-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparameter_setup.py
158 lines (135 loc) · 5.15 KB
/
parameter_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import argparse
def parameter_setup():
parser = argparse.ArgumentParser()
# Training Parameters
parser.add_argument("-p",
"--pretrain",
help="Turn on training model from scratch",
action="store_true",
default=False)
parser.add_argument("-s",
"--save",
help="Turn on saving the generator and discriminator",
action="store_true",
default=False)
parser.add_argument(
"--pre_G",
help="setting location for pre-trained Generator",
#default="./netG_10_epoch_state_dict")
default='./celeba_pretrained_generator')
parser.add_argument(
"--pre_D",
help="setting location for pre-trained Discriminator",
#default="./netD_10_epoch_state_dict")
default='./celeba_pretrained_discriminator')
parser.add_argument(
"--data_root",
help="setting location for training data")
#default="./data/AF_Mini")
parser.add_argument("--batch_size",
type=int,
help="setting batch_size",
default=4)
parser.add_argument("--num_shots",
type=int,
help="number of fine-tuning examples",
default=-1)
parser.add_argument(
"--img_freq",
type=int,
help="setting frequency (every n iteration) of saving images",
default=50)
parser.add_argument(
"--score_freq",
type=int,
help="setting frequency (every n iteration) of generating scores (default -1 = last iteration only)",
default=-1)
parser.add_argument("--image_size",
type=int,
help="setting image_size",
default=64)
parser.add_argument("--workers",
type=int,
help="setting workers for data load",
default=2)
parser.add_argument("--num_epochs",
type=int,
help="setting number of epochs",
default=100)
parser.add_argument(
"--D_lr",
type=float,
help="Setting learning rate for discriminator",
#default=0.0002)
default=0.0006)
parser.add_argument("--D_update_rate",
type=int,
help="setting the discriminator update rate",
default=1)
parser.add_argument(
"--D_beta1",
type=float,
help="Setting learning rate for discriminator Adam optimizer beta 1",
default=0.5)
parser.add_argument(
"--D_beta2",
type=float,
help="Setting learning rate for discriminator Adam optimizer beta 2",
default=0.999)
parser.add_argument("--G_lr",
type=float,
help="Setting learning rate for generator",
default=0.0002)
parser.add_argument(
"--G_beta1",
type=float,
help="Setting learning rate for generator Adam optimizer beta 1",
default=0.5)
parser.add_argument(
"--G_beta2",
type=float,
help="Setting learning rate for generator Adam optimizer beta 2",
default=0.999)
parser.add_argument("--ngpu",
type=int,
help="Number of GPU available",
default=torch.cuda.device_count())
# EWC Parameters
parser.add_argument(
"--ewc_data_root",
help="setting location for pre-trained data root",
#default="./data/AF_Mini")
default="./data/CelebA/")
parser.add_argument("--G_ewc_lambda",
type=float,
help="Setting ewc penalty lambda coefficient ",
default=600)
parser.add_argument("--D_ewc_lambda",
type=float,
help="Setting ewc penalty lambda coefficient ",
default=0)
#GAN Hack parameters
parser.add_argument(
"--instance_noise_sigma",
type=float,
help="Setting instant noise std dev inital value (annealed to 0)",
default=0)
parser.add_argument(
"--label_smoothing_p",
type=float,
help="Setting one sided label smoothing probability of wrong label",
default=0)
args = parser.parse_args()
train_dict = dict()
for ele in args._get_kwargs():
train_dict[ele[0]] = ele[1]
train_dict["device"] = torch.device("cuda:0" if (
torch.cuda.is_available() and train_dict['ngpu'] > 0) else "cpu")
# training setup for EWC
ewc_dict = {
"G_ewc_lambda": train_dict['G_ewc_lambda'],
"D_ewc_lambda": train_dict['D_ewc_lambda'],
"ewc_data_root": train_dict['ewc_data_root']
}
return train_dict, ewc_dict