFsjlyI1+T01Nxbx586BQKJCQkCDcs5fDvF4vDh06hDNnzsBkMuHQoUNwuVyYO3cu1q5de0lt0gLnfPoUqfH+SwwF10XxsZPO3e12o7m5WWS0NRqNaGtrG/HuSJko+p7a4RWsL+TZjNul2Tj4+JKMqGCaJAkIEPPhdrtx6NAh3HLLLejp6UF7e7ugrCmUkWs0yOLi4kSKdnJ1AOfU7nRMYkdoEOerYwJC3G9NvxsMBuHOIE2IQqEQkyu5cWiwJVcKDRZ0HvQ3D2OjAUY66csNMsR+2O12eDweRERE+FGkdD4qlQpRUVG45557YLFY0Nraih07diA/P1+Efgbye0sn80CDjjSMkQ9gPESZ2qIBtKmpCc3NzdizZw+mTp2KnJwcxMbGIiIiAllZWfjss8/EflLaXA4MjfYdv8fUHwCgvb0dKpUKCQkJUCqVIv+FXNVTuQgkKWtE/ZPyw5BgmcBxYmIikpKSROKs7u5uP3aOGL7CwkJUV1ejra0Ns2fPRlZWFubOnYv9+/eLrLDAubBdAhiUjZcmKALrxABR/+b3RqFQICsrCzNnzkRubq5f5Waql9LU1IT29nb09PSgvLxcFFDLysrCnDlzEBISgsOHD+PUqVN+dWboHlEf4PlyLoclJCQgNzdX/B0cHHzZ2gaAwsJCwVbt2bMHfX19uOmmmzBhwgSkpqYKAK1UKhETEwOXy4W+vj6RX4VqLlH/aG9vF27Y84EwwD+XDYEPLjyVliOgfk5iZmJZyVVECyIyOfAhfY+4O2YcfIydjYOPMTZa5VHeAXphKO8GMDygqtVqbNy4Ef39/eju7hal361Wq2AjaNVICYz6+vqQnJyMmJgYBAcHQ6/X+x0DOJfimUAHVQslMZhGo0FfX5+YuH0+n2A7BgYGREIxtVoNk8mEvr4+zJw5EwaDQVDASqVSpGAmVofStmu1WjER0HVQPQ9ENTPoAADrxElEQVRgeGXEhbBSnzgfFGgQsFgsooR9VVUVlEqlCKOLiYnBD3/4Q0RFRaG1tRXFxcV45513RG0dOfeBdHDhky3/ne6RWq0WE6yUaSDQJo24oG28Xi/sdjvy8/OxYcMGXHvttRgaGsIvf/nLEX2Htqc25cCGXHQR/c+1B5wZ2rBhg0jrTSGr/L7w8+W5R+TOj+dMACAEtRqNBtHR0fj1r3+N8PBwVFRUYOfOnWhpaRFi6f7+fsTHxwt//ODgII4dO4bm5mahIaE6G6Sv8Hq96O3tFc9Bp9OJEvcmkwlxcXGorq4Wfcnn84kJiSfZo35Jq2R6P4xGI9auXYsDBw5Ap9Ohra0Nn376KUpLS/Hggw8iIyMDDocDGRkZmDZtGs6cOYPCwkKhT6DnwxNl0TkGsouZ3Lq7u9HU1IRZs2YhKyvLT2DJnwtdGzcpaA5kFLlE9+q9997DgQMH8OGHH+Ljjz9Ga2sr9Ho9fvjDH6KsrAwHDhzAqVOnkJWVhYceegjh4eHi/T5x4oTI/3MhxlktOZAgBcMEFEJDQzFlyhQ8/vjj0Ov12LZtG7Zs2SL24Ysu6TvLmQ7uMgMgNCfjdvltHHyMsXFmg9OHXq8XDQ0NCA0NFeWpjx07JlYXjY2NIuESiRQdDoeY3KlOyv3334+kpCRYrVZUVFQIgAIM+7l55kVyldDA6Ha7/fzzBDwoCsdgMIhEVIODg3A4HJgwYQIMBgP+9a9/4cUXX0RXV5eIQPD5fCKkk152ioYgUEEAhUSMnMnhGgvaRzpY+nzDIcZ33HEHJk+ejL6+Prz00ku4//778dlnn2Hfvn3Iy8uD1WpFXV0dzpw5g4qKihG+W6molY5Px5Cu8mngIkEtB3gcIHCXE1+lcc0L3esNGzaIOhpxcXFoaWnxOx6dC3CumqcU8EgjAfj1ceDB25k6dSquuuoquN1uzJ8/H+3t7WhqavK7drp+DkrkGB8e6UErUwoX7+jowP33348333wTBoMBDodD1A6iQd5ut4tMlD6fD1VVVfjd736H22+/HcuWLcMTTzyBl19+WehJzGYzoqOj/TQeoaGh6O3thdPpRHV1tbjX9I8KpBEQ6e/vx+bNm+F2uxESEoIrrrgCwHAG3YSEBBw7dgyLFy+GUqlEU1MTFAoFXn31VURERAhA3t3djTNnzuDMmTPC5UQaJlpxSzMNS03OpUZ9J5Aodfv27Whra8O1116Lm2++GbW1tUL/xcEjTahSt+ClmNvtRmNjI1asWOGXIfSdd97xe/4qlQrz58/HtGnTBCi69957ceONN+LAgQO4/fbbz3ssDhD4OMDvIwEZ7pLJy8vDN7/5Tej1etTW1qK6utovrwfdF2mZAWKluBuVIqx8Pt+ooHHcvpiNg48xNppkSTRKLxUJOQEINmDTpk246aabkJGRgVtuuQV79uwRAwmvwQKcowarqqpQVFQEq9Uq2Ae+CqaBkPaXRt5w2pJeTC7ookkvMjISWVlZuO+++6BWq2E0GpGYmIi2tjYRfktUOl9J0+qb2iR9CT8/PuBIJz4+4fFB4+OPP0ZzczPS09Nx6623IjU1FStXrkRWVhYcDgfy8/Nx8uRJlJSU+OkoAmlK5PQdfDCXuofoewJp06ZNw8KFC3H27FlRJ0WOSZDea4PBgEmTJuH73/8+fvSjHwkWitO+UiDCv+PAgh+D+gHP4wIMRwBdeeWVyMvLg81mw/79+/1SdMuxQYEYIgBCoEeJ8sgVRiBZoVDAarUiOjoaa9asweeff+7nnqCwWXpPOjo6BDsXGhqKRYsWYf369cK1qFAoBGClPkcaJwqBJWZPjkmjxYDVahVuILq2oKAgmM1mTJ48WbwrLpcLRqMR4eHhwoUJAO+++y5OnjzptyCg4/FsvnRMOZO7n3JAktvEiROxdOlSKBQKUb3X6XQGbOtymcfjEVogMrmJeceOHfD5hkO6o6KiRJ2dC9WmUG0bDujpPtLffGyg8YaqBSsUCjQ0NKCzs1MAQNqXg2jqg9JIGgACGBP4GS8sNzY2Dj7G2IgqJkqPZ/fkYksAyM/Px7Rp0xATE4MbbrhBJBeyWq1wOp1+lTppgjpw4ACam5vhdDoxY8YMP3aFXiAevcFX5LRS5b9xHykJ+Gh1OXHiRFx33XWorKzE4OCgqOVC0Tz0MvNzoJefzoWv/gH4Dehko7lG6LcdO3agvb0deXl5WLt2LQYHB4UP/MCBA9ixYwdKSkrQ1NTkNwjzFY70GPz4fHupcQ2GwWBAWFgYYmNjsXbtWpSVlcHpdCIsLAx6vR49PT3CdUYMEq1KtVotQkJCEB8fL1ZcUrqZgwk5JkZ6Dfx+yQGu6dOnY86cOcjMzERbWxuKiooClnTnbUrBGhmxZPR8acUIDPf96OhodHd3IykpCVOnThXiTrPZLPRDbrcbFovFLyU6v190r8hVSACCACFVkuUuIn6utCqn94AE3larVfSP/v5+seKNjY0V7Xi9XsTFxUGhUAi9iVKpFKBNKk6k50fnN5oFAgyjgQYqPKlQDOtW2tvbz5u068u0/fv3w2AwQK/XIyoqCsA5d2VISIhwsQUyqbtIGsElrRvF+x3PjWSxWBAXFycEqPTueL1eTJ48GUajEYODgzhz5oyoNM6NjiHnvhq3y2Pj4GOMTboiI+0BsSBEQVMa5wMHDmDNmjVYsmQJdDod/va3v+HkyZMYHBxETEwM7Ha7AC8+nw9vvvmmGPyLiopEVVtiWijvAbk6eAgbpaIGIFYCFDZLLzVpAojWDgoKws6dO7Fv3z6UlJSIlNkEjCjEUa/XizwiVPnU6/WK6A9yHVHGSwB+gzVNeFLWgyb92tpa9PT04OzZs2hubsaqVaugVCrR2NiIN998EwcPHvRLDMXb4GG0fHKn4/LP9J10HwJcSUlJyMrKwpEjR9Dd3Y3JkycjLi4OUVFRyMzMxK5du7Bp0ya0traKIm/t7e0iN0Z4eDicTid+8pOf+Il96X85gESrazmtBxfnkSuEvvf5fMjMzERiYiJ0Oh3q6+v9wKbUFXU+kObz+WC328VxyE1I4EGtViMzMxM2mw11dXXQ6XSIioqCw+EQglKz2YyCggLEx8cjISEBVVVV2LhxI2bOnIn4+Hh85zvfEYLnoaEh9Pb2Ijg4WFy7TqdDZ2cnjEajeKeoz3NQTP2bM3/19fXYs2cP7r77btTX1yMkJEQADb6qBoZBcmNjI9rb2xEWFuaXmZYXjqQJkiZMevcul1VVVWH//v1Yt24d8vLy0N7ejs7OTlit1vPuKwX1l5MZITty5AgcDgf6+vpw5ZVXimNZLBbMmzcPu3btGjV8lfQVXKwuF7JM7wDVjeIp7ufOnYuoqCgkJyejuLh4BPP5q1/9ComJiWhoaMBPf/pTlJaWiveDmDQ6h8v57MbN38bBxxgbZwaIYqY05pQkDICgeEtKSpCbmwutVosFCxbg448/xrx58+DxeLB7926/FdXQ0BBMJpPwcdOkTiCAquHyVNW0uiP9h1arFWwFvXSkAwkKChI+0WXLluHxxx8HMDy5tLe3o76+XqjY6ZpoUOCDCIXbqdVqhIWF+WWq7OnpkY1G4JMen0Bp4qD4/p6eHpSVleHVV18V35PvnbtyAHkBKf+e++D5xM7FnrzNgYEBlJeXi6yU27Ztg91uh9VqxXvvvYegoCCsWLECS5Ys8fNjDw4OoqurC6GhoWhubkZZWRnS0tJQXFzsN/Fx94uc64fOk18XZ5Z4+nyyyMhImEwmuN1utLa2ilWd1N3GgRZ3YUjvV3JyssgySxMxDzM9fPgwqqqqkJycjNjYWLS3t+OTTz7B4OAgKioqcP311+P+++8XE0dbWxsmTJiAkpISHD9+HM8++ywef/xxuFwukaqe8qjwnA0EKjgjQswJfQ4KCoJer0dvb68QfIeFheHIkSPQ6/XQ6/Vobm7G22+/jQ8//BChoaGYOnUqvva1r+HDDz9EVVUVmpub0dra6ufqINqfrp36PM/nc7ns7Nmz0Gg06OjowJo1a8S7tm3bthHbSgGsHBAfC4uPj8fEiRPFZ6PRiKysLDz22GMB6wWRSZlbEtgTcOR9nLYHhrUwDQ0NmDBhAn74wx8iLS0NGo0Gd955J9544w0MDAwgNjYW3/jGN5CTk4PIyEgMDg6KHCBy7mg5V+u4XT4bBx9jbLx0N5V6JgDCBwViR2pqavDRRx+htrYWSUlJqKysFJEjRHEHBQXBaDQK+piADE0UvAAdgRNaNZIP0+c7lwWVUrA7HA6R8RSAmEz0ej2Ki4vx5ptv4v/9v/+HqVOn4sSJEzh27JgAKQQmAIiBGBieqOg4Pp9PVJTVaDQi4oC/+IH0C2Q0INC10n3l4YwcxNB20ugTmqi4m0POTcE/83Oi7bnobevWrYLif/vttzF9+nR4PB40Njbigw8+gMFgQHh4OCwWC3w+HzIyMtDU1ITTp0/j8OHDfqAJgN+qSw4wSRX83B0kt7JVKBTYsmULACA5ORkff/zxCL0ABztyz0LaJgFezsaR9sjtdsPlcqGrqwsulwuNjY1ITU3FoUOHEBMTg9jYWDidTtjtdlH/Q6PRYMuWLbDZbAgKCsIrr7wimBRalfJsv6S3IBcOzytB90Gj0QhGjp690WgU1aNbWloEM6hUKlFRUYGWlha0tbWhtbUVNTU1qK+vh81mQ19fn184NZk0+omSmkn1BBdio7ESXu9wLpmysjLMnDkTGRkZmDJliiz4OJ8LZ6ystrYWx44dw5o1axAZGSlYpwu5D6QP4/2c30Mpc0O6jK6uLtTV1eGRRx4RLFhISAhycnLEYiouLg4ZGRkICQlBYWEhduzY4Zd0kIzYMjrmeKKxsbFx8PElGp/kaHDmv5Go6+TJk2hqakJSUhLq6upEcS5KJEb/eBE4apMGWb5654pxHjpGgIXnH6GXnSdKAoAzZ87A4XBg0aJFIsGXdNVNIIJ89wQM+OqUABRpSeQ0H9LVTSBQwH+T2vkmYbmBUMqSyE2+gY7r8/lQUVEhRIv/+te/BLNQW1uLt99+G0ajEVFRUQgPD4der0dlZSW6u7vR2NiImpoa2Wvh5yF3HYE+c1DF2+jp6UFbW5uI5OAgUe5+8N/k7oHT6RSRXMTqcCaLWDWn04muri7Ex8fj0KFDSElJQVpaGpxOp6i5U19fj8jISJw6dQo+37AGpq6uzk9ETUwG9Wla+XJGjPd9XpKAu1GUSqWomEuhudQv3G636MM0qXE9CbE03F1F50XnyfPrBNJ+BAJ053OJ9Pf34+DBg5g2bRqCg4P9irjx/f9dq/aWlhYcP34cO3bswI033giDwQCn04nTp0+flwWSgulArj8OtoFh8WtPTw8SEhKEYJSE8bNmzUJQUBDS0tKQkZEBvV6P6upqFBQU+LlmOXjnxxi3sTGFb5xXGhOjeiuUEVSlUsHhcPiFXBKlCJzL0OfxeGCxWGCxWNDV1eW3wqL6BTxChdPxJIijwZ8iaohy1ul0IqkTRb9w6prAC0ULeDwe8TdlMOX0MgENShuvVCoFPc7pd6pKSisaOhdiZPgkIh0A5IwPDnKDknQ7ur9SJoT25/QqH9C464but/S4gUzaLo88oesnrQsHCtJj8GsgsCi3CuT3TW5f2u4f//gHPB4PqqurUVlZia1btwp3G7UpBTGB2iOWjZgHg8GA1tZW+Hw+oeeha6LMog6HQwhsBwYGRDg3gWgS6nZ3d6O/vx8xMTFoampCWFiYyKZKbJzP5xNRDZRgjzREdA56vR7AuVIGPO0/fU/bUpZT7hakMFoKISaROAcytAggRoYLvckuRJPBjfcXqalUKsTFxWHfvn2or6/H5s2b8d///d8X1C5fYIy1BQUFoaKiAgkJCSguLsbtt9+OmpqaUY/NXYXkfuQRfgQK+btJ70F4eDh+/vOf4+tf/zqCg4PR1dWF1157DatWrRJtTpw4EQqFAn/84x/xz3/+EydPnhRjHweKUja0p6fnsmaTHbdx8DFmRuAjIiICGo0G/f39cLlcQlxKFLHBYABwLmadJuqhoSFRZZQG/d7eXkRGRorBjyZwTkvTwKpQKAQQ4GpvSkdNLzRpUaQrV3qpqS4JAQQ6bxK1ejweEW5I2U2pQJ3cQKxQnAuVlFvVy60+AIxYPfL2aJAabcUiBSqBtuWTLU/LHYiN4SYFRXKrNOmxabXMV+R0TcRK0OBIpdcvxSwWC26//XbMmjULHo8HNTU1eOGFF0ZkgLxYI10QVWX2+YYFnyqVCsHBwQgODkZnZ6cAxnQdJMh0OBwIDg4W4JvnnqGJiFyVlD47KCgILpcLSqUS4eHh8Pl8Isso9QtK+qVUKoUokedooffC5XLBbDaLTL1037nOh4TTBM55RA29MyEhIYLtcDqdfu8MRehcjI3Gfuj1esyaNQspKSlISkoSpRkC7ROIYfkybN26dUhJSRGM3wMPPCCq8AYyem4AROZYrnPj7kiptkuj0WDfvn2Ijo7G0NAQ4uPjxWLs7Nmz+P73v48ZM2bgs88+w9GjRwWrxp83T4lA/WUcfFx+G3e7jLER5dzf3y/qRvBQSxrM6KWiVRiJ1bjvmiZ+GhxpgHa73WK1FxwcLHzcNNhyoRYXc3E6Xa4AHa20CZjwF53apHOh1RR3CxGzwY0mWp4RUrry5sZ9u3zVJmU1+L5yrIkUYEjbl34v52fm//MVWiDWRerCoc+B3ExSQS3dz0DXdKFG93jnzp04fvw4AAgG4WImJOl9ool5cHAQAwMD6O7uFm4LYuJ6enoE2CQqHIAAywSSuTCbJnQCgARSCDRQJBfPxMmZFu6Kofbp/HniNeBcBkvOhBEwIZBPEyDgD0TpH4ETetdoW5rEAJx3wpW714FAw+DgIMrKymA0GjF//nwR8h5on3/n+nLPnj0i9JaSoY1mUuZBjnmj70hrRfsRk/v0008jJSUFycnJuOKKK2CxWESa/OLiYtTU1Ig8PFJRLoFPrtkZD7UdGxsHH2NsXIjHFdR8IuWTOoXqAecmIGJKCKHT9zQwcm0Gf0GlFU6pMi6hfV7/gkyr1fqJN+k41A73v3M3Chc/AudW6/yzdIUirVUTaJA8nw+cMwuj2fm2kQ5uvH3+u/R7ud8CfScHPOR+5/ctUNuj3S/pvkNDQzhz5gzq6upkj3shJgfUqA/wlSLPmksZd+k7igYhFwgllSKmjPoYj14hzZPP5xOsHe1HwIU0RAMDA6IdzoZJ7zn/R64j+szBuRR4AueqMgP+iwPg3PsC+BdyvJzm8XjQ2dkp3FN9fX0X1P//HdbY2HhR2/Nsy8CFvXM0NtLnPXv2IC4uDunp6bDZbDCZTOjp6UF9fb3I5svrL0l1KNwFE0ivM25f3MbBxxgbaStoNUWMAK3IOBAgFoRHUHD/J4XJUrtutxt2u10wFxqNBk6nUwzQRqMRAIQrJSQkBN3d3cJ/zYs9kU+cClXx4l98wvT5hlOo03nqdDoBQMilwle6PJqF9jEajaIOTW9vr1hlAIGFnlJXhdRNQ/eI22jggK945FgR6WqIb8ufi/R7+sxFl9SONGpHKo7kRtfFV12j6QBGu3fSe0JAQXq9cvdA+ruU0aGkUVqtFmazGZ2dnQgLC4NKpcLAwADMZjN6enqESJRydnABNT93Sl9OLpTw8HCRa4bANhcw+3w+REdHA4CInDGbzX4TCoUWczE2DzdXKBRCQ8IBDW3PGRViRug8ODNHn51OJ3Q6nejz51vtBzK5/sYtJSUFn3zyCQ4fPvyVBR8Xa6TZoUWX3ORP4w31Mc5mEfCkfDrHjx8XzKrc4kKq9SCgzLPojtvY2LjmY4yMNB/AF6PML6cpFMPJfviqjQZ2nvCLMy28XDkBD9qGKPLQ0FC4XC6RV4QLSimpGgcxtB8NrhR6KqVSafCmQYjcOTQJ8QmUJnHOwnDwJBezL3U9cWGkzWYT31NbPN8IF4ZSW7Sql8uvQdtKJ3a+2pZjOfj2UpZIek10H/h+UrbifK97oBWn3DUAw/qDQO4luTZHAzQcqEnvQSBQJQV+Xq/3ol0cF2JfdHIn9xQ9H6pxA5zL6kmuJAKcNH7QooUYSXKjcX3Y+c6Z/jYYDMI9odVqxft/oUbvbqB9qKpwoHMyGo0i9xA/T+q7PDU+4B+1Jnd9UpMyloH6nFw7gVxW5D4c13xcXhtnPv4Pmc83LEblgwcvfkWrOa7d4BECXJhFK0ilUulXJp2HNRKYAEYm6uKRAlJqW8oQcJcPrZilancOMCgVNwEEGrz4Koofg8AXtcnvCWc2+ERHQINPnLx6L7Ef0kmVD2z8HDig4fdLWpyMTyb8nhJ9zO+XdPIhNwQ/Bymrw1fy5xu4pZOC3DVyC/R7INBBx5YCqkCan7E0/t5cyvF47h0AfjoUSlJGOUrovpM4nCLlqOYN6byIgaG/KbMrMPxe86gzSkjII9VGm9ADPUNaDBAYkmompOn2ySgDLkX8kUaGjkXsrfTYckCVjL+X3KTgIdD1yIHkQAB63C6//cc5tJ577jnMnj0bZrMZUVFRuP7661FRUeG3jcvlwqOPPorw8HCYTCbcdNNNI+pb1NfXY/Xq1TAYDIiKisJ//dd//UcIj/hqnwYSHplCjAYvisW1GwQaOEtBan4+aZHxl5m+p8GLomNoPw4mpCs27o6S+oSlA4vc5CA3SdLfcu1LJzcpiODXIzd5jvabdNDkz0NqcvdCOjjzexyIuQi0kpS7j1LXyr/DLhbAjKUpFAosWrQIWVlZwpV5sUbvCt1P3oelDB8dk77nz5jn3yFwC5x7rhT2bDabhQ5GCkCpf3OtGL9WskAuj0D9PVAVX85McVejNIleIBA62vG/SD+QO6Yc8Bm3sbH/OPDx+eef49FHH8Xhw4exY8cOuN1uXH311YL+B4Ann3wSmzZtwvvvv4/PP/8czc3NuPHGG8XvHo8Hq1evxuDgIA4ePIg33ngDr7/+On784x//Oy5pTIwGAg4EdDodNBoN9Hq9ENVRRAINnKRhIeN5REhQyHUt9DcXb9GxKEqAzoUGRX48OlcODvhKndrlIIqYB9qPjAZuqYCWBnopuOFtcPEuDfxS7QGPoJCmhA80qPNr5atqPhEFAjC0nRR88IFd+rv0HPh9lH6Wsh6BAM3lMGnbUgAk/VsKcMfCaIUeHByMp556CldffTVCQ0MvuT3qn2T8uVKtH87a8UKSRqMRHo8HdrsdXV1doi+TboW0X6S9ocyiPB8JVf+ltklzFsgo0yc3EhWTVowvTEiTRufMFxvAsCva5/ON0NLQvbjYxd2FMmjAxfURuT42bpff/uM1Hx0dHYiKisLnn3+OhQsXoqenB5GRkdiwYQNuvvlmAEB5eTkmTZqEQ4cOYd68efjss8+wZs0aNDc3CzHbyy+/jO9///vo6OgQCYpGs6+i5gMAQkJC/CqFko+c6l7wSBpyBfBwWk6Xkmk0GgEkSI/BEwGR0QRNvm2FQiFykkhX4nKhdmQ0aNF+AwMDYsCWy5nBwQMHLtKVD2d7+KBNx+HsDGlP+EQtxxxIr4G2kQvxo+uXTvQcBEldEPx4BCaloItvx9vk5cIJsPAJgCavQO0oFAq/3CNfpJ/LMVgXuz8wfF2XS/MRFxeHWbNm4Re/+AVefvllfP755ygrK7skt4vBYBBROwBETSXe98gt4nQ6oVQqhWiVRNoEan2+4eRqZrMZAwMDwoVD/Zf6S0xMDHp6etDf3y+eLa/9RM+XnwN/ZwM9E61WC61Wi97eXj+wSu2SUVQStet0OmGxWES6ADJeEZsE7BdqgRhNue0upF0p40eC4XHNx+W3/zjmQ2pUuI1SEBcWFsLtdmPZsmVim4kTJyIpKQmHDh0CABw6dAg5OTkCeADAihUrYLfbUVpaKnscWn3wf19F4yt8r9cr8nsQaOBJffgETBkgDQYDjEaj8M+SPuSee+7Biy++iJiYGL8BjAY53iYP5aUVFJ9cpa4BzobQhOn1ev30KHKuAq4TkYIhOeaE78/BDG1P10HbBQov5rlcNBoNgoODMWvWLISEhOD222/Hz3/+cyQlJYn9ucBWDnjwa+LGtyWgyAEKGaft+XcEVjilTyCEJgyua5ECRGn7F2qjMTlfJaM6PH/5y1/w2Wefoba29pL1JVJhJwcewLl8QKSZICBCofQEqDg4cTgcQqhqNpuFyBsY7ptUU4eerbSfceZTCoYB/2fC3UFDQ0Mi7wr1H+lCg45D10oAic6ZmxRwf9G+RMbHjQuxQC6jcRsb+48WnHq9XjzxxBOYP38+pkyZAgBobW0VRYe4RUdHo7W1VWzDgQf9Tr/J2XPPPYef/exnl/kKLr8RC0ATDgcCJLyk1RAXTEqjTSi8jZTrcXFxuOKKK3DzzTfj7bffhtVq9Ss7zlf43I9NqbEBeV0CHV/KXFDoMuUt4aGtfIIIRM1K3ToXYtJrkEa8ABAMUm5uLqKjo2EymWCxWJCSkoL6+npceeWVSExMRE1NDf75z3+KySaQVkbu+Pz3i53Epa6UQG3KuVvGCiDwSfGrYqGhoYiNjUV0dDRaWlrQ3t7u57q9WCM3Ju/jUuN1dhQKBWbMmCE0UTExMVAoFHA4HOjs7ERpaSlcLpeYXKk/csE49S1eB4q/U9L7Pdrz5b9xkGw0GpGQkICoqCh0dHRg6tSpgtVpaWlBWloaioqKUFlZKaofk3Hm5Xxsi7Sfjva79HvpomK0axxL1+K4+dt/NPh49NFHcerUKRw4cGDMj/WDH/wATz31lPhst9uRmJgouy0NCDqdDg6H40sddKVsh91uF7Qnqe4pUyXP8scTL1HeEL1eL2jfvr4+mM1m/PjHP0ZJSQmKi4vR1tYmVtJ8Vc3BhdyKicABsSW8Rg2t1iIjIzEwMCDyTJDehKfPJiaH7rnU7cK/46As0PYcNFG0CzeFYjhsOC0tDQ899BByc3MRGhoKvV4v6o4MDQ3BbrfjzjvvxCeffOLn9pDa+QZk+p4moEDhj/TspMno6JpoG66X4W4YKfj4oqtB2j8oKEikZCfGqLe395LalJs4Lvac+D1OTExEYmIiYmJiRH+8mP2lZjAY0NfXN+J5S/fh7N7tt9+O8PBweDwezJ8/H01NTWhqakJpaSmqqqoEm0AMoMlk8mOuaJzRarUwmUyi7AH1B3JX0nlcCPjgANxsNiM2NharVq3C/PnzceTIEXzve99DSEgIenp6sH//fixbtgx//OMf8dZbb6G8vNzv+nlCMSmD+EWMdCeUKoD6uMfjEQByNLAy2udxu3z2Hws+vvWtb+HTTz/Fvn37kJCQIL6PiYnB4OAguru7/diPtrY2xMTEiG2OHj3q1x5Fw9A2UiM/6IVYZGQkpkyZggcffBA/+tGPUF1dfTGXdsmmUCgQHByM3t5ev6q03O8LQEzklLAMOBehQmI3AgNGo1HU3CgrK0NeXh6mTZuGxsZGNDY2wuv1Ijg4GHa7XVDNBEAA+LEeNHASi8Gtv78faWlpyMnJgcPhQFxcnKCVn3/+eSgUCuzevRt79+7F4OAgHnnkEbz77rt47733RD4FaaQPDbg8RJWDEakqn2tA6B5J3Sb33HMPfvnLX4rV5/79+3Hw4EGo1Wrce++9OHjwIGpqanD//fcjNzcXFRUVsNls4hwv1G/NtR8chHCAQEW4IiMjERYWhlOnTo1ok98TqZhYLlz3chiBnpiYGJw4cQJbtmwReS/uuOOOf0tiJ+l9N5lMqKurw+nTp3H48OELYpRGM6mbhfd30lUBQHJyMjIzM3H48GEsWLAAkydPFmAiNTUVRUVFqKurE3oL3ibXugwODgo9zuDgoGBsdTqdKDlfW1sr3mWj0Qi73e5XLZiSCRKoJ6Py9D/72c8QFBSEKVOmIDs7G9dee63oIxaLBatXrwYAXH311VAoFPjZz34Gi8UiFgUEnkwmE4BzglQpkLtYZvK2225DWFgYoqKi8K1vfQuFhYXo6upCaWkpnnnmGQDj7pSvgv3HgQ+fz4fHHnsM//rXv7B3716kpqb6/T5z5kyo1Wrs2rULN910EwCIct55eXkAgLy8PPzyl79Ee3s7oqKiAAA7duyAxWLB5MmTv9D5JSUlYfr06Vi+fDkWLlyI73//+/jkk0+wadMmv+1UKhVSUlKwePFilJeXo7S0FBMnTkRpaSkcDsdFJQYi8/l8sNvtfmGxxHqQNsLlcgm2QK1W+9WjobwDtD9XvIeHhyM+Ph79/f0oLy9He3u7GLBohUW+ZarmyjUPfICh1RGnhuPi4hAbG4u4uDjceuutYnXo8/kQGhoKpVKJq6++GldccQWCgoIQExMDp9OJzMxMzJgxA3fddRe6uroAwC8EMdAgx1kaujc0MFMKcekkSS4ph8OBwcFB1NXVoa6uDu3t7di2bRs2btyIa665BsuXL4darcaTTz6JTz/9FAcOHMDp06fFPaFzGW3iH40+pxVvSkoKnn32WURERKC+vh7f/e53YbVaBdiUy5wpXYEGcsF8ESNAmpycDI1Gg8WLF+PkyZM4evQosrOzUV1d7dcH+LmNtel0OsydOxf33XcfzGYzamtrhRbsixhFlqjVahgMBsHY8QinxYsXY8GCBZg/fz60Wi3S09PF+8kZOXpfSXBKVX5JC0ILCp5LBDjn5ujv7xe1oACId5tqQtH50AKFPwOj0YjIyEhMmDABFosFM2fORHh4uGyYrcfjQU9PDwoKCpCfnw+fzycy3PI26dgRERHo6+u7JLYhKCgI4eHheOSRRzB37lxERUUJcT2da09PDxITE9Hc3Dwq23y5+vm4jW7/ceDj0UcfxYYNG/Dxxx/DbDYLxB8cHAy9Xo/g4GDce++9eOqppxAWFgaLxYLHHnsMeXl5mDdvHoBhpD558mSsW7cOzz//PFpbW/HMM8/g0UcfvWB2I5AtWLAACxcuxJw5cxAeHo5JkyahuLgYZrMZoaGhUKvVCAsLQ0REBFQqFaxWKzIzMzF//nwkJSWhtrbWT7y2d+9epKWlITIyEq2trWhubkZdXR26u7tljy8N5+QMAHBOWElhhnJ0Ky9c5/P5cN1112HatGlQqVQoLCzE2bNn/TKl0iBIgIHcOfSS8wRfNClyNoYARkZGBubMmYPU1FSxnc/nQ1dXlyioFxwcjOjoaHR1dSEhIQGRkZHIzMxETk4OiouL0dXVNWJFT8cLNOCQ24kDAa7RoL9VKhX6+/vR0tICjUaDnTt3oqqqCmfPnkV9fT3Onj2LadOmiQmEIqz45MKZDSm4kU7EUmAiZa/mzp2LOXPmwOFw4PTp0xfk45dzA0jdP5c6MEsBJoHS0NBQJCQkICMjA9nZ2bBareju7oZGo8HcuXPR2dkJm80Gu90esF9fLgsKCkJsbCwMBgNsNhtqamoua/s+38iQUrovqampyM7OxpQpUxASEgKdTufHSpF2Izo6Gl/72tdEn+ro6PDLv0PGkwICEIJUYjN4NBN/thzU0mfadvny5YiJiUFUVBTS09MRFRU1Ykw8ePAgGhoasHr1amzfvh179+5FaWlpwMynlDhQGkVHNlp/UygUgj01GAy4+uqr4fUOp1dvaGjA5MmTUVdXJ9xPPCPvuP177T8OfPzlL38BMLyK4Pbaa6/h7rvvBgC88MILUCqVuOmmmzAwMIAVK1bgz3/+s9g2KCgIn376KR5++GHk5eXBaDTirrvuwrPPPvuFz2/ZsmVYvnw54uPjAQyHviYkJGDSpElIS0uDxWJBZmYm0tPTUVpairfffhv33XcfnnzyyRFt+Xw+PP3001ixYgVycnJQWFiIrVu3Yu/evRgYGPCrFkvGJ1qVSiVYCP47MQNUY4ODBJ/PJwYbGkgee+wxTJo0CX19ffj4448FQKKQWpfLJQY+qh/DU58T+KDcBVIw4PMNV+vNzs7G0qVLhZvE6/Wiv78fZWVliI2NFe4kr9eLyspKREdHIyUlBW63G7NmzUJHRwesVusIl4V04KVjAuciZnQ6nRgcSQvBwRkwDK46Ojpw8uRJREVF4eOPP0Z1dTX6+vrEJNDX1ycm0ODgYD+dBR2Xu37kRK189cu1CFJ//KpVq2CxWHD69Gnk5+f7rXb59lL9DR+cpaHL3Ed/MSY9Lq36qQ+kpKQgODgYNpsNXV1daGpqgtlsxv3334/Tp0+jqqoKVVVVKCgouKBjXKqpVCqEh4ejo6MDBw8exM6dO79wm9Quzy4qNYVCgbCwMERGRiI8PFzosui5EFjQarVITk7G9773PXzwwQfwer3o6ekRwnG+kKDie8BwPyYtBN13HtGkVqtFdWD+/hHIJ1bvtttuQ2JiInw+H7Kzs8UxaVubzYb33nsP+/btQ3Z2Nl599VUUFxejo6Nj1D4zNDSEnp6ei17cKRTDKQN0Oh1iYmIwadIk7N27F7t378aZM2dw//33Y/v27cjKyoLZbIZer/fr03LA/XK7GcdN3v7jwMeFDEA6nQ4vvfQSXnrppYDbJCcnY8uWLZfz1AAAtbW1aG5uFuBj0qRJmDRpEp566il0d3eLCQkArrvuOvzgBz8I2JZCocCvf/1r8Xn58uXYuHEjlixZgilTpmDDhg0j9uEuF5psqN6D2+2Gw+GAyWSCx+MR4j+j0ejnmqEaFTqdDhEREbBYLFCpVGhvb8cf//hHMdB6POcK2BHIoXwHer0eXq8Xvb29fv5wEnOSy4MGCaPRCIPBICJuBgcHUVFRgcOHD+Pdd99FdXW10Cz4fD4/11ZOTg6am5tF9U+asDkI4+4fznSQEJOHKgLnXCzcPdPf349NmzZh8+bNI8AE/R0fH49JkyZBoVDAbDZj2rRpqK2tFVl4+YQj97w5OOHb8YEyPj4eeXl5WL16tUjPTTV65NqV6g74s+AgcDR26GLM5/Ph5ptvxlNPPYWBgQE0Nzeju7sbXq8XDz30EO677z5xHJfLhauuugputxtHjhzBzTfffFkF2pxB0mq1iImJwa233gqfz4dDhw6hubn5shyHXJR6vR6hoaGiXUrOp9frUVNTg7a2thETMOl3gOH70dvbi7CwMNx7771ISUnBli1bRrhtFYrhAncajUZEulitVhEiz1kGcsUA8BOEkp6LWCoC3XFxcUhISBD7aDQa0e4DDzyA2tpa2O12TJ06VRxDpVIJMfvlAInAORbJ5XLhoYcewg9/+ENUV1ejoKAAJ06cwPHjx7Fnzx709vYiKysLOTk5WLt2LWpqagKyLHRucqUIxu3y2n8c+PiqW01NDRobGzF79mwA5yYNpVIpgMf5Bvje3l643W6EhYWNWKU+88wzOHPmDPbu3Su7L3dxEOtAkz9R/TT5UpEoCmdVKIbzD9Dgr9PpkJ2dDYvFIqjTpKQkdHZ2CjEmTcy87gkAUV2Xko6RSa8nKCgILpdLAKOOjg7U1taiu7sb+/btw7Zt22C1Wv2ymioUCpSWlmJgYABWqxVTpkzBVVddha6uLrFK5NlUqW6HdFLnrhVpAi9ePI5fH9eIcABjNBrx0ksvYdKkSWIQLy0tRVFRkaD25bJfckEoN6kmhA+S8+bNw/e//32x0tXpdLBYLLL6jmeeeQZpaWlQKpU4fPgw1q9fLyICaIV4oXkSRjN+DfPnz8esWbNgMpnwm9/8Bi0tLSIE/uc//zni4+OhUCjQ2NiIP/zhD2htbYXL5RoTlwu/bxSCP2HCBNx3330oLCy8bMdRKpVCWNnR0eGntaL6LDyZHzf6PDAwgPb2dlRXV6O3txcrV67EmjVrkJWVhbi4OOj1ehHiunPnTlGd1ePxwGAwCFcoj3ahc+PsI30mpozfo5CQELEYIUEzMZo9PT0oKSmR1VRQlJfcZM4F2/zapdtK+3twcDB+9atfYeLEiUhJSYHH40FDQ4Mf+6pQKHDFFVcgLy8P6enpaG5uhlarFdle5Yzra8Zt7GwcfHzJZrfbZTMw0gq8sbERpaWlqK6uxvz583H27FloNBqEh4dj2rRp2L59O+rr66FUKrFmzRrEx8eLSUuhUCAhIQFOp3NEHhN+HE6v+3w+EfLG0T6f/PhqyOfzF5pSSevq6mocPHhQsCLEJPDVtFybBDykLhCewIsmIkqF39nZCafTiaqqKrS1tfkNkLQPrfroPgQHBwvR6tmzZ/384W63e4R/nNoikx6Du2ik18epXIPBALPZjLi4OEyfPh2RkZGiH/T09KChoQH19fXifpLJiUEDPU85nQaxOQrFcBbS8PBwv+3MZjOWLFmCuXPnIjQ0FJ2dnWhraxtBR9N1SK/3i5jFYhG6oYiICOzevRstLS1QqVR47bXXEB4eDoVCga6uLhw8eBA2m82vsvLF3IuLsQkTJmDevHl4//33UVJSIgTKcscgIK7RaOBwOISuKZBRtlJ6ppxdo+8oyVggUyqViI2Nhdvthslkgl6vF5ErN9xwA7RaLSoqKmAymWA2m/Hpp58GBDTSXDgcfHP2j2s0fL7hYnek1XG5XALg2u12fPDBB7BarSK/iNS4q4eeEwftF2NarRahoaFISkoSIuV3330X5eXlaGhoEGOsUjlcoVqr1SItLQ0pKSnYu3cvKioqYLVaAwI96d/jdvltHHx8yWaz2WC1WuF0OoX4yeVyob+/H2q1GtXV1Xj//ffx6aef4tvf/jb27dsHg8GAjIwM6PV6/P3vf0dZWRlCQkIwY8YMxMTEjBAmmkwmIaaVZlql1Q1wri4LaTPIbUG/c9EjBxODg4MwGo0IDg4WvumKigrs27cPdrtdtEOuHB5aywe9oKAgMShLJ3SudVAqlairq0N9fT127Ngh9pcCAvqfBreQkBDExsYCGB78KVqmurpalAan+xGIfQk0CXP3Db9nfD+LxSKSVc2ePRuhoaHQarVwOp1oa2tDU1OTcMPRvaFjSMW+55t0+Tn29fWhra1N+OQtFgvi4uJEGyqVCpGRkbjzzjsxYcIE2Gw2NDc349ChQwJY0vnwCT2Qm+dizOfziRTbjY2NyM3NxV//+lfYbDYAwCuvvCK2k94T/v3lpsRjY2Mxf/58XHXVVfje976Hrq4uIfB0u93i2XEmLyYmBiqVCuXl5X45M+RMq9UK7Y9GoxFsIt/HarXCarWit7dXuMro2VP9pfT0dCQnJ/sBzIiICCxbtkz0Q4r8+uSTT/w0W3T/vF6vn9uB3BdkdF7kGuWAyW63i+SBTqcTOp0OTqcTZ86cwWuvvRZwYUXHkSZbk+af4eckNb5gCg0NxYQJE8TC6cCBA/jv//5vEa3H+0l3dzccDgf0ej3y8vLwySefwGaziag0ObucYHvc5G0cfHzJtn//fqhUKqSlpWHNmjUAgJMnT2Lbtm2YOHEient70dPTg66uLhGTTvY///M/4u/c3FxMnTpV+Fq5xcbGYs6cOVi3bh3+9re/+Q00JCqjpFdut1toO6gtGkgJHJD2gsRyKpUKy5Ytwy233ILFixfD6/XCYDAgJiZmBH1sMBgE5Us1ZWhy5ZM2X3FTeC+fdEkHwkEJd41Q3g3ab2hoCNu3b0draytuuukmTJ8+XSRokgonCVTxNOu8WBwNmjxSgPIjAOcGa15MzuPx4PbbbxeTzfPPPw8AKCoqQmlpKWw2G5599llx7ym3CbmiBgcH/VwugVwvUvAFDOtqiGEBhvVL8+fPF9vFxMQgJycHEydORGpqKjo7O1FfX4/29nY/wDMaBR7oOzrGaL99/etfR3l5OX74wx/i+uuvFxMrpQqn/nchE9Llsg8//BBTp05Fa2urKM6WmpqKhIQEnD59Gs8++ywmT56MyMhIUWZAoVCgpKQE999/v8h/E8hsNpsA6v39/bBYLKIf0f8nT55ESEgIQkJCkJ6ejhkzZojQ7YSEBOHGlC426Dl5vV4sXrwY8+bNQ01NDaKjozEwMICBgQGo1WrxN4nKeQI+LsKkmixyFhkZCbPZjKCgIEREREChUOBf//oX/vGPf6CiomJEPhPA/7kRsyNlRgNtL3edPp8PV155Jb7//e8jOzsbR48exZkzZ/zapv+1Wi1+8YtfoKqqCu+//z7y8vIQEhKCadOmISIiAvn5+QGf2biNrY2Djy/ZyDWyZMkSAMNggASCjz/+OOx2+4g0xHLW0tKCZ599FrfeeitSU1P93CxUz+aqq67Cq6++6veCk1+4v79fZDwkMRsdMyQkBD7fcOr1vr4+MfGSOM7r9eLo0aMYHBzE6tWr0dLSgsrKShQVFfkJTYOCggTgAPxTTPPIEUpmRPeHCmEBGAFA6DwAf18xaUzoGCqVCrGxsUhLS0NPTw+Cg4Mxbdo09PX1YfPmzX5ghwAH13fwlRkZrQ4pZJhWmZwFAYZdSYmJifjGN77h5xb73ve+J9r56KOPhE+dwAuvtUHXRSZ1B9FkwXUodP5dXV0oKytDTk4OgOFKzxs2bBAJ5tra2lBbW4v09HSoVCo4HA7BPFD7cpP/ha4GA00e1Obp06cxY8YMrF69GmFhYVi6dCmamppQVlaGv/3tb8KVRkxLIOAlPbcvYq+99hquvfZaTJ06FTNmzMD8+fMxYcIEAajDw8MxNDSE06dP46WXXsKZM2fw+OOP48orr8Rjjz2GRx55ZNT06yaTSdRpASAYRCn7UVZWhldeeQX9/f3Q6XQim/Dtt98u8tYkJCSgsLAQ3d3dKC8vh0ajwV//+lfRb3Q6HSZMmIA//vGPeP7557F79+4RK3y5RG4mk0loIciNRLoO2t9utwuhqUKhwMmTJ1FQUIDS0lL09vYKJsLr9YrcI3JG/V3uezlAzU2hUCA/Px+/+MUv8Pbbb+NPf/oTSkpKEBYWhu7ubiQkJGDp0qWYN28empqasGzZMlxzzTXweoeLxJWVleH06dPo6OgYAbLH7cuzcfDxJRtpLEh85na70dXVhZqaGtTV1Z2XviXr7e3Ftm3bEBsbC51O5wc+SOuQmJg44sWiJGE0wUpj/UnZzs+V6y+83uHMlLNmzcKiRYvQ39+PyspK1NfXw2az+dWXUCqVIs05XRMdn1gUWvlJJ7ZA0R78NykFz/3IxIp0dXVhx44duOGGG+B0OuFyuZCYmIiGhgZZV4nUzcB1KnwbOTcAWVBQkAibjI6OFu00NjaKGiF84KPzPZ/GRPqblGGgv+vq6rBnzx7ccsstAIYnkMjISOTk5KCnpwfJycmYO3euWN3Ss+Ah0DyPC2dDpM/iUmznzp0COJWUlCA1NRWpqamIi4uDVqvFyy+/jO7ubsHKjQXjER4eLsIu29rakJOTA5PJhObmZsycORNJSUnQ6/Xo7OzEzp07cd9994mJuLCwEEuWLIHZbEZLSwtOnjx53sUC3WMCyDzajFtfXx/q6+vR09MjQK5CocBHH30EtVqN4uJimEwm1NTUwOl0orOzExaLBVu2bMGKFSvEQkKtVqOgoABdXV0CxJHOhoN/MmIhuAtUmt8GGO5bkyZNQlJSEoDhKDRy9el0OsTFxcFisUChUKCpqQkJCQlwu93o6+tDR0eHaIfYykBuj9HM5/MhLS0NK1euhEKhwPLlyzF16lQMDg6is7MTSUlJyMnJQUZGBrq7uxEeHi4EtKWlpWhqahKu7/MdZyzZtv/rNg4+/g02NDQkVjY+nw+tra0oLCw8r2iNW39/vyjYNGfOHL/fyKUil6ZcOnkS4KBJkFY9nOngk6BarcakSZNw3XXX4ZprrkFTUxMKCgpQU1ODvr4+P/BBuQUIfJCfmq/2gXNCNH5OgVY/RKUCEJNjSkoKnE4n+vr6RJ4PGmA7Ojqwc+dOrF69WmSGnTNnDoaGhtDZ2SnEcXR+XFBIgw+f7Mmk+TWkOhGDwTBC2OtwOFBVVYXOzk6xn1TbQn/LHZObFBDw8+7r60NTU5PYNjY2FvPmzYNWq4XD4cDMmTNxxRVXiP0NBgNiY2Mxffp0DA4OCsarpaUF4eHhaG9vv6xVmvPz8zE4OIienh6Ul5djxYoVyMjIQGJiIh544AGcOHECNTU16OrqgtPplE1MJXc/LhQQKZVKpKenw2g0ikiqRYsWQaVSobS0FBEREdDr9bDZbCgvL8cLL7yAtWvXIjExEQaDARqNBqtWrYJarcbRo0fx2WefnXcSpX5G71UgcD04OChKEdA7NDQ0hPz8fISGhgqRN40VlEL9vffew6JFi/zqMVFacWLJOCvBReTU73n0i7SQo1KphE6nQ39/v58otq+vT2RYDQ0Nxbx585CQkACVSoVjx44hNTUV/f39aGtrw4kTJ4Rrj0CYXN4TuecoBd/x8fGYN28eGhoasHLlSsHUWq1WGI1GoXmj8Pyenh7U19dj7969aGlpgdPpHFXQLQe4x+3y2jj4+DeY1WoV1HNwcDBcLhcqKysvuh2FQoHVq1cjLS1tRPs1NTXYt2/fiBUZsRPSCrVcZ8DdMDSZq1QqGI1G5OTk4O6770ZOTg76+vqwZcsWvPbaa+jo6BBhfRqNRgwWtHI1m83w+YazkVKxJzqW1G3Br086EKnVauTm5kKv1+Ps2bPo7e3FO++8g6KiIuzduxcHDhwQ0SwGgwFGoxG9vb0YGBhARkYGUlJScMcdd+D999/He++9h5KSEtlEXtyVQfeJviewRJ+lKySfbzgiqLm5GcHBwQgNDcXQ0JAotscV/3xipRBccudwtiWQ24UzMArFcPjj6tWr8fTTT4vt09LSkJqaiuuuu27EPVUoFFi4cCEWLlwoGCm73Y6ysjL8+c9/xrPPPov/9//+Hz766KPLMhAT2D18+DCOHj0KlUqFpqYmdHV1wWKx4MiRI/jLX/6C7du3Y9OmTbBarbDZbJcltwfdN71ej2uvvVYA05kzZ0Kn04nS9a+//jqef/55NDQ0oKCgAHa7HaWlpdDr9UhKSsJLL72EvXv3YvPmzTh58qQsgyE1ej7EKskZuTRdLhfCwsJEaCxF1HDXGF1PYmIiIiIisHnzZvzud7/zm9h/8Ytf4Cc/+YmIepFzC5GolfJ48DB8YiaCgoKEwP2ee+4RGYYB4Otf/zrUajWuvvpqRERE4Kc//SnCw8NHHKe1tRUffPABfvCDH4iJ3+l0irw/52OOpP2fRPlTp07FAw88gEmTJiEqKgoRERF45513MH36dEyZMgV/+ctf8MQTT2Dr1q345z//ic8//9yP9RnNtTMOPMbWxsHHv8GOHj2KH//4x9i0aRMUCgVmzpyJRx99FPv377/otnQ63QiG44MPPsDGjRtRUFAwInSPNB/c7cKFjbx6LAETmmiDg4PxX//1X5gzZ44YrG+66Sa8++67QkPS29srBhTuvuFuBb7yI3aEC0B5lAWvqUJJzSZPnozbbrtNuJqioqKwePFi5OXliUiS3/72t5g+fToWLFiAlJQUhIaGimNotVrceuutyM3Nxd69e/HCCy8IlgeAX6lyAgicGeFCVynzAAyvco8fP46dO3fC6/Vi2rRpMJlMiIiIgNVqFcwSB1283orcwCdlWrjriSab6OhoBAcHIzU1VdDiZHa7Ha+++iruvvtuhIaGjuhHdrsdBw4cgMPhQEZGBiZNmoQXX3wRzz77LBobGxEdHS1KFVyqcaBE10DJ4oDhVXxJSYmIDsrOzsY111yDhx9+WOiYvohRH3rmmWdgtVrR0dEhSjBs27YNJSUlOHLkCF588UXs27cPhw4dwrFjx6BSqfCrX/0Kc+fORXh4ON566y387W9/Q2lpKYqLiy+ozpJarRYgn94LvV4vgKrFYkFUVJRwT1Al5L6+vhGVfjlTN3v2bCz+/+s/Ufv0vkZFRQkNFHAuuszn8wlgQwwLGWcmSa/l8XgQHByM3/72tyJ6DBhmcM1mM9RqNZKSkvD0008jODgYwHAen127diEsLAwxMTEICwvDXXfdhcTERNjtdpSXl+P1119He3u7WIjw6J4LeZYDAwOCmVIoFILFstvtuOOOOxAbG4vHH38cZrMZCxcuhFKpxO7du8/btvQ+j9vY2Dj4+DdYQkICli1bJj6Hh4djypQpmDp1Kjo6OmC320cVrwHD4rA5c+YgKSkJBoMBwPAL2dDQgAkTJmDmzJmyqaG5H1+6cqYQPB4ay0WdJCKjVMy1tbV444030N3dLSpV0uqdFPUDAwN+OQ7IJUOD3NDQkMgVICc2o8meVoAWiwUrVqxAVFQU2tvbUVZWhqqqKqSlpWHq1KnIyMhAcHAw7rrrLkRHRyMxMREhISF+gzIxMA0NDWhpaREDrJx4VI59kWY8lbqLfL7hHAhbtmzB6dOnkZOTgx/96Ed48skn8eGHH2L//v1iQqGBn+6H1N0ip0Mh47lJvF4v+vr6kJOTg7i4ODERca2ORqOBzWYTExclqqO05Rs3boTL5UJ4eLgIoz5w4IDwj4/VYEwRGJ2dnXjxxRfx0EMPIT09HRqNBjU1NZeF9SAbHBzErl27RK0YEne///77aGtrQ2trK9555x2sWLECLS0tKC4uFnqdxMREwf69++67OHXq1AUXeCSATcwLAOFqpAyhFClGLjpK8Ce95+TWy87OxvTp0zF9+nRkZWUJ0N/U1ITNmzcjOztbJPwDhsEOZ14oqoxE4pzBkeqqfD6f3yLHbrfjH//4hxAHFxYWIj8/H5MmTUJhYSGOHDmCsrIyGAwGrF27FosXL0Z0dDTmzJmDDRs2oKCgYITr40IT2vGFicPhQF1dnV80ntvtxpkzZ3D69GlMnDgRQ0NDqK6uxvHjxy+4/46LUMfexsHHv8Hi4uKwYMECDAwMQKvVwmAwID4+HldffTVOnjwphImU/0P6woSFhSE9PR0rV65EbGysGMyA4SgYo9Hot0LhJqV8eWIxvqInDQifUD0ej6DAu7u7cerUKfz973+H2WwWWRppNaXRaKBSqUSNF558jChd0mXI6RbIaPvY2FjExMQgPT0dYWFhaG1txbFjx7Bjxw4cOXIECxcuFKLJ2NhYrFixwm+FTdfpcrlEQa4jR46gtLQUwLnw2EC1UqSfOVMTSPhZUFCAs2fPitwHt912GxoaGnDixAn09vaKa6PrvBjqWWpe73CqenLxnDp1CgMDA4iIiBD6FofDgcLCQhgMBsHyXHnllbBarSgrK8OWLVv8QozpOV2IW+FiTG5gpz713nvvYebMmTCbzbBYLGhvb5e9x5dqbrfbL1cMWXt7O4BhkHDixAk89NBDaGtrE0npQkNDodPpoNFoMHHiRLz22mvnXSBw46Gs5HaUrvh5Ai/KQSEHPDQaDZKSkpCbmytciSaTCSqVCvX19SgoKMArr7yCVatWoaWlRbShUqlEFVz6zN+P891fXmnY4XDgo48+QldXF1wuF5xOJ95//31ceeWV2LJlC3bs2CEEnfHx8cjMzERSUhLi4uLQ2dmJyspK8Ts9Wwq15tdKx5MzGj8orxBvq7GxEcXFxbjxxhvR0NCAQ4cOYd++fRfch8YZj7G3cfDxb7Du7m6UlZVBr9cjLS1NVNt9/vnn8cYbb6CqqgotLS0oLS1FSUmJ0GLQQLF27VrccsstSE1NHVEHor+/H3/84x8viF6kSZWEaBSiCkCEfA4ODorBEQBOnTqFJUuWoLGxEYWFhdDr9ejv7xdMBwnhuGaBSnPzwYQEelz5r1QqxQqQsyBKpRI333wzVqxYgfT0dKxZswYJCQlobm5GVVWVSH60d+9e1NfX43vf+55gb4aGhkRoMZ3/Y489huzsbFRVVaG1tdVvUJUbiKkd7nbhk3Ig8aBSqcSNN96IRx55RFwzD7ckdwn95vOdiy6SgkS5gVg6QHq9XrS3t+Ptt9/GL37xC7S0tODee++F1WrF8ePH0dLSImp1aDQaTJ06FRs3bkReXh60Wi2ee+65EdchV9peek7ns/NNIvQbgbnnnnsOQUFBWLduHe6++258+umnInnUhR7vUiePiIgIvP766+ju7obJZMKMGTNw4MABUdjx7Nmz2LVr10WJw4FhpkCj0SAoKEgUfTSZTPD5fKKMPJ2zWq32a59fj0qlQlRUFG677Tbh9iAw6fP5sGvXLrz33ns4e/Ys/vGPfwgXn9c7XICO35fu7u4Rz1Cj0Yj+yI+rVquRkZEhShEAQGJiIoqLi0Vbb731Ft566y0RZk/2+eefQ6fTYe7cuQCGi3729vaKhHIEhKXPd7RnKD1vvq1Go8HZs2dx4MABAMDf//537Nq1C2VlZQHbk9o4+Bh7Gwcf/wY7cuQIamtrsWHDBvT19YlqlQBwyy23CPqQKFFulZWViIyMRGxsLEwm04h6IDt27EBFRcWo0QkkKJXm4NDr9QJw0D+DwYC4uDgEBQUhKioKjz/+OGpqalBVVYXu7m4BPChixmg0wul0CiBjNBpFCnZ+rkTzAhBVdGmwkxZtA4YFa6Wlpejp6YHZbMZjjz2Gzz//HC0tLZg1axaWLFmCadOmITMzU/jUBwcHUVVVhR/84Aeorq7G9773PcyZMwcLFy7E1q1b4XK5/IADAQYCQgRCaFLkGhBp1BCnq0lLY7FY0NnZiaKiIuTk5KCsrEzUpaFVG2daSEdDDBLXyZCrhM6X3FtSowGXzv3NN98Ux+KiWY1Gg6ysLKjVamzevBkffPCBLPPE74tUu3O5B2hqd/78+UhOToZer0dycrLfuV+IfZHz6unpwe9+9ztceeWVCA0NxbJly5CRkYGqqirhiqqsrLyo8wEggIbH4xFJvyh/Bi+IyPsauQrJRUYFHw0GA+666y6hFaF9SZNjNptFRAy9TxaLxQ/AEcjn/Z9YS7p/VNtp5cqVePTRR8UYVVBQgE8//RS7d+8eUTmbNCZ0HLPZjPDwcKEzogKB+fn5MBgM6OnpuaRw20BG7+ddd92Fxx9/HMCwloinFLgQG6s+Pm7nbBx8/BvM7Xajvb0dv/nNb5CZmYkFCxZg6dKl0Gg0IvpDzny+YbGkWq2WFZoqFAqsXLkSBQUFOH36dMDjS1fPvMgVAR/ahlZOc+fOxVVXXQWlUon8/HwcPHgQRUVF0Gq1fgJNXqSKJiqTySQmEB6pwd0WXPQqpajvuecezJw5EwkJCbBYLHjkkUeQmZkJg8GAxMRExMbGIiEhAWq1Gu3t7XA6nSguLkZubi60Wi1sNhtyc3MxMDCA0tJStLe3+w2yfFKX+rw55S/VYdB2Op0Oq1atwu7du5GTk4M5c+bgH//4B+6++27MmTMHU6ZMATCcybalpUW0TddM1y8NO+T9QKoHkbp86Lx5lkeFQiESmfH2fL7h6KNrr71W5LrgwJBfm7TPSF1iF2Kj0ea8LaPRiPnz52PdunWYMmUK3G43mpubL3qi/yLmcrmwZ88erF69GomJidDpdEhMTERmZiZOnjx5UToPbuSC5KweTf70Wa1WC7BBGieq2kqRJwTIlUolIiIi/FiGtrY2nDx5EkVFRdDpdH5lDih5GN1zuRBXqXuN3mGTyYSEhAQA5565x+OB3W4X7zi9s1LW0OPxIDc3F4sWLQIAVFRUoKqqCs3NzSLChpIYAheWZExqUqZr3rx5yM3NRUhICCoqKnD06FG0tLRc+MPC5a9nNG4jbRx8/JtscHAQn3zyCRITE+FyuRAfHw+HwyFyCajVaoSFhYnt6aUMCQmRfSEGBwfR0dEhC0q4nY++pwGLC03T09ORl5eHhQsXor29HUePHkVhYSHq6+vF5MVzA/B6MMDwiooGXf6dnJCSDz70f2pqqkgC5Xa7sWDBAni9XkRHR4tqrdHR0ejs7BT1UrZs2QK73Y6kpCQMDAwgMjISjY2NqKysRENDw4iJT3p8OV+7nAZEq9UiKioKa9euxdDQEObPn48VK1agsrISN910EzIzM4Xgta6uTgg+OZtAbRLLJQUd0mfGQUigc5T7PRAICA0NRUxMjOw18/0u10Asdx4hISFISUnBypUrsWjRIphMJlit1hGhkWNtQ0NDOHPmDOrq6pCQkICIiAh4PB709vaivb0dVVVVl9QuAXtpQj+pu4C/QxSyTiHQxESaTCYhXKX6Ll6vF1VVVTh9+jRqa2tFnhnqYzzyjM6HmxzA5pEyvG9ZLBYkJycjJSVF5PZRKIZrqPT29kKj0cBkMok+RaUgfL7h7LaNjY2iqjUHW3T/+TmRnc9lx/8PDw+H2WwGMKyBq6qqGhGmfCE2znqMrY2Dj3+zNTQ0YM+ePejp6cEHH3yAb33rW0hPT0dMTAyuvfZaP5qbBKqA/wSkUCjQ0dGBf/7zn3j99dfR0NAQ8Hi8Rgkw/ILb7XZR74WnRlcohvNGPP3000hJSUFPTw+OHTuGI0eOiAyhHo/Hj60hbQSvqmq1WsUAw2tbqFQqQdsSOKEVFJ1jd3c3nnnmGaxfvx4mkwnl5eWIjo6G3W5HU1MT6uvrYbVa8c1vfhMqlQo2mw2bNm1CSUkJDh8+LFZzH3744QhQxV0Y0pU/dzPwapzAOfChUCgQHx+P+fPnY+XKlbjlllvEb9yNQbkbSO/BB3lpyDMPvaVj8POSAhBuci4gabIosqamJtx66604e/YsUlJSMG3aNPEb9TmiqgOBEOmgf7HghG8/a9YsXH/99bjuuutE4qyGhgY8+eSTsqnAx9qeeOIJPP3003jyySfR1dWFBx54AHV1dRet9SCTukH1er1IekdGbAVFQnV3d0Ov14ttFQoFoqKikJmZidjYWL/7PzAwgH/96184e/as0JXw5IEGg0G4fACM0GeRu5WDgZiYGDQ0NMDhcKCtrQ1paWlQqVTIyspCYmIiQkNDUVxcLCJMjh07hqNHjyImJgYzZszAgw8+iIaGBsyZMwcGgwFDQ0M4duyYn86KAzIC8xcKmqXb0HZbt27FzJkzsXz5cuFyGbevno2Dj6+AlZeXo6qqCoODg3C5XMjPz0dzczMiIiLw4IMP4tprr8Wdd96J6upqLF26FHv27MHOnTvR1NSElStXIjs7G11dXfjrX/+Kurq6UTNCkhaDXDx9fX0iARjVevH5fEhNTcXixYvx05/+FBaLBZs3b8arr76KgwcPoqenB0FBQUJsyicfyoIIDPuVjUYjFAqFACrkhlEoFH4UNFe8c70D5TpYt26dX2giH3idTic+//xzARj6+/v9RJ3cpcKjezjjwcWfnDrmLiEeggwM12qZPn064uPjRcZano4egKhe29raivfeew+tra0CkJA/ngtMudaFJg+pSelgAi20SqXJg1xd9FnaL4gh279/P/75z3/6tU/nAkB2VSo9n4s1ukaLxYKwsDAsWrQIa9asQXBwMBQKBSorK3H06FFotVrZiK/LZVLKntvvf/97vPzyy/D5fOjt7f3CIb8ctFE+HK/XK96Xvr4+qNVqBAcHi7GAEnCFhobCbrejs7MTtbW1AnAQgD98+DB2794tmDX+rHjJBDIOogg8ABCi76CgIBHm3NXVhcrKSsF86nQ6mEwmLF26FCtXrhQ5QWw2GzweDywWCzQaDTo6OpCXl4fu7m4UFBSgsLAQGzZsQFdXlzg2vbOX8/lGRkbCZDKJOi6UKHHcvlo2Dj6+AkYTMwDs2LEDLpcLDocDzz77LGpqarBx40aUlpbCbrdj3759aG5uxpkzZ9DY2Ij6+nqEhoZiYGAALS0t501FTS4dGvQoFwePVvF4PCIcODQ0FAqFAllZWbjmmmvEJE8DDnAuBwB3rxCFTMmMaODl+SzkJnRpnD9tR2F5NDhy8EACN/rMV+tyxrUlwDkKWi7KRc49Rft3dHRAoVCInBQEJFwuFw4ePIgpU6YgPz8fW7duRX19PTo7O/0YDa6tkIIhuWuQG6A5u8K3l+o15FgSHtnARX/8XLh253KZQjFcuTgyMhJXX301Zs+ejalTp8JgMKCjowO1tbXYvXs39u7dOyIJlpzb8IvYaO24XK5LZjqkJgWLlMGUu5ToeVD+Cwo7JRfLt7/9bURHR4uKxRQl0tnZifXr18Nut/vl2JETchKQ5OwinR+BFh4SHxQUBKvVipKSEnR1dcFgMECr1UKpVMJsNov3mXKS7Nu3DyEhIdBqtTh69Cja2trQ2dkJm82Gzs5OWK1WP3aUh9pL7WKeMe/jTzzxBJYsWYLBwUGUlpYKYfml9ONx18vY2Tj4+IpZeXm5+Hv79u3iO/qeVj39/f3o6Ojwq+FxIcYrpnq9w9lFnU6nyDdAfuLBwUFYrVYRG89ZET4p0cqFXBc0adK/oaEhIWil40vFnPQ311LwSVWaypyLVckCaVi4SfeR7j9aPgupzoLuAaVxJ/DV0NCA06dPo6CgAB0dHdi3bx927drlJ3ij6+YDJr9n0usezfi9krsfgSZrKn7X0NAgCm1JWQDpeY7GElysxcfHY/bs2Vi6dCny8vIADLNEjY2N2LdvH/bu3YuTJ09eUF2X/w3Goy24KJt/B0CEvAPwE6AODQ1h6tSpmDp1KiIjIwVwr6qqwoEDB7Bv3z7h0qNQcG7SBHpyTAAxaNwlqVAoYLPZUFlZib6+PlgsFgAQdW9yc3PFNgcPHsT27dthMpmg1Wpx/PhxlJeXo6enRyxwpJFil3ty9/l8iIyMhNlshsfjQVdXl5+49mLB6zj4GDsbBx//y6yuru4L7c+peMp4SCsXTrMfPnwYR44cESF5Op0OWq1WJMeigYyzELTiopedBkEp20EDENeGkK+XMyrc+KApxx7IZSXlE7B0cqa2pBO2HMiQ0zQQGxQWFob29nbExsbC7XbjnXfewXPPPYcFCxbghRdeEIyNlNngbIWUAeKak0CaD37O0nOja6CJi98zMq1Wi8mTJ+Ojjz7C4cOHUVhYOKIdAlecmZHapUwgPp8PCxcuxHe/+11otVoYjUacOHECR48eRVdXF1599VU/jcTlZF3OZ3LXczkmSQIb9NxbW1sFuCCATvk+yFwulyhk197ejs2bN8NkMolaTm63G3/961/x4osvCq0WgXPO2NDCIigoSDCbUjec1+sV+ggqfAkMu2wokzBF6/T19aGkpAT3338/PvnkE6jVahw5cgSPPPKICO8lkxbRo3vJ2d5LuddyQJnsN7/5DVwuF1auXCn0Qxf7/L7MPvd/1RS+cWg3Jma320Wdg69SRybKlCYkGoAISJCPnYf60YqKaFm9Xi8GUtqeJlISyFH1S4/HI7anvAaUDp4+m81mv9UQARfqmjwHCAcMUtcF318a7ksTKV9hSsEA/8zzF8ixCArFsL6FQBkJaammDR2TAwEe+kjXRdtIV6RSFokGbOl9kbInZKO5oGh7Lj7mq11+LtJrloIQo9F4wX2PG4Ukm81mxMTEoKSkBEePHkV9ff2oVLz0GrjR+VFG2a+yabVavwgwOSaCFgeU92X27Nm45557cNttt0Gv12PJkiWorKxEb2+vX7ZVpfJccciBgQHxPrjdbhgMBigUCgFCCPTTe077SxPdUZ6fmTNnIiMjA2azGc8//7xg56hfyrmpyNVLyQal+UV4f6PaM+ezQCBRoVDg0KFDmDhxInp7e/HGG2/gN7/5jV9ZAeD8jAZ3f1IFZmJ9xu3y2Djz8X/MKLEVra45rU4AgUL8OBMADL+QarXaj7ngf9MgRhSrTqcTAjSalLmgUqFQiHTSHFxIjyn3vTRMVTqp8wRh0t9pP85yyP0uNalrhyJYiLWQniPfh4MjqctF7pjSvCPc6H5L/fXSe8aBghxzwUW5ZPy+Sgd4ucH+Uq2trQ2FhYXivnR3d6Orq+uislzKnctXCehzM5vNQghNEzB/NjThU1+laBWVSgW1Wg2n04mamhps27ZNhLMGBwfDYrGI6JiIiAihUxkYGPB7j+lZU8RcREQE2traRgBi4Nx7ToCUzqGjowNHjx5FRUUFtFqtyEFCJtVrkVFKd2Jc6P2npGbEfkpFsYFsNCYjKChICJW1Wi22b98Oh8Mhm7OG/y1lDsdt7G0cfPwfM1pxARCZROWEWHwi5RMZuWH4wCktxU0rNXKrSH3dtJ2cH1ZK8XOgQCZdgfMVDZl0gOIT6flcFxeqjJcCDrlJX46NkPte+rfcACh33lL3kHQQ5WBC7hijTdZy91nunC/Fent70dDQgIGBAb8qy1/ELod7ZKxM2j9JI0RuRp4bh1hI6i/0DLu7u3Hy5El0dXWJ0Fj+bikUCgEUCOhL+zx9x4EJ/50sEFjt6OhAV1eXLPgPlHyNu1jk+imZNPfPpZjX68Xu3btht9thsVhQWlrqJ+o9H/AYty/Pxt0uY2T/brdLoAkjMTERHR0d8Hg8IhU6Zy90Oh2cTqdgKCizIg0YlC6dsxfEgHDalgCNwWCA3W4XmVkBjMi2SEm45ASfgVa0fLVIK0QCA3QOUiDA74d0MqBVmc/nn3mSjn0hq35+LHLzjPZMAk3scu0B/qGuX8ZrG2iSkHO7XMz5cDZK+v3FtkXG6XSpduKrYBygKxQKREREwOfzibpDVPSNwDyF29J7xaNTSEtFWhEC+IODgzAajYIpCcQkEGvS0dEhBOhywl65fk+1XSgknlw3KpXqogrtSU2lUvkV3AtkgQAwX2yQWJtXnx5tLJDrh/w9Hne7jI2Ng48xMgIflE9Dr9cLapGH8AUFBQmtBQ+BJc0BCaboheI6BpPJJAYCemEdDgdCQkIQHByMkJAQkXSI0iFbLBYx+QPnmAu+igeGlfY0iEm1BVJKlgY/aQ4NAH7b0QQh9embTCbxdyA3g9RGo0ulq33yqY8GAqXul76+PlmGYLQBi7chx6ZI9+HbccAmPSbZl5lm/HxGq2yqR8P7Jb926edAbNTF2PmAYCDBMj0jg8HgV9eHu7DOZ+dzzf1vMmlac7JAjGIgRlKuj4/2nkiNJ+3jfVyuv1wOOx/jIX2Px8HH2Ni422WMjZI/EfCgCZqKqdHkr1Qq/cSKOp1O+G6JSqXBgiqT0oqI+1M1Gg3cbjdsNpsQWRHQoYJTXA8BjIzyoCyqVP1Uqg3g23NBIw/Fpba524Ufj4vMpFQo/52fJ9+GDw5Sl4d0kOQCVClAkQ5EgSZK3q5cYiR6jnRN/Hs6Htd9SK9Beh84YPoquhN8Pp9fH6Tzk2ZE5VS6NGurFJDJuQGoL4zGQsmBPqnxZ0IiTH7cCzE6xqWGbX7VTK6P8+vjYfF8G7l3DDgnkqbfeHp2+j3QOxfIBRQI8PD95baVmtwx5baXPssLBaXjdvEmrxAat8tmNLFQIiyKHKGEQryzU0VTTtlzTQG5FziDQECEtBtULbO/v1+4T3iUhFy5em7SnBp8VUIgie8vF5nC2yDXCN0HHnUSiDaVm4zJpKurQOBEDjjIPRspAJP7nTMigQa3y7Eq+9/me5Y+p0BsEP870HPg/0u/5zYak0IWSPhIJmWQqA0qVPi1r30NKSkpFxzJ87/tuZGdjwmUe2aBniH9FqhdOUZM7nhy7QX6fL5zH+13uW0v9Xjjdmk2Dj7G2AhMkNuEJnHy8RI44KIsGtSBc6uFgYEBvxBC8vFSG7Qfd4HwyBSv14u+vr4RQIGU5mSk8eA6D37OfHVDRudL7AtnADhY4Oclt+KVsgR81cuZEO4mkq5g5dwwnJGR02FIs6zytuRW8dLIFQJc0uuVnpM0iZoUuEmPNxrY+SqZdBXJz1taJZmblK2StglgBO1PxsOmpfdJ2qdHM77Sj4iIwIIFC/DOO+9g6dKliI2NHXGucqzWf0rtEOnzk5YZkIrE5cYAWqAoFOfy+fB8M7z9QH3ifKCIn+to5z9au3KLCbmxY9zGzsbdLmNsnEGg8DcAfkCCQIRer/djMvR6vShpzycuSuYVFBQEu93uxy709PSIl4rydfBBMzQ0FH19fcKVQkp7evFIa0Jgg2qVUBvkT+cUNLk1OOig3wcHB/0ABGlguKuIhHPEzJAw1ec7R9VzAWyg/BP8vKQTFZ0XfU/HoUFWjoWR0rLSbJR8xSQ32I1mUtcLPy4dg3/+qoIQfv95lVYCZNRfpM/gfG4SPpHQccj4vSEwzIEhdxNKAUIg1gMYzqsRGhoKALjllltgt9tRXV09Yjtqj67lPyULKxm/VnK9EJCQCrsD9WHed6XvjTSfzGjH58e4lGuQAxS8X8hFg0n3G7exsXHwMcbGY9h5Xg16Iel3uReA6pXwFQfVfaABl8rM0wqTAAyftKnqLOWlINcHuWikflr6TNtRewQg+CROmpCrr74a06dPR2lpKU6cOAG73S6Es3y1ODQ0JKIR6B9VvKT7wcGLVCdAg710hQWMBAX0N4X+UjuBBhxufDvpQEb3hT833h5nOvh5ywny5NgeOob0ur/KRudH4JBny+VATu6eBYpGoG345Mb7Bn3m//N25c4vkLjUbDZj9uzZuOmmmwAAhw8fRm1tbcDr/SqJf7+ocWaSL2QAjOj//Lp5n6b9OJtH44V0oRCIzZKej/R3KcAZDSCMxoxwk2M8x+3LsXHwMcbGS8sHSidMLyjPnwGMfMn4gCCNLiAXCrVJ7g+iQgGILJu0Hx8k5Gh+mkT4gEJuGeDcZB8UFITo6Gjk5uYiKSkJTqcTlZWVQugqnSz4xMoFifw+cVeIdLAKpMDnxtuTywEyWviddLCUe2Zyg2ZMTAxSU1ORmpoqMkdyhujs2bPo7u6GzWYbMbF9WYOgQqEQlWTj4uLQ3d2NlpYWWK3WS24zEJMRCEjQ36O1x/fnE+D59gXkWSM+8cmBD4vFguTkZEyePBkARJKv/wsmxxLQPePuXzl9T25uLhITExEZGSmS+7W1taG3txeRkZHYsmWLYD8v5Dyk/SjQe3CxwGO092sccPx7bBx8jLFxtwWt+Ilh4OmVuYuCXj5ySRCF7Xa7BcCgKBdiAcidYbfbhXuC3BvAudh3iv33+Xyy2SR5VUvahgAIXY80nwclLDKbzVi8eDHKy8vR2tqK5uZmAP7JgzglTudNbXHjEwTXmRAA4owNZ4/kVtW8qBdfkUlX5+c7Pl/lcVeNQjEc9jxz5kzccMMNWLt2raiTwcXBW7duRWVlJU6dOoW2tja/7JC06iSTXs/lGiA1Gg1SU1Mxc+ZMLF68GCdPnsSuXbu+EPig8yMdE8/WSRl1AXkQMVoky4UAFOk5AP4TJX/W1BfkQEVsbCwSEhIQFRUFr9cLk8kkUpT/p5scK8T7H8+nIwXma9aswZo1azBnzhyx/bFjx1BXV4dZs2ahqKgIzc3NflEvF3o+/Dj8+/MBkkC/f9XZw/9rNg4+xthopU8JeAYHB6HVamE2m2Gz2fxqMHDKk146jUYj8oCYTCY0NjZCpVKJkFoaMChvAQ0SXMAayMc62iqUXEO0+qG8H319fSLihtxJVMvFZrOhv78fmzZtQn19PQYHB/3AFwCRSIgmCKfTCb1eLz7LuUikuhQ57YV0xU3HlOYNkPP3chcTH8DoN+lkJQ0dDg4Oxm9/+1tkZmYiJiYGLpcLu3btQmZmJmJjY6HRaLBjxw6sXLkSy5YtQ2NjIzIzM/E///M/QvtDYIz6i7T2zOWyKVOmYN26dbjlllsQFRWFuro6AWgv1HifJSP3Fk3wBFy1Wq1wH/J6NbQPf0acBaTf6Xv+HX9uUiYMgJjogoKCRNI8wD/TptSeeuopLFiwAB6PB+3t7Vi/fr3Qe5zPOPsI/O8Jz+T3l/ocv//8eujZ8vcFALq6usTYRvvNmTMHc+bMAQBs2rQJzz77LD788EO/4/L7Jcfs8nf1fGwZL6jHXUC0P1+ojNtXx8bBxxibNKcAFVWjegz9/f3iRSEBJL0wbrcbJpMJJpMJkZGRuOKKK0Q10oiICOzfvx+ZmZkIDQ1FXV0dfvCDH4iJm8SdTqdTvHR8cKFJglbfPGIDGJnTgAANBwH0W3Z2NubMmYO4uDj85S9/gc1mEy87iUk5GOAuH+4rBs65qbirh0cT8MmYklyFhYWhpaXFj0ni10DnwLUtUveSHDCTuof44EUASqPRICoqCqtWrUJpaSnq6+sxMDCAn//854KNUiqV6O7uxqlTp7By5UpMnjwZK1aswB/+8Ac/4bG0kNf5dAyXYlQYMDw8HAqFAh0dHRedmZKzZwBG3Ev6jrNk9JtUAwIA3/jGN9DS0oKamhokJCTg2LFjfoydWq2GXq8XDNvjjz+OzZs34/jx4yMinvhz9Hj8q7tK3Xz03NPT07F9+3YYDAZcc801sFqtcLlcAd0uUhcEZ8J4v7nclpqaioiICMTGxuKKK64Qbjy1Wo2FCxeioaEBn376KU6cOHFB7fE+ReOCFAgGYhu0Wi2ysrJQX1+Pjo4O8T1t53K5UFNTgw0bNqCystJP0yR9/87ncpRGtEnf8VWrVsHlcsHhcODpp5+GyWTyGzM2bdqEffv2oaSkZESdF97muH25Ng4+xtikiFsaWcEHaxpouYth8uTJiIyMRGxsLFatWgW1Wo3U1FSEhoYiJCQECQkJ0Gq1CA4ORkJCAtrb28UAzDOf0jGAcysPudA3os/lKHIOWvign56ejqSkJERFRSEiIsLvZeYMCh3zfCt6OWpe7jwUiuFkbGvWrMH69esRHh6O8PBwVFRU+E0ccloEabisnNHgy7fnbURGRmLKlClYuHAhjEYjrFYrzpw5g+rqalRWVopzV6lUMBqN6O7u9mN25K5bbsV3OYxYtBUrViA7O1tEF7W2tl50Fdjz0eJSYa1cdBA3m82GrKws5OXlwePxoL6+Hnq9HjExMUhMTERpaSliY2MRHh4OAFi2bJlI63306FEBhuQmETkgwFmToKAgpKSkYMqUKYiJiRG/SwGNFAjKuYek31+KUYSZ2+1GRkYG4uLiEBkZCQBobW1FWFgYMjMzsWLFCvHsVCoVcnJy0NHRgerqalRXV2NoaMivMnMgk/YzqdgUGAkGCMQZjUZcccUVSE1NHdEuZVSur6/3619yfToQs3E+UKJUKmGxWDB79mwEBwdDoVBgzpw5YuFFUXNDQ0OIj4/HhAkT8NZbb41+Q8btS7Nx8DHGRi83vUg8YykXmPIcGLSf2WzGVVddhaSkJMTGxmLlypVC06FUKjFr1iwYjUY4HA4EBwcjJycH+/fvF8CABh/pJMs1HAAE2CCGgOhx7qflfnyuageA8PBwWCwWhIaGYt68eeIayOTobp6ITHq/aMLirg9+Dzm1ajQasXbtWuzcuRMZGRmYPHkybDYb2tvb/SJ0+MTOtQg8BFNukOX3TAo+YmJicM011+DBBx9Ea2srzpw5g23btmHfvn1+16NSqRAcHIzU1FQEBwfD7XajtbV1xD2hcwPk2ZgvYkFBQYiIiMADDzzgN1k0NjbCbrd/obal+hQp4JXS9fw5+nw+FBQUYNGiRbj33ntx4sQJlJWVISEhATNmzMCSJUvw6quvIjMzE6mpqfB6vcjNzYVOp4PZbEZFRYVYeV8I6yB1xRH4uPXWWxEfHw+Xy+VXG4bOn7crPYZcxM2lWEREBIKDg2E0GtHX14dVq1Zh7ty5yM7Ohtfrxe9//3uYTCZMnDgRubm5yM3NFcd1uVxISUnB9OnTUV1dDZvNhpqamlHPSfrcqK9Sm1IdEgARJWc2mxEcHIw777wTsbGxfoCTM6MOh8NPWyZdAPHvRgMmcqZSqZCUlISZM2ciKytLRPp1dHTAaDTCYrFgcHAQc+bMwaxZszBt2jS8+eabAc9D7rjjjMjY2Tj4GGOj1ZVarRY5O2iwUCgUYoKnVTzl5oiKisJDDz2E66+/HklJSaJIXU1NDU6ePIna2lrodDo89NBD0Ov1CAkJQXZ2Nk6cODGiNDlFXsjVvAD8i0VRllVucsCDsxkvvvgiTCYT9Ho9/vSnP8FqtYrJk15eaZptudUiH7S4i4i7a7hLJi0tDRkZGXj22Wfx6quvIi0tDUFBQbjuuuuwbt06IXST+pgHBgag0+lGRN5ITY414lZXV4eioiIcOnQItbW1ePnll9HY2Dji3qrVarS1teHGG29EbGws7HY7zGaznyCV62DofpHY+IsyICqVCiEhIVixYsWIrJ2X4nbhRlS9FNwB5wZuubwbHBAvWrQIqampUKvVWLx4MebOnevHTP34xz+WvQdhYWG46qqr8P777weMJOOAhLtauJsvLS1NCJ+7urrwyCOPoLOzU5wvCS2lE5HUVUFuIWJiLkYDolAosGnTJsyePXvEtbrdblRXV2PChAmYPXs2lixZ4vd7d3c3PvvsM1x77bV48sknsW7dOmzevBmPP/74qM+WPwO6joGBAZHjJxDzkJ2djVWrVuE73/mO0HsNDAzAYrH4uX2NRiOOHDmCrq4uWbZVKnC9UCPmxWw244YbbkB2djYKCgqwceNGZGZmYvPmzUhMTER8fDy2b9+OzZs3w2q14ujRo6KNcVDx77dx8DHGxsNfg4ODhc+RAAlFuBDboFarYTQaYTKZcPLkSdx6661C6FlTU4Mnn3wSCoUCGRkZuPXWW/0ymJ4+fVrQsOS+ofLaXq8XWq1WCDi5S6a/vz8gJU4DBGcBaEJPSkrCH/7wB4SEhODQoUP41a9+hcLCQgQFBUGr1cLj8YgJlN8PlUoV0CVEx+R+eRpspFqBxsZGdHR0wO1245FHHkFoaChSU1Pxox/9CG+88Qb+9Kc/4f333xft07UR2BptAJL+xiNmgOEJxW63Y/PmzTh06JBgM+T808nJyVi/fj2io6MxODiIqqoqPProo+jp6fG7PrnV9eUYJIeGhmAwGPCTn/wEYWFhUCgU6O3txd69e/2iUS7FpAwBZ9WkvvlA+54+fRpHjhwRGqV33nkHycnJmDVrFlauXCny1Hg8HjgcDqxfvx6HDx9GZWUlWlpaAt4r6i+kpSKALQVA3d3dfuJsSsIn51ohk7rr6H0bjSEJZHq9Hk8++SRCQ0MxODg4IspGrVYjLS0N3/zmN2EwGES/+tOf/oSIiAhotVp89NFHeP/99/HQQw8hLy8PSUlJ532uPCKI3K30HbkH5fpfU1MTjh8/LoplEtNJmrDXXnsNH3zwAWw2G3p6evzcXHKCYn5P+X2Tbsf7klqtRnh4OO677z6Ul5ejrq4OHo8HL774Inp7e3Hq1CmEhIQgJycHQUFBqK+vx6lTp2RdqFK73C7PcZO3cfAxxkaTNw9TI+Dh8/nECpwm46lTpyIyMhJRUVFYtGgRwsPDoVarYbPZsH37dpw5cwbh4eEICgpCZmamCK9tbGwUESbcLUHsAx1DLpyOh5AC/tExfBXLgY5Go0F4eDjy8vJgNBrR29uLs2fPYteuXbLuERp4tFqtEK/SNtIV8WhGbZrNZkRFRSEyMhIOhwO1tbWoq6tDc3Mz3nrrLVx99dWivDitvPkx5Nwsox1TbhD2eDyw2Wzo7u72W2ErlUqEhIQgNDQUubm5WLRoEbKzs3Ho0CHBXFVXV4v7Lkf9jjbxXazFxsZi5syZSEhI8BvQBwcH/WoFXQ7jz1MKKHnIMr+m1tZW5Ofno7GxES6XC0eOHMHZs2fR3NyMzs5OxMXFob+/H319fbDZbPj8889RW1srhKHnm0zodykYiIyMRHZ2NubPnw+j0SiiOqxWqyyTotFooFKp4HQ6MXfuXKSlpSEiIgLAMIDYvHkzSktLZe/JaM9QoVAgNDQUWq02oB6Ijl1fXw+bzYaYmBgUFBSIhUBtbS1CQkLgdrsxMDCAurq684If6T0brQ/yfpOVlYXVq1f7sSbE4vX29sJut8NqtaK8vNyvgrUUTAS6J3LuT+n7kJWVhWuvvRZRUVHYtGkTTpw4gdLSUrS2tvptHx8fj6CgIFitVjQ1NV3wOz8OQMbexsHHGBtNvOTSIOBBbhiajN1uNyIjI7FgwQIkJSUhISEBt9xyC4BhN0FnZyc2b97s9zKTr7W9vR2tra1ilcFzGvBBlCZhOdEnDSCAv6iTVio8+gQYTtOenJyMiIgI2O12JCYmYvbs2di+fTvsdjtcLpdYVfPJSBoBIQUfZNLBRkrrJyQkYPr06cjOzkZzczMaGhrQ3d0Np9OJP/zhD5g4caJYHbW1tY1oW9qenP6CD5pSwCb1GfNVmUajweTJk5GZmYkbbrgBV199NXp6erBt2zYcOHAApaWlfv50OXcAtXU5LCEhAbNmzfL7TqVSISoqClFRUejq6vKLCrlY45ocPiHRZ7PZDJPJBIPBgLa2thE1hogSP3r0qNjHarWipqYGBQUFSE5ORldXF7q6umCz2YRWip7d+YBroPDahIQELFu2DCtXrhTuEgI4chYbG4uIiAhYrVZcf/31WLRoETIyMqBSqWAwGNDc3HxJ4MPr9aKpqUm824ODg0J7otFooNVq0dnZKdx8dXV1mDJlCsrLy3HmzBk4nU5kZGQgJycHkZGR6OvrQ0FBwXmTpEkjUEaLKuHnmpmZKe4ZbUvC6s7OTgDDGWNdLpffdfOFEP98IfeLH4sWaXfddRfa2tpQVFSEI0eOoLy83A9Ik+tHqVTCbrejq6trxLjHjyd3veMAZOxsHHyMsZELAoAo1jY0NCRWbENDQ9BqtUhNTcVLL70El8uFpKQkZGRkABgeOEtKSrBr1y7U1NTA6XSivLwcHo8HlZWVggGYM2cOFixYgI8//hhOp1MMPJTpVKvVQqPRoLe3d8QgQLSp1+sVbhHuMiEgQ8BhaGgIK1aswEMPPQQAeP3113H48GG43W689957+Oijj7B161aUlJQA8BdS9vb2+gltCdRIowv4ACQt1a1UKrF8+XLMmzcPCQkJgm3xeDxQqVQIDw/HrFmzEBISAq1Wiz/96U+ibRp86JpVKhXMZrPwS5PxgYiLPwOBJNL2+Hw+hIeH469//avQMVitVrzyyiuora1FW1sbbDabn45lLPNDkIulqanJ73uDwYAFCxbggQcewPr167Fr167LcjwpEFOr1Xj44YexbNkypKam4qmnnsLnn3+Onp6eEdvzNjweD5xOJ+rr61FfX+/HGvLnIZ1gL2aySEtLw/Lly8XnpqYmFBYWjtiOXKff/va38cQTT5z3+mkfnidnNHO5XPjzn/+M3NxcOJ1OqNVq7NmzB++88w6mTp2KefPm4cc//jGsViv6+/tHaLJiYmJw880348EHH0RoaChKS0uxf//+84IPzsYC/pO+VM/C7fXXX0d+fj5OnjwpFi20cDl16hT27NmDffv2jerKvRiTY0yobtCDDz6IwsJC2Yit3t5efPjhh/j2t799XjdLILAzbmNn4+BjjI13bPIL8yyiBECoOu3UqVMREhICh8OBP//5zygrKxOq8dbWVtFeY2MjHn74YVx11VVYvXo1kpKSsHbtWmzZskUI3yhihSba3t5eGI1GkTqaXCH8XLlAEzjHktD29L3BYEBwcDB8vuGoHI/Hg/LycvzoRz/CH/7wB7S0tKC4uNiP1idam6946FyldDNnGqQDoE6nw5EjR9DU1ASz2Yxt27bB4XBAoRgW1dbX1+N//ud/RHQJALE6JWpYpVIhIiICM2fOxIMPPoibb75ZaF8IoPBVofRZ0iQo/c3nGw5fveaaa7B7924cP34c77zzDmpqatDc3Dxi1U/7ns8uZTBUKBTIzc3FbbfdhjvvvNOvDY/Hg76+PlRXV8PpdMJkMl10yC0/Dl85cjeeWq1Ge3s7ent7YbFYMHnyZKSnp+PYsWPIz88fUbuHt8ndgnwylAsFJ7sYF9Xx48fx17/+FX/729/Q19eHrVu34ve//734Xa1WQ6VSob+/H3v27EFISAg+++wzfPLJJ1i3bh2ysrIQEREhwJLJZEJwcDB6enouOjW72+3GL37xC8GEdnd3C+3CRx99hM7OzhEgnczj8cBqtUKj0eDIkSPYsmULqqurL7j+jJwGg/qoNCrN5/PhjjvuwPe//32//ekevP766ygqKvLLJEvvPy+bMBrTKdV8yGlAfD4fjEYjnnrqKXz7298WeZPod6/Xi4iICDz33HMICQkR0VFSC9RfzucaGrcvbuPgY4yNaqlw5gA4l6acVNtxcXFITExEaGioEJwlJibi008/hc1mE8JUDhpMJhPi4uJgNBpFO1qtVhyTi0ylA5dCcU5gxgV70vTTfFLQarVYsGAB0tLScNVVV0Gj0eC1115DQ0MDOjs70dHRAaVSiffeew8VFRV+ehLutqHjBKJduXFKXaFQQK/XY8mSJZg1axYcDgeqqqpEZV8COvHx8Th27BhUKhVSU1Nxxx134OjRo8jOzkZqaioUiuEie7GxsUhLS0NKSgqysrJQXV0tJmDpACk9Dw5MpDSxUqlEaGgohoaGkJCQgNmzZ4tJXq/XIzg4GL29vYiOjkZXVxfsdntAv/ilGoWQ3nLLLVi8eDGio6PFbwMDA+jt7UV5eTnmzZsHrVaLmJgYFBYWorGx8ZIYGE5n89BTt9uNiooKWCwWDAwMCKYhJycHubm5+Pvf/z5C3AmMvN+B7o+cG+x8bg5g2G0YFhYmon9cLhe6urrQ0tIitomMjER6ejqmTZuGqVOnory8HEVFRTh16tQIcHHs2LGLTiMuvd6GhgYA/qHp58vVERwcjAkTJmDZsmXQarVob28X2q/zGWfz+PPj7Id0e4qI4ZM9mUKhwOLFi9Hd3Y329na/sYNP5tJnJ53oLwRod3d3o6KiApWVlULnJn3mKpVKaD5MJhNCQ0Nl+/a4q+XfY+PgY4yNgABwrmIrCS/Dw8NhtVoRERGBjIwMJCcniwyfKpUKoaGh6O7uRk1NDfr7+0UECTDMPOTm5mL69OkIDw8XE7pGoxGDhMfjEUI6Dix4hIVc+nHpYK9QKGAwGESukSVLliAxMREOhwMffPABjEYjmpub0dvbi+DgYPzlL38R+Ui4loFPEnSd0omHTybSc1CpVLBYLFi1ahWWLFmCiooKOBwOZGRkCI2JRqPB9OnTUVlZCbVajYSEBMycORM2mw1XXXUVFi5cCIvFApvNhpCQEADA2bNnERMTg6amJj/wwY8t1TNIBzE+YFF0wtDQECZNmoTIyEgUFxdDo9EgJCQEZrMZnZ2dyMjIQGVlJc6cOYO2trYRk6hc2xdqQUFBSEpKwnXXXYcJEyb4/dbW1oby8nIcPnwYt9xyCyIiIhAXF4eOjg6/6JGLNbnJZnBwEBUVFejt7UVbWxueeeYZxMfHY/bs2cjLy8OBAwfQ2dkJu90uwkL5hCSNjpAe41InjgkTJghQAUAU1+PgIT4+HosWLcI999wDnU6Hrq4utLe3w2w2w2KxiEiy1tZWbNmyBWfOnLmgxF6B7EIAg9RCQkIwYcIELF26FENDQ2hpaRE1lc5n/B2jBY3UbSbthwqFAq2trSgqKsK0adP8flMqlbj++uuFqNrpdAbUU8hpL0Y7T+nnjo4OHD9+HCUlJX5lJshMJhPCw8OhUqnQ19cnWBe591bOrTMOQMbexsHHGBu90AMDA6JGicFgQFJSEj788EPce++90Ol0mDt3rnhRVCoV2tvbcccdd4icGQAEPa5SqRAZGYlJkyZh4sSJUCqVcDqdiI2NxeDgIJxOpwAVg4OD0Ov10Ol00Ov1ooAYUdgEhOg85fICKJVKzJ8/H2vXrkVkZKRgWwYHBzFr1iz88Y9/hNPpRFBQEGpqagAMu0ZoG/oMnEuyJg3zA85NOuQq4isvum8xMTFYuHAhwsPDMX/+fMyZMwderxe1tbXweDzQ6/VIS0sTgyG1nZCQgNjYWERGRsLn80Gv16O6uhqFhYV47bXX0NjYKFZQwLnEa2S8ngsfwOTYEYfDgY8//hgPPPAAoqKikJqaKpIbSa2iogI7duzAU089FbC9QC6G0czn8wnBIuWwIHv77bfx3HPPoa+vD/v378cjjzyCK664Aq+88spFHQPwX71y9wj95vV6haC1s7MTn3/+OTZu3IiMjAxERETgk08+wfvvv4/NmzcjPz9fgFE5HYjchECgWioIPp89/PDDWLBgAWJjYwEAb775pgg9BoYBZFZWFpYsWYLk5GTU19dDq9XiyiuvxDPPPIPQ0FAoFAqUl5fju9/9Lnbv3i00XV+mkd7C4XCgpqYGu3btwt69ey9oX2n9IDnAK2UpgOFxiBcilO6XlJSEKVOm4MiRIyNAO29LGoYvbS9QH1AoFGhubsbRo0eRlJSE8PBw9Pf3o6enRyy8rrjiClx//fVQqVTYt28ftmzZggMHDoxoX8q+SI81bmNn4+BjjI0KqQHDaBwYZkPOnj2Lp59+GjExMUhKSkJoaCjUajWcTifee+89vPbaa+KFoKyjLpcLOTk5IrPf8uXLoVarUVFRgfz8fPz5z39GZ2encEEQ6KEB1efzCSEcAFn/q5QNCQoKwoYNG5CZmYmhoSGcPXsWRUVFooz2Lbfcgtdee02sLugYbrfbb7VBLzJV1pWKSvl5SGvB0IBis9mgVCpFxVhKhgQAGRkZog2Xy4UXXngBlZWV6OnpgclkQkFBATZv3izuCzFDg4OD6OvrEyCJzlNaPI7+5qCGD95ydPL9998PnU4HnU6H+Ph4JCQkwGw2IyUlBQ888AA0Gg3CwsKQnJyM1NRU1NbWBox2CVSNdbR+t3TpUtHnuKWmpmLBggUoKSlBa2srent7kZqaivfffx/Lly/H2bNnA67guZCS3x8SJvP08fzZ9fX1iTb//Oc/i21+85vf4M4778SSJUtw6NAhPPzww0hMTBQhm9JJQeqqo/t+saLdn/70p7j33nvxox/9CABw5ZVXor6+HkVFRQCG39HS0lLs2rULixcvRnh4uGDKQkJCoFAocOTIEezZswc1NTVCvCkXOTWW1tvbi+7uboSEhKCjo0MU0bsQk5v4OeiQCq3pnSHmiuzQoUOorKzEunXrEBsbC61W66efIqM2KOFgIO3O+QCkz+fDtGnT8J3vfAcZGRno6emB2WyGUqnEI488gpKSEvT09KCxsRF33XUXnn76aZSWloooJjmGTg5sjdvY2jj4GGNTq9Vila9UKgUY8Hq9OHbsGL7+9a9j1qxZmDRpEmw2G9555x0cOHBATOYAhE5Aq9Xi5ptvRlhYGMLCwmAwGKBSqcTERD5jOR0HAL8cILQdARBpNElycjKysrLQ2NiIyMhIlJWVYdeuXeju7kZQUBDWrl2L5cuXo7u7W0TDeL1ekcdBSrfSy0yrHSmDAJwbdPgAzgeFCRMmYNGiRTAajXjllVcQFhaGSZMmoa6uDi6XS4j09Ho9du3ahdbWVrhcLhFxwidNAg/S8+PGB0YuiJXzUwP+PnRgmMqne9Pe3o7a2loRhvvggw+KfQjMjDbg0XO80InN5xsO2aSEcj7fcC6I5ORkzJgxAyqVCkVFReKzWq1GdHQ0UlNT0dXVFRB8BErOFmiy4OCMwFN+fr5I9+71ejE4OIioqCgsXrwYzz//PNxuN7Zu3Yr8/PwRfShQAqqLNbvdLoo6AvDLNkvW2NiIgoIC1NTUIC4uTtQvor5w+vRp7N+/Hx0dHWMSqXQhtnjxYtx2221QKpXYuXMn6uvrL7ktKXMlt0DQ6XSIiYkR0XgbNmxAfn4+6uvr0draiocffhhXXHEFnE4n6urq/AAkd+1IXavcRutL9FtZWRlee+01ZGZmYtGiRbjqqqugUqkwc+ZMxMXFweVyiaKObrcbbrf7gsD7OOj48mwcfIyx0QqdQlQHBwfF5NzY2AilUomoqCikpaXBZrPhyJEjqK2thUqlEiXpY2NjkZGRgaioKFx99dVidUEgo6enBx0dHSJpFEWs0CBJKw0efkvuDb76oMEnKioK2dnZuOKKK1BfXw+r1Yp9+/bh7bffFlqRjIwM5OXlwWq1jpjA+YpJqnCnaAUyuclM6vOn78LDw5GZmYnGxkZs2LAB0dHRmD9/PoqLi+FwONDe3g6bzYbw8HABtAYGBtDV1SX7XAIdh58H4J9jYDSKlg+sdO0EyChHBbVRXl6OSZMmwe12w+VyjciJwNvlx79Qt4LH40FtbS2KioqEnqSoqAg5OTnQ6/VISkpCf38/rrrqKoSFhYn2IyMjodfrA7Y72iQrXenKaQcUCgWqqqqg0WgwNDSEkydPore3FxMmTEBmZiaefPJJ7NixQ6TCHm1lytvnv53PaF+32w2HwwGDwYCenp4RrEF3dzfOnDmDgwcP4sYbbxSiXZ/Ph46ODpw6dQpFRUUiv87FnMPlMK1WK9wLPp8PNpvtC+VrIeP9Tno9pA+iInwbN25EYWEhenp60NLSgjvvvBNTp06FRqPBO++8IxKNkXH916WaQqFARUUFampqkJqaiueeew45OTkIDg5GZ2cnsrOzBTvKsw5/2S6xcRvdxsHHGBtFufT398Nut0On0wk2xOPxYP369fB6vcjJyUFcXByuuuoquFwu7N+/H06nE/Hx8bjuuuvw9a9/HbGxsWJ/lUoFjUaD5uZmvP7669iwYQMGBwdhNpsFuCEqlvJ36PV6PyqcBgKNRiOAgU6nwze+8Q3ExsZCrVbj6aefxu9//3v8f+29eXiU5b0+fs8ksyWzZbJNEhISErZAAEE2WURAEC1a0aq4HPXgUrV16fLrsYtVe1pba+vRauv5trZYrehxqQp1Y9+3AAECJGTfl8kyk8lsWeb9/ZHr8/CZJ5OAlmAP572vi4sk887zPu/zPsv92ffv349weKBYncViQWVlJQ4ePIhRo0YBOJNyHTgTScOdwAKBgPiZ0n0DGLThU994gStq98CBAygqKsI//vEP1NXV4cSJE/jkk08AnNEMUCrlTz/9FAcOHMCHH36Iffv2iY2Uxl22RcsSNf1MZIs2UK7lIVBbvA2KTKLPOSkpKyvDN77xDeFsWVtbOyjPCAcnM+eKYDCI999/H+vXrxfkk8gQZcsMBAL45S9/iWXLlmHSpElQlAE/kS8asUFjKzv1yQnA+Nj29vaisrISS5cuRUJCAv6//+//w2OPPQYAePzxx1FWVia+R5Fh3HzHnaajvbvhEBsbC6/Xi5qaGhQXF2PWrFkoKipCTU1NxHVWqxVarRY///nPsWTJkoi6OG+88QZ27doVER1DfbhQpheq+URj/Pvf/x4PP/wwXn311XNug78fIoSEaFmI586di3HjxolriPDHxMTgkksuEevLYrFgwYIFqKioiJhPXLsSTfsZDTKp51rU2tpa/OhHP8LSpUsxb948vP/++3juueeQkJCAjo4OvPnmmyIiLtpzRzPj8XuoGDmo5GOEQc6ftImSNsNoNMLv94tESocPH8aSJUtwyy23wGQyQVEUJCcn4/7770dmZibi4uKEKlxRFDQ2NuJPf/oTNmzYgKamJmg0A2GolO9Cq9XC7XZHqLuJEFCtF8rDQL/HxMQIh04A2LlzJxYuXIiurq4I35GkpCQ4HA6YTCYEg0HExsaKSBzasMgGTs9NoFLoQ2081C+upaGDExg4tPbv3y8OI0VRRK0YntTp008/FVEkNGa0sZC2RzYFcQla1uTwz3gdkKEkxKGc+RITEzFjxgy8/PLLcDgc8Hg8iI+PF6Y4vumdSyjy2UAqZw56NzExMXjnnXeQnp6OSZMmQaPRYMWKFWhubh6UlGwocN8XrtEicCLCx2PRokWYM2cOfvWrX+HPf/4zLr30UvT29qK2thYPP/ww3nrrLWzZsgVApLmQm+X4+PP+ROsjH0eKjkhISEBubi4A4Ec/+hHy8/Px1ltvISMjA1dffTXGjh0rJHzSDhEKCgqwadOmQffi82OkYDQaMXXqVPzmN7/BhAkT0NfXh7a2NvzmN7/B3r17z7kdWVNF4fz8M75uwuEwbrjhBsyaNUt85xvf+AZ0Oh327NmD9evXY+LEibjyyiuRlJQknHI5OEkfKtmY/J1ouWCoX8FgEGVlZairq8Nbb70Fg8GATZs2YebMmbBYLELj+0UdklWMPFTyMcLghwqvpEpahmAwiKNHj+Ltt9/GtGnToNPpcOmll8LhcMBsNmPMmDEIBAIoLy9HWVkZsrOzkZiYCLfbjVOnTqGmpgahUEhszkajUZgUKLqGwlpDoZDItkqHNA91NRqNeOyxxzB27FgUFhbiwIEDQm1J7Ws0AzkyOjs74XK5hFaAL3BOROg+sqTBf5fV8nxT5Pfmvik8TwjlS6F7hcNhfPzxx/B6vcIsRKSGhxMOtQlGM69wLY5Wq0VmZiaWLVuGzs5OHD58GFVVVcPOAyKHEydOxLx585Ceno7Kykp8/vnn2LRpkzhU+fUjuWHSmEydOhVpaWmiaNuuXbvOmXjwvlJ7/IDQ6/WYP38+ZsyYgZ6eHlRVVWHXrl244oorsHDhQkybNg3p6emYPn06mpubsWPHDlGsr7y8HEDk+6ff6f3ze8pjF02alZ9/9+7dePLJJ/GNb3wDM2bMwIIFC5CamirWnd1uR1xcHBRFweHDh2GxWNDT04N169ahrKwMJSUlw47HSCEhIQH33Xcfxo8fD6vVio6ODqxbtw4bN24cVFV5OMjrTibg0QhIa2srPB4PMjIyAAxEkSUkJMBms2H16tWYPXs2UlNTYTQaMWvWLFHDCjizzvja5r9/mTGj9e/z+RAMBhEXF4dgMIjjx4+jpaUFGzZsgN/vH9IsphKRrw4q+RhhcCmZHzB0YAaDQVGR8eTJk5gwYQJsNpsgGU1NTXC5XKivr8euXbuQnZ2N1NRUBINBVFdXR+QRIWlWPih5hIe84ElqpY3G6XSKiBbKriov0EAggLq6Ohw7dgwej0f4sdDzRavQyj8fTlKlQ1eOXpBV+PQ/HUAkddNzHDt2bJBPAP8OXQuc8f+QEe1+wIDmZMKECbjhhhvQ2dkJs9mMnp4eMRaKoiAuLk5E0yiKgpSUFDidTsydOxezZ8+GTqdDU1MTDhw4gH379kX0jWtTRkr9Sxqp0aNHw2azoaenB5WVlThw4MCgWjjDgY8Rac/4OF1yySW4/vrr0dPTg+PHj6O/vx/XXnstJk+ejMzMTOTm5kKr1eL06dPYsmULvF4vtm7dOmzUBp9Hcsg2//9s/T558iRqa2tF6HtycjKSkpIQGxuLkpIS+P1+4T+0efNmxMfHIxgMYu3atXC73V8qL8f5gMFgwLRp02CxWBATEyMqFJ8+fRqhUOic25HJh/xZNFRXV4v6LcCAX0xcXBzy8/Mxe/ZsTJ48GWazGb29vcjOzhZ+Z9y8Ka9tWds3XA6daH0HzpDpUCgERVHQ0dGB0tJSHDx48JwSi1EbKi4cVPIxwiBnU41GA7/fH5EEjFeZ7ejowGuvvYYf/ehHOHz4MD788ENceeWVWL9+PcxmM0wmE9avXx+RiCkYDMLhcMDv94tNh0wzRDqAM1IN+Z7ExsZGlBmnDdvr9WLVqlXi+zwqhS/MQCCAPXv2YP/+/cjIyBCOq/39/dDr9cK/g0wiPPqG+sU1QNHGjJ6R+k99pM+4D4Zer48gONxfhDY7mZxwU8u5SEPkI6PRaGAwGESl2qSkJCxcuBBpaWnYsmULWlpa0NfXh6lTp8Ltdousl7feeivmzZuHyZMnIysrSzy7x+OJyOXC7y9ric4nYmNjRWI1j8cDt9uNDz74AM3NzV/oAAMGkzv+M5n5rFYrZs2ahRtvvFH4QfX09OCzzz6DXq/HkSNHUFxcjH379kU4A9N13Lwi1/qhuUdakHONPCEt3ksvvYQ5c+YgPT0doVAIDocDq1evxvz587Fq1SrU19fjxRdfRGtrqzAbDufYOZKHGGkwd+3ahby8PPEMHo/nS0XccDMLJwOkLZV9ubgpEwD+9Kc/oaCgAA888ACKioqwbNkyEU7f3d0doZWSfZei+XJwh/nhxiAaSNvb09ODvLw8mM1m/PGPfxy0j6j414BKPkYYJpNJbMAmkwlerxfhcFjk7ujr6xOaiffeew/79u2DxWKBzWZDYWEh6uvr0dnZKQ50Sp9OUpfP54PJZBL1VQKBAIxGoyAT4fBAXRhadNz/gjYXIhrRNAByOC4wkChszJgxmDdvHn7xi19g5cqVqKioQDAYjNhYuLRD9wMio0CASPsyjQeRA3KCI2mXxpJreahv9AzAGc2STqcTuSfovhSeTPfmfSMM5eRGpioCJXx7/PHH8b3vfW+QSYl+NxgM4r4NDQ147rnnUFhYiIqKCjE+MlGTzRjnEyaTCZdddhl+8IMfIDU1FX6/P8Jh8ItA9gugv/l8Prz00ktYv3490tPTMXr0aMyePRsbNmxATU0N2tvb0d3dLd47kVgqPEiHVrR3wSVkXuWWrudasWhtUB8pCu2uu+6K8Cnx+Xyora3FO++8I945kdvzEVHyZXHPPffgwQcfxPjx40XRxD/96U84derUF64nw4UKKj5Jz0k+VLIm9dSpUxFmuQ0bNghhZsWKFSKZYH19PR555JFBpQOGm8/0Ps5GEKKZI6ldg8EgcrVw4UvFvx5U8jHCoFwCRAL4xk6Ln0wn/f39aGxshMFggNFohMvlQmNjY0SdB66JoOgOYvvkZyH7NhDhoI01mtmB+mM2m4WTbDS7OR3ilJyru7sbycnJaG5uFumUo0lTBC5NcRMDP4C5uYHGhWthyHGWEyJOJrgZhg5wIjN8Q4pm1qC/yf4gfCz6+/tx4sQJPPvss7j88stx3XXXwWQyiQge6oNsYgKA48ePY9++faIcOt+cZQ0T36zPt8TW19eHlpYW6HQ66HQ6+Hw+7Nu37wubEmStlKxRIofqtrY2VFRUoLi4GLW1teju7hbFFIFIX46hNG50v2h/56C5xa8ZzjkYgEirz805VPCRP2c0fJH8K/8sCgsL8e677+JnP/sZACA1NRVjxowRFaS/COS9QNY4kL8G/1tTUxM2bdoEq9WKu+++WxRuBBCRSTcmJgYOhyPCZCmvuWjk/svOc9rbaP6lp6cjPT0dU6dOxalTp4RTPb8X4YuY61ScP1x05OOZZ57B+++/j5KSEiHd/epXv8L48ePFNYsWLcL27dsjvnf//ffjlVdeEb/X1tbigQcewNatW2E2m3HnnXfimWeeierRPxy4BMYlYr4A+GeU84HyDng8Huj1+ohwQwId1PR3MueQoynZ32UpUCYf9LMc1SEvSFKLEpFqaGjAzp07o6rp+QEgHwJyPRkOSgok+6QM5d9B/0ezI9O9ifxRO0Rm5P4OZfeWx4D8czo6OuDz+eB0OmE2m5GamiqKbun1ehiNRnHIZmVlob29Hbt378a2bdtQV1cHt9stTHLRxmokJbZwOCy0DqSlKCws/NKF0YY72H0+H3w+H1wuF6qrqyPmmPyMMkmIdmDwNSCHtQ5npop2P/kZ+LXyd/8V0NXVFRHem5KSguzs7C/dHn9n3LQIDB5bjUaD7u5ulJSUYMuWLZgxYwbGjRsnNK2EUCgkouCGuicQPafOufY5Wv9JGDEYDEhISBBFHamood/vF34x0UhttLX3r/LeL0ZcdORj+/bteOihhzBz5kz09fXhhz/8IZYtW4aTJ09GxOnfe++9ePrpp8XvJLUCA4vwmmuugdPpxJ49e0TyHJ1Oh1/84hdfqD92ux19fX3o7OxEfHy8YOZkyw6FQqIgHJktiEhYLBZhOuHEgUwhRqNRxK/rdDqYzWZ0dnaKA4RyflDRNX7o8k2arqfNhaTYaJI4aVU8Hg+KiorwxBNPwOv1CjMHgEHF63i+C/o73zC4aYebWPhmQpoY+sfDRakd6iNF4NAhRqSJ2uOmIf5d+j59xv0KOPr7+1FUVAStVov33nsPO3fuREFBAW666SY0NDSgqKgIGRkZSEtLQ3FxMRobG/HII4/g008/xY4dO1BcXDwonfvZiMf53gS1Wq3I+xIKhdDZ2YmDBw/+U1VZ5ZBleq9EIEkylevmAJHkhTQgpCWjz7lGhK6Ppm35shiOuAyHC5lOfe7cubjzzjvF72Ry/bKI5qxOY0wmWT4XyexZVVWFxx9/HC+88AJGjRoV4Vja2tqKsrIylJeXDypTIGs6oh3yw2lGokG+3mQyiTmyYsUKPPDAAzAYDKiursYjjzyCysrKCEd7+d4XSgD4vw6NcpFTO5fLhZSUFGzfvl3kr1i0aBGmTZuG//qv/4r6nU8++QRf+9rX0NjYKLIavvLKK/jBD34Al8s1qFBXNHR1dcFms4lERcFgMOIwJ3MIP2xpwdABKUvc0crdc2c7As+NwWt7KIoiyAU/IGR7OKlbuamCNBZEmngfeB/J+ZPapKyr3IxjMBgEuQmFQoiPj4+4fzSCJEu+vM9yJAzX2vD+0RhxdTJttDwMUFEG7PrDST+kmqdDUfYjob8TcaQxIFs6N+0QuDYmmsR/vg+5mJgYzJw5U5BJim76IqAEdYRo70ueX1zDJpuW+FqgcZR9Yeh7/Hp+f/laGUNpOGQToPyd4bZKeY6PFNasWYMHH3wQl1xyCQDgz3/+M1577TXs3LnzC7dF5kvg7OSWf04CCABR6JJ+HzNmDFwuF1pbWyMSC/I2ot2Lr9do9zxXKIqCpKQkrF69Gtdeey2qq6vhdrths9mEieib3/wmPB7PkM/I55SiDJijPB4PrFbrF+6PiqFx0Wk+ZNAkk5ME/e1vf8Mbb7wBp9OJlStX4ic/+YnQfuzduxcFBQWCeADA8uXL8cADD+DEiRNi4XOEQqEI8wNpJIg0mM1mBIPBCOmCQlTpYOcbL3AmUiY2NhaxsbGifVr83BcCOLOp00LmScB4u9HYPldzc5JEUigwcPjJkrGsGYhWu0U2nZADaDRzA7fpy9IwIVrYLe8Pv0b+Ho1TtL9Hs0/zv8sEhxM4cgLmBxjfTMlJdrgDTn4nZ/NT+GfR39+PU6dOAcAgk975gGw6IcgmL5mMyNfLqn95vshz8GzPIY+lXq+PcHI927uJds2FIB7AAHE3GAyoqqpCZmYmRo0ahfz8/C9FPriD+dnmGF8DfH3KwkxpaanYC+V3P5wWga/paNef69hqNBp4PB58/PHHKCoqQiAQEIkdeWbfs7VB/1/ksvlXiouafITDYTz66KMixJFw6623YvTo0UhPT8exY8fwgx/8AKWlpXj//fcBAM3NzRHEA4D4vbm5Oeq9nnnmGTz11FNRPyONAREPzqr5QU2bGo/aIKk6NjZWeNnL0iK1y+uoyAc3d6CUN07qB5c46T58s5E3YNKuyG3JhIK3R20O5/chY7hNINpGIbcXjaDIklY0dfBQGg/5Z3lshpLwzra5RyNEHEMdjP8MokmA5xvDHSr8mqFU3sO91+Gk6fOFcxn3C3VI1dXVYefOnejp6UFWVhYqKyu/9Dscbt2dyzvj19L1Xq930HoY7r7yOjyXdTeUUEDo6+tDZWUlKisrI9aRLBjIc463J5uFVJx/XNTk46GHHkJxcTF27doV8ff77rtP/FxQUIC0tDQsWbIEFRUVIt3yF8Xjjz+O73znO+L3rq4uZGZmQlEUIQlQKnNaBEQsSB1POTL0ej1MJhO6u7uF46isWibS0dfXJ+q99PX1CZMCFc0ym83ioCf1NU9MRjZ56gt9RplRyS8FiNwYKEoiEAhEEAlu45cXMNeiUPItIHqxKVkdHG3Dkn8eSlIabjOTpWa5nXP5TrTvyxqcoSS7oSTPaJsymbzONwH5ZzHUgcFJHv0uI9q4nO0gl006sqP0FwWZETlJ5/cwGAwR0RLnY/xljc259nv9+vVYv359VHL6Re/PzY3nSjaiaf3OptGIhmiaV7p+KM3TcPMkWh+GEjqG+85wf1dxfnHRko9vfetb2LBhA3bs2CGKnw2F2bNnAwDKy8uRm5sLp9MpqmoSKLEO1XqQQepQGdxs0tvbK3wwgsEgvF4vUlNTxWfkJ0IbA5EKCqU1m80iHwI5YprNZvh8Pni9XlHplgiByWQS6db7+/sj/Bi0Wi0MBgN0Op3wRyGTCTdPkH8LP0h4KC93TOWHLF2j1+tFYjWKsAAgkhhR5Ew0cjHURnE2CVkmM9GKj0XT/tDndNDLn0WD/L2h+v9FNz3eX/7OyFmTxpeTEaPRKLRK8qFA74YiExRFEY7IRHA5cSXfIm4GITLKMVRoLhFon8+HxMREMb8BID4+XszpUaNGoaGhQcxHjUYjKv1yEx+ZDmNiYkROG61Wi7i4OHR1dYn3zaN4znawRzucooGT72iEmn9/qL/TWiDyn5WVhZ6eHuj1esTFxaGkpEQUnKSxT0xMRCgUisjl4/P5EAgEkJCQgP7+fhEWn5qaCpfLJeosmUwmuFyuCMEgPj5eOLjbbDa43W6hweS+ZDQfeP9pXtFz8Zw5Gs0Zx296D9QuPTN3GOdrU16X5ORKn0Ujp9EQjcR/GSIabT2rGBlcdORDURR8+9vfxt///nds27YNOTk5Z/1OUVERACAtLQ3AgEf5z3/+c7S2tiIlJQUAsHHjRlitVuTn53+h/tDi8fv9MBqNgjyEQiEkJydDq9UiEAiIzKU9PT0wGo0ikoWSIJFJRa/Xi8OUMgkSaaDNHoAgJlTAjtc/4Z7pfFMgcEdK4Iw9m5tNuK8K/Z1rdLgUSb4QwBk7M9+k6L1xRCML/P7R+kvX8oOT+k/g3x3qcJIPDplk0d+JCAxHNqhfvb294nCJpu7l6uChVMz0DjkhoDkm949HKdD9dDqdCGWmvDBEWGme0bOSlowXCKT3xbVmcXFxwumUcr8Q4aX+0vsg3wru7+Pz+USVY6PRCK/Xi56eHsTHx0Ov18Pn84kkVvSMdrsdPT09IiSdSBMdgn6//5x9DTiGum44rU60v8vaAXpfJKDQmAQCAVGw0el0igKOGs1AReqkpCRRZTgUCgnBhQgiOXRqNBp0dnaiv78faWlpiIuLQ3V1NZKTk6HRDGRE7ejogMPhQDAYFOHgQxFimkeU7C/aHKd1K4e907NStmOenA044/8l5xjh855fI2tRZUFHfj+yM/pQGlMCzw1CbdLvQ717FecHFx35eOihh/Dmm2/iww8/hMViET4aNpsNJpMJFRUVePPNN3H11VcjMTERx44dw2OPPYaFCxdiypQpAIBly5YhPz8fd9xxB5599lk0Nzfjxz/+MR566KGo2o3hQMXkyLQiZ+skswZpKoAzE55SoMve/nq9HhqNRpho+OZLhwxtCjwJl06nEw5idB/5AJTVpFzaiaaSltWk3D+E+kQbCL9elsp520OpR4fa7If7jKuX5c3ubBuLLE2djbTIY8PvxzdE/vtQzxBNguMhwhROzDdNeRPnz0rtEZGVnY+JEMoEkrfB/ZB4+5x8cBMhtcfnBJEomtehUEjMZ9KG6HQ6xMXFCXNHXFyc6D8d1qFQCD09PYPCbC9E2KscjTUceeXvkScB9Pv9QhNJxITGkZJ98fB4q9UqxtdsNkeQO4q04iSfk0vShPAQeHmdy/MzWkSW/Fyyo3a0MfkijrhcYxlNkxHtXsNpRPnfor0jTqijtadiZHHRhdoONXn+8pe/4K677kJdXR1uv/12FBcXw+fzITMzE9dffz1+/OMfR4RS1dTU4IEHHsC2bdsQHx+PO++8E7/85S/POckYmVBI89LV1SVK3NNmQBsoqWSpIBNtEBTGRhu2y+WCoiiwWq3Q6XSor69HSkqKIDf0PZLIaXMj84vJZEJdXd0gzcBQ40cqYmpPdkbVaAYq9dImKZsy+IFFmxV3qqXDEBjeR0MmS/yAjfY9ubDdUJuKTCb4NaQupvHktWSo73K+ELkdvvGSFMlNGPxglvtKaeH5c9KhFBsbC5PJhK6uLnEwcw0F17bwMeQSJfWZ5gj94yp3WRtCeWqAM2nme3t7kZycjHB4oD4RFdSje4bDYZFPhKK96PlJExQXFwe/34/u7m6Ew2E4nU7xXK2trUhISEBPTw8CgYAoZEbmHovFglAoJOZVIBAYpFX6slucPMco87BOpxPPw81eZ7sPH2caR51OB4PBAJ/Ph9TUVGE26unpEenOAWDixIk4deoULBYLEhIS4Pf70draKuaCzWZDU1MTTCYTYmJi4PF40NfXB4vFIko8tLS0CNObxWJBe3t7hE8Zf7ecxNF84fsGn+tymQOa50ajUewL8iHPiS19ptfrI4pU0jzhAhs378jJAmWNE2G490LkmYfAy+S6r69PDbUdAVx05ONfBUQ+DAaDIBg5OTmCXITDYTQ1NcHhcAjbLZWD5jZfvV6P7u5uBAIBpKSkCPt2OByG3++HTqcT9RQ8Hg/i4+OFScZisaCrq0vYlh0OB1wulyALwBkziEwOuLRMhzknCvImKm/4MmTSQlodOaUzJxD0Oz0P4Vwc/uSDQ/6dNrNoJIb6x6U4OnDoumhSH6/oyn0QoklZNG7UB1lLIGsZqA2ekpzGkB8GPJkamTj48/J7Uv/Jx4OkaTLP0MFBBxTNA06CNBqNmHOBQAB2u12YCgDAarVGJL4DBrJyktmBEunRwU6Egw4Fq9UqDh9Kd04mSD5u5FtlNpsjiqwNp6U61zlE7/axxx7DPffcg6ysLBw6dAi//vWv8dFHH4lrhtKAUDt6vV48Z2dnp3DaJq1Ha2ur2CtSU1MRCASEmYTaI41QZ2cn0tLSxKFJPhzkyE1+VmRiC4VCsNvtsFqt6O/vh8vlEj5E9E75vAAiNW2yJozmY2xsLOLi4gTB7OjoiCALvLSDXMuJCA3PS8TXHCcg9P5pv6I+8SR0X+Sdyu+Km5j57yr5GDlcdGaXfzWQhGc0GhEIBIREotFokJiYCGBgQRgMBiiKIohEXFwc5s+fj0WLFglV87x583Ds2DF8/PHH2LNnD7RarUgbTJstScz9/QMVU8lLX6vVilBdrhrnZhPuFMdVxNGqTM6ZMwdXXHEFpk6disOHDyM3Nxdmsxlr167F1q1bxeEka0T4BiSbBGgs+Od0EMuqU3kT4WpjjuFICN9M6TNZjUv/y5sz1xLQJnrrrbdi2rRpyM7ORiAQwJNPPona2lqhXYimuZHvJavDo2lwSM3OpdFomiRec4SkRq4hI0JFzpxEUund8/o4tOGTEzIdFryKMTBgZiSVf19fH/x+v0g7T5oan88nMvQSUeDFBHmNHK/Xi8TERKH50Wq16O7uFmuIfJ3ogJbNd3zc+DjyMT8XzJo1C1arFW1tbcjNzUVHR4dYd7LGK5pGLS0tDZ2dnfD7/QgEAoI00OHd0dGB+Ph4QeS6uroEgdBoBnxAqG1FUZCQkACv1yu0Y/Hx8cJ/BoAgMURuKBrO7/fDZDIhJycHdXV1QpAJh8NiPnCNJSez8jpRFAWZmZlYvnw5rrjiChiNRmzZsgXbtm0TtWZkEsFNsDQ3aX7RfsPfIZFgmsNEhmk+yO9QXj/8fdC9ol3D90AuMKgYOajkY4RhNpvFxPb5fBG+GwaDQaiaicnHxsZi9OjRmDx5MpYsWYIZM2aIw2Dy5MlITk5GTEwM0tLS0N3djW3btonNWPa9oEVEEtZQBzSBazLkBUsbTjgcRnZ2NnJzczFu3DgsXrwYqampsFqt8Pv9MJvNEQctX8Sy6lXeXKgP0Q6HaMSD/yw/11DPyA9/mRAMB67p0Gq1cDgcIoV6QkICCgsLRfXg9PR0OJ1OrFixApWVlWhqakJhYWFEv6LdT954h5Kk+e+8/8Mdspxs8qR10QggbzsjI0M4Nre3t0f0nQ4SmntEVogAkxROBy3di/t80AFCn/FMwFyDQ3OYh8US8eBzaqi5xPFFTTEajQbJyclITk6G3W5HOBxGQ0ODiNyKdr38DvhBSdI6f3/BYFCUfyCCSNcRITSZTOjp6REkLBgMin2ju7t7kGM4gUxmHo8HwWBwEKHnBy/1l5Mq+Rr+nHq9Hjk5OZg5cyZqa2sHHezy+hrOv+Js70XeV3gb9MyygEDjydfCcPdQSceFg0o+Rhg2m03YqkOhEEwmU0SROLJR0yZqMpkwa9Ys3Hnnnbj00ksHLZbc3FyMGjUK119/PZqamtDc3Iy6ujoh9ZB2g28C5PNBpgQuSdBGR9cHAoGIgnT8MKRFOWvWLGRlZQEYqF0ze/ZslJeXo6ysDG1tbRE+KHQoyeYEAt9Q6Hd+P9nWHE09yg802kBJgo6NjYXb7Y6IBpE3LQ6ZLBG47Tk2NhYZGRm4/PLLMWvWLIwdOxbPPvssNm7ciKamJoTDYdx4442466670NLSgmPHjuHgwYOiTeof3+j5+6B7yISLH/TUT9lxlEwx9J55YjtFGfA3cjgciI+PR2Njo5DeqU801iSRUxh6c3MzWltbI+YMP0SpDUqnT0QkJiYGHR0d4rmoyjNpTqg9ej4icPR8RNDNZrOYv/yd2Gw2QeplH4CzkdGhtGQcNI/sdjvGjBmDsWPHwufzicKC0eaRPKcBoL29HSaTSdQpouvI5MpNSj09PbBYLAgEAtDpdDCZTOjs7BTaUXK0DYfDIiqI5ji9a5PJFEEayBxFkXUejyeCgND40zzv7e0VpEf22aC+m81mGAwGWCwWGI1GFBYWYvfu3WhoaIjQOnHCITtGc18lmn98/LhZJtp6oXlApNpmsw0iIFQ5mvbbaARVXjMqRh4q+RhhkIOnVqtFfHy8WMz9/f3CQcxisSA+Ph6tra2YOXMmJk6cGJFhlcJpyeFPp9PB4XDA4XDgkUcewZtvvom9e/dCp9Ohvb0dycnJIuyWDhO/3w+v1wsgkkhwB66hqtPS9XSAT5gwAdnZ2UhJSREbVm5urrAtkxMqLWYukdG9aLHzzYXux1Wf1F/aaOSNh67hhEmn0yEvLw/f/e53MXXqVFxzzTWw2+1obm5GZ2dnxPfouXgfo0lJoVBIHKiBQACHDh1Ca2srPvroI1Gevq+vD3v37sXJkydRX1+PSZMmibHPzMxEXV1d1L4TSFXOtUF8E6WCWbRB6/V6ob0g8xh/hxTaTffs6+vDlClTsHLlSixatAg9PT1YvXo1XC7XIC1UZmYmHnnkEfz7v/87Hn74Yezfv19I6DTWdHhRJEZXVxcaGhoQGxsLvV4vChsSKTIYDOjt7UVCQoIwAZBPlM/nE2G6wWBQpMOm+dnV1QWNRgOr1RqRCK+7u1uYZbiz6RfRbEQDzaWEhATcdNNNePLJJ2G329Ha2orXX38dr7/+usgsyokHFXj0eDwR7zA3N1eYT+Pi4oRmqLe3Fy6XS8wTup58xLq6utDa2goAcLvdonpyf38/WlpaBEkkksdNGBR2T2uf5oLRaITD4YjQZGk0GqGpiomJEXONrwtyCFUUBYmJiXj88ccxf/58ZGZmwmaz4d/+7d/w/PPPC/Ma+fXQ/APO5PEggsBr4vC1SGZCMhtzzYns8zVx4kQYDAakpKSILNUcP/3pT2EymdDb24vnnnsugpTR83OyS+tQxchCJR8jDDqIKSxWo9GIjKckOfT19aGjowNmsxmhUAgGgwGpqaliwRUWFqKwsBDjxo2Dw+GA2+0GACxduhTz58/Hxo0b4fV6RY4AshV3dnbC6XQKCTU+Pl7kG6FFLGca5dIjdzik3/v7+7Fnzx5hOwYGFq/b7UZ9fT0aGxuFx7qsBgUgQgOpLQI/8GUJFhjsZMoPZVlDQL4wDQ0NmDJlCt5//33U1tbiz3/+MzZv3hyRUCla27xP9E+OoNFoNMJpj0gUfe7xePDWW2/BYDDgpptuwqWXXoqWlhYsX74c1dXVqKioEM/IyRPPL0DaKE7YKHkWlwTj4uIizBMAhE8IzaVwOCxIw2233YbZs2fDarXi73//e4Q/D7WZkJCA3NxcLFq0CCdOnIDJZMLo0aNx+vRpEQ5KWi0iAqRV4STJ7/dHVYeTdoyk5ylTpuDqq6/GjBkz8NFHH2Hnzp1ob28Xa+SGG26AxWIRBEaj0cDr9cLlcqG0tBRGo1EQ7YyMjIhqqkNBJpnyZ7GxsZg3bx6uuuoq3HDDDbDZbPjzn/+MdevWoaqqapDJhd5beno6rrvuOqxduzbCFMLTjmu1WjidTtTX1wuTiNvtxqJFi5Ceno7k5GSsXLkS//mf/4nu7m4hSJDw0tnZCYvFIrIXk0NvOBwWkXBEsmmt07sABtYxhdzLWkeak2Te4qZampMGgwHJycnIy8tDVlYWGhoa8Mknn2Dfvn146qmnsGvXLmzfvh1VVVURa5OTRq4Jpb2IxoqbeWnecE0JjbXD4cB///d/IzExEQaDQURIceFKURTcf//90Gg0aG9vh9vtxmuvvSaIGdf60jpWzS4XBir5GGEQEaDESbQA4+PjhZRHB4DdbseCBQuQn58v8ols2rQJO3bswPHjx1FSUgKz2Qy73Q6n04njx49j8uTJyMzMRGZmJsrKykSSJb6x8GgGOdsnX+i06dLfSWLlTorAQPEokr4ILpcL1dXVg5ICAZESPncqG0o65ZKI/HdqT/4uV8n29fWhs7MTFRUVqKurw4oVK5CWlobS0lK0tbWhsLBQ9FFWO0drkw572ph41Ec09Pf3o7m5GYoykJciIyMDy5cvx+LFi9He3o6mpiYEAgF88MEHQtqVtS7RnGy5JC2r+YEzByARPB6CGhMTg/z8fOEAbbPZkJmZGaH5onlpt9uRkpKCjIwMPP/88ygtLRXmEmqP1Nw8KoibwLiqnp6Fh4/SPMjOzsb111+PK664AuPGjUNfXx+ys7NFlFZMTAyWLl0qDlGaw+S8PXXqVKFuLykpQUdHxyAyyt+l/G6HQkpKCqZPn44lS5YgOzsbHo8HDQ0NqKioiDAryPM8GAyioaFhkObK7/eLcaDIHIpGMhqNiI+Ph8PhwJQpUzB9+nTk5OTAZrMJok5+NBT+TGNNhzU5lQJnsirTPOGRbWSikAm4bK6So4X4vdLS0jBz5kzk5eVBr9ejubkZR48exenTp/Hggw/C7XajtLQUlZWVEW1yUwzNOZko0L3ofnLyPLo2Pj4eGRkZuPTSS1FXVyfm5TvvvIPU1FQkJyfDYDCgsLAQK1euFBE5c+bMwcGDB1FRUYHOzs5BZheZjKgYOajkY4RBm2Vvb68IR6OQu9jYWHg8HmFftVgsuPnmmzFu3DixENatW4eioiK4XC5h650/fz4uvfRSbN68GWPHjsWECRMwZ84cwezdbrfwXqdU1bRBkXqeNCQyuH8GABHNwA/o+vp6+Hw+EZkDAE1NTaioqBAJznj9GO7hTu3we8iLPJrHOf+fb6jy5k8HfltbG8rKylBSUoKvfe1rGDVqFBYvXoxAICCcP/n3hpJ2iJBxrQcP9+OSGv8OXUdmkNWrV2P8+PGw2+3Q6XTo6OjAxo0bxdgSOeSRKDytN4GTOz6OtFHT+HEpFhiQgBcsWIC2tja0t7cjPT0dEyZMEM9GmqisrCw4nU5kZGQgPj4en3zyCSorK0WmUU4+jEajCA/n5jIiKuTkrNFohJnBbrcLFX9MTAwmTZqE22+/HampqVAUBUuWLMGyZcvEs3R3d8NisQjCwseYnjE2NhYpKSnYsGED3njjDfF5NBLC37n8M7VpMpkwZswYTJs2DdOmTQMwUF6ht7cX8fHxUQ8lmh8ulwsff/xxhEYRgKguTVooMoHGxcVBq9UKR+3MzEwsWLAAR44cgd1uF3lT7Hb7oKrYtJ7J9EWl3ykxG2k8eI4aEmpIS0p/5743fFxkDVx/fz+cTidmzpyJ3Nxc1NXVoby8HBUVFYiLi0NSUpJwxOZzkO8fMtGRCQ4//KNl7lUUBWazGenp6TAYDDh58iR8Ph96e3vx+uuvY+rUqSgoKIDVasULL7yAyy67TMzVyZMnY9myZdi5cydOnjwZoYWTiYiKkYVKPkYYfX0DBePsdjvq6+ths9nQ39+Prq4uJCUlweFwCPJx+eWXR6jR29raMGbMGNTV1aGxsRHAwOLfunUrDh48iDlz5mDNmjVYtGgRRo0aBaPRiL/+9a/iICHJl0J6yakNOLOxkAMcSfR8k6CDnA4dun92djYWLFiAZcuWiefs6upCU1NTRB4Raos7PMrSO99ouMTFTT28PxSeKDuFcRMJcCYJEScNU6ZMEXZ6vrnQc8vgY0C/A2fs1rK5IhrBeuWVV/DHP/4RVqsVq1evxsKFC5GTk4Pq6uoI3xdZGySbZaiffLwMBoMglgTS/ND3yOYeHx+P9PR03HbbbWhubsZf/vIXPPXUUyLsk/ryn//5n8jKyhI+SE8//TSef/557NixI+I9EBlwOp2iAGJWVhYaGxuRmJgoiAcl1qN3TSnRY2NjxbykuRkOh0VZAb1eD6PRKA5VOoh4zZ1gMIjm5mY4nU6MGzcOs2fPRlFREY4cORKVnEZ7tzIsFgtuv/12JCQkICMjQ4xpc3MzysrKcPr06Yg2ZBD5kucDmVpjY2OFBpQSp/EIH5qL7e3tmDVrlniOKVOmICMjQ2g/0tPT0dnZibKyMhEy6/V6RQp7IjcclEGWQGYKAndyjqYJoWc6ePAg3G437r33XvzoRz/CgQMH0Nvbi+985zsikyr3H5HXBa3T2NhY4ZfEiSWfv5QBlxN0YMB0V1paiqSkJMyfPx///d//jd/97nfQarU4efIk3nrrLbHvnDp1CgaDAUlJSZg0aRImTZoEl8uF7du349ZbbxXvTaNRfT4uJFTyMcIgh0Cqg9HV1SUO57a2NlEbw2g0orGxUVxLh/fnn3+OkpIS+P1+WK1WIaEYjUbMmTNHeMPn5eXh7rvvxrvvvgvgzOFLzl+KokTYOYHBCbzoniTp8NTNpO7VaDR48cUXMWPGjAjNR0dHBxoaGsSzcamHNpNo6lWuiQEGmxu4WpYTJBnR/paTkyMkVwBCvc1xrvbdoXxQoplr5P709fWhq6sLb775Jvr6+rBy5UpMnDgRSUlJIu8DbcbcIZnfl4gXJ2H0Pfqc2qDvaDQaJCUlYdWqVbjzzjuRnZ2NxMRE/M///A/+67/+S7RHjrQajUbkZ4iPj0dJSQnWrl2Lqqoq8e6J/JF2q7q6GooyYJ5zuVyw2+1CS0fvi8wLOp1ORB709fWJImk0Ph6PR/THbrfD4/Fgx44dKC8vF34MH330Ef74xz+isbERJ06cwK5du2AymVBVVYWWlhah9YtmbolmxpPnTTAYxKeffoo333wTEyZMEM7ETzzxBE6cODHoHUfTsPB3QvODJxAkvyvS6FCEmqIo6OrqQktLCxYsWACfz4fOzk4cP34cv/rVryJMXGQOpSzJ/f0DicNeffVVfPLJJ2hvb4fdbhefh8NhTJ06FW1tbWIP4s/B15w8h4n09vcPpGufNWsWVq5cCQA4fvw4WltbMXbsWFx11VXYsWMHNmzYgD179gzSUPJ9DRjQqv7pT3/C73//e+zbt09oyEjbQnOHzExyLSWtVou2tjbs3r0bFRUVEc6oXJj59re/jcceewx33HGHqI+zceNGvPPOOxGaVJqXfP2oGpCRg0o+Rhjksc9DyOhwp/TSOTk5mDdvHiZMmACr1YqqqioUFxejuLgYdXV1IhySS7i9vb1obm4W5MHr9WLz5s0Ras64uDhBPEjSIh8UIDLUlsCleLLfc8kHgChYxzdz2ij5AcnbjbbBySYVuo7/Pxw5GMpsQ6CQQcLhw4exdevWcyYcsj2aj4t8X9J0cJMI3yT7+/tFNEJvby8++ugjceiczZREn/OsnvLYyqYtaueKK67A5Zdfjvz8fJjNZhw/fhzl5eXC3Ddnzhy4XC40NjYiEAhg4sSJsFqtaGxsxOeff47y8nL4/X4xb/kGT6SVnEDpeeQspNw/pLu7GzabDSkpKcjNzcWKFStgMplQWlqK/fv3i7BcyiZ59OhRdHR0AAC8Xi9Onz6NtWvXoq2tDfX19aiuroZer0dHR4eIdhkKnABHw4wZM3D55ZfDbDYjJycHDQ0NOHbsGE6fPo2TJ08KrVm0eTKU5owgZ7+ldcUJY0VFBUpKSjB27FgcP34cU6dOxYwZM6DX65Geng7gTLI4WtPcYdPpdCIhIQExMTFISkoSGgNa4263W/iP8LVNa5WvRx75xJ/NbrcjLy9PkHrSprS1teGtt95CWVkZjh49KioYy3NZFipmzJiBtLQ0kShODrWlZ+NCEgAkJycjPz8fbrcbo0ePFgVA5fcNDEQcNjU1iWgheo7k5GRxHXf0VkNtLwxU8jHC4FVDgTNVIMPhgZoXgUAAubm5WL16NaZMmQJFUbB//3689dZb2LhxY8SmQOpnRRlwbCstLRXttrW1Yd26dWKz6e/vFx7xlAmRO55x8KRP3I+AJBH5YGttbYXX64XFYhFt9PT0CJLEC+HJ0iG1T23RRsd9F3guABor+dDQarWibgU5d9rtdpFS3mQyCX8VQlFREbZv3x6VPPD7yQSMNmqCTBYIFLlgNpuh1WojVN/d3d3i8G5vb8cf/vAH+Hy+CA0HD7WN1jceTkzfoXGmceckSVEUrFy5EpdeeqmYIxs3bkRVVZVIWDVr1iw0NDSIJFTjx49He3s7qqursXPnzkHl5EkaBSAqzVJ0i8/nQzAYFMSDQmvJv4lIt9VqxaRJk7B48WLcfPPN8Pv9KCoqwnvvvYeTJ0/C6/WK9+fz+USBOUVRYLPZsHbtWvG70WgU8zYuLm5QBNdwkMnj7Nmz8f3vfx9JSUnQaDTYunUr/va3v+HAgQPweDyDCPFwWhUZ8udkmtDr9SKj66lTp5CYmIjMzEzs2rUL9913H3JzczFt2jR4PB54PJ6I0HwKTTYajUKzSdlmqR4OLzpXW1sr8oLwEFfuZMnXQDShgA5tMpllZmYKIvjMM88MelY5WkbWgCYkJCAtLQ1JSUlobm6OuJ5Mj3Q9j4JLTU3FtGnT4PV6MXbsWIwaNSqq1tRkMon12NXVJaKA7Ha7yFVEayfamlYxclDJxwiDwjHJaYwfsk1NTbBYLOju7kZ9fT2mTJkibMBk5qCquFQW2263C0kmJSVFEInExETceOONQp2uKIooPiWDF8YCIg9TOe6ebMhcOuC+BwSz2QyHwyHsz7L0BJzJrslzUfAFzyVrTjz4/3Rfo9GIO+64A6tWrcKKFSsQCoXw7W9/G//+7/+OX/7yl7jllluQkZGBhIQEca+rrroKer0e27dvBxCpzZBt3EBkdInsmS87fgKA0+nEypUrsWrVKvT29mL9+vWora1Fc3Mzjh8/DkVR8MEHH+Dzzz8X1ZbpXpTFk4iETECIUNI7Ils52cHJnESOhOTsOmXKFOTl5aG1tRXf/va3ceLECeGXM2XKFKxfvx733nsvfvvb3yIpKQnXXHMNGhoa4PV6IzJoUl9pTtAhT3NUUQbybNBGT2aW7u5uQQoCgQAMBoMwr5C0+u677+LEiRMwGo0iER+RFVofNHf6+vpgNpuF34TP54PP54PD4YBOpxNzms+vcyEiBoMBNTU12Lx5M26++WYx1xRFEQUdo+Fs2pRo0GgG0qWTSdTpdKKqqgoAcOTIEVRWViImJga///3vkZ+fj/Hjx0Oj0eDll1/G2LFjceWVV+Laa69FaWkp0tPTkZKSgs7OTjz88MM4efIkenp6UFZWFiEcABBmGCLF9B75fON1VOgavha1Wi3Kysrw2WefYcKECfjrX/+K5557Di+88EKETwYJM6FQSDih88J1wJl061dccQW6u7vx6quvRmj0aHxpXfBkgzT/yM/t4MGDSExMREtLi7jGbDZj/vz5GDt2LBYvXoyEhAS89NJLUBQFn332GQ4dOhShXeF94qRHxchAJR8jDFp44XBYZESkSU0hs06nU6iZP/74Y3z00UfYvn27kODMZjMSExMjCnDZ7XaMGjUKWq0WW7duxc6dO7F//35RC0Ov16OtrU34ifT19Yk07HwRk0mIDldeVZdrAABElWAURUFDQwNaWloich9wB1MiK9QOZXgl1TGPsJHj7GNiBgrkTZgwAcFgEJ2dnbj88stx7733Ii8vD2azGUVFRVCUgcRHNpsNTz75JCwWi5D6qB/vvvsu1q1bF9E2IZrpiWzs5BBM48TJFUlXl112GW677Tb4/X7s2LEDBQUF2L17t8h7Qtd3dHSgs7MzwmQkazmimZ64ZEqbZSgUEtEApLLmWTC1Wi1+/vOf49prr8Vll12GWbNmYd++fejq6oLFYsH06dMBAHl5eYiJiYHL5YLVakVZWVnEJs6fmZsNFUURmiZ6bz6fL8JZlMIZyT9Bp9PhkksuQUFBAZxOpxg/l8uF4uJi8QxUs8hqtYrkeuQvoSiKkN7Jd4ISd0UzjUQ7ROQxfvDBB7F8+XLMmjULiqLgvvvuw4EDB1BXVzck8YimAZHvQdeQNsdsNgvfh/T0dPT09KCqqkpUtA6FQmhsbITJZMKWLVuwe/duxMfHw2azoaKiAk1NTSgtLcXzzz+PxMRE3HfffVi6dCkOHToktDPklNvd3S2StSUlJcFsNoscQVSwUqPRiD2Km2II5KBK+0FlZaVI0/7II4/g1Vdfxb59+yL8wjj5pL5wEw6PgHriiScQExODxsbGiLnNfyafMF4bpqKiAu+//z5iYmKwevVq3HnnnSgvL8fy5csFYbZarVi4cCFuvPFG+Hw+7Ny5E1u2bEFZWZko0BlNM6uSjgsDlXyMMHhiHYPBIFTRJAUmJCQgMTERVqtVpDbv7e2NSBJEmUMpemXatGmYPXs2Fi9eDIPBgMbGRpSUlKCmpkYsVgDi4KQNj1TitLCjhWRyyCpMCmlMTEwU6ZsBYN26ddi7d29EjgX6n8xMHJzYcBMMfcah1+uxZs0aTJw4EcBAvoS8vDwUFBQIyW7cuHER3+HZYanturo6lJSUoKKiIuLv/H+5j9y3YSh7ODBAphYsWIBLLrkEW7duxebNm9HY2AiXyyVSfxMJ4r4z/N7c1MTvJfeJRx3Rxs41MNz/Iz8/H5dddpkodLdr1y7hF0Ht2Gw2WCwW+P1+vPXWW6irqxPJsWjz55opOmRIA0NEAYCInCKJmqos0+ek0Rg3bhwmTpyIUaNGoaKiQhyq3d3dEUnMSLNBhEqr1QqNBy8kR2HlXGN3rtBoBiIczGazIDoulwsVFRVoaWmJcOqV2/0iph3+3siJkps4yWmU+hMODyRp6+7uhsfjgd/vRygUEg61iYmJWLJkCfLy8sTcaW1tjXAmjY2NRUJCAnQ6nci4Gg6HhamHmwJpLLkpjw57eg5FUUQfSKNKmiaKUqI5QgSLjwGfo/SOy8vLEQwG0draOmgvGGrc6b5tbW1wuVywWCwihDgvLw9utxsGg0EkyktLS4PH40FcXBwqKirgcrkGERx+H5V8XBio5GOEQRsNLXiz2YxAICByISQlJSElJQV2ux1+v19soNwWyyvXarUDaZcXL16MhQsXAhhYiG63W6RLDgQCIi0xxfzzYmJ8cUUjH3R/2e9Bp9Nh3LhxSE1NFdlNFUXBli1bUFxcHJFuWj5U+f34NbLkL2s9HA4H1qxZg9GjRwv1fjgcFloQInKk4YmJiRFOZRyUMZNLq7wP0TYcHg3CNyjutU/JjubMmYO0tDTExsais7MTBw8ehFarFeYAcspsa2sblOJdHjN5jORraAyo9gb1iTRcJP0WFBTg2muvRUJCggjJzMzMhNfrFeaT5ORk2Gw2BINB/OMf/0BNTY2Ym0D0zLKkAaI8E0RiiXxQAbhAICCiVnQ6HaxWKxISEjBlyhQR7bNr1y4UFxejqakJfX19QoNB74QIuaKciRgjZ1k+f4i0yOazocaYPtfpdBg/fjysVqt4z11dXUhOTkZaWppIXd7f3w+32y0cKaNhOE0ImQ7I8Ts2NhZdXV1CQ0BCislkEv43/GAkAksOnhkZGbj11ltFqDMl1qPaOACE9kmj0YhIOvKRoXfGyS6NH61Z7kPB/3ETSEpKClJTU9HU1CTesc/ng9frjfDRkNcYteVyuUTZA9ncKK8Hbo4lTZrL5UJZWRkAoLy8HDNmzEBbWxvMZjMmTpyIGTNmoLa2VkSVtbS0RPiwcU3LuZroVJwfqOTjAoAOS54gyGQywePxYPLkySgoKEBycrKwe546dQoOhwMejwednZ0wmUyigFZPTw8OHjwoVIqKMlB5NC8vDwcPHoxQ8ZPNnmc8pRoHsplBln74RkEL1GAwYObMmUhKShKSZkxMDK6//noAwN69ewXp4RI+bbxDHfRyIiFgYONJTU3F3LlzMXbs2IhNrKurC4WFhaioqEBlZSUOHTqEVatWITExEQkJCVi+fPmgd1BQUICbb74ZZrMZf/jDHyKejdqVwTc6OlTJd4HyGcyaNQtr1qxBQUEBjEYj7rrrLlx33XX47W9/i5aWFuTk5GDChAlISEjAqFGj8Pzzz2Pt2rWDxpk2fpmQcRMHl5RJCiXTECX6MhqNiImJgV6vh9PphNFoREtLC1wuFw4cOIDu7m784x//wN69e7Fs2TLMnTsXZrMZ7e3tuPrqq/Hcc88JrYZs9w+FQkJzQhqQjo4OcWD19fUJJ2qaL+3t7cK8FRsbi9tvvx033ngjUlJS0NLSgvXr1+P48eNob28XGoBAICAitdxut2ibNCHcJBYMBmG32xEbGxuRw+JcD5GEhAS8/fbbGD16tJCex44di+effx5Hjx5FbW0tlixZgo6ODrzwwgtYt27dIH+ns0nKRGC5edPpdArfLoru6erqQnx8PJKSktDY2CiK6ZF5iWrDBAIB1NfXi1orDQ0N2L17t3D+JfMUhT1TiD0lrgsEAujo6IiIRiKzIpFXWbtHz0F9nzx5MgCIPchisSAjIwMLFizAX//6V7z33nvQarVC08vNvdxnrLS0dFA0Cy+AKQspnCz5/X589NFHWL9+PQoKCrBgwQJcd911mDVrFpKSkkSk3913342KigoxDrxN6g/NGe58q2JkoZKPEYbZbBbOURR229PTA51Oh5/85CciPXpsbCwaGhpQW1uL1tZWcR0VzaJ4/RdeeAEFBQXIysqCoij4j//4D9TU1KC+vh6dnZ3Q6/VC0k5KSoLH4xEag+7ubrFB08ZDBw0tSDmqgzQvMTExsNlsuP3222GxWCIO7draWqEOpsORO4hyYkObL6lmZemUoCgKLrvsMvz2t7+N2NxDoRC2bNmCAwcO4OTJkygpKUF7ezuKi4tx11134Z577on6HnQ6Hex2OxwOh1Apnw3yoUL2bDKFAcCOHTtw6tQp3Hnnndi6dSuuvvpq3H777cjLyxN+FTNnzkRMTAxKSkqgKAouueQSPP3003jqqaeEDZ0IDicj1EcaI0rRrygDzsQUIUPjR1oDGt+Kigq43W5kZWUhKysLWq0WR44cwYkTJ9DZ2YkpU6bAbDaLmiXNzc0IBoOiTcqAy3OPkKmH7kn1Rehw4Y6o9Cx2ux1arRY+nw8vvvgivv71ryMlJQUOhwPPPPMMvve97+GSSy7BggULcPDgQUyYMAFvvvkm1q9fD6vVKjQGpAlrbm5GIBAQZgWuKaIDeah3yLF06VKsWbMGOTk5g+ZDSkoKFi1aJBxqMzMzce+99yIjIwO/+c1vzto2h6IMRKJYLBY4nU6kpqaKjKCUJt7v9wvn2ra2NgBnqrWSLwtpe+Lj47F48WIYjUZ8/vnn+OCDD0ThP3IY1ev1aGpqEmaw5ORkBINBdHd3IxwOizlMJi2q1cTfNY+eAgb2jCuuuAILFy7EokWLAADjx4/H559/jp07d0Kj0WDv3r2or68Xfl3cqZ00S0SiuUM3ORTLeT1oPtM+wnMC8fFNTEzElClTsGLFCjzzzDOYO3currnmGgDA/fffj9dffx2bNm2KMLfQd3llXSKJKgEZeajkY4TBbf2BQEAk/NFqtSgqKsL8+fNhMBhQUVGB119/HW1tbUIzYbPZxGau1WoxY8YMmEwm2O12JCQkoLW1FUeOHBGl0el6WsCUWp1qPdCGQxIEl8aAwUmT6GeSRMi2zlWUGo0Gy5YtQ3l5OQ4fPjxocdOByp27uHQhq/W5Y2NlZSXef/993H333TAajairq0NhYSH++te/imyqpBkaO3YsYmNjUVtbi7Fjx4r2Ghsb8dJLL+G6664TZGDKlCk4depUxGEfze7LpS3uU8CvDYVCaG5uxj/+8Q9UVlait7cXdXV1qKurQyAQQHl5OY4fP44rrrgCNpsN11xzDebNm4fJkydj8eLFAAZCLKnGC4HGSTaRcfJImyaPEqL3GAqFcOLECezcuROJiYkiNXhtbS1Onz6N1tZWQQrIeZOcTEkTRdIvmbNoPHiNEp4gizQRGo0GRqMRer0ewWBQ/C02NhbZ2dmC1MTExCAjIwNr1qxBeno6srKyRNrs1tZW+P1+bNy4UTw7+S3RzzqdDvHx8RESbbRoCT5+BJvNhqysLEycOFGQ766uLrS1taGmpkbUj6GMvmPHjkVubq4Ih/+ifgE0Nm63W1R7pTB2OmT5WPLQT25iAgYI36pVq2AymTBu3DjMnDkTO3bsEMSRtCn9/f3CjGM0GuF2u4V5ijSk3E+Gazr4OuVruaCgAJdccgny8vIAACdPnkRlZaWojEwmX3nMZSGD5is35dB1fE1yrSj/ndqmNn0+H2pqarBu3TrhxE4gbaDsU0I/83uQ1kf1+xh5qOTjAoAmO5ECYEASLy4uFo6bp0+fxoYNG0QGSLKhk5rbarVi9uzZYlOn79TU1AjnL7PZLBwcST0LQGhdKKJGJheyJzpXb9KCJ5UulwjC4YGUzuPGjUNCQoKQToEz5gyuygUGZzAdztxRXl6Ot99+G3fccQcUZSA0+cCBA2hubkZtba2IQomPj0dubq5wnCR0dXWhtLQUa9euRWZmJpYsWYKpU6fiyiuvRHd3t6gHQQ6MciZW/v74ZsltxLRpHzlyBMBABeIjR46I5zcYDNi3bx/6+/sxY8YMOBwOpKamwuPx4LLLLkNDQwOampoiTGN8fLltnrRhWq1W+FVQRA9/b3S4VFdXY/PmzTAYDKIqakxMDGpra4V/AZFdchyNFkZN9+djQONChxj9o5BhvV4vSAZFqMTFxWHUqFGCzNL4kIRKZiODwYDRo0cjOztbaHcopwhP90/Pzp1j5YJpfEz5uzUYDLBYLLDZbAAGytUTUTx69Cj0er1YiytWrEB2djZ6enoiQnmjERt5PtPfSYvg9XrhdrsRGxsris1RODs9J4XXA2dMfmQW0Wq1sNlsWLBgAYCBdPBJSUlCSCHHVe68SkX5+vr6xPO2t7cLnyFgcMJB7hNBP/f09MBqtcLhcMBms0Gj0YjQYPITovlAbcimxKG0nLTG+L1p7+GCgFxnib7f1taGI0eOYPPmzVi5cmVE6v7W1tZBVYhlIkT343vfuZruVHw5qORjhEEaiPj4+IgEYzExMZg8eTJMJhM6OjpQWloqnEppw2htbYXNZkNGRgbGjRuHadOmYdmyZbDb7WhpacF7772HhoYGYUZoa2sTTntGozGiYiqpVkmTAUBsFNHIAD9YKRHa3LlzkZWVJTZSv9+PrVu34uTJkyguLhZ/p+ejA4KbYOga0gDJWhQe/ko2/vj4eCGBOZ1ObN26Fffcc48oLX7o0CEcPnwYc+fOFWmfFUXBnj17sHnzZsybNw8NDQ3o6urC9OnT8bOf/Qzjx49HaWkp6uvrUV9fj6amJiFt8/4AEDlReI0J+RpOEojQEQksKyvDj370I+E7YbVaMW/ePDz//POora1FU1MT6uvrRTsE2R+Exo/mEB2+dPCQSYbMIACwfv16kcKfimjl5OTg8ssvh0ajwd/+9jesX78ehYWFItKKPxdpx/i8IO0LRbuQhoAIKvknuFwupKSkQKMZyH4aCARQXFwc4etATqo0fpSv5LPPPsOrr76K/Px8nDhxQhBgCqGktOxut1sUOaRDlxMx6rN8kLS1taGtrU0Q9E2bNuHdd9/F+vXrha+UoihwOp1YsGABFEXBG2+8gd/97nfinXCSOhyJBgYycpI2hdYpgZ6diDSF3VI/DAYDTCYTgsEgLBZLRDTX//t//w8vvPACenp6EBcXJwQMIjjAmYyzDocDCQkJwieECAc/cKlfNN9oftG4btu2DampqRg/fjzi4+Nx/PhxtLS0RIS08+fihIaeUz7k5fTpvE8kYCjKmercfF3Quy0vLxdVdJ9++mnk5uaKd/Lpp5+irKwsgsBQv6iPNLe42VIlICMLlXyMMPhCMxqNEWaC559/XhxQubm5IsESABEu9x//8R+YNm0aRo0ahaSkJCQkJODIkSPYs2cPqqurBZHQ6XQwm82iiiVJs6TWlTURtJkDEH4iOp1OhBZSvylK5rrrrsOPf/zjCD+EUCiE2tpavPrqq3C5XGLBcmmYxoBLxzzPCHeolE0aJEF/9tlnuOyyyzBt2jRMmjQJJpMJv//970W7VOiNMkUqykBhLspQqdFokJ2dHaFRuvXWW4WaOhQK4YMPPsCuXbtw8uRJlJeXR6jwaQPmJdB5xlg6qLiURxsYPRPXGlCY4Isvvojq6mo0NDREzBf6nzQH1KZ8MHATGI07TzJG5JEyj/J26ZD/+te/jlOnTmHXrl3iffN7klqa/sZV8NS2wWAQ15BzNTBQH4bMC+RnMHXqVHGYkYMnHSxEjDdv3gyHw4EVK1aIHBJ0SBAhpaq4iYmJ4jCR/ZWobf47H+fm5mYUFRVh/PjxePvtt7F3715BrPr7+5GTk4M5c+aIFOf/9m//hszMzAi/oqE0HjLcbrfwyeHfJXJvsVhgsVgQDAZRX18Po9EotFvk76XX6zF9+nRcffXVoo1LL70UX/va1/DOO++IqBkys3KTFwBROZd8r0hzxucdPQvNWTLT0t927NghcqvceOONcDqdsNlsgqTyg11uVwY3L5FZmtYJF1yInBgMBmEm5sRIfgdPPfUU1qxZg1tuuQWxsbGYPXs2mpubRSZk2v+IbPCwYB55pJpeRhYq+RhhkP2TnMY0moFiXxMmTIDNZkNvby9aW1tF2GhMzEAxN7PZjGXLlmH+/PnIycmB1WqFXq/H0aNHUVRUhJMnT+L48eOIi4sTXvB9fX1iw1KUgciWzs7OiERU/IDkpAA441hIpID6TepZr9cr1K2dnZ0oKSnBhx9+iI6ODiEd0yLmJIKTEFrYw5ldCH19fSIVeVlZGWbPni0SY9nt9ohra2trsWfPHpSVlSEjIwNHjx7Fjh074Ha7odFosH37dsTExODUqVPQaDS46aab0N/fj4aGBhQWFiI/P1+orMvLy0W7XBtD40ObIZfegIF8I5RVtampCUVFRUKTQpvl1772NSxevBg2mw2vvfYaamtr0d7ePkj1y304CBTJwJ0CeR9JG0KHC5FOulav1+OOO+7A9OnTUVBQgL6+PmzYsAGlpaWiHf7eyMeHb/gy6eJJpQCIomlEKMiJkcJkyRmavstNSkTM9u/fj6NHj6KiogKdnZ0i4gMYsO3zw4Mq6nKCw30khjpAFEVBWVkZ1q9fj5tvvhnZ2dmoqKhAa2urmJNmsxlOpxPp6enCXHXy5MmobZ6NhBDZp3HiJJ80a0SwYmNjRWkAei4iRSkpKSLnDXAmTTuAiOq4VHCSNBaUFdbr9QrzDtd4yuuV3j8XDEhwcLvdaGxsRFdXF6688kpkZWXh4MGDeOWVVwZpUuT1zzWbvN1oIbk0h3kNGk6GZRMRoaSkBMeOHcP06dORn5+PBQsWoKioCIWFhYMEIprfJASp2U0vHFTycQFAzoHAmaiLMWPGAIAoi07SL214ubm5uOqqq4Q/hUYz4BB3+vRplJSUoLy8HM3NzXA4HMKMQdIwbeS0uPhCkh2v+GKUo1HoM/oOt3fTYV9YWBghcXKJgTus0SbHnSSHsgEDEBqNjo4ObNy4EV6vFx0dHQiFQiIpFB1IbrcbpaWl2L59O4qKijBmzBgcOXIE7e3t4iCi7JknTpyAVqtFXl4e2tvbUVJSgq1bt+K+++4DMDgvCfWF95lIHrdRK4qC5ORk5ObmIjs7G6FQCDU1Nejp6RGamQkTJmDFihW4/vrr0dbWhl//+tdoaWkR5jHZVi5rjLhJhpt2aNOka7g6ndqhjX/p0qWYM2cORo0ahf7+fmzcuBGVlZUR9+QHEj8g6f3xecN9eDjRoT5yKZX6z301uParr68PbW1tOHr0KE6dOiWIALf90+FMGj+K0uBzlt45H1PqD0draysOHz6MiooKTJ06FaFQCEajUby37OxsUWjv+PHj2LVrF/bt2xcxL4bSrESbz3wcKCSdH3S0vjjxp7GUST2Ni9frRWdnp2iTa91oPMjZPC4uDp2dnQgGg4iLixv0vvlcp3vx/vF8J2VlZTh+/Djy8/ORmZmJrKwsbN26FadPn44glbw9+T5cAKLn5uG1RD7ou3yshyOXHR0dOHbsGPbs2YP8/HwkJyeLtP/y3ObaQ7qPSjwuDFTyMcKw2WxQFAVut1tk2jMajcjKyhKT3OVyidoWubm5+PrXv44bbrgBer0eCQkJQsLbs2ePICBHjx6FzWYTGhMAIg11XFycyMGQk5MDr9crnM3I3swlCS698oVNznDh8EChqry8PNHnbdu24eWXX46wnZJEwtvg/gpEkgAIkwKphWUtDGlq6Ppdu3Zhz549ePbZZxEbG4tp06aJMOTPP/9cjDcRDWqD0NPTg2PHjqG4uBh6vR5VVVXo6OiA1+uFVqtFIBBARUWFCHPk/ac+UOZJ7s1PCIfDaGtrQ1VVFXQ6HR599FERgUC5Ln74wx9i4sSJaGxsxPbt2wdttHwz5OSBxocSN1G2XK5CJ5U3t59TKCUdfHQNaUSCwSDKyspE2n8u/dE7pRTc3FxG49Pf3x+heSNSQPlHzGYzOjs74XA40NvbK8KxgcgQbILf78eBAwdw9OhRuN1u6HQ6ZGRkoLq6GgaDQczFUaNGwe/3C4fh/v5+4VNBWXbPhQzQeD377LN44okncNNNN6G1tRUvvPACGhoasGrVKtxwww3o7+/Hvffei9OnT4vIGhoD+WdOSDh4WCt3XCXHV6rMS1pLXhCR4+jRo/jwww+xdOlShEIhtLW1obm5Wfje8LHkc7a5uVloiLimhfrKNW/c3Mg1EiRElZeXi7n+ve99DxMmTMCkSZPws5/9DPfccw/a2toiSAu/B80rPodo3KL5WXANKZFQnvyPiD1HOBzG1q1b0dLSgnvuuQeFhYVoamqKMK/Qs5NmlzRMfA2pJGRkoZKPEQbZNEllPmbMGFgsFpSWlopN8oorrkBBQQF+/etfY82aNUhLSxPq6fr6ehQWFuLYsWPo6+vDe++9B5/PJ6p+kqNdT08PvF6vqARK0Qy1tbVCzU1ZE6M5TnKfAgAREixlNaXDS6PRCCm/ra1tSCmHq0W5JoWrkenaoaQtDn7QFhYWRhzMtCFxExL9zjczIg+nT58WB76iKNi7d28ECQDOFN6ig4P6zFXWvO2SkhKhyfD5fKisrERHRwecTiceffRRTJw4EadOncL+/fuxb98+IWFzsseL+MkSnl6vFxIzabri4+PR398vDhs+dvQ/EZpgMIiSkhKRFfM3v/kNWlpaxKZOJhsiH/y9aLVa4cRMxJH8LugdKsqAH5DD4RAHg81mE+3Fx8dj3rx5EY6xVIyuoqICBw4cwGuvvSYcf7nan7IEO51O4WwaEzNQUI9U51SUkR+qwx0gfr8fXV1duPbaa0UkV3p6Op566ilhciorK8O8efME8TubbwfdU75Or9cLE6DJZEJmZqYwV/KkbEajUWg5nU6n0DhqtVqRm+W6664TWoL29nY0NjZGEA8ycXV3dwtn9zFjxoiEXgCEBpGPD9fu0TojTRNFQ5HGye12Y9euXWhpacGDDz6Ib3zjG6IuD+0vvF2aI/I4kV8azW+ZdJG5kEy23NeDIqv4uqV7rV69WvjmpKenY+zYsaipqcGpU6ci9hiaW7I2T8XIQyUfIwxyvgyHwyINclJSEtLS0sQ1Op0OiYmJuP3225Geng6TyYRQKIQNGzZAoxlI3LN7926Ew2GhNiUpmZJm0aEqS5bR7KJcLU2g33k2UnJOXLZsGXJyclBTU4Pq6mp4PB40NjYiPT09ImshPSeZf4DIMtjRnMPooJUlR34d/52TCzoMeBv8+YeSQrnERZ/LEpSsAZClMd4vTpy8Xi+qqqrwzjvv4NFHHxUbd25uLt555x2cPn0a1dXVqKqqEj4mRDy4TZw0HPx+9H7o2Sl6AkCEfwf1n0uY9Mw1NTX47LPPEAqFsHv3bkGoSAqM9j5l52RuPqGxJ4dPo9GIYDAoTGMU7UUOg21tbfjFL36B3NxcjBs3DqdPn0ZRUZFwJq2uroaiKBHOthQGTUSNOzRS38iRmubvUAcef7/AQMG3F198EeXl5bjsssswbtw47NixA5999pnInOp2uwep/b8oaD1SpAlPJU81Vuj5tNqBiB6/34/Y2FiYTCYRLt3c3Izi4mIsW7YMR48eRVNTk9gLaPzJ2ZQTwpaWFkFeAYjruOmO5rP8nLJ/Ef0tGAyitrYWJSUlqK6uFj4WxcXFcLlc4tn5nCYiTGuVvyvZGZfvEdxcQmub7wXye+F5U7Kzs5GdnY3U1FSUlZUNckzm2hhV63HhoJKPEQZNatogPR4P2tra0NTUhKNHjyIpKQk2mw1WqxXTp0+H3+9HS0sLqqurceDAAfT19eHIkSOifgEtWlIT0sZAUgqlFCZtA6l6iQRwk4usGYim7iQiUlNTIyQHqsNA2RK52YSDa0O4RkGWtuQNT25LJh58kxzucIn2+VDPy9slcGkqmvNdNOmut7cX7e3t2LRpE+6//34kJiYiHA6jrq4OmzdvRlNTE7xer6hAyg/RaM8t30M209DBTmG8/PtEmjjRUhRFqOpramoGJVoj7RbP18I3Zn4PIijk/0KHn8/nE98hMkDtl5aWYv/+/cjNzcXUqVNx4sQJ7N69G1arFYmJiXC73RFaKz53KGSUzxUyDcgH2VDEU37foVAImzdvRjg8UAivrq4On3zyCd577z04HA6kpKQM20a0NocCEXJaq9RXImj8kI+PjxcOpEMdhi6XS+SvIAdT0gQQoaE5QgnGiDASOZUTi3Hw9UYHtmwG8Xq9KCsrQ3FxMW655Rbk5eWhvr4eLpdr0Hoaai3KJILA3yv9LpNATrZ5e+3t7aiqqkIoFEJiYqIwd9bX16O6ujoifFx+VhUXBir5GGFYLBahwqX8BqWlpSgpKcGBAwdw9dVXY+7cuZgxYwYUZcDW+8knn+CNN95AVlYWNm3aBJ/PB41GIyRJo9Eo1LPk0EjkglTq5NFus9nQ0tKC3t7eiL4AZ7zPuRaB130hVf3zzz8P4IzGQD6EAYiICJLMedpvTnTkDY4cFjm4syWX3jnoeXl+AX5Q8gM6mho1mkaI91UmZ9QObcSkLpY3Q0UZiNgoLCzE8ePHxYFApcz5WPP709jxyBK5j2SWIXU1SbHUTzLF0LhRUjKOCRMmwOFwoLa2Fh999JH4Po0bjSHdn0IPefghmfGAM5oQMgVRFt2enh60tbUJX4yenh74fD5s3LgRXV1daGlpweHDh9HV1QWj0YhAIIDGxkYRWkr3ouR4VIwx2gHFQ0hpDKIdIsNJs9u2bcO2bdtEm4oykBCspqZm0PfldzeURkTW3sXFxQkNpcPhQGtrq5DOg8EgrFarMKG53W6hRfJ6vcL/qaCgACtXrkRvb6+IgCOTTWZmJjweDzwej/DX4to1v98v8oBQBdpo84u0L/QZkaJo5saenh4cOnQIBoMBN9xwAzIzM2G1WiPGnwseNH+jkR9+P25e4dpUPg/pWp5fiFBZWYldu3Zh6dKlyMrKwpIlS5Cfnw+dToeXXnoJXq930D1pDFRcGGgUleqNCLq6umCz2URVU/ISz8jIgFY7UOyNnMQsFgsSExMRCoVE7omenh7hnEqRHVVVVcjMzITP5xO28u7ubhgMBrEx+Hw+mM1mxMTEoLu7W1SyBQZCNamSJpegedQB2dJl8IOcS6b8Wq1WC5PJJKrzyocnvwddTxohvqnJ/g784OebIDC8059MHghDSWP87zyahZ6FmyJ4n6gN2YFvODU9jU20vkU7xGQ1NWX7lB37KNqJDhL+jCT50jsjcwL9jZxG6cDixJDGMy4uThAo+gcMzC2HwyGKwoXDA3kbeJbTrq4uaDQaYUaIiYlBe3u78NvQaDTweDzigCTHSOqLRjMQyWK328WhbbVaEQqFhJ8TRY8NNS845HGP9u6iYag5M9xnNG4GgwE2m01UxyWtJY05ZRDt7OwUfiYccXFxsNlsSE5OFj4S3d3dcLlcQso3mUyiAm96ejoMBgNaW1uFP0ZPT4/IcBrt+YfSWHJSQvNWjuLr6+sTZjI+Jlwby0s68DU0HOkmrRzPyjocyLGa0hPU1dVh27Zt+Pjjj3H48GFhDidiTHuTVnsm9wc9P2msaV6qOD9QNR8jDC6VO51O8Tey4fKkUHRYcDUsbeJ8sVMq5p6eHthsNoRCIYRCIeHIR46nlEqZpC3aoLmEQP2RNxxOLnhSMJJ8eTv8cPT5fIO81vlmQZsZdxalPvC2+CYu+2Lwz4eSQunn4dqNpgbmP8v+M3ysZI2N/LvcL+77Eu3ZovmW8O9rNGeiM3gbPASVm9W4NoSTFZpvZC7hmhH+DHRfrqYnHwHuC0NklYgvzTFKr+7z+US4JCXQI1MJl255zSOS0C0Wi3AiJZMLafzInMjzexCRHoo4nCuh+GfksWjmHq6JCofDcLlcwkTKzbJErClZoJwS3G63Iy4uDna7HePHj8eJEyfQ3t4uNCP9/f3weDzw+Xzo7++HzWZDd3c3PB6P2C/44U7vk+7PfR8I3NQhrw+ae/TP4/EMMrPJY8z3DH7A03zkOXQIPLpFNhMNpeGiOdrb24uHH34YwWAQra2taGhoiNDe8vnL92oVIw+VfFwA8EOMarWQUxgwsLgoRp8779FioIVBGf6AM1E0dD0REmqPpAueslh2suShb7SxUHuymYR/zv8uO/eRdMKvk6WnoTQS0RBNtT0U8ThXDPd9rjUZSjKWfx9O/S5v2kM9Lx9neaz4NbKEzs0lNM60yUdL6MTNWdFCq6M53HFTDFfLy+2T9E6+ClROnb7LcypQXy0WS4SWDIhcL3wcOMklkMmRhyiPNL7IfJPfPdVcIgdTGmu73S6Iu1wYjUCEjiR6n8+H7u5uIZwAZ+pH0R7j9/sjnIplM5yslZT7y7OMys9DfeQaTVmQ4ZC1hNEcqvn649+jz7hgFG2M5ftpNBp89tlnEX5LMtGUtTl8HL7o3qLi3KGSjxGCfMCFQiFR0ZIiIKhuCdl5aeERkaCNm9TipGKOiYmBxWKBTqeDx+MRnv6BQCDCBNPS0iJU1LzgE3AmSoAnL6KwOq7uBCI3KO5HQGpwIFKCDwaDIiul7KhJ7XJn2XOxs/INQ1bLRtu8COei8ZDflaxZiUYY6Lm5ZiPa/aP1m0PWHsn9kiVA/jtJgrT581BIOvypIBlpI0gTwbUldD13MiVQWm8AgiDTfCSHZu6LQb5NNH/5QcHNaeT/NGbMGLjdbkEiKKy5r69PFGHjURy0TvhY8Hk0lI+QjGiaMj7uwx1o5wreBmkw6RDv7+8X2VlNJhOys7PR2toqIlosFsug+xG5I7JBdZ24KZPeDfnIUJQRD6undyWXQaB2uGaPm7v4c3GTKR8znkQwmqDAv0+CDvWJz1/5O1z7MpTGIxqIrMr+Wfz98HUpk59o/VdxfqD6fIwQ6uvrkZmZ+VV3Q4UKFSpU/JOoq6vDqFGjvupuXFRQyccIgcIK8/PzUVdX93/aWamrqwuZmZnqOKjjAEAdB4I6DgP4Vx4HRRnwoUtPT1d9Qc4zVLPLCEGr1SIjIwPAgEf+v9qi+iqgjsMA1HEYgDoOA1DHYQD/quNAjvsqzi9UKqdChQoVKlSouKBQyYcKFSpUqFCh4oJCJR8jCIPBgJ/+9KcwGAxfdVe+UqjjMAB1HAagjsMA1HEYgDoO/zehOpyqUKFChQoVKi4oVM2HChUqVKhQoeKCQiUfKlSoUKFChYoLCpV8qFChQoUKFSouKFTyoUKFChUqVKi4oFDJxwjh5ZdfRnZ2NoxGI2bPno0DBw581V0aUTz55JMRBaU0Gg0mTJggPg8Gg3jooYeQmJgIs9mMG264AS0tLV9hj88PduzYgZUrVyI9PR0ajQYffPBBxOeKouCJJ55AWloaTCYTli5dirKysohrOjo6cNttt8FqtcJut2PNmjWDKpr+q+Ns43DXXXcNmh9XXXVVxDUXwzg888wzmDlzJiwWC1JSUvD1r38dpaWlEdecy1qora3FNddcg7i4OKSkpOD73/9+RJn6f3WcyzgsWrRo0Jz45je/GXHN//ZxUDE0VPIxAnj77bfxne98Bz/96U9x+PBhTJ06FcuXL0dra+tX3bURxaRJk9DU1CT+7dq1S3z22GOPYf369XjnnXewfft2NDY2YtWqVV9hb88PfD4fpk6dipdffjnq588++yxefPFFvPLKK9i/fz/i4+OxfPlyUdEYAG677TacOHECGzduxIYNG7Bjxw7cd999F+oRzgvONg4AcNVVV0XMj3Xr1kV8fjGMw/bt2/HQQw9h37592LhxI3p7e7Fs2TL4fD5xzdnWQn9/P6655hr09PRgz549eO2117B27Vo88cQTX8UjfSmcyzgAwL333hsxJ5599lnx2cUwDiqGgaLivGPWrFnKQw89JH7v7+9X0tPTlWeeeeYr7NXI4qc//akyderUqJ+53W5Fp9Mp77zzjvjbqVOnFADK3r17L1APRx4AlL///e/i93A4rDidTuXXv/61+Jvb7VYMBoOybt06RVEU5eTJkwoA5eDBg+KaTz75RNFoNEpDQ8MF6/v5hDwOiqIod955p3LdddcN+Z2LcRwURVFaW1sVAMr27dsVRTm3tfDxxx8rWq1WaW5uFtf84Q9/UKxWqxIKhS7sA5wnyOOgKIpy+eWXK4888siQ37kYx0HFGaiaj/OMnp4eHDp0CEuXLhV/02q1WLp0Kfbu3fsV9mzkUVZWhvT0dIwZMwa33XYbamtrAQCHDh1Cb29vxJhMmDABWVlZF/WYVFVVobm5OeK5bTYbZs+eLZ577969sNvtuPTSS8U1S5cuhVarxf79+y94n0cS27ZtQ0pKCsaPH48HHngA7e3t4rOLdRw8Hg8AwOFwADi3tbB3714UFBQgNTVVXLN8+XJ0dXXhxIkTF7D35w/yOBD+9re/ISkpCZMnT8bjjz8Ov98vPrsYx0HFGaiF5c4z2tra0N/fH7FgACA1NRUlJSVfUa9GHrNnz8batWsxfvx4NDU14amnnsKCBQtQXFyM5uZm6PV62O32iO+kpqaiubn5q+nwBQA9W7S5QJ81NzcjJSUl4vPY2Fg4HI6LamyuuuoqrFq1Cjk5OaioqMAPf/hDrFixAnv37kVMTMxFOQ7hcBiPPvoo5s2bh8mTJwPAOa2F5ubmqHOGPvvfhmjjAAC33norRo8ejfT0dBw7dgw/+MEPUFpaivfffx/AxTcOKiKhkg8V5wUrVqwQP0+ZMgWzZ8/G6NGj8T//8z8wmUxfYc9U/CvglltuET8XFBRgypQpyM3NxbZt27BkyZKvsGcjh4ceegjFxcURvk//FzHUOHB/noKCAqSlpWHJkiWoqKhAbm7uhe6migsM1exynpGUlISYmJhB3ustLS1wOp1fUa8uPOx2O8aNG4fy8nI4nU709PTA7XZHXHOxjwk923Bzwel0DnJE7uvrQ0dHx0U9NmPGjEFSUhLKy8sBXHzj8K1vfQsbNmzA1q1bMWrUKPH3c1kLTqcz6pyhz/43YahxiIbZs2cDQMScuFjGQcVgqOTjPEOv12PGjBnYvHmz+Fs4HMbmzZsxd+7cr7BnFxbd3d2oqKhAWloaZsyYAZ1OFzEmpaWlqK2tvajHJCcnB06nM+K5u7q6sH//fvHcc+fOhdvtxqFDh8Q1W7ZsQTgcFpvxxYj6+nq0t7cjLS0NwMUzDoqi4Fvf+hb+/ve/Y8uWLcjJyYn4/FzWwty5c3H8+PEIMrZx40ZYrVbk5+dfmAf5J3G2cYiGoqIiAIiYE//bx0HFMPiqPV4vRrz11luKwWBQ1q5dq5w8eVK57777FLvdHuG1fbHhu9/9rrJt2zalqqpK2b17t7J06VIlKSlJaW1tVRRFUb75zW8qWVlZypYtW5TCwkJl7ty5yty5c7/iXv/z8Hq9ypEjR5QjR44oAJTf/va3ypEjR5SamhpFURTll7/8pWK325UPP/xQOXbsmHLdddcpOTk5SiAQEG1cddVVyiWXXKLs379f2bVrlzJ27Fhl9erVX9UjfSkMNw5er1f53ve+p+zdu1epqqpSNm3apEyfPl0ZO3asEgwGRRsXwzg88MADis1mU7Zt26Y0NTWJf36/X1xztrXQ19enTJ48WVm2bJlSVFSkfPrpp0pycrLy+OOPfxWP9KVwtnEoLy9Xnn76aaWwsFCpqqpSPvzwQ2XMmDHKwoULRRsXwzioGBoq+Rgh/O53v1OysrIUvV6vzJo1S9m3b99X3aURxc0336ykpaUper1eycjIUG6++WalvLxcfB4IBJQHH3xQSUhIUOLi4pTrr79eaWpq+gp7fH6wdetWBcCgf3feeaeiKAPhtj/5yU+U1NRUxWAwKEuWLFFKS0sj2mhvb1dWr16tmM1mxWq1Knfffbfi9Xq/gqf58hhuHPx+v7Js2TIlOTlZ0el0yujRo5V77713EBm/GMYh2hgAUP7yl7+Ia85lLVRXVysrVqxQTCaTkpSUpHz3u99Vent7L/DTfHmcbRxqa2uVhQsXKg6HQzEYDEpeXp7y/e9/X/F4PBHt/G8fBxVDQ6MoinLh9CwqVKhQoUKFiv/rUH0+VKhQoUKFChUXFCr5UKFChQoVKlRcUKjkQ4UKFSpUqFBxQaGSDxUqVKhQoULFBYVKPlSoUKFChQoVFxQq+VChQoUKFSpUXFCo5EOFChUqVKhQcUGhkg8VKlSoUKFCxQWFSj5UqFChQoUKFRcUKvlQoUKFChUqVFxQqORDhQoVKlSoUHFBoZIPFSpUqFChQsUFxf8PGi5fhEjX1rYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "USE_TORCH_DIFFEQ = True\n", + "\n", + "node = NeuralODE(model, solver=\"euler\", sensitivity=\"adjoint\", atol=1e-4, rtol=1e-4)\n", + "# Evaluate the ODE\n", + "with torch.no_grad():\n", + " if USE_TORCH_DIFFEQ:\n", + " traj = torchdiffeq.odeint(\n", + " lambda t, x: model.forward(t, x, generated_class_list),\n", + " torch.randn(100, 1, 28, 28, device=device),\n", + " torch.linspace(0, 1, 2, device=device),\n", + " atol=1e-4,\n", + " rtol=1e-4,\n", + " method=\"dopri5\",\n", + " )\n", + " else:\n", + " traj = node.trajectory(\n", + " torch.randn(100, 1, 28, 28, device=device),\n", + " t_span=torch.linspace(0, 1, 2, device=device),\n", + " )\n", + "grid = make_grid(\n", + " traj[-1, :100].view([-1, 1, 28, 28]).clip(-1, 1), value_range=(-1, 1), padding=0, nrow=10\n", + ")\n", + "img = ToPILImage()(grid)\n", + "plt.imshow(img)\n", + "plt.title(f\"schrödinger bridge cfm\\nlabels: {cond_values}\")\n", + "plt.savefig(\"sf2m_noninteger.svg\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "2da4e4d7", + "metadata": { + "execution": { + "iopub.execute_input": "2025-05-08T13:14:17.771573Z", + "iopub.status.busy": "2025-05-08T13:14:17.771417Z", + "iopub.status.idle": "2025-05-08T13:14:17.835882Z", + "shell.execute_reply": "2025-05-08T13:14:17.835353Z" + } + }, + "outputs": [], + "source": [ + "# follows example from https://github.com/google-research/torchsde/blob/master/examples/cont_ddpm.py\n", + "\n", + "\n", + "# class SDE(torch.nn.Module):\n", + "# noise_type = \"diagonal\"\n", + "# sde_type = \"ito\"\n", + "\n", + "# def __init__(self, ode_drift, score, labels=None, reverse=False, sigma=0.1):\n", + "# super().__init__()\n", + "# self.drift = ode_drift\n", + "# self.score = score\n", + "# self.reverse = reverse\n", + "# self.labels = labels\n", + "# self.sigma = sigma\n", + "\n", + "# # Drift\n", + "\n", + "# def f(self, t, y):\n", + "# y = y.view(-1, 1, 28, 28)\n", + "# if self.reverse:\n", + "# t = 1 - t\n", + "# return -self.drift(t, y, self.labels) + self.score(t, y, self.labels)\n", + "# return self.drift(t, y, self.labels).flatten(start_dim=1) + self.score(\n", + "# t, y, self.labels\n", + "# ).flatten(start_dim=1)\n", + "\n", + "# # Diffusion\n", + "# def g(self, t, y):\n", + "# return torch.ones_like(y) * self.sigma\n", + "\n", + "\n", + "# # %%\n", + "# sde = SDE(model, score_model, labels=torch.arange(10, device=device).repeat(10), sigma=0.1)\n", + "# with torch.no_grad():\n", + "# sde_traj = torchsde.sdeint(\n", + "# sde,\n", + "# # x0.view(x0.size(0), -1),\n", + "# torch.randn(100, 1 * 28 * 28, device=device),\n", + "# ts=torch.linspace(0, 1, 2, device=device),\n", + "# dt=0.01,\n", + "# )\n", + "\n", + "# # %%\n", + "# grid = make_grid(\n", + "# sde_traj[-1, :100].view([-1, 1, 28, 28]).clip(-1, 1), value_range=(-1, 1), padding=0, nrow=10\n", + "# )\n", + "# img = ToPILImage()(grid)\n", + "# plt.imshow(img)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "39b78902", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "torchcfm2", + "language": "python", + "name": "torchcfm2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tests/test_models.py b/tests/test_models.py index 6d82f98..42091a3 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -1,13 +1,68 @@ +import torch +from torchcfm.conditional_flow_matching import ConditionalFlowMatcher from torchcfm.models import MLP from torchcfm.models.unet import UNetModel -def test_initialize_models(): - UNetModel( +def test_initialize_unet(): + model = UNetModel( dim=(1, 28, 28), num_channels=32, num_res_blocks=1, num_classes=10, class_cond=True, ) - MLP(dim=2, time_varying=True, w=64) + + batch = torch.zeros((8, 1, 28, 28), dtype=torch.float32) + label = torch.ones((8,), dtype=torch.long) + timesteps = torch.linspace(0, 1, steps=8) + + _ = model(t=timesteps, x=batch, y=label) + + +def test_initialize_mlp(): + model1 = MLP(dim=2, time_varying=True, w=64) + batch = torch.ones((8, 3), dtype=torch.float32) + output1 = model1(x=batch) + + assert output1.shape == (8, 2) + + model2 = MLP(dim=2, w=64) + batch = torch.ones((8, 2), dtype=torch.float32) + output2 = model2(x=batch) + + assert output2.shape == (8, 2) + + +class mock_embedding(torch.nn.Module): + def __init__(self, outdim=128): + super().__init__() + self.outdim = outdim + + def forward(self, inputs): + batchsize = inputs.size(0) + if len(inputs.shape) == 1: + inputs = inputs.reshape((batchsize, 1)) + + return torch.tile(inputs, (1, self.outdim)) + + +def test_conditional_model_without_integer_labels(): + model_channels = 32 + model = UNetModel( + dim=(1, 28, 28), + num_channels=model_channels, + num_res_blocks=1, + class_cond=False, + embedding_net=mock_embedding, + ) + + x1 = torch.ones((8, 1, 28, 28), dtype=torch.float32) + x0 = torch.randn_like(x1) + FM = ConditionalFlowMatcher(sigma=0.0) + t, xt, ut = FM.sample_location_and_conditional_flow(x0, x1) + + label = 42.1 * torch.ones((8,)).float() + + vt = model(t=t, x=xt, y=label) +>>>>>>> 1dbfbd0 (more tests and floating point conditions) diff --git a/torchcfm/models/unet/unet.py b/torchcfm/models/unet/unet.py index a75c9de..b884c5e 100644 --- a/torchcfm/models/unet/unet.py +++ b/torchcfm/models/unet/unet.py @@ -390,8 +390,10 @@ class UNetModel(nn.Module): upsampling. Deprecated. :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks for up/downsampling. - :param use_new_attention_order: use a different attention pattern for potentially increased - efficiency. + :param use_new_attention_order: use a different attention pattern for potentially + increased efficiency. + :param embedding_net: class to use for embedding. This is expected to be called like + `self.label_emb = embedding_net()` or `self.label_emb = embedding_net(num_classes, time_embed_dim)` for class-conditional generation """ def __init__( @@ -415,6 +417,7 @@ def __init__( use_scale_shift_norm=False, resblock_updown=False, use_new_attention_order=False, + embedding_net=nn.Identity, ): super().__init__() @@ -444,8 +447,13 @@ def __init__( linear(time_embed_dim, time_embed_dim), ) + self.label_emb = embedding_net() if self.num_classes is not None: - self.label_emb = nn.Embedding(num_classes, time_embed_dim) + embedding_net = nn.Embedding if embedding_net == nn.Identity else embedding_net + self.label_emb = embedding_net(num_classes, time_embed_dim) + assert not isinstance( + self.label_emb, nn.Identity + ), f"for class-conditional networks, provide an embedding please!" ch = input_ch = int(channel_mult[0] * model_channels) self.input_blocks = nn.ModuleList( @@ -604,9 +612,9 @@ def forward(self, t, x, y=None): :return: an [N x C x ...] Tensor of outputs. """ timesteps = t - assert (y is not None) == ( - self.num_classes is not None - ), "must specify y if and only if the model is class-conditional" + # assert (y is not None) == ( + # self.num_classes is not None + # ), "must specify y if and only if the model is class-conditional" while timesteps.dim() > 1: print(timesteps.shape) timesteps = timesteps[:, 0] @@ -614,11 +622,20 @@ def forward(self, t, x, y=None): timesteps = timesteps.repeat(x.shape[0]) hs = [] - emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + # create sinusoidal timesteps proto embedding complying with creating + # a tensor of shape (batchsize, self.model_channels) + embedded_timesteps = timestep_embedding(timesteps, self.model_channels) - if self.num_classes is not None: - assert y.shape == (x.shape[0],) - emb = emb + self.label_emb(y) + # create NN based embedding that gives a emb tensor with shape + # (batchsize, 4*self.model_channels) + emb = self.time_embed(embedded_timesteps) + + if y is not None: + assert ( + y.shape[0] == x.shape[0] + ), f"batch dimension of y ({y.shape[0]}) does not match x ({x.shape[0]})" + labels = self.label_emb(y) + emb = emb + labels h = x.type(self.dtype) for module in self.input_blocks: @@ -855,6 +872,7 @@ def forward(self, x, timesteps): NUM_CLASSES = 1000 +# this overwrites UNetModel in __init__.py class UNetModelWrapper(UNetModel): def __init__( self, @@ -875,6 +893,7 @@ def __init__( resblock_updown=False, use_fp16=False, use_new_attention_order=False, + embedding_net=nn.Identity, ): """Dim (tuple): (C, H, W)""" image_size = dim[-1] @@ -918,6 +937,7 @@ def __init__( use_scale_shift_norm=use_scale_shift_norm, resblock_updown=resblock_updown, use_new_attention_order=use_new_attention_order, + embedding_net=embedding_net, ) def forward(self, t, x, y=None, *args, **kwargs):