-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathlwa_transformer.py
480 lines (355 loc) · 14.4 KB
/
lwa_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
#===================================================================================================================
# Local Windowed Attention Trasformer Module
# Version 1.0
# Source code courtesy of lucidrains
# https://github.com/lucidrains/local-attention
# Code retrieved on 12/11/2022
# Project Los Angeles
# Tegridy Code 2022
#===================================================================================================================
# Critical dependencies
# !pip install torch
# !pip install einops
#===================================================================================================================
import math
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat, pack, unpack
#===================================================================================================================
class SinusoidalEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x):
n = x.shape[-2]
t = torch.arange(n, device = x.device).type_as(self.inv_freq)
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
return torch.cat((freqs, freqs), dim=-1)
def rotate_half(x):
x = rearrange(x, 'b ... (r d) -> b (...) r d', r = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(q, k, freqs):
q, k = map(lambda t: (t * freqs.cos()) + (rotate_half(t) * freqs.sin()), (q, k))
return q, k
#===================================================================================================================
# constant
TOKEN_SELF_ATTN_VALUE = -5e4
# helper functions
def exists(val):
return val is not None
def default(value, d):
return d if not exists(value) else value
def to(t):
return {'device': t.device, 'dtype': t.dtype}
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def l2norm(tensor):
dtype = tensor.dtype
normed = F.normalize(tensor, dim = -1)
return normed.type(dtype)
def pad_to_multiple(tensor, multiple, dim=-1, value=0):
seqlen = tensor.shape[dim]
m = seqlen / multiple
if m.is_integer():
return False, tensor
remainder = math.ceil(m) * multiple - seqlen
pad_offset = (0,) * (-1 - dim) * 2
return True, F.pad(tensor, (*pad_offset, 0, remainder), value = value)
def look_around(x, backward = 1, forward = 0, pad_value = -1, dim = 2):
t = x.shape[1]
dims = (len(x.shape) - dim) * (0, 0)
padded_x = F.pad(x, (*dims, backward, forward), value = pad_value)
tensors = [padded_x[:, ind:(ind + t), ...] for ind in range(forward + backward + 1)]
return torch.cat(tensors, dim = dim)
# main class
class LocalAttention(nn.Module):
def __init__(
self,
window_size,
causal = False,
look_backward = 1,
look_forward = None,
dropout = 0.,
shared_qk = False,
rel_pos_emb_config = None,
dim = None,
autopad = False,
exact_windowsize = False
):
super().__init__()
look_forward = default(look_forward, 0 if causal else 1)
assert not (causal and look_forward > 0), 'you cannot look forward if causal'
self.window_size = window_size
self.autopad = autopad
self.exact_windowsize = exact_windowsize
self.causal = causal
self.look_backward = look_backward
self.look_forward = look_forward
self.dropout = nn.Dropout(dropout)
self.shared_qk = shared_qk
# relative positions
self.rel_pos = None
if exists(rel_pos_emb_config) or exists(dim): # backwards compatible with old `rel_pos_emb_config` deprecated argument
if exists(rel_pos_emb_config):
dim = rel_pos_emb_config[0]
self.rel_pos = SinusoidalEmbeddings(dim)
def forward(self, q, k, v, mask = None, input_mask = None):
mask = default(mask, input_mask)
shape, autopad, pad_value, window_size, causal, look_backward, look_forward, shared_qk = q.shape, self.autopad, -1, self.window_size, self.causal, self.look_backward, self.look_forward, self.shared_qk
# https://github.com/arogozhnikov/einops/blob/master/docs/4-pack-and-unpack.ipynb
(q, packed_shape), (k, _), (v, _) = map(lambda t: pack([t], '* n d'), (q, k, v))
# rotary embeddings
if exists(self.rel_pos):
pos_emb = self.rel_pos(q)
q, k = apply_rotary_pos_emb(q, k, pos_emb)
# auto padding
if autopad:
orig_seq_len = q.shape[1]
(needed_pad, q), (_, k), (_, v) = map(lambda t: pad_to_multiple(t, self.window_size, dim = -2), (q, k, v))
b, n, dim_head, device, dtype = *q.shape, q.device, q.dtype
scale = dim_head ** -0.5
assert (n % window_size) == 0, f'sequence length {t} must be divisible by window size {window_size} for local attention'
windows = n // window_size
if shared_qk:
k = l2norm(k)
seq = torch.arange(n, device = device)
b_t = rearrange(seq, '(w n) -> 1 w n', w = windows, n = window_size)
bq, bk, bv = map(lambda t: rearrange(t, 'b (w n) d -> b w n d', w = windows), (q, k, v))
look_around_kwargs = dict(
backward = look_backward,
forward = look_forward,
pad_value = pad_value
)
bk = look_around(bk, **look_around_kwargs)
bv = look_around(bv, **look_around_kwargs)
bq_t = b_t
bq_k = look_around(b_t, **look_around_kwargs)
bq_t = rearrange(bq_t, '... i -> ... i 1')
bq_k = rearrange(bq_k, '... j -> ... 1 j')
sim = einsum('b h i e, b h j e -> b h i j', bq, bk) * scale
mask_value = max_neg_value(sim)
if shared_qk:
self_mask = bq_t == bq_k
sim = sim.masked_fill(self_mask, TOKEN_SELF_ATTN_VALUE)
del self_mask
if causal:
causal_mask = bq_t < bq_k
if self.exact_windowsize:
max_causal_window_size = (self.window_size * self.look_backward)
causal_mask = causal_mask | (bq_t > (bq_k + max_causal_window_size))
sim = sim.masked_fill(causal_mask, mask_value)
del causal_mask
# mask out padding value
if autopad and needed_pad:
pad_mask = bq_k == pad_value
sim = sim.masked_fill(pad_mask, mask_value)
del pad_mask
if exists(mask):
batch = mask.shape[0]
assert (b % batch) == 0
h = b // mask.shape[0]
if autopad:
_, mask = pad_to_multiple(mask, window_size, dim = -1, value = False)
mask = rearrange(mask, '... (w n) -> (...) w n', w = windows, n = window_size)
mask = look_around(mask, **{**look_around_kwargs, 'pad_value': False})
mask = rearrange(mask, '... j -> ... 1 j')
mask = repeat(mask, 'b ... -> (b h) ...', h = h)
sim = sim.masked_fill(~mask, mask_value)
del mask
# attention
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
# aggregation
out = einsum('b h i j, b h j e -> b h i e', attn, bv)
out = rearrange(out, 'b w n d -> b (w n) d')
if autopad:
out = out[:, :orig_seq_len, :]
out, *_ = unpack(out, packed_shape, '* n d')
return out
#===================================================================================================================
# helper function
def exists(val):
return val is not None
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
# sampling functions
def top_k(logits, thres = 0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
# multi-head attention
class LocalMHA(nn.Module):
def __init__(
self,
*,
dim,
window_size,
dim_head = 64,
heads = 8,
dropout = 0.,
causal = False,
prenorm = False,
**kwargs
):
super().__init__()
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim) if prenorm else None
self.heads = heads
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.attn_fn = LocalAttention(
dim = dim_head,
window_size = window_size,
causal = causal,
autopad = True,
exact_windowsize = True,
**kwargs
)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x, mask = None):
if exists(self.norm):
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v))
out = self.attn_fn(q, k, v, mask = mask)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
# feedforward
class GEGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim = -1)
return x * F.gelu(gate)
def FeedForward(dim, mult = 4, dropout = 0.):
inner_dim = int(dim * mult * 2 / 3)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim * 2, bias = False),
GEGLU(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim, bias = False)
)
# main transformer class
class LocalTransformer(nn.Module):
def __init__(
self,
*,
num_tokens,
max_seq_len,
dim,
depth,
causal = True,
local_attn_window_size = 512,
dim_head = 64,
heads = 8,
ff_mult = 4,
attn_dropout = 0.,
ff_dropout = 0.,
ignore_index = -1,
**kwargs
):
super().__init__()
self.token_emb = nn.Embedding(num_tokens, dim)
self.pos_emb = nn.Embedding(max_seq_len, dim)
self.token_pad = num_tokens
self.max_seq_len = max_seq_len
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
LocalMHA(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, causal = causal, window_size = local_attn_window_size, prenorm = True, **kwargs),
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)
]))
self.ignore_index = ignore_index
self.to_logits = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_tokens, bias = False)
)
@torch.no_grad()
@eval_decorator
def generate(
self,
prime,
seq_len,
temperature = 0.8,
filter_thres = 0.9,
min_stop_token = 0,
return_prime = False,
verbose = True,
**kwargs
):
n, device = prime.shape[1], prime.device
out = prime
if verbose:
print("Generating sequence of max length:", seq_len)
for s in range(seq_len):
logits = self.forward(out[:, -self.max_seq_len:], return_loss=False, **kwargs)
filtered_logits = top_k(logits[:, -1], thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim = -1)
sampled = torch.multinomial(probs, 1)
out = torch.cat((out, sampled), dim = -1)
if verbose:
if s % 32 == 0:
print(s, '/', seq_len)
if min_stop_token > 0:
for sa in sampled:
if sa >= min_stop_token:
stop = True
break
else:
stop = False
if stop:
if verbose:
print('Model called the end of sequence at:', s, '/', seq_len)
break
if return_prime:
return out[:, :]
else:
return out[:, n:]
def compute_accuracy(self, logits, labels):
out = torch.argmax(logits, dim=-1)
out = out.flatten()
labels = labels.flatten()
mask = (labels != self.token_pad)
out = out[mask]
labels = labels[mask]
num_right = (out == labels)
num_right = torch.sum(num_right).type(torch.float32)
acc = num_right / len(labels)
return acc
def choose_best_acc(self, outy):
losses_accs = []
for i in range(len(outy)):
out1 = outy[i].tolist()
out2 = torch.LongTensor([out1]).cuda()
with torch.no_grad():
val_loss, val_acc = self.forward(out2, return_loss = True)
losses_accs.append([i, val_loss.tolist(), val_acc.tolist()])
losses_accs.sort(key=lambda x: x[2], reverse=True)
return losses_accs
def forward(self, x, mask = None, return_loss = True):
if return_loss:
x, labels = x[:, :-1], x[:, 1:]
n, device = x.shape[1], x.device
x = self.token_emb(x)
assert n <= self.max_seq_len
x = x + self.pos_emb(torch.arange(n, device = device))
for attn, ff in self.layers:
x = attn(x, mask = mask) + x
x = ff(x) + x
logits = self.to_logits(x)
if not return_loss:
return logits
acc = self.compute_accuracy(logits, labels)
logits = rearrange(logits, 'b n c -> b c n')
loss = F.cross_entropy(logits, labels, ignore_index = self.ignore_index)
return loss, acc
#===================================================================================================================