-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathcli.py
139 lines (114 loc) · 4.08 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Provides a command line interface for the GPTResearcher class.
Usage:
```shell
python cli.py "<query>" --report_type <report_type>
```
"""
import asyncio
import argparse
from argparse import RawTextHelpFormatter
from uuid import uuid4
import os
from dotenv import load_dotenv
from gpt_researcher import GPTResearcher
from gpt_researcher.utils.enum import ReportType, Tone
from backend.report_type import DetailedReport
# =============================================================================
# CLI
# =============================================================================
cli = argparse.ArgumentParser(
description="Generate a research report.",
# Enables the use of newlines in the help message
formatter_class=RawTextHelpFormatter)
# =====================================
# Arg: Query
# =====================================
cli.add_argument(
# Position 0 argument
"query",
type=str,
help="The query to conduct research on.")
# =====================================
# Arg: Report Type
# =====================================
choices = [report_type.value for report_type in ReportType]
report_type_descriptions = {
ReportType.ResearchReport.value: "Summary - Short and fast (~2 min)",
ReportType.DetailedReport.value: "Detailed - In depth and longer (~5 min)",
ReportType.ResourceReport.value: "",
ReportType.OutlineReport.value: "",
ReportType.CustomReport.value: "",
ReportType.SubtopicReport.value: ""
}
cli.add_argument(
"--report_type",
type=str,
help="The type of report to generate. Options:\n" + "\n".join(
f" {choice}: {report_type_descriptions[choice]}" for choice in choices
),
# Deserialize ReportType as a List of strings:
choices=choices,
required=True)
# First, let's see what values are actually in the Tone enum
print([t.value for t in Tone])
cli.add_argument(
"--tone",
type=str,
help="The tone of the report (optional).",
choices=["objective", "formal", "analytical", "persuasive", "informative",
"explanatory", "descriptive", "critical", "comparative", "speculative",
"reflective", "narrative", "humorous", "optimistic", "pessimistic"],
default="objective"
)
# =============================================================================
# Main
# =============================================================================
async def main(args):
"""
Conduct research on the given query, generate the report, and write
it as a markdown file to the output directory.
"""
if args.report_type == 'detailed_report':
detailed_report = DetailedReport(
query=args.query,
report_type="research_report",
report_source="web_search",
)
report = await detailed_report.run()
else:
# Convert the simple keyword to the full Tone enum value
tone_map = {
"objective": Tone.Objective,
"formal": Tone.Formal,
"analytical": Tone.Analytical,
"persuasive": Tone.Persuasive,
"informative": Tone.Informative,
"explanatory": Tone.Explanatory,
"descriptive": Tone.Descriptive,
"critical": Tone.Critical,
"comparative": Tone.Comparative,
"speculative": Tone.Speculative,
"reflective": Tone.Reflective,
"narrative": Tone.Narrative,
"humorous": Tone.Humorous,
"optimistic": Tone.Optimistic,
"pessimistic": Tone.Pessimistic
}
researcher = GPTResearcher(
query=args.query,
report_type=args.report_type,
tone=tone_map[args.tone]
)
await researcher.conduct_research()
report = await researcher.write_report()
# Write the report to a file
artifact_filepath = f"outputs/{uuid4()}.md"
os.makedirs("outputs", exist_ok=True)
with open(artifact_filepath, "w") as f:
f.write(report)
print(f"Report written to '{artifact_filepath}'")
if __name__ == "__main__":
load_dotenv()
args = cli.parse_args()
asyncio.run(main(args))