diff --git a/jupyter-notebook/Untitled-4.ipynb b/jupyter-notebook/Untitled-4.ipynb deleted file mode 100644 index 9ddbebd..0000000 --- a/jupyter-notebook/Untitled-4.ipynb +++ /dev/null @@ -1,28 +0,0 @@ -{ - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": 3 - }, - "orig_nbformat": 2 - }, - "nbformat": 4, - "nbformat_minor": 2, - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ] -} \ No newline at end of file diff --git a/jupyter-notebook/contact_model_ppi_aan4-trial.png b/jupyter-notebook/contact_model_ppi_aan4-trial.png deleted file mode 100644 index 11738b4..0000000 Binary files a/jupyter-notebook/contact_model_ppi_aan4-trial.png and /dev/null differ diff --git a/jupyter-notebook/trial.ipynb b/jupyter-notebook/trial.ipynb deleted file mode 100644 index 0d8304f..0000000 --- a/jupyter-notebook/trial.ipynb +++ /dev/null @@ -1,156 +0,0 @@ -{ - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.3-final" - }, - "orig_nbformat": 2, - "kernelspec": { - "name": "python383jvsc74a57bd0dca0ade3e726a953b501b15e8e990130d2b7799f14cfd9f4271676035ebe5511", - "display_name": "Python 3.8.3 64-bit ('base': conda)" - } - }, - "nbformat": 4, - "nbformat_minor": 2, - "cells": [ - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n" - ] - } - ], - "source": [ - "# \n", - "''' putting all import right here will make run very easy. for fresh open\n", - " rerun here and avoide rerunning entire cell\n", - "'''\n", - "\n", - "import numpy as np\n", - "import pandas as pd \n", - "import matplotlib.pyplot as plt \n", - "import seaborn as sns\n", - "from itertools import chain\n", - "from matplotlib.cbook import get_sample_data\n", - "import os\n", - "%matplotlib inline\n", - "%pylab inline" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings('ignore')\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2021-04-20T11:08:54.743927\n image/svg+xml\n \n \n Matplotlib v3.4.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAACeIAAAL7CAYAAACbG2coAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAxOAAAMTgF/d4wjAAC+b0lEQVR4nOzdeZhcVZk/8O9JQhoCXc2wydJxRVQQRQQFR4ZNBxWXYRMUFxwF0XFFf+OIMw6iojMq4CjjAgIKyCgOAm6AgriisijiKG4gpjEBJNCVADYknN8fVR2T0N30llR35/N5nvvcW/eec89bzUn3281b55ZaawAAAAAAAAAAAIDxmdXpAAAAAAAAAAAAAGA6U4gHAAAAAAAAAAAAE6AQDwAAAAAAAAAAACZAIR4AAAAAAAAAAABMgEI8AAAAAAAAAAAAmIA5nQ4AAADonFLKrCQbJimdjgWAdUpNcnet9YFOBwIAAAAAMBkU4gEAwDqolLLLhhtu+O+zZ8/+++XLl8/tdDwArHtmz55930YbbXTp3Xff/Z5a69WdjgcAAAAAYCJKrbXTMQAAAGtRKWWX9dZb77tvfOMb13/FK15RHv7wh2f27NmdDguAdcjy5cvzxz/+MZ/73Ofqxz72sb/cf//9e9Rar+l0XAAAAAAA46UQDwAA1jEbbbTRV1772tfu/5GPfMTjaAHouLe97W31U5/61FeXLl36wk7HAgAAAAAwXgrxAABgHVJKmTV79ux7r7nmmrlPfvKTOx0OAORnP/tZdtlll/uWL1++Qa31gU7HAwAAAAAwHrM6HQAAALBWbbh8+fK5D3/4wzsdBwAkSR7xiEdk+fLlc5Ns2OlYAAAAAADGSyEeAACsW0qSzJ49u9NxAECSVX4meWQ6AAAAADBtKcQDAAAAAAAAAACACVCIBwAAAAAAAAAAABOgEA8AAAAAAAAAAAAmQCEeAACwqoGBTkcwsqkeH6MyMMX/O071+GiZ6v+Zpnp8AAAAAABMHoV4AADAqrq6kt7epNGYeltvbyu+CbjmmmtSSsluu+025PXPf/7zKaWklJKbbrrpQdfvvfferL/++pk3b14GBgZyxBFHrGg/3Lbvvvuuco++vr68//3vzyGHHJJtt902s2bNSiklv/vd74aM6f7778+Xv/zlvPrVr84Tn/jENBqNzJs3LzvuuGPe/e53Z8mSJRP6mnRCV1dXent702g0ptzW29ubrgnOsyQ58MADU0rJSSedNGybq666Kuutt14e9ahHpdlsJkmuv/76HH744dl2222zwQYbZJtttsnee++dL3zhC3nggQcedI8vfelLeeMb35g99tgjjUYjpZS87GUvGzG2pUuX5t/+7d/yhCc8Ieuvv3423njj7Lvvvvn6178+sTe9ls3wb1dJ1s48uuOOO3LaaaflgAMOWNG+p6cnz3zmM/OZz3xmyHk36Ic//GGe97znZZNNNsm8efPypCc9KSeffHKWL18+8TcPAAAAADCNlFprp2MAAADWklJKI0l/f39/Go3G8A0bjWQqFnd1dyftIpPxeuCBB7LZZpul2Wxm8eLFD/o6vOY1r8npp5+eWmtOO+20vPrVr17l+re+9a08+9nPzrOf/exceumlueCCC/Kzn/1syLHOOuus3HjjjfnQhz6Ut7/97SvOX3DBBTnggANSSsmjHvWoLF68OHfddVd++9vfZtttt33QfW644YY84QlPyIYbbpi9994722+/fZYuXZpLLrkkv//977PddtvlBz/4QTbbbLMJfW3WtkajMSWLCLu7u1cUM03EHXfckR133DGLFy/OVVddlR133HGV6/fcc0+e8pSn5He/+12+853v5JnPfGa+8pWv5MADD8ysWbPywhe+MI95zGPy5z//OV/+8pezePHivOY1r8mpp566yn122mmnXHfdddloo43S29ubG264IYcffnjOPvvsIeO66667sscee+QXv/hFdthhh+y77765++67c9FFF+X222/PRz/60bzpTW+a8PtfW2bwt6ska2ceffKTn8zrXve6bLXVVtl7773z8Ic/PLfeemvOP//89Pf356CDDsp5552XUsoqY1944YU56KCDsv766+fQQw/NJptskq985Sv59a9/nYMPPjjnnXfeqN5js9lMT09PkvTUWifhqwYAAAAA0AG1VpvNZrPZbDabzbaObEkaSWp/f38dUXd3rcnU27q7R457lA444ICapF500UUPuvaoRz2q7r333nXTTTetL33pSx90/Z3vfGdNUj/4wQ+OOMadd95ZN9hggzp37tx6++23r3JtwYIF9bvf/e6K/w577rlnTVJ/+9vfDnmvvr6+esopp9SlS5eucn5gYKDuv//+NUl9wxveMGI8U1F3d3dNMuW27kmaZ7XWevHFF9dSSt1xxx3rX/7yl1WuHX300TVJPfbYY1ec23777WuSesUVV6zSduHChXWLLbaoSerNN9+8yrXLL7+8/uY3v6kPPPBA/fa3v12T1MMPP3zYmN785jfXJPXAAw+s999//4rzt912W33kIx9Z11tvvfqb3/xmIm97rZrh365qrWt+Hl122WX1oosuqsuXL39Q+/nz59ck9Utf+tIq1/r7++vmm29e586dW6+66qoV5++99966++671yT13HPPHdX76+/vH/z316hT4GelzWaz2Ww2m81ms9lsNpvNZrONZ/NoWgAAYJ0z+KjYyy+/fJXzf/jDH3LTTTdl3333zZ577plvf/vbD+o72Gf1x82u7qyzzsq9996bAw888EEr1fX29q54jOhobLPNNnn961+fDTfccJXzc+fOzbHHHpskueKKK0Z1L9au/fbbL294wxty/fXX553vfOeK81//+tfzyU9+Mk996lNz3HHHrTh/4403ptFoZM8991zlPltuuWWe/vSnJ0luv/32Va7tvffeeexjH/ug1cqGc/755ydJjj/++MyZM2fF+c033zxve9vbcv/99+eTn/zkmN4na9aankf77LNPXvCCF2TWrFkPan/00UcnefD3mC996Uu5/fbbc9hhh2WXXXZZcX799dfP+973viTJJz7xifG/aQAAAACAaUYhHgAAsM7ZZ599kiSXXXbZKucHX++zzz7Ze++9s3Dhwvzyl79ccb3ZbObqq6/OxhtvnJ133nnEMQYf+3jUUUdNZugPst566yXJKgVVTC3/+Z//me233z4nn3xyLrvssvz5z3/OP/7jP2bevHk555xzVvw3TJIddtghzWYz3//+91e5x2233Zaf/OQn2XrrrbP99ttPKJ5FixYlSR796Ec/6NrgudX/bdB5nZpHw32PGSxKfs5znvOgPn/3d3+XefPm5Yc//GEGBgbG9D4BAAAAAKYrhXgAAMA65wlPeEK23nrr/OIXv1hlVajLL788G220UXbdddfsvffeK84N+s53vpPly5dn7733ftDKUSu78sorc/3112e77bZbcZ815fTTT08ydDEMU8P666+/olDqla98ZV7xilfk1ltvzYc//OE87nGPW6XtSSedlEajkWc961k59NBD8853vjNHHnlkdthhh3R3d+eCCy7IBhtsMKF4BldovOmmmx507cYbb0yS3HDDDRMag8nXiXm0bNmyfO5zn0vy4O8xv/71r5Mk22233YP6zZkzJ4961KOybNmyFXMKAAAAAGCmU4gHAACsk/bee+/UWld5/Oy3v/3t7LHHHpkzZ0522GGHbLHFFqsU4o32sbSf/vSnkyRHHnnkGoj8ry666KJ86lOfSm9vb/75n/95jY7FxOy0005573vfm1tuuSXf+MY3sv/+++d1r3vdg9rtscceufLKK7Ptttvmi1/8Yj74wQ/mtNNOy8DAQF71qldlxx13nHAsz3/+85Mkxx13XJYvX77i/B133JETTzwxSTIwMJB77713wmMxudb2PPqXf/mX/OIXv8jznve87Lfffqtc6+/vT5L09PQM2Xfw/F133TWGdwgAAAAAMH0pxAMAANZJg8V0g8V1v/rVr7Jw4cJVVrDba6+9csUVV+SBBx5Ype2znvWsYe/b39+fL37xi5k7d26OOOKINRR98sMf/jAvfelLs+GGG+Z///d/8zd/8zdrbCwmx9vf/vZsueWWSZIPfehDQ7b55je/mT322CPbbLNNrrnmmtx99935/e9/n9e85jV517velX333TfLli2bUBzHH398HvGIR+S8887LTjvtlLe85S056qijsv3222fWrFmZN29ekmT27NkTGoc1Y23No//6r//KRz7ykTz+8Y/PWWedNeY4a61JklLKmPsCAAAAAExHCvEAAIB10mAh3mWXXbbKfp999lnRZq+99sqdd96Zn/70p/nzn/+c66+/Pttss82DHgO5srPPPjv33HNPDjzwwBWPAJ1sV155ZZ773Odm1qxZufjii/O0pz1tjYzD5Jo1a1a6urqSZMjHgi5evDiHHnpoNthgg3z5y1/OzjvvnHnz5uXRj350TjzxxPzDP/xDfvjDH+bss8+eUBxbbrllrrrqqrzpTW/K3Xffnf/+7//OhRdemOc///n51re+lXvvvTc9PT2ZO3fuhMZhzVgb8+iUU07Jm9/85my//fb59re/nU022eRBbQZXvBtcGW91zWZzlXYAAAAAADOdQjwAAGCd9PCHPzyPecxj8rvf/S4LFizI5Zdfno033jhPecpTVrQZXB3v8ssvz+WXX55a60M+lvbUU09Nkrz2ta9dI3F/73vfy3777ZdSSi699NL87d/+7RoZh7Xvhz/8Ye688848/elPX7Eq3coG5+M111wz4bE233zzfPSjH82NN96Y++67L7feems+85nP5KabbkqtNbvuuuuEx6AzJjqPTj755LzhDW/IE5/4xHz7299esfre6gYLkn/zm9886NqyZcty0003Zc6cOXn0ox893rcCAAAAADCtKMQDAADWWYNFdd/61rfyne98J3vuuWdmzfrrr0mPf/zjs9VWW60oxFu5z1B+/OMf57rrrst2222Xvfbaa9Ljvfzyy/Pc5z43c+bMyTe/+c3stttukz4GnTMwMJAkuf3224e8Pnh+Ta5UN1hIevjhh6+xMVizJjKP/uM//iNvfetbs9NOO+Xb3/52tthii2HHGVw99OKLL37Qte9+97u555578oxnPGPF6n0AAAAAADOdQjwAAGCdNVhIctJJJ2Xx4sUrVopa2V577ZXvfe97ufTSS5OMXIj36U9/Okly1FFHTXqsl156aZ7//Odn/fXXz2WXXWbFshlo9913z5w5c/KDH/xgxXwbtGDBgnzqU59KMvIcHI0HHnggS5cufdD50047Leeee2522mknhXjT2Hjn0Xvf+978y7/8S5761Kfmsssue8hHax988MHZbLPN8j//8z+5+uqrV5z/y1/+kn/9139Nkrzuda+bjLcEAAAAADAtlFprp2MAAADWklJKI0l/f39/Go3G8A17e5Nmc63FNWqNRtLXN2m3u/322/Owhz0sg78X/fznP8+OO+64SptTTz11RWHd4x73uNxwww1D3qvZbGbrrbfO/fffn1tuueUhi1iOOOKIFccXX3xxbr311hx44IHp7u5OkrzmNa/JM5/5zCTJr3/96+y00075y1/+koMOOihPfOITh7zncccd95DveSrp7e1NcwrOs0ajkb5JnGcre+QjH5mbb745N910Ux75yEc+6Prxxx+ff//3f8+sWbPy/Oc/P49//OOzaNGinH/++Vm6dGkOOOCAnH/++av0ueCCC3LBBRckSRYtWpRLLrkkj370o7PHHnskSTbbbLN8+MMfXtF+6dKledjDHpZnP/vZ2XbbbZO0Hnn8k5/8JI95zGPyrW99a8jYpqp15NvVKiZ7Hn32s5/NEUcckdmzZ+eNb3xjenp6hhxz5e9bSWvuHXzwwVl//fVz2GGHZZNNNslFF12UX//61zn44IPzxS9+MaWUh3w/zWZzcMyeWusU/K8JAAAAAPDQFOIBAMA6ZFSFeAMDyVR+lOAkx/fkJz85P//5z7PZZpvltttue1DRyO9+97s89rGPTZK8/vWvzymnnDLkfT7xiU/k9a9/fQ477LCce+65DznuQxWnnHHGGSuKXq644oohV+tb3XT6/W5gYGBKP7JyTcX3UAVUSXLhhRfmk5/8ZK6++urceeedmTdvXp74xCfm5S9/eY466qjMnj17lfbHHXdc3vOe9ww75iMe8Yj84Q9/WPH6/vvvz9FHH53vf//7KwoOH/OYx+Tggw/OMccck4022mjC73NtWce+Xa0w2fPooeZQkuy555654oorHnT+Bz/4Qd7//vfnyiuvzF/+8pdsu+22+cd//Me86U1vetBcHY5CPAAAAABgJlCIBwAA65BRr4gHAGuJQjwAAAAAYCaY1ekAAAAAAAAAAAAAYDpTiAcAAAAAAAAAAAAToBAPAAAAAAAAAAAAJkAhHgAAAAAAAAAAAEyAQjwAAAAAAAAAAACYAIV4AAAAAAAAAAAAMAEK8QAAYN1Sk2T58uWdjgMAkqzyM6l2Mg4AAAAAgIlQiAcAAOuWu2fPnn3fH//4x07HAQBJkptvvjmzZ8++L8ndnY4FAAAAAGC8FOIBAMA6pNb6wPrrr3/p5z73OasOATAlnHXWWXX99de/pNb6QKdjAQAAAAAYr1Kr//8G67pSSkmydZIlnY4FAFgrnrLeeutd/MY3vrHr5S9/eXnEIx6R2bNndzomANYhy5cvz80335yzzjqrfuxjHxu4//7790vys07HBQAAAAAwgu4kf6rDFNwpxANSStkmSV+n4wAA1q6urq4sW7Ysy5cv73QoAKyDZs+enTlz5mRgYKDToQAAAAAAjFZvrfWWoS7MWduRAFPSkiRZsGBBGo1Gp2OZEY499ticcMIJnQ6DacJ8YSzMF0ZrtHPlgQceyN133x0f0Fm3HX/88Xn3u9/d6TCYJswXRmukuVJKyYYbbphZs2at5aiYquS5jIX5wmiZK4yF+cJYmC+MhfnCaJkrjIX5wliYL5Oj2Wxm/vz5yQhPm1SIB6zQaDQU4k2SuXPn+loyauYLY2G+MFpjmSsbb7zxmg2GKW+jjTZKb29vp8NgmjBfGC1zhbGQ5zIW5gujZa4wFuYLY2G+MBbmC6NlrjAW5gtjYb6sPT52DAAAAAAAAAAAABOgEA9gDdhvv/06HQLTiPnCWJgvjJa5wliYL4yF+cJomSuMhfnCWJgvjJa5wliYL4yF+cJYmC+MlrnCWJgvjIX5svaUWmunYwA6rJTSSNLf399vOVIAYEZasmRJTj311CTJkUceme7u7g5HBAAwPLkLADCdyF0AgHVBs9lMT09PkvTUWptDtVGIByjEAwBmvL6+vsyfPz9JsmDBgvT29nY4IgCA4cldAIDpRO4CAKwLRlOI59G0AAAAAAAAAAAAMAFzOh0AAADAmjZ79uxss802K44BAKYyuQsAMJ3IXQAAWjyaFvBoWgAAAAAAAAAAGIZH0wIAAAAAAAAAAMAaphAPAAAAAAAAAAAAJkAhHgAAAAAAAAAAAEyAQjwAAAAAAAAAAACYAIV4AADAjHfXXXflmGOOyTHHHJO77rqr0+EAAIxI7gIATCdyFwCAFoV4sJJSysallBeVUo4vpXy1lLKwlFLb2z+M0G9OKeXZpZSTSik/LqXcWUq5v5Ryeynl8lLKa0spc0cx/uallI+UUn5bSrm3lPLnUsqlI429Wv8D2u3/3O7/m/b9Nhv9V2Hq+MY3vpFSyortrW99a6dDAgAAAAAAAACABym11k7HAFNGKeWIJGcMc/mAWusFw/Q7NclrVjq1PMnSJD0rnbsuyXNqrYuGuccOSS5PskX71JIk85LMbr/+r1rrm0eI/eNJ/mml8e9J0t1+fWuSvWutvxqmbyNJf39/fxqNxnBDrHWHHnpovvjFL654vfnmm+eWW27Jeuut18GoAAAAAAAAAABYlzSbzfT09CRJT621OVQbK+LBgy1K8o0k709y0Cj7rJdWsdt/JHl6kvVrrRsn+Zsk/y+torgnJzm/lFJW71xK6UpyUVpFeNcn2anW2kirkO7YJDXJm0oprxpq8FLKkWkV4dV2++52/53a93tYkotGsyrfVHHnnXfmwgsvTJKsv/76SZLbb789X/va1zoZFgAAAAAAAAAAPIhCPFjV2bXWrWqtz6u1/mut9fxR9vtEkkfVWv+l1vqTWuuyJKm13lVr/XD+ulre7kn2GKL/UUkeneTuJPvXWq9r97+31vqBJB9vt3tfKWWV5eDaxXXHt19+rNb6gVrrve3+1yXZv33fbbPqqn1T2rnnnpuBgYEkyQknnJDZs1sLA55xxnALFgIAAAAAAAAAQGcoxIOVDBbQjaPfjweL34bxxbQeVZskTx3i+sva+8/XWhcMcf0/01rtbuske692bd8kW7avf2iI2BYkOXe1caa8M888M0my4YYb5qijjsqznvWsJMnXv/713HbbbR2MDAAAAAAAAAAAVqUQD9aCWuvyJAPtl7NXvlZK2SjJru2XlwzTvy/JL9sv913t8j7t/f+12w1l8L67lVI2HG3cnfLLX/4yV111VZLkgAMOyIYbbpiXvaxVQ7hs2bKcc845nQwPAAAAAAAAAABWoRAP1oJSyhOTbNp+ef1ql5+QpLSP/2+E2wxe236189uvdn2kviXJ40doNyWs/PjZww8/PMlfC/JWvw4AMBoLFy5Mb29vent7s3Dhwk6HAwAwIrkLADCdyF0AAFoU4sHacUJ7f1OSy1e7ttVKx38a4R63DNF+5dej6TtU/yll+fLlOfvss5MkW2yxRZ797GcnaT2i9kUvelGS5Prrr8+1117bsRgBgOln+fLlueWWW3LLLbdk+fLlnQ4HAGBEchcAYDqRuwAAtCjEgzWslPLmJC9ov3xLrfX+1ZpstNLxPSPcavBa9zD9R9N3qP5TysUXX5xFixYlSQ477LDMnv3XJ/kOro6XJGeeeebaDg0AAAAAAAAAAIY0p9MBwExWSnlhko+0X55Ya71oIrebhJCmvJUfO/uyl71slWt///d/n8033zy33357Pv/5z+fDH/5w5s6du7ZDBACmoZ6ennzkIx9ZcQwAMJXJXQCA6UTuAgDQohAP1pBSyt8n+WKS2UnOSPL2YZouXel4XpLmMO3mtfdLhuk/L8PbcKXj1fuvcOyxx64obNtvv/2y3377jXDLybd48eJ85StfSZJst9122XXXXVe5PmfOnBx66KH5+Mc/njvuuCNf+cpXctBBB63VGAGA6am7uzvHHHNMp8MAABgVuQsAMJ3IXQCAmeqSSy7JJZdckiS57777HrK9QjxYA0op+ya5IElXks8neU2ttQ7TfOFKx1tn+EK8rYdoP/j6KStdH6nvUP1XOOGEE9JoNEa4zZr1+c9/fsU3rpUfQ7uyl73sZfn4xz+epPV4WoV4AAAAAAAAAABMtpUXsWo2mznllFNGbD9rbQQF65JSyt5JLkqyQZIvJXlFrfWBEbr8Kslgkd4OI7QbvPbL1c7/crXrI/WtSW4YoV1HrfxY2pe+9KVDtnn605+ebbfdNkly8cUXZ9GiRWslNgAAAAAAAAAAGI5CPJhEpZQ9k3w1rcfEXpTkpbXW5SP1qbUuTXJV++Vzhrlvb5Lt2y8vX+3y4Osd2u2GMviM2R/XWu8eKZ5O+cUvfpFrr702SbLbbrutKLYbyuBqecuWLcvZZ5+9VuIDAAAAAAAAAIDheDQtTJJSyh5JvpZWEd7XkxxSa71/lN0/n+RpSV5SSjm+1rpgtev/nKSk9VjZ1QvxLktya5KHJfl/Sd68Wlzzk7yk/XLKVq2tvBre0qVLc8QRRwzbduVV8M4888y8/e1vX5OhAQAAAAAAAADAiEqt9aFbwTqklLLZaqdub+9fkeQbK53vHyy0K6XsluTSJN3t/QtrrQNjGHP9tB5R+8gkP0/y8lrrz0spG6RVWHdCWoV4r6m1fmaI/kcn+URaj549NslHa633llKelOSsJE9K8vskOwwVVymlkaS/v78/jUZjtGFPmmXLlmWbbbbJbbfdNq7+P/nJT7LrrrtOclQAwEzS19eX+fPnJ0kWLFiQ3t7hFhIGAOg8uQsAMJ3IXQCAdUGz2UxPT0+S9NRam0O1UYgHqymljPYfxd611ivafS5Psnf7/OIkI62E94Va65tXP1lK2TGt1e4GCwGbaa2uN7hy5Sm11jeMEPcnk7y2/XJZknuSDFbV3ZZkn1rr/w3Tt6OFeBdddFFe9KIXjbv/61//+pxyyimTGBEAMNMsW7Zsxaq6W265ZebMsTg4ADB1yV0AgOlE7gIArAtGU4g3a+2GBDPWyv+WNknrMbHDbT1D3aDWen2SHZKcnNbqdV1pFeNdluSgkYrw2v2PTnJQu32z3f/3SU5KsuNwRXhTwZlnnrnKca31Ibfbb799xS9y5557bgYGRr0AIQCwDpozZ056e3vT29vrj8EAwJQndwEAphO5CwBAixXxgI6uiPfnP/85W2+9de6///50dXXl1ltvHawgfkj77bdfLr300iTJF77whbz4xS9ek6ECAAAAAAAAALAOsiIeMOWdc845uf/+1pN8n/vc5466CC9JDjvssBXHK6+qBwAAAAAAAAAAa5NCPKCjVi6gW7mwbjQOPPDAdHV1JUkuvfTS/OlPf5rM0AAAAAAAAAAAYFQU4gEdc9111+VnP/tZkmTDDTfMC17wgjH17+npyX777ZckWb58ec4666zJDhEAmCHuueeenHfeeTnvvPNyzz33dDocAIARyV0AgOlE7gIA0KIQD+iYM844Y8XxC17wgsybN2/M93jJS16y4tjjaQGA4SxevDgvfvGL8+IXvziLFy/udDgAACOSuwAA04ncBQCgRSEe0DEnn3xyaq2ptebcc88d1z0OO+ywFff41a9+NckRAgAAAAAAAADAQ1OIBwAAAAAAAAAAABNQaq2djgHosFJKI0l/f39/Go1Gp8MBAAAAAAAAAIApo9lspqenJ0l6aq3NodpYEQ8AAAAAAAAAAAAmQCEeAAAAAAAAAAAATIBCPAAAAAAAAAAAAJgAhXgAAAAAAAAAAAAwAXM6HQAAAMCatmTJkpx66qlJkiOPPDLd3d0djggAYHhyFwBgOpG7AAC0WBEPAACY8e67775ceeWVufLKK3Pfffd1OhwAgBHJXQCA6UTuAgDQUmqtnY4B6LBSSiNJf39/fxqNRqfDAQAAAAAAAACAKaPZbKanpydJemqtzaHaWBEPAAAAAAAAAAAAJkAhHgAAAAAAAAAAAEyAQjwAAAAAAAAAAACYAIV4AAAAAAAAAAAAMAEK8QAAgBnvtttuy+67757dd989t912W6fDAQAYkdwFAJhO5C4AAC1zOh0AAADAmnbfffflRz/60YpjAICpTO4CAEwnchcAgBYr4gEAAAAAAAAAAMAEWBEPAACY8TbaaKO89a1vXXEMADCVyV0AgOlE7gIA0FJqrZ2OAeiwUkojSX9/f38ajUanwwEAAAAAAAAAgCmj2Wymp6cnSXpqrc2h2ng0LQAAAAAAAAAAAEyAQjwAAAAAAAAAAACYAIV4AAAAAAAAAAAAMAEK8QAAOuyKK65IKSXHHXfchO5z5plnppSSM888c1LiAgAYitwFAJgu5C0AwHQid4HpTyEeALDOKaWklJJZs2bl97///bDt9t577xVt17VfVhYsWJDZs2enlJJjjz220+HAhC1cuDC9vb3p7e3NwoULOx0OwJjIXYZ2xBFHrHi/g9vs2bOz6aabZp999sk555zT6RBh3OQuwHQlbxnZ3XffnZNPPjn77LNPtthii8ydOzcbb7xxnva0p+Vd73pXbrzxxk6HCOMidwGmK7nL0Fb/m8vs2bPT09OTxzzmMfmHf/iHfPzjH88dd9zR6TBhSprT6QAAADphzpw5WbZsWT7zmc/khBNOeND13/72t/nOd76zot265rTTTssDDzyQUkrOOOOMHH/88ZkzR+rI9LXJJpvkvPPOW3EMMN3IXYb3ohe9KDvttFOS5L777suNN96Yiy66KN/+9rfzy1/+Mu9///s7GyCMg9wFmM7kLUP70Y9+lIMPPji33HJLent787znPS9bb7117r777vz0pz/Nf/zHf+RDH/pQfvSjH2XnnXfudLgwJnIXYDqTuwxv5b+5LFmyJAsWLMj3vve9XHjhhXnXu96Vj370ozniiCM6GiNMNf5vKgCwTnrYwx6Wrbbaatgis9NOOy211jz/+c/PBRdc0JkgO2T58uU5/fTT02g0cvjhh+cTn/hELrroohx44IGdDg3GraurK7vvvnunwwAYN7nL8P7hH/7hQX/0veaaa7LLLrvkxBNPzL/9279l/fXX70xwME5yF2A6k7c82A033JD99tsvS5cuzQc/+MG87W1ve9DX5aabbso73vGONJvNDkUJ4yd3AaYzucvwhvqby7Jly3L66afnzW9+c171qlelq6srL3nJSzoTIExBHk0LAKyzjjzyyCxatChf/epXVzl///3357Of/Wye8YxnZIcddhi2/29/+9u84hWvyDbbbJO5c+dm6623zite8Yr89re/HbL9rbfemle/+tV52MMelg022CA77bRTPvvZz44Y4+LFi/POd74zT3jCE7LBBhukp6cn++67by699NKxv+FR+sY3vpG+vr4ceuihef3rX58kOfXUU9fYeADA6MhdRu+pT31qNtlkk/zlL3/JkiVL1urYAIC8ZXVvfOMb02w28453vCPveMc7hnzqwKMe9ah88YtfVMwEAB0gdxm9OXPm5Kijjsp///d/J0mOOeaY3HvvvWs1BpjKFOIBAOusl7zkJdlwww1z2mmnrXL+oosuyq233pojjzxy2L5XXXVVdtlll5x99tnZdddd8/a3vz277bZbzjnnnOyyyy65+uqrV2l/xx135BnPeEZOP/30bLfddnnLW96SnXbaKUcffXROOumkIce4+eab89SnPjUf/OAHs/nmm+foo4/OoYceml/96ld5znOes8aK4z796U8nSY444og88YlPzM4775xLL700N9988xoZDwAYHbnL6F177bVZvHhxHvGIR2TzzTdfa+MCAC3ylr+66aab8q1vfSvrr79+/vmf//kh23d1dU3a2ADA6Mhdxu6Vr3xlHvGIR2TRokW5/PLL1/r4MFV5NC0AsM7q7u7OYYcdljPPPDN9fX3p7e1N0lr9rdFo5MUvfnFOOOGEB/WrteYVr3hFms1mzj777Bx++OErrn3hC1/IYYcdlpe97GX55S9/mVmzWp97eOc735kbb7wxb3nLW1b5ReoNb3jDsJ90fuUrX5mbb7455557bg477LAV5++6667stddeedOb3pQXvvCFedjDHjYpX48kueWWW/L1r3892223XZ7xjGckaRXkvelNb8ppp52W9773vZM2FgAwNnKXoV1wwQX5wx/+kCS577778oc//CEXXXRRent7c9ZZZ03qWADA6Mhb/ur73/9+ktaKvRtvvPGE7wcATD65y9jNmjUre+yxR26++eb85Cc/yf7777/WxoapzIp4AMA67cgjj8zy5ctz+umnJ2l9quib3/xmDj/88MybN2/IPj/84Q9zww03ZPfdd1/ll6okOfTQQ/PMZz4zv/71r1f8ofX+++/POeeck+7u7hx33HGrtN9ll10edI8kue666/Kd73wnBx100Cq/VCXJxhtvnPe85z35y1/+kv/93/8d71sf0mc+85ksX748RxxxxIpzL33pSzN37tycfvrpWb58+aSOB2vLwMBArrzyylx55ZUZGBjodDgA4yZ3ebALL7ww73nPe/Ke97wnH/jAB3LuuefmgQceyEtf+tLsuOOOkz4erA1yF2AmkLe0LFy4MElW/A99mInkLsBMIHcZu2222SZJcvvtt6/1sWGqsiIeALBOe/rTn54dd9wxp59+ev71X/81p512Wh544IERlxm/9tprkyT77LPPkNf32WeffP/7389Pf/rT/N3f/V1uuOGG3HPPPdljjz3S09PzoPZ77bVXPvvZz65y7sorr0yS9Pf3P+iXseSvv9T86le/GtX7HI0HHnggp59+embNmpVXvOIVK85vuummef7zn5/zzz8/X/va1/LCF75w0saEteX2229fscrjggUL/A8QYNqSuzzYGWecseJDBMuXL09fX18++9nP5rjjjsuFF16Yq6++OhtttNGkjwtrktwFmAnkLS211iRJKWVS7gdTkdwFmAnkLmMnz4EHU4gHAKzzjjzyyLzpTW/KxRdfnDPOOCNPfepT85SnPGXY9v39/UmSrbbaasjrg+fvuuuuVdoPtyT4lltu+aBzd9xxR5Lkm9/8Zr75zW8OG8vSpUuHvTZWl1xySW6++ebst99+Kz7FNOhVr3pVzj///Hz6059WiAcAHSZ3Gd7s2bPziEc8Iu9+97vzm9/8Juecc04+9rGP5Z3vfOcaHRcAGJq8Jdl6662TJH19fZNyPwBgzZG7jM2f/vSnJMnmm2++1seGqcqjaQGAdd7LX/7ybLDBBnnta1+bW265JUcdddSI7Qc/pbRo0aIhrw8+cmSw3eD+1ltvHbL9UPcZ7PPRj340tdZhtzPOOGMU73B0Pv3pTydpFeSVUlbZXvCCFyRJLr744ixYsGDSxgQAxk7uMjpPf/rTkyQ/+clP1tqYAMCq5C3JM5/5zCTJ1VdfveJ/vgMAU5PcZfQeeOCBfPe7303y17/BAArxAACy8cYb5+CDD05fX1823HDDvOQlLxmx/eCnn6644oohrw+e33nnnZMkj3/84zNv3rz87Gc/G/IPrkPdZ7fddkuSfO973xvlu5iYRYsW5atf/WoajUZe/epXD7n97d/+bZYvX57TTz99rcQEk2nLLbfMggULsmDBgiE/VQgwnchdRufOO+9M0vrDMEw3chdgppC3JI961KPyrGc9K3/5y1/yoQ996CHbDwwMrIWoYHLJXYCZQu4yemeeeWb++Mc/Zquttsree+/d6XBgylCIBwCQ5H3ve1++/OUv55JLLkl3d/eIbf/2b/82j3vc4/L9738/X/rSl1a59qUvfSnf/e53s9122634xPN6662Xww8/PEuWLMlxxx23Svurr74655xzzoPG2GWXXbLHHnvk/PPPH7bw7frrr89tt902hnc5vNNPPz3Lli3L4YcfntNOO23I7cwzz0wpJZ/5zGf8D22mnTlz5qS3tze9vb2ZM2dOp8MBmLB1PXd5KHfeeeeKT4Lvtddea2VMmExyF2AmkbckH/vYx9JoNPKBD3wgH/nIR7Js2bIHtfnjH/+Yww47LFdeeeWkjQtri9wFmEnkLiNbtmxZTj311PzTP/1TSik56aSTsv7666+VsWE6kAkBACR5+MMfnoc//OGjaltKyWc/+9k8+9nPzqGHHpoXvehFefzjH59f//rXueCCC9Ld3Z3Pfe5zmTXrr595OOGEE3LZZZfl5JNPztVXX51nPvOZWbhwYb7whS/kec97Xi666KIHjfP5z38+++yzT1796lfnv/7rv/L0pz89G2+8cfr6+vLzn/88v/jFL3LllVdmiy22mNB7r7XmM5/5TJLkNa95zbDttt122+y555654oor8o1vfCP777//hMYFAMZvXc5dVnfBBRfkD3/4Q5Jk+fLl6evry1e+8pXccccd2XXXXXP00UdP6ngAwNjIW1qr31xyySU56KCD8va3vz0f/ehHs++++2brrbfO3Xffneuuuy4/+MEPUkrJO97xjkkZEwAYH7nLX638N5e77747f/zjH/O9730vCxcuTE9PTz71qU/l0EMPndQxYbpTiAcAMA5Pf/rTc9VVV+V973tfvvWtb+UrX/lKNttss7zkJS/Jv/3bv+Vxj3vcKu0322yz/OAHP8ixxx6br3zlK7n66qvzuMc9Lp/4xCfyyEc+cshfrHp7e3PNNdfkYx/7WP73f/8355xzTpYvX54tt9wy22+/fd74xjdmxx13nPB7+da3vpUbb7wxT3nKU1Ysjz6cI488MldccUU+/elPK8QDgGlkJuUuq7vwwgtz4YUXrnjd3d2dxz/+8XnHO96RN77xjT6VDQDTzEzNW3bbbbf8+te/zqmnnpqLLrooX/va13LnnXdm3rx52XbbbfO2t70tRx11VB71qEdN6rgAwJo1U3OX5K9/c5k1a1Y23HDDbL755nna056WZz3rWXnpS1+aTTbZZNLHhOmu1Fo7HQPQYaWURpL+/v7+NBqNTocDAAAAAAAAAABTRrPZTE9PT5L01FqbQ7WxIh4AADDj3XPPPfna176WJNl///0zb968DkcEADA8uQsAMJ3IXQAAWhTiAQAAM97SpUtz4oknJkn23HNPfxAGAKY0uQsAMJ3IXQAAWjyaFvBoWoAZ6uSTT85dd931kO322muv7LXXXms8HgCAkchdAIDpQt4CAEwncheYHB5NCwCwDjv55JNz8803j6qtX6wAgE6TuwAA04W8BQCYTuQusPZYEQ+wIh4AAAAAAAAAAAxjNCvizVq7IQEAAAAAAAAAAMDMohAPAAAAAAAAAAAAJkAhHgAAMOPdcccdOeSQQ3LIIYfkjjvu6HQ4AAAjkrsAANOJ3AUAoKXUWjsdA9BhpZRGkv7+/v40Go1OhwMAMOn6+voyf/78JMmCBQvS29vb4YgAAIYndwEAphO5CwCwLmg2m+np6UmSnlprc6g2VsQDAAAAAAAAAACACZjT6QAAAADWtA022CAHH3zwimMAgKlM7gIATCdyFwCAFo+mBTyaFgAAAAAAAAAAhuHRtAAAAAAAAAAAALCGKcQDAAAAAAAAAACACVCIBwAAAAAAAAAAABOgEA8AAAAAAAAAAAAmQCEeAAAw4912223Zfffds/vuu+e2227rdDgAACOSuwAA04ncBQCgZU6nAwAAAFjTNtpooxxzzDErjgEApjK5CwAwnchdAABaSq210zEAHVZKaSTp7+/vT6PR6HQ4AAAAAAAAAAAwZTSbzfT09CRJT621OVQbj6YFAAAAAAAAAACACVCIBwAAAAAAAAAAABOgEA8AAAAAAAAAAAAmYE6nAwAAAFjTli1blkWLFiVJttxyy8yZ41chAGDqkrsAANOJ3AUAoMWKeAAAwIy3aNGizJ8/P/Pnz1/xh2EAgKlK7gIATCdyFwCAFoV4AAAAAAAAAAAAMAEK8QAAAAAAgCllYGCg0yGsMJViAQAAYOqa0+kAAAAA1rTNN988P/zhD1ccAwBMZXIXSLq6utLb25tms9nROBqNRvr6+joaA8BUJ3cBAGgptdZOxwB0WCmlkaS/v78/jUaj0+EAAAAAAKTRaGTJkiUdjaG7u7vjxYAAAAB0XrPZTE9PT5L01FqH/EXRo2kBAAAAAAAAAABgAhTiAVPDwECnI/irqRQLAAAAAAAAAABT3pxOBwCQJOnqSnp7k04/5qHRSPr6OhsDAAAAAAAAAADTikI8YOpoNpMlSzodBQAwAw0MDOTaa69Nkuy8887p6urqcEQAAMOTuwAA04ncBQCgRSEeAAAw4y1evDiHHHJIkuSqq67KVltt1eGIAACGJ3cBAKYTuQsAQItCPAAAYMbbaqut0ufx8wDANCF3AQCmE7kLAEDLrE4HAAAAAAAAAAAAANOZQjwAAAAAAAAAAACYAIV4AAAAAAAAAAAAMAEK8WASlVJmlVJeXkq5pJRyaynl/lLKklLKdaWUD5dS5j9E/wNKKZeWUv5cSrm3lPKbUspHSimbjWLszdttf9vu++f2vf5h0t4gAAAAAAAAAADwIArxYJKUUjZIcnGSzyX5+yRbJLknyQZJnpTkbUl+VUp51jD9P57k/CTPTrJxkvuTPDbJMUl+UUp5wghj75DkF+2227b7bty+15dLKR+d8BsEAJjG7rrrrhxzzDE55phjctddd3U6HACAEcldAIDpRO4CANBSaq2djgFmhFLK+5Mc237570k+XmtdXEqZk2TvJP+dVpHcn5M8otZ6z0p9j0zy6SQ1ybuSnFxrvbeU8uQkZyXZMcnvkuxQa71vtXG7kvwyyaOTXJ/k5bXW69qFgW9J8v4kJck/1lrPGCb2RpL+/v7+NBqNiX8xxqvRSJYs6dz4SdLdnTSbnY0BAJh0fX19mT+/tTjxggUL0tvb2+GIAACGJ3eBlkajkSUd/nthd3d3mv5eCDAiuQsAsC5oNpvp6elJkp5a65C/KFoRDybP4e39mbXW42uti5Ok1rqs1vrNJC9uX98syd8NdiqlzE1yfPvlx2qtH6i13tvue12S/ZPcnVYR32uGGPeotIrw7k6yf7tPaq331lo/kOTj7XbvK6WsNzlvFQAAAAAAAAAAGDSn0wHADLJle3/NMNevS7IsrX93G650ft9235rkQ6t3qrUuKKWcm1YR3svSWllvZS9r7z9fa10wxLj/meQNSbZOa2W+Sx/ynQAAzDBz587NbrvttuIYAGAqk7sAANOJ3AUAoEUhHkyem5I8Pskuw1zfKa1/cw8k+elK5/dp7/+v1to3TN9L0irE262UsmGt9e4kKaVslGTXldo8SK21r5TyyyQ7pFX0pxAPAFjnbLHFFrnyyis7HQYAwKjIXQCA6UTuAgDQ4tG0MHk+2d6/spTy7lLK3yRJKWVOKeVZSb7Qvv7RWuuNK/Xbvr3/vxHuPXitpFXsN+gJ7XOj7b/9CG0AAAAAAAAAAIBxUIgHk+djST6c1iNm35NkcSmlP8lfknwzyfIkr6u1HrNav63a+z+NcO9bhmi/+vFo+m81QhsAAAAAAAAAAGAcFOLBJKm1PpDkHUlel2SgfbqRZHb7eMMkm5VSVn8k9Ebt/T0j3H7la91D9B1t/+4R2gAAAAAAAAAAAOOgEA8mSSlliyTfTesRtV9OsktahW8PT3JEWgV5703y1VLK7GFus8bCW8vjAQAAAAAAAADAOmP1lbmA8ftckr9N8rla6ytXOr80yWdLKT9J8tMk+yV5VZLTVrqeJPNGuPeGKx0vWe3eg+YlaQ7Tf/DeS4a5niQ59thjM3fu3CTJfvvtl/3222+k5gAA08Ydd9yRo48+OknyyU9+MptuummHIwIAGJ7cBQCYTuQuAMBMdckll+SSSy5Jktx3330P2V4hHkyCUsr2aRXYJcmHh2pTa/1VKeVrSQ5MclD+Woi3MMlTkmw9whArX1s4zPHWGb4Qb7D/wmGuJ0lOOOGENBqNkZoAAExLc+fOze67777iGABgKpO7AADTidwFAJipVl7Eqtls5pRTThmxvUI8mBxPWOn49yO0+217/6iVzv0yyfOS7DBCv8FrNckNK53/Vftcabe5IUMb7P/LEcYAAJixuru7c8wxx3Q6DACAUZG7AADTidwFAKBlVqcDgBnigZWOHzFCu4e19yuvXHd5e79DKaV3mH6Dq+39uNZ69+DJWuvSJFe1Xz5nqI7te26/2lgAAAAAAAAAAMAkUYgHk+OnKx2/bqgGpZQtkxzQfvmjlS5dluTWtFa1+39D9Juf5CXtl2cPcevPt/cvabdd3T+3770wCvEAAAAAAAAAAGDSKcSDSVBr/UOSr7dfvqGUcmIpZeskKaWsX0p5TpLvJulJcn+SU1bqe1+S49ov31hK+ZdSygbtvk9K8tUkG6b1yNvThhj+U0n+0G7z1XaflFI2KKX8S5I3tNv9W631/kl5wwAAAAAAAAAAwAql1trpGGBGKKVskeSbSZ600umlSeblr0WvA0leVWs9d4j+n0zy2vbLZUnuSdJov74tyT611v8bZuwd01rtbrP2qWZ73Dnt16fUWt8wVN92/0aS/v7+/jQajeGarXmNRrJkSefGT5Lu7qTZfOh2AAAAAMAa1Wg0sqTDfy/s7u5O098LAQAA1nnNZjM9PT1J0lNrHfIXRSviwSSptd6WZNckr0+rKO7PSdZP8pckv0ry8SRPGqoIr93/6CQHpfWo2maSrrRWwTspyY7DFeG1+16fZIckJ7f7dLXvcVmSg0YqwgMAWBf09fWllJJSSvr6+jodDgDAiOQuAMB0IncBAGiZ89BNHqyU8or24VW11l+Nse92SXZLklrr58YzPkxV7cfMfqK9jaf/+UnOH2ff25K8tb0BAAAAAAAAAABryXhXxDszyRlJnjuOvs9u9z99nGMDAAAAAAAAAADAlDGuFfEmSeng2AAAwDpkk002yRe/+MUVxwAAU5ncBQCYTuQuAAAtnSjEGyzAqx0YGwAAWAfNmzcvhxxySKfDAAAYFbkLADCdyF0AAFrG+2jaiRj8GMTSDowNAAAAAAAAAAAAk2qtFuKVUrqSHNB+edPaHBsAAAAAAAAAAADWhId8NG0p5UVJXjTM5UNLKU8cxTiz01oJ72lJNkvrsbSXjTZIAABY4wYGkq6uTkfRMpViAQAAAAAAAB7SQxbiJdkpyRFpFc+trCTZpb2NVmnv/5zkxDH0AwCANaurK+ntTZrNzsbRaCR9fZ2NYQZatmxZFi1alCTZcsstM2fOaH4VAgDoDLkLADCdyF0AAFrGkgWVUZ4bycIkFyc5vtb6pzH2BQCANavZTJYs6XQUrAGLFi3K/PnzkyQLFixIb29vhyMCABie3AUAmE7kLgAALaMpxDs5yZkrvS5JbkxrhbwTkpw2invcn6RZa106xvgAAAAmrLe3N7Wuvsg3AMDUJHcBAKYTuQsAQMtDFuLVWvuT9K98rpSStAry7qy13rxmQgMAAAAAAAAAAICpbyyPpl3Z3u397ycrEAAAAAAAAAAAAJiOxlWIV2v9zmQHAgAAAAAAAAAAANPRrE4HAAAAAAAAAAAAANPZuFbEK6VsmeT6JLOTnFhrfd8o+/1bkrcmuS/JDrXWO8YzPgAAwFgsWbIkp556apLkyCOPTHd3d4cjAgAYntwFAJhO5C4AAC2l1jr2TqUck+TDSR5IMr/WunCU/XqT3Nx++ZZa68fGPDgw6UopjST9/f39aTQanQuk0UiWLOnc+EnS3Z00m52NAYDO8bNoxurr68v8+fOTJAsWLEhvb2+HIwIAGJ7cBVoajUaWdPh3tO7u7jT9jgYwIrkLALAuaDab6enpSZKeWuuQvyiO99G0+7b3PxltEV6S1Fr7kvy4/fLvxzk2AAAAAAAAAAAATBnjejRtkh2T1CQ/GUffq5LsluSJ4xwbAABgTGbPnp1tttlmxTEAwFQmdwEAphO5CwBAy3gL8bZo7xeNo+9gn4eNc2wAAIAx2WqrrdLX19fpMAAARkXuAgBMJ3IXAICW8T6a9v72foNx9O0a55gAAAAAAAAAAAAw5Yy3EO/29v4J4+g72OfP4xwbAAAAAAAAAAAApozxFuJdnaQk2a+UssloO5VSNk3y3CQ1yc/GOTYAAAAAAAAAAABMGeMtxPtqe79Rkk+Mod8n2n2S5KJxjg0AAAAAAAAAAABTxngL8T6f5A/t44NLKV8rpTx6uMallEeXUr6e5KC0VsNbkOSz4xwbAABgTO66664cc8wxOeaYY3LXXXd1OhwAgBHJXQCA6UTuAgDQMmc8nWqty0opL0tyWZK5SZ6T5DellB8luSrJ7WkV3G2RZNcku6X1KNuSZCDJK2qt9088fAAAAAAAAAAAAOisUmsdf+dSnpvk7CR/0z413M1Ke39nWkV4Xxv3oMCkK6U0kvT39/en0Wh0LpBGI1mypHPjJ0l3d9JsdjYGADrHzyIAAIApo9FoZEmHf0fr7u5O0+9oAAAA67xms5menp4k6am1DvmL4ngfTZskqbV+I8mTknwiyT3566p3q293JzklyZMU4QEAAAAAAAAAADCTjOvRtCurtd6S5J9KKW9J8rQkj0+yafvyHUl+leQqj6IFAAAAAAAAAABgJppwId6gdqHdD9obAAAAAAAAAAAArBMm9GhaAAAAAAAAAAAAWNcpxAMAAGa8hQsXpre3N729vVm4cGGnwwEAGJHcBQCYTuQuAAAtk/ZoWgAAgKlq+fLlueWWW1YcAwBMZXIXAGA6mdTcZWAg6eqahKgmwVSKBQCYFiZciFdK6U5yaJJnJtkuycZJ1h9F11prfcxExwcAAAAAAABgBujqSnp7k2azs3E0GklfX2djAACmnQkV4pVSjk7yH0k2Wvn0Ssd1iHOrXwMAAFijenp68pGPfGTFMQDAVCZ3AQCmk0nPXZrNZMmSid8HAGAtK7WOrx6ulPIvSd6fvxbZ3Z3k/rRWxKtJFiTpaW9pnxs83zpR66PGNTgwqUopjST9/f39aTQanQuk0ej8L1bd3Z3/lBUAneNnEQAAwJTRaDSypMO/o3V3d6fpdzSAtcvf6ACAKajZbA5+6KCn1jpkojBrPDcupWyb5L1pFeHdkeRFaRXcvX+wTa31kbXWv0nSm+SYJLe3238vyfaK8AAAAAAAAAAAAJgJxlWIl+R1SWantcLdgbXWr9RaHxiqYa31T7XWk5M8Kcn/JTk8yefGOS4AAAAAAAAAAABMKeMtxNsrrSK8H9davzeaDrXW25IcmNbjaw8spbxonGMDAAAAAAAAAADAlDHeQrxHtPc/WO18HTwopay3eqda6++SXJzWI2pfMc6xAQAAAAAAAAAAYMoYbyFeo72/fbXz96503D1M35+2908Z59gAAABj0tfXl1JKSinp6+vrdDgAACOSuwAA04ncBQCgZc44+92dVjFe12rn71rpeH6SxUP0nd3ebznOsQEAAMZkyy23zIIFC1YcAwBMZXIXAGA6kbsAALSMtxDv5iQ75sHFdDesdLx7kuuG6Ltje3/fOMcGAAAYkzlz5qS3t7fTYQAAjIrcBQCYTuQuAAAt43007U+TlCRPXu38L5Lc2T4+upSySqFfKeUpSV6QpCb51TjHBgAAAAAAAAAAgCljvIV4l7X3TyulbDx4stZ6f5Jz0irS2zHJd0oph5dSnltKeVeSK1Ya8wvjHBsAAACmh4GBTkfwV1MpFgAAAAAAmGHG+2jaryS5P8l6SV6R5L9WunZckgOSbJNkt/a2uuuSfGKcYwMAAMD00NWV9PYmzWZn42g0kr6+zsYAAAAAAAAz2LgK8Wqt/aWUvZI0kty+2rXFpZS9k5yV5OlDdP9GklfWWn0UHwBYswYGWgUQU8FUigXWQffcc0++9rWvJUn233//zJs3r8MRsU5pNpMlSzodBQDTiNwFAJhO5C4AAC3jXREvtdYrR7j2uyS7l1KemuRpSf4myeIk36u1/t94xwQAGBOrEAFtixcvzotf/OIkyYIFC/xBGACY0uQuAMB0IncBAGgZdyHeaNRar0lyzZocAwBgRFYhAgAAAAAAAGANm9XpAAAAAAAAAAAAAGA6G9eKeKWUG9uH76+1fmaMfV+e5D1Jaq31MeMZHwAAYCx6e3tTa+10GAAAoyJ3AQCmE7kLAEDLeB9N+8gkNUnPOPo2VuoPAAAAAAAAAAAA05pH0wIAAAAAAAAAAMAEdKIQb732/r4OjA0AAAAAAAAAAACTqhOFeDu093d0YGwAAAAAAAAAAACYVHMeqkEppZFk42Eu/00p5eGjGGd2kk2S7JnkZUlqkp+OMkYAAIAJWbJkSU499dQkyZFHHpnu7u4ORwQAMDy5CwAwnchdAABaHrIQL8lbk7x7iPMlybHtbSxKWoV4nx1jPwAAgHG57777cuWVVyZJXvnKV3Y4GgCAkcldAIDpRO4CANAymkK8pFU8N5bzI6lJPlJr/dI4+gIAAIzZpptumvPOO6/TYQAAjIrcBQCYTuQuAAAtoynE+1kevHrdK9MqqLsmyf+N4h73J2km+XWSS2qtfxxDjAAAAAAAAAAAADBlPWQhXq31wiQXrnyulDK4pvD/1FpPXBOBAQAAAAAAAAAAwHQw2kfTru67aa2It2ASYwEAAAAAAAAAAIBpZ1yFeLXWvSY5DgAAAAAAAAAAAJiWZnU6AAAAgDXttttuy+67757dd989t912W6fDAQAYkdwFAJhO5C4AAC3jfTQtAADAtHHfffflRz/60YpjAICpTO4CAEwnchcAgJYJF+KVUnqTvDDJTkm2SLJRRrfSXq217jvR8QEAAAAAAAAAAKCTxl2IV0rpTvLRJC/P2B9xW5LU8Y4NAAAwFhtttFHe+ta3rjgGAJjK5C4AwHQidwEAaCm1jr0erpSyXpLvJnlaWkV141FrrbPH2ReYRKWURpL+/v7+NBqNzgXSaCRLlnRu/CTp7k6azc7GAEwu31sYC/MFWBN8bwEAGJdGo5ElHc6juru705RHAaxdfo8GAKagZrOZnp6eJOmptQ6ZKIx1JbtBr0vy9PbxPUk+kGSXJI1a66xRborwAAAAAAAAAAAAmPbG+2jaw9r7ZUn2qbX+ZJLiAQAAAAAAAAAAYIoYGEi6ujodRctUimV14y3Ee0KSmuR8RXgAAAAAAAAAAAAzU1dX0tvb+Se3NxpJX19nYxjJeAvx5rb3109WIAAAAAAAAAAAACQDAwPpmkJLvzWbyZIlnY5iahtvIV5fkm2TTJ3/2gAAAMNYuHBhdt111yTJVVddla222qrDEQEADE/uAgBMJ3IXAFgzurq60tvbm2aHl6Hbeuutc8MNN3Q0hulivIV4lyZ5bJKnTWIsAAAAa8Qmm2yS8847b8UxAMBUJncBAKYTuQsArDnNZjNLOrwMXafHn07GW4j3X0n+McmzSik71Vp/NnkhAQAATK6urq7svvvunQ4DAGBU5C4AwHQidwEAaJk1nk611t8meW2SkuTCUsqTJzUqAAAAAAAAAAAAmCbGtSJeKeXvkvwxyX8m+ZckV5VSLkxySfv8X0Zzn1rrd8czPgAAAAAAAACsCwYGkq6uTkfRMpViAYCpZryPpr0iSW0f1/Z9DmxvozXYDwAAAAAAAAAYQldX0tubNJudjaPRSPr6OhsDAExlEymEKw/xGgDWjKnycaupEgcAD2lgYCDXXnttkmTnnXdOl+/fAMAUJncBAKYTucva0WwmS5Z0OgoAYCTjLcR7z6RGAQBjMRU++uVjXwDTyu23355nPOMZSZIFCxakt7e3wxEBAAxP7gIATCdyFwCAlnEV4tVaFeIB0Fk++gUAAAAAAAAATBGzOh0AAAAAAAAwBQwMdDoCAAAAmLbG+2haAACAaWPLLbfMggULVhwDAJNnYGAgXV1dnQ4jydSKZSLkLnRMV1fS29t6EkEnbb11csMNnY0BgFGTuwAAtCjEgzWslPK1JM9rv/xsrfWIEdoekOR1SXZOsmGSBUm+kuQDtdY/P8Q4myf5lyQvTNKb5O4k1yb571rrBRN7FwAA09ucOXPS29vb6TAAYEbq6upKb29vmh0u3Gk0Gunr6+toDJNF7kJHNZvJkiWdjaHT4wOsBQMDrfrnqWCischdAABaJqUQr5SycZJDkjwjybZJNklSk9yZ5HdJfpjkvFrrXZMxHkwXpZSX5K9FeA/V9uNJ/qn9cnmSe5I8NskxSQ4vpexda/3VMH13SHJ5ki3ap5Yk2TjJs5M8u5TyX7XWN4/3fQAAAACMpNlsZonCGQCAUZsqi5A2GskM+SwDAEDHTagQr5SyXpL3pVU8tMEwzZ6R5BVJTiqlfCzJu2ut909kXJgOSimbJDk5SX+SPyV5wghtj0zr31FN8q4kJ9da7y2lPDnJWUl2THJRKWWHWut9q/XtSnJRWkV41yd5ea31ulLKBknekuT9Sd5USvlZrfWMyX2XAAAAAACsk2bScl7QIVNhEVIAACbPuAvxSindSS5L8tQkZRRd5iX55yT7lFKeVWuVVjLTnZhWcdzrkxyaYQrxSilzkxzffvmxWusHBq+1C+r2T/KrtFabfE2S/17tFkcleXRaj6Ldv9a6oN333iQfKKVsleSNSd5XSjlbISwAAAAAABNmOS8AAIBVTGRFvHOT7NI+rkm+luR/k/w0yZ/TKs7bNMlOSQ5K8vz2uV2SfD7JCyYwNkxppZRnJXllkh8n+VRahXjD2TfJlmn9O/rQ6hdrrQtKKeemVYT3sjy4EO9l7f3nB4vwVvOfSd6QZOskeye5dPTvBABgZrjnnnvyta99LUmy//77Z968eR2OCABgeHIXYNqwnBcQuQsAwKBxFeKVUvZL8ry0CoduT3JQrfUHQzS9JcnPk3yulLJ7WoV6WyZ5Xillv1rrJeMLG6au9iNhP5VkWZLX1lofKGXERSP3ae//r9Y63Mf2LkmrEG+3UsqGtda722NtlGTXldo8SK21r5TyyyQ7pFX0pxAPAFjnLF26NCeeeGKSZM899/QHYQBgSpO7AADTidwFAKBlvCviHd7eL0vy3FrrTx+qQ631yvYjNn+cZHb7HgrxmImOT+tRsR+utV43ivbbt/f/N0KbwWslyeOTXNN+/YT89dHQD9V/h5XGAgBYp2yxxRa58sorOx0GAMCoyF0AgOlE7gIA0DJrnP2ekdZqeN8YTRHeoHbbr6VVOPS34xwbpqxSylOSvDXJH5McN8puW7X3fxqhzS1DtF/9eDT9txqhDQAAAAAAAAAAMA7jLcTbsr2/dhx9Bwv3HjbOsWFKKqXMTnJaWis+vmHw8bGjsFF7f88IbVa+1j1E39H27x6hDQAAAAAAAAAAMA7jLcR7oL2fPY6+g30eGLEVTD/HJNk5yZdrrV/pdDCrKQ/dBAAAAAAAAAAAGI854+z3pySPTbL7OPoO9lk4zrFhyimlPDqtR9EuSfKmMXZf2t7PG6HNhisdLxmi72D/5jD9B++9ZJjrSZJjjz02c+fOTZLst99+2W+//UZqDgAAAAAAAAAAM9Ill1ySSy65JEly3333PWT78RbifSfJdkn2KaXsVWu9YjSdSil7J9k3SW3fA2aKE9MqdntXkrtKKRutdn1wJcg5K127p9b6QFpFqU9JsvUI91/52sJhjrfO8IV4g/1HLIA94YQT0mg0RmoCADAt3XHHHTn66KOTJJ/85Cez6aabdjgigCEMDCRdXZ2OomUqxQLrILkLADCdyF0AgJlq5UWsms1mTjnllBHbj7cQ78wkR6b1uMsLSimvqrV+eaQOpZQDkpzR7lPbxzBTPLK9f397G87h7S1pFd/9LMkvkzwvyQ4j9Bu8VpPcsNL5X7XPlXabGzK0wf6/HGEMAIAZ6957782XvvSlJMlJJ53U4WgAhtHVlfT2Js3hPmO1ljQaSV9fZ2OAdZzcBWAMuroyMDCQrinyIYKpFAusLXIXAICWcRXi1VqvLKWcleTlSbqTfKmU8rMk56dVWHRHu+mmSXZKckBaRUeDRXhn11qvnEjgMINcnuTtSXYopfTWWof6vx2Dz4j9ca317sGTtdalpZSrkjwtyXOS/O/qHUspvUm2X2ksAAAApqpmM1mypNNRAABMH3PnpqurK729vWl2+AMNjUYjfT7QAAAA66zxroiXtFbE2zyt4p+kVXC30wjtS3t/cZLXTGBcmHJqrTuNdL2UckWSPZN8ttZ6xGqXL0tya5KHJfl/Sd68Wt/5SV7Sfnn2ELf/fFqFeC8ppRxfa12w2vV/Tuvf38IoxAMA1lEbbLBBDj744BXHAABTmdwFYOyazWaW+EADdITcBQCgZdyFeLXW+5I8r5TypiTvSLLVQ3RZmOSDtdaPjXdMmIlqrfeVUo5L8okkbyylLEzy0VrrvaWUJyU5K8mGSX6f5LQhbvGpJG9J6/G4Xy2lvLzW+vNSygZpFfW9od3u32qt96/RNwMAMEVtuummOe+88zodBgDAqMhdAIDpRO4CANAykRXxkiS11v8qpfx3kmcleUaSxybZuH35ziS/S/KDJJfVWpdNdDyYiWqtnyyl7JTktUk+kOS9pZR7kjTaTW5L8qJa68AQff9SSnlhWqvdPSnJdaWUZpJ5+eu/8VNqrZ9Zw28DAGDdMTCQdHV1OoqWqRQLAAAAAADAOmrChXhJ0i6wu7i9AeNQaz26lHJpktcneUr+ugreRWmtJnnbCH2vL6XskOSdSV6QpDdJM8lPk/x3rfX8NR0/AMA6pasr6e1Nms3OxtFoJH19nY0BAAAAAACAySnEA0ZWa91rlO3OTzKuorl2od5b2xsAAGtas5ksWdLpKAAAAAAAAJgCZnU6AAAAAAAAAAAAAJjORlWIV0rpLaVcVUq5tpRycSllg7EMUkqZV0q5pN3/x6WULcYXLgAAwNjddttt2X333bP77rvntttu63Q4AAAjkrsAANOJ3AUAoGW0j6Z9f5KnJnkgybNrrfeOZZBa6z2llA8luaR96vgkR4/lHgAAAOO10UYb5ZhjjllxDAAwlcldAIDpRO4CANDykIV4pZTNk7wkSU3yv7XWb49noFrrt0op5yc5KMkrSynvrLXeOZ57AQAAjMW8efNyyCGHdDoMAIBRkbsAANOJ3AUAoGU0j6Z9cf5asPe+CY53fHs/N8mhE7wXAAAAAAAAAABtAwOdjuCvplIsAGvDaB5N+3ft/Y211usnMlit9fpSyu+TPDrJnkk+OZH7AQAAAAAAAADQ0tWV9PYmzWZn42g0kr6+zsYAsLaNphDvKWk9lvY7kzTmd5M8JsnOk3Q/AAAAAAAAAADSKsJbsqTTUQCse0ZTiLdZe79wksb8U3u/+STdDwAAYETLli3LokWLkiRbbrll5swZza9CAACdIXeBqaOrqysDA62VZaaCqRQLwCC5CwBAy2iyoA3b+3smaczB+2w4YisAAIBJsmjRosyfPz9JsmDBgvT29nY4IgCA4cldYOqYO3eux7sBPAS5CwBAy2gK8e5Ma/W6zR6q4Sht2t7fNUn3AwAAAAAAWGM83g0AAICHMmsUbW5v77efpDF3aO9vm6T7AQAAAAAAAAAAQMeMZkW8a9IqntujlLJBrfXe8Q5WSpmX5O+S1CTXjvc+AAAAY7H55pvnhz/84YpjAICpTO4CAEwnchdgWhgYSLq6Oh3F1IkDWCNGU4j3rSSvSLJBkrck+cAExntz+z61fV8AAIA1rqurK7vvvnunwwAAGBW5CwAwnchdgGmhqyvp7U2azc7F0GgkfX2dGx9Y40ZTiHdhksVJ/ibJsaWUS2ut14x1oFLKrkne1X55Z5Ivj/UeAAAAAAAAAAAwZs1msmRJp6OYMqbS4nxTKRaYiIcsxKu1LimlfDjJCUk2THJxKeUfa61fGe0gpZQXJDk9yby0VsP7cK116ThjBgAAAAAAAACA6aOrKwMDA+maIhVnU2GRwMRCgcwso1kRL0k+nOS5SfZIsmmSC0op30zy6SRX1FoXr96hlLJJkr2SvDbJs5KUtIrwvpfkQxOOHAAAAAAAAAAApoO5c9PV1ZXe3t40O1z9tvXWW+eGG26wSCBMslEV4tVal5VSDkxyeZId26ef3d5SSulLckeSJUk2SqtYb/5Ktyjt/fVJDqy1Lp946AAAAKMzMDCQa6+9Nkmy8847T5lPHAIADEXuAgBMJ3IXgLFpNptZ0uHqt06PDzPVaFfES631jlLK05N8IskrV7s8P0nvaufKaq/PTPJPtdZ7xxokAADARCxevDiHHHJIkuSqq67KVltt1eGIAACGJ3cBAKYTuQsAQMuoC/GSpNb6lySvKqWclOSfk+yfpKd9efXCuyTpT/K1JP9Za/35RAIFAAAYr6222ip9fX2dDgMAYFTkLgDAdCJ3AQBoGVMh3qB2Ud3LSiklyU5JnpBkkySNtB5Pe0eSG5L8rNb6wOSECgAAAAAAAAAAAFPPuArxBtVaa5KftjcAAAAAAAAAAABY58zqdAAAAAAAAAAAAAAwnSnEAwAAAAAAAACml4GBTkfwV1MpFgA6ZkKPpgUAAJgO7rrrrhx//PFJkne/+93ZeOONOxsQAMAI5C4AwHQid6FjurqS3t6k2exsHI1G0tfX2RgAmBIU4gEAADPe0qVLc9JJJyVJjjnmmJnzB+GurgwMDKSrq6vTkUyZOABgJpixuQsAMCPJXeioZjNZsqTTUQBAEoV4AAAA09fcuenq6kpvb2+aHfzkb6PRSJ9P/QIAAAAAAOswhXgAAMCMN3fu3Oy2224rjmeaZrOZJT75CwAzxkzPXQCAmUXuAgDQohAPAACY8bbYYotceeWVnQ4DAGBU5C4AwHQidwEAaJnV6QAAAAAAAAAAAABgOlOIBwAAAAAAAAAAABMw4qNpSylvah9+t9b6szUfDgAAAAAAAAAAAEwvD7Ui3slJTkqyz8onSymXt7dD1lRgAAAAAAAAAAAAMB2M99G0eyXZM8n8yQsFAABgzbjjjjtyyCGH5JBDDskdd9zR6XAAAEYkdwEAphO5CwBAy4iPpk2yLMnsJF1rIRYAAIA1Yu7cudl9991XHAMATGVyFwBgOpmRuUtXVwYGBtLV5X+TAwCj91CFeHck2SLJY9dCLAAAAGtEd3d3jjnmmE6HAQAwKnIXAGA6mZG5y9y56erqSm9vb5rNZkdD2XrrrXPDDTd0NAYAYHQeqhDvp0mek+TQUsr3kvwwyb0rXf+bUsrDxzt4rfWP4+0LAAAAAAAAAGtKs9nMkiVLOhpDp8cHAEbvoQrxzkirEG/9JKetdq0kOba9jUcdxfgAAAAAAAAAAAAwpc0a6WKt9bwkp6RVdLfyNmj182PdAAAAAAAAAAAAYFp7yBXpaq1vLKV8Jsn+SXrTWh3vlWmtaHdNkv9boxECAAAAAAAAAADAFDaqR8PWWn+W5GeDr0spr2wf/k+t9cTJDwsAAGDy9PX1Zf78+UmSBQsWpLe3t8MRAQAMT+4CAEwnchcAZpSBgaSrq9NRME2NqhAPAAAAAAAAAABgRuvqSnp7k2azs3FsvXVyww2djYExG28h3qva+6smKxAAAAAAAAAAAICOajaTJUs6G0Onx2dcxlWIV2v97GQHAgAAsKZssskm+eIXv7jiGABgKpO7AADTidwFAKBl0h9NW0qZk+RvktQkd9Val032GAAAAGMxb968HHLIIZ0OAwBgVOQuAMB0IncBAGiZNRk3KaXsV0o5p5RyU5KBJIuS3JpkoJRyU/va30/GWAAAAAAAAAAAU0JXVwYGBjodBQBTwIRWxCulbJvkrCRPW/n0as0e3t4OK6X8OMnLaq03TmRcAAAAAAAAAICOmzs3XV1d6e3tTbPZ7GgoW2+9dW644YaOxgCwLht3IV4p5QlJvptkk6xafHdXkj+3z22aZOOVru2W5EellL+rtfruDwAAAAAAAABMe81mM0uWLOloDJ0eH2BdN65H05ZS5iT5clqFdiXJbUnenuRRtdZNaq3b1VofW2vdJMkj29dubXffLMmXSymzJxo8AADAaCxbtix9fX3p6+vLsmXLOh0OAMCI5C4AwHQidwEAaBlXIV6SVybZLklN8oMkj6+1nlhrvXn1hrXWP9ZaT0zyhCTfb5/ern0PAACANW7RokWZP39+5s+fn0WLFnU6HACAEcldAIDpRO4CANAy3kfTHtDe9yc5oNZ610N1qLXeVUo5KMmvk/QkOSjJ6eMcHwAAYNR6e3tTa+10GAAAoyJ3AQCmE7kLAEDLeFfEe3Jaq+F9udb659F2qrXentYjbUv7HgAAM19XVwYGBjodxQpTKRYAAAAAAACAmWC8K+Jt3t7/bhx9f9/ebzrOsQEAppe5c9PV1ZXe3t40m82OhtJoNNLX19fRGAAAAAAAAABmmvEW4i1N8jdJNh5H38E+94xzbACAaanZbGbJkiWdDgMAAAAAAACASTbeR9PenNbjZZ87jr7Pae//MM6xAQAAmEK6uroylZ56PZViAQAAAAAA1g3jXRHv0iRPSbJDKeWYWuuJo+lUSjkmyROT1CSXjHNsAACAMVmyZElOPfXUJMmRRx6Z7u7uDkc0s8ydOzddXUlvb9LhJ3Cn0Ug8gRuA6U7uAgBMJ3IXAICW8RbifSLJm5N0JflQKeURSd5Ta108VONSyiZJ/j3JG9qnBpJ8cpxjAwAAjEl/f3/e9ra3JUle/OIX+4PwGtJsJp7ADQATJ3cBAKYTuQsAQMu4CvFqrX8spbwryUfSWt3uDUleW0r5XpKfJbmj3XTTJDsl2SPJemk9zrYmeWet9Y8TihwAAAAAAAAAAACmgPGuiJda60mllLlJ3tu+z9wk+7S31ZX2flmSf6u1fnS84wIAAIzV7Nmzs80226w4BgCYyuQuAMB0IncBAGgZdyFektRa/6OU8s0kxyZ54Qj3W5bkwiQn1Fp/OpExAQAAxmqrrbZKX19fp8MAABgVuQsAMJ3IXQAAWiZUiJcktdZrkxxcStkoydOSPDbJxu3Ldyb5XZKf1FqXTnQsAAAAAAAAAAAAmGomXIg3qF1od3l7AwAAAIAJGxhIuro6HUXLVIoFAAAAAJhaJq0QDwAAAAAmW1dX0tubNJudjaPRSDxtCwAAAAAYjkI8AAAAAKa0ZjNZsqTTUQAAjKyrq2tKraA7lWIBAIB1gUI8AABgxrvrrrty/PHHJ0ne/e53Z+ONN+5sQAAAI5C7AExPc+fOtZov6yS5CwBAi0I8ABiPrq4MDAyka4p8pHQqxQIAAAAA6zKr+QIAwLpJIR4AjMfcuenq6kpvb2+aHf54a6PRSJ+PtwKMaOONN86JJ57Y6TAAAEZF7gIATCdyFwCAFoV4ADABzWYzS3y8FQAAAAAAAADWabM6HQAAAAAAAAAAAABMZwrxAAAAAAAAAAAAYAIU4gEAAAAAAAAAAMAEKMQDAABmvIULF6a3tze9vb1ZuHBhp8MBABiR3AUAmE7kLgAALXPG06mUcm378KZa60GTGA8AAMCkW758eW655ZYVxwAAU5ncBQCYTuQuAAAt4yrES/Lk9v47kxUIAAAAAAAAAAAATEfjLcS7PcnmSW6dxFgAAADWiJ6ennzkIx9ZcQwAMJXJXQCA6UTuAgDQMt5CvN+nVYj3sEmMBQAAYI3o7u7OMccc0+kwAABGRe4CAEwnchcAgJZZ4+x3fpKS5HmllDKJ8QAAAAAAAAAAAMC0Mt5CvFOT3Jxk2yTvnLxwAAAAAAAAAAAAYHoZVyFerbWZ5IAktyR5bynl1FLKIyczMAAAAAAAAAAAAJgO5oynUynl9PbhdUl6k/xjkn8spfw6ya+T9Cd54CFuU2utrx7P+AAAAAAAAAAAADBVjKsQL8kRSWr7eHBfkjyuvY2WQjyYRKWUzZP8S5IXplUke3eSa5P8d631gg6GBgDQUX19fZk/f36SZMGCBent7e1wRAAAw5O7AADTidwFAKBlvIV4SavwbjTnhlMfugkwWqWUHZJcnmSL9qklSTZO8uwkzy6l/Fet9c0dCg8AoKO23HLLLFiwYMUxAMBUJncBAKYTuQsAQMt4C/EeNalRABNSSulKclFaRXjXJ3l5rfW6UsoGSd6S5P1J3lRK+Vmt9YzORQoA0Blz5szxaWwAYNqQuwAA04ncBQCgZVyFeLXWmyc7EGBCjkry6LQeRbt/rXVBktRa703ygVLKVknemOR9pZSza633dy5UAAAAAAAAAACYWWZ1OgBgUrysvf/8YBHeav4zrcdBb51k77UWFQAAAAAAAAAArAMU4sE0V0rZKMmu7ZeXDNWm1tqX5Jftl/uujbgAAAAAAAAAAGBdMWmFeKWURinl70opB5VSXl5KecJk3RsY0ROSlPbx/43QbvDa9ms2HJLkkkuGrIkEgLXGz6JV3XPPPTnvvPNy3nnn5Z577ul0ODCt+f7CaJkrMH5yl5H5/gJAp/lZtCq5CwBAy4QL8Uopzy2lXJHkjiTfTvLFJGcmee4Qbc8tpVxaSjl5ouMCK2y10vGfRmh3yxDtWUP8Eg5Ap/lZtKrFixfnxS9+cV784hdn8eLFnQ4HpjXfXxgtcwXGT+4yMt9fAOg0P4tWJXcBAGgZdyFeKWVWKeXTSb6aZI8ks9NalauM0O2XSZ6V5A2llN7xjg2sYqOVjkf6mNHgte41GAsAAAAAAAAAAKxz5kyg738leU37uD/J/yT5eZJTRuhzZpLj0irWe2GS/57A+MDYjFQkmyTp6+tLo9FYG7EMbd685IEHOjf+YAx9fRO+zdKlS9M3CfdhBJ2eL+uvn/T1Zd68eXlggnEMDAykq6tr3P3nzZtnvo2k03MlMV+mk6kwX/wsWiMWLlw45PGETIX5MknfXyb6vWX99ddPX1/flPiSTNI/ock1w74wvr+sYTNovkzmXJlBX5YZq9M/iwZjmCnfn9ZI7jKD+Fm0hk2Fb7pTJM9thSLXHdFU+MKYL0OakvNlBpmsn0UzZa5Meu4yFb4wU+hvur63PISp8IXxs2hI5ssQfG8ZkrkyDPNlSJ2cL81m8yHblFrrmG9cStklyU+S1Pb+hbXW29vXHmif/3+11hOH6PvTJE9Kcn6t9ZAxDw6sopTywiQXtl/21FqH/JdfSjkpyVuSXFNr3WW1azsnuWZNxgkAAAAAAAAAANPcU2ut1w51Ybwr4h3V3t+b5IDBIrxRujrJk5PsMM6xgVWt/NGirZMMV4K79RDtB/0uSRYsWNDZFfFmkGOPPTYnnHBCp8NgmjBfGAvzhdEyVxgL84WxMF8YLXOFsTBfGAvzhdEyVxgL84WxMF8YC/OF0TJXGAvzhbEwXyZHs9nM/Pnzk3aNzVDGW4i3V1qr3l1Ya100xr63tPdbj9gKGK1fpfXvsaRV4HrDMO0Gi19/OdyNGo2GQrxJMnfuXF9LRs18YSzMF0bLXGEszBfGwnxhtMwVxsJ8YSzMF0bLXGEszBfGwnxhLMwXRstcYSzMF8bCfFl7Zo2z31bt/bAFPSO4t72fN86xgZXUWpcmuar98jlDtSml9CbZvv3y8rURFwAAAAAAAAAArCvGW4hXJjDmpu19/wTuAazq8+39S0op84e4/s9p/btdGIV4a8V+++3X6RCYRswXxsJ8YbTMFcbCfGEszBdGy1xhLMwXxsJ8YbTMFcbCfGEszBfGwnxhtMwVxsJ8YSzMl7Wn1FrH3qmU3yd5ZJLP1lr/cbVrD6T1mMz/V2s9cYi+30myR5Kf11p3GkfMwGpKKeun9YjaRyb5eZKX11p/XkrZIMmbk5yQViHea2qtnxmifyNJf39/v+VIAYAZacmSJTn11FOTJEceeWS6u7s7HBEAwPDkLgDAdCJ3AQDWBc1mMz09PUnSU2ttDtVmvIV45yR5SZJbkzy81nr/SteGLcQrpeyQVpFQkpxSa33TmAcHhlRK2TGt1e42a59qpvUI6Dnt16fUWt8wTF+FeADAjNbX15f581sLBy9YsCC9vb0djggAYHhyFwBgOpG7AADrgtEU4o330bRfau+3SPLvo+lQSulJck7++ljb/xnn2MAQaq3XJ9khyclJfp+kK61ivMuS/P/2/j3OsqusE/8/T9J0kUtXhwRiEqqVm3yFCEKGQBov3NQwRLkMJIqAIEMUFIE0IyIzIJMRcBTCHWECPxARB4KAGJSAIN4IiAQwAlFGgnSFDrnRXZ1bNUnW74+9u1OpVFVX16mqU6f6/X69zuvsy1p7PeecXdVPVT+11hPnK8IDAAAAAAAAAAAGs2H/TW6vtfahqvpCkv+U5Leq6ogkL2+t7ZrdtqoOSfK4JL+X5J7pZsv7RGvtM0sPG5hLa+2KJGf1DwAAeoceemjuete77tsGAFjL5C4AwCiRuwAAdJa0NG2SVNXdk1yYbla8lmRPki8keWi//09Jrkny4CRH7e2WZDLJg/qCIWANsDQtAAAAAAAAAADMbSWXpk1r7dIkP57kS+kK7MaSbE1XhJckD0ry00nu1J+vvu2PK8IDAAAAAAAAAABgvVhyIV6StNa+nm7Gu2ck+UySm3Jr0d3exy3pZso7M8mDW2v/MciYAAAAAAAAAAAAsJZsGPQCrbWbkrw7ybur6rAkP5TkmP7aVyf5emtt56DjAAAAAAAAAAAAwFo0cCHeTK21G5J8cTmvCQAAAAAAAAAAAGvZQEvTAgAAjIKdO3dm27Zt2bZtW3bu3DnscAAAFiR3AQBGidwFAKCzrIV4VbWhqu5VVSf3j3tV1R2WcwxYSVV1VFU9rqrOrqrzq2pHVbX+8fgF+m2oqp+qqtdW1eeq6rtV9b2qurKqPlVVv1JVGxcx/l2q6jVV9fWquqGqrqqqjy809qz+T+jbX9X3/7f+ende/Luw+qpqwccRRxyR7//+789pp52WP/iDP8jU1NSwQwYAAAAAAAAAgH2qtTbYBaoOT/L0JE9L8sAks4uN9qRbrvaPkry7tXbdQAPCCqqqZyR55zynn9Ba+/A8/c5N8qwZh25Ocm2SzTOOfTnJo1trl89zjROTfCrJsf2h3UkOT3Jov/+G1trzF4j9TUl+bcb41yfZ1O9/J8kjWmtfm6fveJJdu3btyvj4+HxDrJiqOqD2xx9/fN7znvfkkY985ApFBAAAAAAAAAAAnampqWzevDlJNrfW5pxBasMgA1TVTyc5N8nE3kNzNBtL8pD+8ZKqelZr7YJBxoUVdnm64tGL+sefLqLPHdIVu70ryQeTXNRau6mqjkpXoPc/k/xIkg9W1Y+2WRWwVTWW5CPpivAuTvK01tqXq+qwJC9I8ookz6uqL7XWblcoWFVnpivCa0n+e5LXtdZuqKofSVcEe78kH6mqE1trew7kzVhtL3nJS3KnO91p335rLVNTU7n44ovzsY99LNPT09mxY0dOO+20fO5zn8v973//IUYLAAAAAAAAAAADzIhXVWckeU+62br2FuDdmOSSJFf1x45J8kNJ7jij603piozet8SYYcVU1YbW2k2zju39IlloRryHJPnn1toN85x/cpL39rsPa6397azzv57kDUmuS3Kf1tr2WeffkOTXk3w7yd1aa9+bcW5jkv9IclzmmDWvqrYk+VqSI5L8WmvtLXPEt2ZmxLv00ktzt7vdbc52l156aU499dR8/etfT5KcdtppOf/881cjRAAAAAAAAAAADlKLmRHvkKVcuKruluQd6WbUq3Szhj02yXhr7aTW2k+31n6qtXZSkvEkj0vyT333DUne3l8D1pTZRXgH0O9z8xXh9d6fbqnaJPlPc5x/av/83tlFeL3fSzfb3QlJHjHr3KPSFeG1JL8/R2zbk/zJrHFG0t3vfve8/vWv37f/iU98IjfdtKSPDAAAAAAAAAAAls2SCvHSLZV5RLrCn/ckeUhr7fy5iphaaze11v48ySnplshMksP7a8BBobV2c5LpfvfQmeeq6sgkJ/e7cy7b3FqbTPLVfvdRs04/sn/+St9uLnuve0pVHbHYuNein/iJn9i3vWfPnlx11VVDjAYAAAAAAAAAAJZeiPeY/nkyyZl9kdGCWmu3JPnlJNvTzaL3mIV7wPpRVT+cbqnmJLl41un75Nblnb+ywGX2nrvvrOP3nXV+ob6VbrnodaGqcqc73WnYYQAAI2DHjh2ZmJjIxMREduzYMexwAAAWJHcBAEaJ3AUAoLNhif0m0s2G9+HW2vT+Gu/VWpuuqg8n+fUkd13i2DCKXtk/X5rkU7POHT9j+9sLXOOyOdrP3F9M37n6j5S///u/37d997vfPWNjY0OMBgAYFTfffHMuu+yyfdsAAGuZ3AUAGCVyFwCAzlJnxLu2f758CX339rluiWPDSKmq5yf52X73Ba21781qcuSM7esXuNTec5vm6b+YvnP1HxmTk5M566yz9u0///nPH2I0AAAAAAAAAADQWeqMeP8v3TKbS5nVbm+ff1/i2DAyquqxSV7T757TWvvIIJdbhpDWvHPPPfd2y81ee+21ufjii/OXf/mXueGGG5Ikz3zmM/Oc5zxnGCECACNo8+bNec1rXrNvGwBgLZO7AACjRO4CANCp1tqBd6p6XpLXJdmR5F6ttRsW2e+wdEV8xyV5YWvtdQc8OKyyqtr7RfKE1tqHD6DfTyf5SJKxJO9M8l/bHF9wfbHen/W7m1trU/Nc77VJXpDkC621B804flGSByZ5bWtt2zx9NyfZ2e/+bGvt/Fnnx5Ps+rVf+7Vs3LgxSXLqqafm1FNPXdyLHVDV4msM73vf++b1r399fvInf3IFIwIAAAAAAAAA4GB2wQUX5IILLkiS7NmzJ29+85uThWp7lliId8ckn0tyvyTvS/LU1trN++lzSJI/TvJzSf45ydbFFvDBMC2lEK+qHpXkz5McluS9SZ7WWrtlnrYnJ/nHfvc+rbVL5mn3viRnJDm/tfazM45/NMljkryvtfbz8/S9T5Kv9rsPaq19Ydb58SS7du3alfHx8cW8xGV1IIV4SXLUUUflxS9+cX7jN34jhxyy1BW2AQAAAAAAAABg/6ampvbO/jtvId6SKlhaazcm+Zl0xUNnJPlCVT2pL9C7jaq6Y1U9KckX+rb/mORnFOGxXlXVI9LNhHdYkg8k+cX5ivB6X0uyt9jvxAXa7T331VnHvzrr/EJ9W5I5C/3WiksvvTSttds8brzxxnzjG9/Iueeem7vf/e7ZuXNnXvziF+cXf/EXhx0uAAAAAAAAAAAsPCNeVX1qP/3vkOShM/ZvTvLvSa7u949Jcs8khyapJLckuTDJ95K01tqjlhY2rJ4DmRGvqh6W5C+SHJ6uGO9JrbXvLWKMzyV5cJK3t9bOnOP8RJJvpfs6enRr7YIZ5/5zP2ZL8v2ttck5+p+b5FlJPtta2zrH+TUzI96ll16au93tbvO2veaaa3LyySfnG9/4RpLk3e9+d572tKetdIgAAAAAAAAAAByklmNGvIcnedgCj4fOar8hyb2TbO0f9+6PJV2RUPV9Ht4/YN2oqh9P8tF0RXh/keT0xRTh9d7bPz+5qrbMcf5F6b5+diSZXSD7ySTf6c//xhxxbUny5H73PYuMZ806+uij86IXvWjf/utf//ohRgMAAAAAAAAAAItbmrYO4DFX+/mOwZpUVXee+ZhxatOsc3eY0eeUdEV4RyT5eJL/0lrbcwDDvi3JN/v+51fV/fvrHlZVL07y3L7dS2cX9/XjvLzf/fWqenFVHdb3v3+S8/vr/nuStx9ATGvWKaecsm/7i1/8Ym64wUrXAMDCJicnU1WpqkxO3m4CYQCANUXuAgCMErkLAEBnwaVp4WA0Yyna/XlEa+3TfZ9PJXlEf/yadMsvz+d9rbXnzzHu/dLNdre3+G8q3ex6e2eVfHNr7bmz+83o/9Ykv9Lv3pTk+iR715m9IskjW2tfmafvyCxNmyRf//rXc+9733vf/mWXXZYTTjhhpcIDANaBm266KZdffnmS5LjjjsuGDRv20wMAYHjkLgDAKJG7AAAHg8UsTSsLguUxc3bJo/fTdvNcB1trF1fViUl+K8nPJplIV4z3xSRvaa19cKGLttaeXVUfT/KrSR6YW2fB+0iS322tXbGYFzIKvvWtb91m/6ijjhpOIADAyNiwYUMmJiaGHQYAwKLIXQCAUSJ3AQDoKMSDWVprB7x8cmvt4cs09hVJzuofS+n/wSQLFuytB+edd96+7Xvf+945/PDDhxgNAAAAAAAAAAAHu0P23wRg7Tj33HNz7rnn7tt/xjOeMbxgAAAAAAAAAAAgZsQD1phzzz03d7rTnW5zbM+ePfn2t7+dT37yk7nkkkv2HX/Qgx6Us85a0uSBAAAAAAAAAACwbKq1NvhFqn44yY8kOTbJEVnkTHuttbMHHhwYWFWNJ9m1a9eujI+PD2P8A+7zhCc8Ie94xztuV7QHADCX66+/Ph/96EeTJKeddpql7QGANU3uAgCMErkLAHAwmJqayubNm5Nkc2ttaq42AxXiVdWZSX4zyd2X0r+1duiSBweWzVovxLvDHe6Q8fHx3OMe98gpp5ySpzzlKXnIQx6yStEBAOvB5ORktmzZkiTZvn17JiYmhhwRAMD85C4AwCiRuwAAB4PFFOIteWnaqnpPkifv3V3CJQafig9YF5ZjZk4AAAAAAAAAABiWJRXiVdUzk/zCjEMXJPmLJN9Icl0U2QEAAAAAAAAAAHCQWNLStFX1mSSnJLklyemttQ8td2DA6hn20rQAAAAAAAAAALBWLWZp2kOWeO0T081692FFeAAAAAAAAAAAABzMllqIt3cavYuWKxAAAAAAAAAAAAAYRUstxLu0fz5suQIBAAAAAAAAAACAUbTUQrwPJ6kkD1u+UAAAAAAAAAAAAGD0bFhiv7ckeX6SH62qn2mtnb+MMQEAACyr3bt359xzz02SnHnmmdm0adOQIwIAmJ/cBQAYJXIXAIDOkmbEa61dmeSJSW5I8n+r6plVVcsaGQAAwDLZs2dPLrzwwlx44YXZs2fPsMMBAFiQ3AUAGCVyFwCATrXWlt656j5J3pnk5CTfTvLpJNuT3LiY/q21s5c8OLBsqmo8ya5du3ZlfHx82OEAAAAAAAAAAMCaMTU1lc2bNyfJ5tba1Fxtlro07V4PTXKXJJXkhCS/cID9FeIBAAAAAAAAAAAw0pZciFdVb0vyrJmHDvASS5+KDwAAAAAAAAAAANaIJRXiVdXpSc6ccehjSf4yyTeSXBdFdgAAAAAAAAAAABwkljoj3q/3z7ckeWJr7c+WKR4AAAAAAAAAAAAYKYcssd990s1692FFeAAAwFp3xRVXZOvWrdm6dWuuuOKKYYcDALAguQsAMErkLgAAnaXOiLexf75ouQIBAABYKXv27MlnP/vZfdsAAGuZ3AUAGCVyFwCAzlJnxPtW/3zYcgUCAAAAAAAAAAAAo2ipM+L9eZITk/z4MsYCAACwIo488sicddZZ+7YBANYyuQsAMErkLgAAnWqtHXinquOTfDnJMUke21r76HIHBqyeqhpPsmvXrl0ZHx8fdjgAAAAAAAAAALBmTE1NZfPmzUmyubU2NVebJS1N21rbkeSJSXYmeV9V/deqWuoytwAAAAAAAAAAADCyljoj3sv6zbsleUaSlmRHkr9Osj3JjYu5Tmvt7AMeHFh2ZsQDAAAAAAAAAIC5LWZGvKUW4t2SrvhuIK21Qwe9BjA4hXgAAAAAAAAAADC3xRTibRjg+jVA32QZCvkAAAAAAAAAAABg2JZaiPeIZY0CAABgBe3YsSMnn3xykuTzn/98jj/++CFHBAAwP7kLADBK5C4AAJ0lFeK11v5muQMBAABYKUcffXTOO++8fdsAAGuZ3AUAGCVyFwCATrVmhVg42FXVeJJdu3btyvj4+LDDAQAAAAAAAACANWNqaiqbN29Oks2ttam52hyyuiEBAAAAAAAAAADA+qIQDwAAAAAAAAAAAAagEA8AAAAAAAAAAAAGsGEpnarq5mUYu7XWljQ+AADAgZiens5FF12UJDnppJMyNjY25IgAAOYndwEARoncBQCgs9RCuFrWKAAAAFbQlVdemYc+9KFJku3bt2diYmLIEQEAzE/uAgCMErkLAEBnqYV4f5ukLaLd4Um2JDmu329J/iHJcsyoBwAAAAAAAAAAAEO3pEK81trDD6R9Vd0/ycuTPD5dEd4TW2vXLGVsAAAAAAAAAAAAWEuqtcVMbLdMg1W9LsnzkvxNkke11m5ZtcGBeVXVeJJdu3btyvj4+LDDAQBYdjfddFMuv/zyJMlxxx2XDRuWOjk4AMDKk7sAAKNE7gIAHAympqayefPmJNncWpuaq81qF+JtTPLvSU5I8qzW2jtXbXBgXgrxAAAAAAAAAABgbospxDtkNQNqre1J8pEkleTpqzk2AAAAAAAAAAAArIRVLcTrbe+f7zOEsQEAAAAAAAAAAGBZDaMQ76j+2fqXAAAAAAAAAAAAjLwNqzlYVR2a5HH97uWrOTYAAHDwuv766/PRj340SXLaaafl8MMPH3JEAADzk7sAAKNE7gIA0Fm1Qryq2pTkLUn+vyQtyadXa2wAAODgdu211+acc85JkjzsYQ/zC2EAYE2TuwAAo0TuAgDQqdbagXeqetlimyY5Msm9kzwiyRH9sZuSPKC19tUDHhxYdlU1nmTXrl27Mj5u1WiAlTA9PZ2xsbFhh5FkbcUCAAAAAAAAsNZNTU1l8+bNSbK5tTY1V5ulzoj38nSz2h2I6p/3JHmmIjwA4GAyNjaWiYmJTE3NmZOtmvHx8UxOTg41BgAAAAAAAID1ZpClaWv/TW7j6iR/luT3W2v/OsC4AAAjaWpqKrt37x52GAAAAAAAAAAss6UW4j1ike1akuuSfKe1ZuoVAAAAAAAAAAAA1p0lFeK11v5muQMBAAAAAAAAAACAUXTIsAMAAABYaVdffXVOP/30nH766bn66quHHQ4AwILkLgDAKJG7AAB0qrU27BiAIauq8SS7du3alfHx8WGHA7BujY+PZ/fu3UONYdOmTZmamhpqDDAMk5OT2bJlS5Jk+/btmZiYGHJEAADzk7sAAKNE7gIAHAympqayefPmJNncWpvzP1zNiAcAAAAAAAAAAAAD2LC/BlX1/Ss1eGvtWyt1bQAAgL0OO+ywPOlJT9q3DQCwlsldAIBRIncBAOjsd2naqrolyUqsX9taa/stBARWnqVpAVaHpWkBAAAAAAAARs9yLk1bK/QAWHOmp6eHHcI+09MrUQe9NGvobQEAAAAAAAAAWFMWMyPdV7N8M+L9ULriP0V4wJo1NjaWiYmJoc8YdcIJJ+SSSy7JxEQy7MmrxseTycnhxgAAAAAAAAAAsFbttxCvtfbDgw5SVY9M8ookh2ZllrkFWFZTU1NDXz5y7/hTU8mQQwEAAAAAAAAAYAGLXZp2Sarq5Kr6RJJPJHnw3sNJ/iHJI1ZybAAAAAAAAAAAAFgNK1KIV1UnVtWHknw2ySPTFd9Vki8l+ZnW2o+31v52JcYGAACY7YorrsjWrVuzdevWXHHFFcMOBwBgQXIXAGCUyF0AADr7XZr2QFTVPZKcneTnc2vxXZL8W5KXtdbev5zjAQAALMaRRx6Zbdu27dsGAFjL5C4AwCiRuwAAdKq1NvhFqk5I8rIkv5SuuG9vAd630hXmvau1dsvAAwEroqrGk+zatWtXxsfHhx3OmjA+Pp7du3cPNYYTTjghl112WcbHkyGHkk2bkqmp4cYA68Fa+N6yadOmTPmCBgAAAAAAAFi0qampbN68OUk2t9bm/A/XgWbEq6pjkvxWkuckuWNuLcC7Iskrk7y1tbZnkDEAAOBgMz09nbGxsWGHkWRtxQIAAAAAAABr1ZIK8arqyCT/LclZSY7MrQV4O5O8OsnrWmvXL0eAAABwsBkbG8vExMTQZy8cHx/P5OTkUGMAAAAAAACAUXBAhXhVNZbk15P8ZpKjc2sB3nVJ3pjk91prO5czQAAAOBhNTU0NfSljAAAAAAAAYHEWVYhXVYcmOTPJ/0hy/N7DSfYkeVuSV7TWrliRCAEAWDZjY2OZnk7WykqjaykW1rebbropl19+eZLkuOOOy4YNS5ocHABgVchdAIBRIncBAOjsNwuqqqcmeXmSu+fWGfBuTvLuJC9vrW1fsegAAFhWGzduzNhYMjGRDHnV04yPJ1Y9ZbVcfvnl2bJlS5Jk+/btmZiYGHJEAADzk7sAAKNE7gIA0FnMnyO8O0lLV4R3S5IPJHlpa+3rKxkYAAArZ2oqseop+2MGRQAAAAAAAFicA5kXuPWPxyR5TFXtp/n+r9da2zzoRQAAgJVhBkUAAAAAAABYnAMpxEuSQ5IckVuXqF2KvbPrtQGuAQAArJL1MIPiXe5yl3zmM5/Ztw0AsJbJXQCAUSJ3AQDoLLYQb+Dp71boWgAAAPs1NjaWrVu3DjsMAIBFkbsAAKNE7gIA0NlvIV5r7ZDVCAQAAAAAAAAAAABGkSI7AAAAAAAAAAAAGIBCPAAAAAAAAAAAABjAfpemBQAAGHXT09O56KKLkiQnnXRSxsbGhhwRAMD85C4AwCiRuwAAdBTiAQAA694111yT008/PUny+c9/Pscff/yQIwIAmJ/cBQAYJXIXAICOQjwAAGDdO/744zM5OTnsMAAAFkXuAgCMErkLAEDnkGEHAAAAAAAAAAAAAKNMIR4AAAAAAAAAAAAMQCEeAAAAAAAAAAAADEAhHiyjqjqkqp5WVRdU1Xeq6ntVtbuqvlxVr66qLfvp/4Sq+nhVXVVVN1TVv1XVa6rqzosY+y5926/3fa/qr/X4ZXuBwG1MT08PO4R91lIsAAAAAAAAAHCw2TDsAGC9qKrDkvxZkp+acXgqyRFJ7t8/nl1Vj2+t/dUc/d+U5Nf63ZuTXJ/kB5NsS/KUqnpEa+1r84x9YpJPJTm2P7Q7yVF9LD9VVW9orT1/sFcIzDY2NpaJiYlMTU0NNY7x8fFMTk4ONQaAtW7nzp05++yzkyQve9nLctRRRw03IACABchdAIBRIncBAOhUa23YMcC6UFWvSPKSfve3k7yptXZNVW1I8ogkb0lyryRXJfmB1tr1M/qemeT/JGlJ/nuS17XWbqiqH0nyR0nul+T/JTmxtbZn1rhjSb6a5B5JLk7ytNbal/vCwBckeUWSSvLM1to754l9PMmuXbt2ZXx8fPA3Yx0YHx/P7t27hxrDCSeckMsuuyzj48mQQ8mmTcmQa83WrLVwr2zatGnoxYAszlq4X3xvGR3ul9sa9H6ZnJzMli3d5MTbt2/PxMTEMkUGALD85C4AwCiRuwAAB4Opqals3rw5STa31ub8XytL08LyeUr//K7W2tmttWuSpLV2U2vtE0nO6M/fOclP7O1UVRuTnN3vvrG19qrW2g193y8nOS3JdemK+J41x7i/nK4I77okp/V90lq7obX2qiRv6tv9TlXdYXleKgAAAAAAAAAAsJelaWH5HNc/f2Ge819OclO6r7sjZhx/VN+3Jfn92Z1aa9ur6k/SFeE9Nd3MejM9tX9+b2tt+xzj/l6S5yY5Id3MfB/f7ysBAFhnNm7cmFNOOWXfNgDAWiZ3AQBGidwFAKCjEA+Wz6VJfijJg+Y5/4B0X3O3JPnijOOP7J+/0lqbnKfvBekK8U6pqiNaa9clSVUdmeTkGW1up7U2WVVfTXJiuqI/hXgAwEHn2GOPzYUXXjjsMAAAFkXuAgCMErkLAEDH0rSwfN7aPz+9ql5WVXdKkqraUFU/meR9/fnXt9a+MaPfffvnryxw7b3nKl2x31736Y8ttv99F2gDAAAAAAAAAAAsgUI8WD5vTPLqdEvM/s8k11TVriQ3JvlEkpuTPKe1tm1Wv+P7528vcO3L5mg/e3sx/Y9foA0AAAAAAAAAALAECvFgmbTWbknym0mek2S6Pzye5NB++4gkd66q2UtCH9k/X7/A5Wee2zRH38X237RAGwAAAAAAAAAAYAkU4sEyqapjk/xtuiVqP5TkQekK374/yTPSFeT9ryTnV9Wh81xmxcJb5fEAAAAAAAAAAOCgMXtmLmDp3p3kR5O8u7X29BnHr03yh1X1j0m+mOTUJL+U5O0zzifJ4Qtc+4gZ27tnXXuvw5NMzdN/77V3z3M+SfKSl7wkGzduTJKceuqpOfXUUxdqDgAwMq6++uo8+9nPTpK89a1vzTHHHDPkiAAA5id3AQBGidwFAFivLrjgglxwwQVJkj179uy3vUI8WAZVdd90BXZJ8uq52rTWvlZVH03yX5I8MbcW4u1I8sAkJywwxMxzO+bZPiHzF+Lt7b9jnvNJkle+8pUZHx9fqAkAwEjauHFjtm7dum8bAGAtk7sAAKNE7gIArFczJ7GamprKm9/85gXbK8SD5XGfGdv/vkC7r/fPd59x7KtJHpPkxAX67T3Xklwy4/jX+mPVt7kkc9vb/6sLjAEAsG5t2rQp27ZtG3YYAACLIncBAEaJ3AUAoHPIsAOAdeKWGds/sEC77+ufZ85c96n++cSqmpin397Z9j7XWrtu78HW2rVJPt/vPnqujv017ztrLAAAAAAAAAAAYJkoxIPl8cUZ28+Zq0FVHZfkCf3uZ2ec+mSS76Sb1e435ui3JcmT+933zHHp9/bPT+7bzvai/to7ohAPAAAAAAAAAACWnUI8WAattW8m+Yt+97lVdU5VnZAkVXXHqnp0kr9NsjnJ95K8eUbfPUle3u/+elW9uKoO6/veP8n5SY5It+Tt2+cY/m1Jvtm3Ob/vk6o6rKpenOS5fbuXtta+tywvGAAAAAAAAAAA2EchHiyfX0ryz+lmnzsryWVVtTvJdUn+MskPJplO8vTW2r/O7Nhae2u6grpK8qokU1W1K8mXk9w/yRVJHtdam549aGvtxiSPTXJV3/bLfd+p/lqV5M2ttXcs+ysGAAAAAAAAAAAU4sFyaa1dkeTkJL+abgnYq5LcMcmNSb6W5E1J7t9a+5N5+j87yRPTLVU7lWQs3Sx4r01yv9baVxYY++IkJyZ5Xd9nrL/GJ5M8sbX23Pn6AgAcDCYnJ1NVqapMTk4OOxwAgAXJXQCAUSJ3AQDobBh2ALCe9MvM/kH/WEr/Dyb54BL7XpFuJr6zltIfAAAAAAAAAABYGjPiAQAAAAAAAAAAwADMiAcAAKx7Rx99dN7//vfv2wYAWMvkLgDAKJG7AAB0FOIBAADr3uGHH57TTz992GEAACyK3AUAGCVyFwCAjqVpAQAAAAAAAAAAYAAK8QAAAAAAAAAAAGAACvEAAAAAAAAAAABgABuGHQAAAMBKu+mmm3L55ZcnSY477rhs2OBHIQBg7ZK7AACjRO4CANAxIx4AALDuXX755dmyZUu2bNmy7xfDAABrldwFABglchcAgI4/RwAAANa9iYmJtNaGHQYAwKLIXQCAUSJ3AQDomBEPAAAAAAAAAAAABqAQDwAAAAAAAAAAAAagEA8AAAAAAAAAAAAGoBAPAAAAAAAAAAAABrBh2AEAAACstN27d+fcc89Nkpx55pnZtGnTkCMCAJif3AUAGCVyFwCAjkI8AABg3du1a1de+MIXJknOOOMMvxAGANY0uQsAMErkLgAAHUvTAgAAAAAAAAAAwADMiAcAAKx7hx56aO5617vu2wYAWMvkLgDAKJG7AAB0FOIBAADr3vHHH5/JyclhhwEAsChyFwBglMhdAAA6lqYFAAAAAAAAAACAASjEAwAAAAAAAAAAgAEoxAMAAAAAAAAAAIABKMQDAAAAAAAAAACAASjEAwAA1r2dO3dm27Zt2bZtW3bu3DnscAAAFiR3AQBGidwFAKCjEA8AAAAAAAAAAAAGsGHYAQAAAKy0o446Kuecc86wwwAAWBS5CwAwSuQuAAAdM+IBAAAAAAAAAADAABTiAQAAAAAAAAAAwAAU4gEAAAAAAAAAAMAAFOIBAAAAAAAAAADAABTiAQAA696OHTsyMTGRiYmJ7NixY9jhAAAsSO4CAIwSuQsAQGfDsAMAAABYaTfffHMuu+yyfdsAAGuZ3AUAGCVyFwCAjhnxAAAAAAAAAAAAYABmxAMAANa9zZs35zWvec2+bQCAtUzuAgCMErkLAEBHIR4AALDubdq0Kdu2bRt2GAAAiyJ3AQBGidwFAKBjaVoAAAAAAAAAAAAYgEI8AAAAAAAAAAAAGIBCPAAAAAAAAAAAABiAQjwAAAAAAAAAAAAYgEI8AABg3ZucnExVpaoyOTk57HAAABYkdwEARoncBQCgs2HYAQAAAKy04447Ltu3b9+3DQCwlsldAIBRIncBAOgoxAMAANa9DRs2ZGJiYthhAAAsitwFABglchcAgI6laQEAAAAAAAAAAGAACvEAAAAAAAAAAABgAArxAAAAAAAAAAAAYAAbhh0AAADASrv++uvz0Y9+NEly2mmn5fDDDx9yRAAA85O7AACjRO4CANBRiAcAAKx711xzTc4444wkyfbt2/1CGABY0+QuAMAokbsAAHQsTQsAAAAAAAAAAAADUIgHAAAAAAAAAAAAA7A0LQAAsO5NTEyktTbsMAAAFkXuAgCMErkLAEDHjHgAAAAAAAAAAAAwAIV4AAAAAAAAAAAAMACFeAAAAAAAAAAAADAAhXgAAAAAAAAAAAAwgA3DDgAAAGCl7d69O+eee26S5Mwzz8ymTZuGHBEAwPzkLgDAKJG7AAB0zIgHACNubGws09PDjuJWaykWgL327NmTCy+8MBdeeGH27Nkz7HAAABYkdwEARoncBQCgY0Y8ABhxGzduzNhYMjGRTE0NN5bx8WRycrgxAMzlmGOOyXnnnTfsMAAAFkXuAgCMErkLAEBHIR4ArBNTU8nu3cOOAgAAAAAAAAAOPpamBQAAAAAAAAAAgAEoxAMAAAAAAAAAAIABKMQDAAAAAAAAAACAASjEAwAA1r0rrrgiW7duzdatW3PFFVcMOxwAgAXJXQCAUSJ3AQDobBh2AAAAACttz549+exnP7tvGwBgLZO7AACjRO4CANAxIx4AAAAAAAAAAAAMwIx4wNowPZ2MjQ07CgBgnTryyCNz1lln7dsGAFjL5C4AwCiRuwAAdBTiAWvD2FgyMZFMTQ03jhNOSC65ZLgxAADL7qijjso555wz7DAAABZF7gIAjBK5CwBARyEesHZMTSW7dw83hmGPDwAAAAAAAADAyDlk2AEAAAAAAAAAAADAKFOIBwAAAAAAAAAAAANQiAcAAAAAAAAAAAADUIgHAACsezt27MjExEQmJiayY8eOYYcDALAguQsAMErkLgAAnQ3DDgAAAGClHX300TnvvPP2bQMArGVyFwBglMhdAAA6CvEAAIB1b2xsLFu3bh12GAAAiyJ3AQBGidwFAKBjaVoAAAAAAAAAAAAYgEI8AAAAAAAAAAAAGIBCPAAAAAAAAAAAgDVkenp62CHss5ZiWcs2DDsAAACAlTY9PZ2LLrooSXLSSSdlbGxsyBEBAMxP7gIAjBK5CwCsjLGxsUxMTGRqamqocYyPj2dycnKoMYwKhXgAAMC6d+WVV+ahD31okmT79u2ZmJgYckQAAPOTuwAAo0TuAgArZ2pqKrt37x52GCySpWkBAAAAAAAAAABgAArxAAAgSaanhx0BAAAAAAAAMKIsTQsAAEkyNpZMTCRTU8ON44QTkksuGW4M69Bxxx2X7du379sGAFjL5C4AwCiRuwAAdBTiwQqrqo8meUy/+4ettWcs0PYJSZ6T5KQkRyTZnuTPk7yqtXbVfsa5S5IXJ3lskokk1yW5KMlbWmsfHuxVAMBBYmoq2b17uDEMe/x1asOGDZmYmBh2GAAAiyJ3AQBGidwFAKBjaVpYQVX15NxahLe/tm9K8sEkP5XkqCTfS/KDSbYl+Zequs8CfU9M8i9923v1fY/qr/Whqnr9kl8EAAAAAAAAAACwIIV4sEKq6ugkr0uyK8nX9tP2zCS/lqQleUmSTa218SQPSHJxku9L8pGq2jhH37EkH0lybN/2AX3fTf21WpLnVdUvLcsLAwAAAAAAAAAAbkMhHqycc9IVx/1Wkivma9QX153d776xtfaq1toNSdJa+3KS09ItM3uvJM+a4xK/nOQefZvT+j5prd3QWntVkjf17X6nqu4w8KsCAAAAAAAAAABuQyEerICq+skkT0/yuSRv20/zRyU5Lt3Mdb8/+2RrbXuSP+l3nzpH/73H3tu3ne33+mufkOQR+w0eAGAduv7663PeeeflvPPOy/XXXz/scAAAFiR3ARhd09PDjuBWaykW1je5CwBAZ8OwA4D1pqoOS1d8d1OSX2mt3VJVC3V5ZP/8ldba5DxtLkg3G94pVXVEa+26fqwjk5w8o83ttNYmq+qrSU5MV/T38QN5PQAA68G1116bc845J0nysIc9LIcffviQIwIAmJ/cBWB0jY0lExPJ1NRw4xgfTybn+x8HWGZyFwCAjkI8WH5np1sq9tV7l4ndj/v2z19ZoM3ec5Xkh5J8od+/T39sMf1PnDEWwMFherr77Sdw0Dv22GNz4YUXDjsMAIBFkbsAjLapqWT37mFHAatnveYu09PTGVsjv19eS7EAAPNTiAfLqKoemOSsJN9K8vJFdju+f/72Am0um6P97O3F9D9+gTYA689a+RPkE05ILrlkuDEAAAAAALBoY2NjmZiYyNSQf788Pj6eSVNcAsBIUIgHy6SqDk3y9iSHJnnu3uVjF+HI/vn6BdrMPLdpjr6L7b9pgTYA69Na+BPkYY8PAAAAAMABm5qaym6/3wUAFumQYQcA68i2JCcl+VBr7c+HHcwstf8mAAAAAAAAAADAUpgRD5ZBVd0j3VK0u5M87wC7X9s/H75AmyNmbM/8s5trZ2wfnmS+ubH3XnvBP9l5yUteko0bNyZJTj311Jx66qkLNQcAAAAA4GA1PZ2MjQ07is5aigUAAFg3LrjgglxwwQVJkj179uy3vUI8WB7npCt2++9JdlbVkbPOH9o/b5hx7vrW2i1JdiR5YJITFrj+zHM75tk+IfMX4u3tv2Oe80mSV77ylRkfH1+oCQDASLr66qvz7Gc/O0ny1re+Ncccc8yQIwIAmJ/cBRgJY2PJxEQyNd+vpVfJ+HgyOTncGOAgJ3cBANarmZNYTU1N5c1vfvOC7RXiwfK4W//8iv4xn6f0j6QrvvtSkq8meUySExfot/dcS3LJjONf649V3+aSzG1v/68uMAYAwLp1ww035AMf+ECS5LWvfe2QowEAWJjcBRgZU1PJ7gUXYgEOAnIXAIDOIcMOAMin+ucTq2pinjZ714j9XGvtur0HW2vXJvl8v/vouTr217zvrLEAAABgXtPT08MOYZ+1FAsAAAAAwHzMiAfLoLX2gIXOV9WnkzwsyR+21p4x6/Qnk3wnyfcl+Y0kz5/Vd0uSJ/e775nj8u9N8uAkT66qs1tr22edf1G6GfN2RCEeAHCQOuyww/KkJz1p3zYACxsbG8vExESmhrzU3Pj4eCYtNcdBSO4CAIwSuQsAQEchHgxZa21PVb08yR8k+fWq2pHk9a21G6rq/kn+KMkRSf49ydvnuMTbkrwg3fK451fV01pr/1xVh6Ur6ntu3+6lrbXvreiLAQBYo4455picd955ww4Dhmp6ejpjY2PDDiPJ2oqF+U1NTWW3peZgKOQuAMAokbsAAHQU4sEa0Fp7a1U9IMmvJHlVkv9VVdcnGe+bXJHkca21263H01q7saoem262u/sn+XJVTSU5PLd+jb+5tfaOFX4ZAADAGmaGMwAAAAAAWDkK8WCNaK09u6o+nuRXkzwwt86C95Ekv9tau2KBvhdX1YlJfivJzyaZSDKV5ItJ3tJa++BKxw8AAKx9ZjgDAAAAAICVoRAPVkFr7eGLbPfBJEsqmusL9c7qHwAAAAAAAAAAwCo5ZNgBAAAAAAAAAAAAwChTiAcAAKx7V1xxRbZu3ZqtW7fmiiuuGHY4AAALkrsAAKNE7gIA0LE0LQAAsO4deeSR2bZt275tAIC1TO4CAIwSuQsAQEchHgAAsO4dfvjhOf3004cdBgDAoshdAIBRIncBWLzp6emMjY0NO4wkaysWWC8U4gEAAAAAAAAAwAobGxvLxMREpqamhhrH+Ph4JicnhxoDrEcK8QAAAAAAAAAAYBVMTU1l9+7dww4DWAGHDDsAAAAAAAAAAAAAGGVmxAMAANa9m266KZdffnmS5LjjjsuGDX4UAgDWLrkLADBK5C4AAB0z4gEAAOve5Zdfni1btmTLli37fjEMALBWyV0AgFEidwEA6CjEAwAAAAAAAAAAgAEoxAMAAAAAAAAAAIABbBh2AAAAACvtLne5Sz7zmc/s2wYAWMvkLgDAKJG7AAB0FOIBAADr3tjYWLZu3TrsMAAAFkXuAgCMErkLAEDH0rQAAAAAAAAAAAAwAIV4AAAAAAAAAAAAMACFeAAAAAAAAAAAADCADcMOAAAAYKVNT0/noosuSpKcdNJJGRsbG3JEAADzk7sAAKNE7gIA0FGIBwAArHvXXHNNTj/99CTJ5z//+Rx//PFDjggAYH5yFwBglMhdAAA6CvEAAIB17/jjj8/k5OSwwwAAWBS5C8ABGBvL9PS0GbhgiOQuAAAdhXgAAAAAAACMpo0bMzY2lomJiUxNTQ01lBNOOCGXXHLJUGMAAACGRyEeAAAAAAAAI21qaiq7d+8eagzDHh8AABiuQ4YdAAAAAAAAAAAAAIwyhXgAAAAAAAAAAAAwAIV4AADAurdz585s27Yt27Zty86dO4cdDgDAguQuAMAokbsAAHQU4gEAAOvetddem9e+9rV57Wtfm2uvvXbY4QAALEjuAgCMErkLAEBHIR4AAAAAAAAAAAAMYMOwAwAAAFhpGzduzCmnnLJvGwBgLZO7AACjRO4CANBRiAcAAKx7xx57bC688MJhhwEAsChyFwBglMhdAAA6lqYFAAAAAAAAAACAASjEAwAAAAAAAAAAgAEoxAMAAAAAAAAAAIABKMQDAAAAAAAAAACAASjEAwAA1r2rr746p59+ek4//fRcffXVww4HAGBBchcAYJTIXQAAOhuGHQAAAMBK27hxY7Zu3bpvGwBgLZO7AACjRO4CANBRiAcAAKx7mzZtyrZt24YdBgDAoshdAIBRIncBAOhYmhYAAAAAAAAAAAAGoBAPAAAAAAAAAAAABqAQDwAAAAAAAAAAAAagEA+A0TM9PewIAAAAAAAAAAD22TDsAADggI2NJRMTydTU8GI44YTkkkuGNz4AB2RycjJbtmxJkmzfvj0TExNDjggAYH5yFwBglMhdAAA6CvEAGE1TU8nu3cMbf5hjAwAAAAAAAABriqVpAQAAAAAAAAAAYABmxAMAANa9o48+Ou9///v3bQMArGVyFwBglMhdAAA6CvEAAIB17/DDD8/pp58+7DAAABZF7gIAjBK5CwBAx9K0AAAAAAAAAAAAMACFeAAAAAAAAAAAADAAhXgAAAAAAAAAAAAwgA3DDgAAAGCl3XTTTbn88suTJMcdd1w2bPCjEACwdsldAIBRIncBAOiYEQ8AAFj3Lr/88mzZsiVbtmzZ94thAIC1Su4CAIwSuQsAQMefIwAAAOvexMREWmvDDgMAYFHkLgDAKJG7AAB0zIgHAAAAAAAAAAAAA1CIBwAAAAAAAAAAB4mxsbFMTw87ilutpVhgEJamBQAAAAAAAACAg8TGjRszNpZMTCRTU8ONZXw8mZwcbgywXBTiAQAAAAAAAADAQWZqKtm9e9hRwPqhEA8AAFj3du/enXPPPTdJcuaZZ2bTpk1DjggAYH5yFwBglMhdAAA6CvEAAIB1b9euXXnhC1+YJDnjjDP8QhgAWNPkLgDAKJG7AAB0Dhl2AAAAAAAAAAAAADDKzIgHAACse4ceemjuete77tsGAFjL5C4AwCiRuwAAdBTiAQAA697xxx+fycnJYYcBALAochcAYJTIXQAAOpamBQAAAAAAAAAAgAEoxAMAAAAAAAAAAIABKMQDAAAAAAAAAACAASjEAwAAAAAAAAAAgAEoxAMAANa9nTt3Ztu2bdm2bVt27tw57HAAYF2Znp4edgj7rKVYBiF3AQBGidwFGAnr5OdFYG3bMOwAAAAAAIDRNTY2lomJiUxNTQ01jvHx8UxOTg41BgAA4OA0PT2dsbGxYYeRZG3FsqaMjSUTE8kwf3Y94YTkkkuGNz6w4hTiAQAA695RRx2Vc845Z9hhcDCanu5+yQewzk1NTWX37t3DDmPdkLsAAKNE7gL+QGlkTE0lw/zZ1c/NsO4pxAMAAICVshb+0jbx17YAAAAAK8wfKAGgEA8AAABW0rD/0jYZ/vgAAAAAALDOHTLsAAAAAAAAAAAAAGCUKcQDAAAAAAAAAACAASjEAwAA1r0dO3ZkYmIiExMT2bFjx7DDAQBYkNwFABglchcAgM6GYQcAAACw0m6++eZcdtll+7YBANYyuQsAMErkLgAAHTPiAQAAAAAAAAAAwADMiAcAAKx7mzdvzmte85p92wAAa5ncBQAYJXIXAICOQjwAAGDd27RpU7Zt2zbsMAAAFkXuAgCMErkLAEDH0rQAAAAAAAAAAAAwAIV4AAAAAAAAAAAAMACFeAAAAAAAAAAAADAAhXgAAAAAAAAAAAAwAIV4sI5U1V2q6jVV9fWquqGqrqqqj1fV44cdGwDAME1OTqaqUlWZnJwcdjgAAAuSuwAAo0TuAgDQ2TDsAIDlUVUnJvlUkmP7Q7uTHJXkp5L8VFW9obX2/CGFBwAwVMcdd1y2b9++bxsAYC2TuwAAo0TuAgDQUYgH60BVjSX5SLoivIuTPK219uWqOizJC5K8IsnzqupLrbV3Di9SAIDh2LBhQyYmJoYdBgDAoshdAIBRIncBAOhYmhbWh19Oco8k1yU5rbX25SRprd3QWntVkjf17X6nqu4wpBgBAAAAAAAAAGBdUogH68NT++f3tta2z3H+95K0JCckecSqRQUAAAAAAAAAAAcBhXgw4qrqyCQn97sXzNWmtTaZ5Kv97qNWIy4AAAAAAAAAADhYKMSD0XefJNVvf2WBdnvP3XdlwwEAWHuuv/76nHfeeTnvvPNy/fXXDzucNeeCC+b8ew4AYEjkLguTu7BY7hVgpfj+cltyFwCAjkI8GH3Hz9j+9gLtLpujPQDAQeGaa67JGWeckTPOOCPXXHPNsMNZc/wHAgCsLXKXhcldWCz3CrBSfH+5LbkLAEBHIR6MviNnbC/0Z0Z7z21awVgAAAAAAAAAAOCgs2HYAQCrpvbXYGpqajXimN+RRyatDTeGww9PpqZy5JFHpg0Qy/T0dMbGxgYM5fBMTU2tibflyCOTYd8etzPsN2aZ7pVk8PvFvbIfa+GNcb/Myf0yD/8WzWnQ+2X37t232R563rPG7Nmzx3uyktbCF9Ea+rfoyCOPdL+NiLXwb5H7ZXS4X5aX3GVhchcWy72yCtZRruvnaA6E7y+3tZ5zFz9HcyDWwr9F7pf9GPY/0mvod3TyltGxFu4X31s6i3kPatAPCxiuqnpskj/rdze31ub8yq+q1yZ5QZIvtNYeNOvcXZNMrmScAAAAAAAAAAAw4iZaa5fNdcKMeDD6dszYPiHJfCW4J8zRfq9vJ5lIsnuOcwAAAAAAAAAAcLDblK7GZk4K8WD0fS1JS7f07IlJLpmn3Yn981dnn2jd1JhzVusCAAAAAAAAAADzTo6VJDlktaIAVkZr7dokn+93Hz1Xm6qaSHLffvdTqxEXAAAAAAAAAAAcLBTiwfrw3v75yVW1ZY7zL0o3Y96OKMQDAAAAAAAAAIBlpRAP1oe3JflmkiOSnF9V90+Sqjqsql6c5Ll9u5e21r43nBABAAAAAAAAAGB9UogH60Br7cYkj01yVZL7J/lyVe1Ktzb1q9LNhvfm1to7hhfl+lVVR1XV46rq7Ko6v6p2VFXrH48fdnysLVU1UVXPraoPVdWlVXVjVV1XVf9aVW+rqh8edoysHVV1SlX9TlVdUFVfr6pdVbWnqr5dVR+tql+oqhp2nKxd/X2y99+kdw07HtYGuQsHQu7CYslbWA5yF+Yid2Gx5C0cCLkLg5K3MBd5CwdC7sKBkLswKLnL6tkw7ACA5dFau7iqTkzyW0l+NslEukK8LyZ5S2vtg8OMb517fJJ3DjsI1r7qlo7+j3TFsXtdl+7f43v3j2dW1bbW2huHECJrz3OTPGXG/rVJvpfk+P7xmCTPqqrHt9amhhAfa1hVPTndPQKzPT5yFxZB7sIBkrcwELkLC3h85C7sh7yFJZC7sGTyFhbw+MhbWAS5C0sgd2HJ5C6ry4x4sI601q5orZ3VWrtXa+2OrbVjWms/qQhvVVye5C+TvCLJE4ccC2vXoel+qPp4umT5uNbakemWlT45yd+l+yHrDVX16KFFyVryt0men+SkJJtaa5taa0ek+6HqpUluTvKIJK8ZXoisRVV1dJLXJdmV5GvDjYY1Su7CYshdOBDyFpZM7sIiyF3YH3kLB0ruwpLIW1gEeQuLIXfhQMldWBK5y+qr1tqwYwAYaVW1obV206xje7+5PqG19uHVj4q1qKo2J7lHa+2L85wfS/L5JPdL8tettUeuZnyMnqp6ZbqZUG9Msrm1tmfIIbFG9NOKPz3Jryb5uSQPS/KHrbVnDDEs1gi5C4sld2E5yVtYiNyFhchdWAx5C8tN7sJ85C0sRN7CYsldWG5yF+Yjd1l9ZsQDGNDsH6pgPq21XfP9UNWfn07ynn73P61OVIy4z/bPd0xyp2EGwtpRVT+Z7oeqzyV525DDYQ2Su7BYcheWmbyFOcld2B+5C4shb2EFyF24HXkL+yNvYbHkLqwAuQu3I3cZDoV4ALC2XN8/HzrUKBgVP9Y/X5vkimEGwtpQVYel+2HqpiS/0lq7ZcghAeuf3IXFkrdwO3IXYJXJWzgQchduQ94CDIHchQMhd+E25C7Ds2HYAQAAt/Hw/vniYQbB2lVVRyT5/iS/mOSF/eE3tNba/L04iJyd5B5JXt1a+/KwgwEOCg/vn+Uu3I68hUWQuwCr6eH9s7yFOcld2A95C7DaHt4/y12Yk9yF/ZC7DIlCPABYI6rq5CRP6HffMcxYWFuq6rgkO+Y4tSfJG5K8bHUjYi2qqgcmOSvJt5K8fLjRAAcDuQtzkbewWHIXYDXJW5iP3IXFkLcAq03uwnzkLiyG3GW4FOIBwBpQVUcn+ZN0y8b/Y5J3Djci1pibk3yn3z4qyViSluRNSc5prd08pLhYI6rq0CRvT7dMwXNba9cNOSRgnZO7sAB5C/sldwFWk7yF/ZC7sCB5C7Da5C7sh9yFBcldhu+QYQcAAAe7qjosyYeS3DPJVUmeLFFmptbala2141prxyU5PN1U0m9M8vwkF1fVjw01QNaCbUlOSvKh1tqfDzsYYH2Tu7AQeQuLJHcBVoW8hf2Ru7AI8hZg1chd2B+5C4sgdxkyhXgAMERVNZbkg0l+IsnOJD/dWvvGUINiTWut3dJau7S19vwkL0xyTJL/W1WHDzk0hqSq7pFuavHdSZ433GiA9U7uwoGQtzAXuQuwWuQtHCi5C7PJW4DVJHfhQMldmE3usjYoxAOAIamqjUk+kOTRSaaSnNpa++Jwo2LEvC3JdJK7JvnPQ46F4Tkn3V++/W6SnVV15MxHuunHk2TDjON+DgAOmNyFAclb2EvuAqw4eQvLQO5CIm8BVonchWUgdyGRu6wJ3lAAGIKqukOS85L8TJLrkjymtfaPw42KUdNauzHJ1f3uPYcZC0N1t/75Fen+ymn2Y+9U9E+Zcez+qxsiMOrkLgxK3sIMd+uf5S7AipC3sBzkLvTu1j/LW4AVI3dhOchd6N2tf5a7DJFCPABYZf0PVe9P8tgkNyT5mdbaPww3KkZR/9crd+l3dw8zFgDWL7kLy0HeAsBqkLewXOQuAKwGuQvLRe4Ca4dCPABYRVW1IcmfJHl8khuTPLa19ulhxsTa1N8r+3NWkjv023+7guGwhrXWHtBaq/keSf6mb/qHM45/aYghAyNE7sJiyFs4EHIXYKXIW1gsuQuLJW8BVpLchcWSu7BYcpe1YTFfsADsR1XdeZ5Tm2ad29Va+95qxMTaU1WHJnlPkicmmU7yhNbaXw03KtawH66qtyV5W5JPttb+I0mqqpLcJ8mv9o8k+UBr7SvDCRMYRXIXFkPuwgGQtwArSu7C/shbOEByF2DFyFtYDLkLB0juAiNEIR7A8rhynuPvnrX/iCSfXtlQWMN+NMnP9duV5F1djjyvk1tr21c8KtayB/ePVNWNSa5NcmSSO85o85EkT1/90IARJ3dhMeQuHAh5C7CS5C7sj7yFAyV3AVaKvIXFkLtwoOQuMCIU4gHA6pm5JPzGJN+3n/aHrmAsrH3/muQXkjwyyclJjktyTLop6i9J8o9J3tNa+8TQIgRgvZO7sFjyFgCGTd7CgZC7ADBschcOhNwFRki11oYdAwAAAAAAAAAAAIysQ/bfBAAAAAAAAAAAAJiPQjwAAAAAAAAAAAAYgEI8AAAAAAAAAAAAGIBCPAAAAAAAAAAAABiAQjwAAAAAAAAAAAAYgEI8AAAAAAAAAAAAGIBCPAAAAAAAAAAAABiAQjwAAAAAAAAAAAAYgEI8AAAAAAAAAAAAGIBCPAAAAAAAAAAAABiAQjwAAAAAAAAAAAAYgEI8AAAAAAAAAAAAGIBCPAAAAAAAAAAAABiAQjwAAAAAAAAAAAAYgEI8AAAAAAAAAAAAGIBCPAAAAAAAAAAAABiAQjwAAAAAAAAAAAAYgEI8AAAAAAAAAAAAGIBCPAAAAAA4AFX1jKpq/eMZw45nJVXVN/vX+c1hxzKXGZ/Dp4cdC7dVVQ+f8fm8fNjxrEcH0/ciAAAAGAUbhh0AAAAAAKyWqrpHkmck+YkkP5TkqCSVZHeS7UkuSfL5JJ9srX15OFEenKrqqCQv6He/1Fr78NCCGbK+sPBhy3S5/9lae/kyXWtdq6qHJ3l4v/uu1to3hxULAAAAMHoU4gEAAACw7lXVhiS/m67Q69A5mhzTPx6Q5Of7Pm9qrf36KoVIVxT52/32Hyb58NAi4WD18Nx6D346yTeHFQgAAAAwehTiAQAAAHAw+OMkZ8zY/3aSv0pyaZIbk9wpyX2SPCTJsX2bw1YzQJjhD5Kcv8D55yS5R7/9viT/tEDbzyxXUAAAAADMTyEeAAAAAOtaVZ2RW4vwbk7y35K8sbV28xxtD0lXjPeMJDfMdb3W2ruSvGsFQuUAtdZq2DGshNba+xY6X1U/k1sL8T7W35NrSmvt0+mWfWaF+F4EAAAAa4tCPAAAAADWu2fN2H51a+118zVsrd2S5MIkF1aVIiIAAAAAYFEOGXYAAAAAALDCTpqxveBMYzO11tpcx6vqGVXV+scz5mnzzf78N/v9Q/p+n6qqy6vq+qr6SlW9qqqOmdX30Ko6o6o+UVWXVdWNVfWNqnp9Vd1loZhnj7uftvt9HYtRVYdX1ZOq6m1V9U9VdU1Vfa+qdlbVv1TVW6vqpAX6P7yqWrplgvd6+ozY2nxxzjj+6UXE+cP9e/gvfWw3VNV/VNUH+vd7wcLLud6vqrpr/xl+pap2V9VUVX2xql5WVUfuL6aVNE+896yq36uqi6vqu/25183qd1RVPa2q3lVVX+7fq+9V1dVVdVFVnVNVP7iI8R8+Y/yXL6L9D/WxXVRVV1XVnqraUVV/UVXPrKpF/1F5VU1U1W9X1d/119hTVdf2n9O7quqJVXWHGe3f1d+Dvz3jMn891z24wJg/UFW/28d/dVVNV9VkVX20qp41c7x5+t/u/aqq4/p76Qv9e9Kq6sMz+hzQ13BVPbiq3th/DXy3uu8t26vqT/uv4f0WH1fViVX1uv517r03ruzf249V1W9W1QP2dx0AAABYj8yIBwAAAMB6Nz7MwatqPMkHkvzUrFP37R8/X1U/3lqbrKrNSf4sycNmtb17kucleVLf9hsrHfdiVNUPJPlKkiPmOL25f5yY5Feq6k1JXjDXksArqS8u+t0kL0xy6KzT398/npjkhVX1hNbatxd53Z9O8idJjp516gH942lV9YjW2uTSo18+VfWUJG/L3J/V3jYPTfLXSTbOcfro/vHAJM+rqpe21l61DHEdmuT3kjw/t/98jkvyn/vHC6vqZxe69/vP+qVJXpJkbNbpO+TWr7mnJzkn3T0xsKo6K8krk9xx1qm79o/HJPmN/v766iKv+ZPp7q87L0N8hyX5P0meOsfpif7xX5L8fR/jVfNc58VJfie3/5zu3D/um+TUJL9bVXdord00aOwAAAAwShTiAQAAALDefSddoUnSFYl8cZXH//+lK8KbTPKRJJclOT7JzyW5S5K7JXlfVf14kj9NV4R3WbqCvNltT0jyR1X1Y/PN2LfKDktX2NWSfCndezuZ5Pp0RVsnp3s9hyR5bpIbkrxo1jX+PclvJLlTugKqJPmnzD174eeXEOMfJPmVGfufS1dsdn26IsHH9q/jwUn+oapOnq8QaYYfSfLmJIcn+Yckf5dkd5J7Jzm9P36vJH+U5BFLiHm5/Vi64rMNST6TLt5rk9wzyc4Z7cbTFeHdnOQfk3w5yeVJptPdfz+a5CHpCrFeWVW7WmtvWWpQfeHc+9IVQqYf96+SXJTu/Tw+XRHbPdMVef1dVT2wtXbFPJd8Z/869/r3JB9P93V0h3SfyU8k2ZLbFpP93yT/kuSnc2vB7Fv7/vt7Db+ZrtBzr68k+ct07+u9kjwhXUHqvfv4t7bW/m0/l713km1JNqX7DP4qyXfTfR87oCWzq+qOST6ZZGt/6MYkH0tycb/9/em+Bo5Pd598qqoe0lq7YdZ1nphkZuHlP6W7j65Md199X7oizQfH/zsAAABwkPIDMQAAAADr3SeS/FK//fKquiLJH7XWvrcKY/9A/3hHkue21m7ce6Kq/me6oqgfTPLQJH+c5FHztD07yYXpCpIemq6Y6G9WIf79uS7dcp7nttZ2zNWgqu6X5MNJ7pHkv1XV/2mt/b+951tr25O8uqrullsL8b7SWnv1oMFV1WNzaxHeTUme0Vr741lt7pnko0n+v3RFkX+QrphuIS9IsivJo1trF8y63ivSFSh9X5KH90WTfz/YKxnYf033WT2+tfbRBdpdmeSsJO9urV0zV4Oqeli6gtFjkvzvqvrj1tquJca1LbcW4X0+yZNba7cpfutnm3tpuvvshHQFkLf7fKrq13JrEd6edIWfb59dsNoX/z0s3Wx7SZLW2seSfKy65YT3FuK9r7X26YWCr6r/lG6GuL1elOTVM8fsC/U+lO7r9uh0hbSn7KeQ9snpihKf1Vp7x0IxLMLv59YivI+l+xr4zqzX8YIkb0p3n9wvydnpimNnOmvG9lNaa++da7CqulO6z+GWAeMGAACAkXPIsAMAAAAAgBX2u+mKkJJuucp3JPlOVZ1XVb9RVY+qqqNWcPx/SPLLMwvrkqSfde2lMw79/AJtr0zyP2YcetwKxXpAWmvbW2tnz1eE17e5OLcWW1WSZ65KcJ2Z7+9vzS7CS5K+8Ou0dLODJd3yv/ddxLV/cXYRXn+9ryd52YxDj198uCvqV/dThJfW2hdaa6+brwivb/M36Qq2kuTIdLM1HrC+6G3v57M9yU/NLsLrx7u5tfbydLPWJcl/qap7zbrWYUlePuPQM1tr585V7NY6n26t/d/Z55bgt3LrH7u/ubX2+7PH7Gfv+5kke2fxe3CSRy/i2mcPWoTXF7c+p9/9QpLHzS7C62O8Mckvp/v+kyTP7pfUnukB/fPF8xXh9df6bn8PKcQDAADgoKMQDwAAAIB1rV8G8rFJZi43eqckT0rye+mWfbymqv65qs6uqh9Y5hBeuUBRyl/O2n/FItv+yOBhrZ7W2peS/Gu/+2OrMWZV3SfJg/rdK5O8fr62fQHY22ccetp+Ln9Ra+0jC5z/0xnbD9jPtVbDf6RbJne5nJ9bi1uX+nk+Od2SrUnye4uYVW/v53dIuuVqZ3pikjv3238/V8HlcquqTbm1IPZ7uW0h4G201r6b7nvNXr+4n8tfn+ScQeLrnZlbl+B9eWttz3wN++87b+p3j0zy8FlN9v5fwmHLEBcAAACsS5amBQAAAGDda619qqp+MMnz0hXB3HNWk0q3JOP9kvxmVb06yctaazcPOPRNSf56gbimqurqdMt83pTk0wu03TWj7bEDxrXsqurQJPdJcmK6Qscj0r2ve92hf773KoX00Bnbf76IpYj/NN1yprP7zuV2M+HN1Fq7uqquSbcU6Vr4rD62n6VQb6eqNib54SQ/lOSodAVYMz/Pve/nUj/Ph8/Y/vgi2v/zjO2TFrjWchYcLuTBufX363/Xz3C5kD9Nsne55f3dX3/XWrt2kOB6D++fb0nyyUW0n/0ef2TWuYckuVdV/U6S35k9cycAAAAc7BTiAQAAAHBQaK3tTHJ2krP7oryHJvlP/eNBSTb2TTcmeUmSuyV5yoDDXt1au2E/ba5LV1x3IG2PGDCuZVNVh6dbovNZSY5bRJejVjSgW/3gjO0vLaL9F2ds32veVp1vLeJ616YrxDtyEW1X2r/uv0mnqo5J8ttJnpquoHJ/jlpiTPebsf2vVTVvwzncZdb+D83Y/vwS4zlQB3R/tda+WVU7071f319VGxeYoW7Rn9d+7H2PD0ly/YDv8e8n+UC//d+T/FpVfSzJ3yS5MMk/H2ixJwAAAKw3lqYFAAAA4KDTWvt6a+0PW2vPa639aLritmcm2T6j2S9U1RMGHGoxM0btLV45kLZr4vd6VXWXJJ9N8j+yuCK8JBlbuYhu46gZ21fvr3G/NOpN/e7R+2k+ap/V/pZ9TZJU1b3SFZX9ehZXhJckd1xiTMcssV+SHL7Ata4c4LoH4qgZ2/u9v3qzl8eez6I+r4VU1R2SbBrgErd5j1trf5rkOekKTJPu9f98kj9Id89cWVXnVtX9BxgTAAAARpoZ8QAAAAA46PXLQL6zqs5P8k9Jvr8/9ctJPjS0wNa+N+bWWbcuTfLmJH+X5D+S7Jq5dGVV/U2Sn1j1CJdmvc3sdcsi2/1Rkol+++Ikb00329n2JLtba9N7G1bVf+TWr5Ol2Pu76ZbkN3Ng7/n2Bc6t5c9u5pR0C8W52M9rITN/9//dJK88wP7/MvtAa+2tVfWBJL+Q5NFJfjTJeH/6mHSzYv7Xqvqd1trLDjxkAAAAGG0K8QAAAACg11q7sqpek+T1/aEHDTOeJdhb3LOYNShnzyp2QKrq2CSn97uXJnlgP6vcfDYPMt4SfHfG9n5nX6uqzbn196XfXajtelRVD0pySr/72SQPW2Dp1GTwz/PqJMemu1ff01rbMeC19jo2yWWDBLZIB3R/zdFu5/KFcnuttRuq6oYkh/WP1yzH0rGttauSvCHJG6rq0CQPSPKT6Zbxvl+6z/OlVfVvrbX3DDoeAAAAjJK1sCwCAAAAAKwll8zYXu3isUFd1z8fuYi2WwYc60G59feL71yoCK9fJvPeA453oP7fjO0HLKL9zDb/b75G69iDZ2y/ZaEivKq6awb/2vjXGdsPHfBaX5uxffKA11qsA7q/quoHcutytt/aT5Hjctn7Ht8xyUnLffHW2s2ttS+01v53kh9J8roZp5+93OMBAADAWqcQDwAAAABu69gZ21fP22pt+k7/fHRV7W+Wrp8ecKw7zdi+Zj9tT0s3K9dCvjdj+9AlRXRb/zBj+2f6YsCFPHHG9meWYfxRcyCf5+n7Ob8Yn5yx/YwBr/XpGdtPG+A6B3IP/mOSm/rtH6+qO++n/TDur+V8jxfUz7b3qhmH/r+VHA8AAADWIoV4AAAAAKxrVfWoqlrMUq17PXPG9ueWO54V9qUZ20+Yr1FVPS6Dz5A1s1hr3mtV1WFJXrmI603N2D56qUHt1Vq7JMk/9bvHJnnefG2r6u5JnjXj0LsHHX8ELfbzPDbJby3DeH+cZHe//TP9Pbkoc3w9fzDJVf32j1XVLywxpkXfg6213Un+rN+9Q5Lfnq9tVR2V5EUzDv3hEuM7UP8nyS399plVtajZAg/w++V8bliGawAAAMBIUYgHAAAAwHr3x0m+XFXPWWiWuKq6U1W9O8kjZhx++4pHt7w+PGP77Kq65+wGVXVqlqcQ6LO5dQaxp1fVf55jrOOSfDTJfZK0hS7WFzbt6Hcf3BfwDep/zdj+3ap68hwx3r2Pce9457XWvja73UHg72Zsv6iqbleMV1X3SvJX6QobF/w896e19t3c9vP5k6p6VlXN+Tvrqjqsqk6vqs8lueusa92Q5OUzDr2zv9btCsqq84iq+vk5hpm5XO7DFvEyXplbZ8V7blX9t9ljVtVdknwkyff1h/4xyQWLuPbAWmv/luSt/e5Yko9V1ePna19V41X1zCRfnnX8B6rqb6vqiVV1x3n6jiV5zYxDfz9Q8AAAADCCNgw7AAAAAABYBfdL8pYkb6iqi9PNlHZ5kuuSHJXkxCSPSnL4jD7vaq2dv8pxDqS19ndV9TfpioiOT1eA+P4kX0+yKcmPJ/mxJNcneX2S5w8w1ner6u1JnpNuGc+/qKq/SvKFdO/rfZP8bJIjkvxtuj8K/rH9XPZjSX4pyZ2TXFhVH0o3U9veoq+/6me6W2yMH6mqtyX5lXS/C31vVT0vyV+new9OTPK43FqE980kv7rY668nrbV/qaq/TPKfkxyZ5PNV9edJLk5yc5IHJnl0ko3pilt/LMkPDDjm71fVjyR5SrrP4Nwk/6OqPpHkW+lmc7tzkh9Ockof13zXenNVbe2vtbG/1m9W1ceTXNYfu2e6r40t6e7//zvrMv+Q5Np+nL2Fu19IcuOMcd40Y/uiqnppbl2S9ffTFaV+LMnOfrwnpPsek3T38lP7ZVxXy1npvhYfnm6Wvw9V1dfSfQ18O93X5V2S/EiSh6Qr2Lt51jUq3feOH09ybVV9Nt19cVWSO6Z7P382yd5C5xuT/M6KvSIAAABYoxTiAQAAALDefTpdMczGdL8Pe2D/mM+NSf53krNXPLKV8dQkn0ryg+mK4H5p1vnvJvmFJMctw1gvTHLvdEWMSfKT/WOmv0tyepL3L+J6Zyd5bLqCnh/pHzP9UpJFF+L1npNuCdRt6YqOTukfs30+yRNaa1fNce5g8fQkn0j3vh+Srkhx9pKxH0pX2PiVZRrzaUm+luS/pyvG+4Hcdpng2S5NV0Q5l19MV8D339ItF3uv/jGX780+0Fq7rqpekuQN6V7/z/ePmd40q8/vVtV0umK8sXRFgz88x3hfT3d/fX2eeFZEa21PVf10klenKzLdkG6Gyvss0O1fZu3fnK4o8pB0RYpzfZ3vtSPJL7TWvjpI3AAAADCKFOIBAAAAsK611n6+qsaTPDLdjE4PSFekdky6wplrk1yZrrDor5O8r7V2+XCiHVxrbbJfVvQFSf5LutdaSbYn+fMkb2ytba+qZyzDWDf0S90+I10R1P3TzSp4Rbr380+SvKe1dvMcq4TOdb1vVtUD0hXNPSrJ3dMV/uy/8/zXbEl+o192+Mz+uhPpPvsr0xXgvS/J+1d5prI1p7V2ZT+r3HOS/Fy6Yq2N6WaP/GKSd7fWPpQki/k8FzlmS/KKfnbFZ6Yr8LpPuq/PW9LNIvdv6ZZC/oskfz/f59RauyXJS/prPSvJT6W7h45KV7z3H+mWhv2zdMsRz3WNN1bVv6YrNnxQumV451yOdUaf1/azNz47yalJ7pbu6+DqdMu8fjDdDJu3K/5bDf24z6+q16crZn1kutn6jk63tO6V6YohP5Pk/NbaRbP6b6+qE9LNlvgT6Qo175ZkPF2R3lVJ/jnJ+enukWtX4WUBAADAmlMH+e+WAAAAAABYZlX1iHQzMybJb7fWRnWGSQAAAIBFOWTYAQAAAAAAsO4cNmPbDGkAAADAuqcQDwAAAACA5bZlxvZlQ4sCAAAAYJUoxAMAAAAAYLk9fsb2RcMKAgAAAGC1bBh2AAAAAAAAjL6q+rkk907yqCQP6w//U2vt68OLCgAAAGB1VGtt2DEAAAAAADDiqurTubUAL0muS/Ko1trnhhMRAAAAwOqxNC0AAAAAAMvlpiTfTvLeJA9RhAcAAAAcLMyIBwAAAAAAAAAAAAMwIx4AAAAAAAAAAAAMQCEeAAAAAAAAAAAADEAhHgAAAAAAAAAAAAxAIR4AAAAAAAAAAAAMQCEeAAAAAAAAAAAADEAhHgAAAAAAAAAAAAzg/w+I+TrXOi74/wAAAABJRU5ErkJggg==\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], - "source": [ - "### model A distance and RMSD plot \n", - "users=['model','dfcf710','dfcw712','dfcy819','dfcy820','dcarf710','dcarw712','dcary819','dcary820']\n", - "\n", - "\n", - "plt.style.use('classic')\n", - "plt.rcParams.update({'font.size': 18})\n", - "\n", - "# fig, axs = plt.subplots(figsize=(40.5, 30.0))\n", - "fig, axs = plt.subplots(2, 1,figsize=(36.5, 10.0),\n", - " gridspec_kw={'hspace': 0.0,'wspace':0.0})\n", - "(ax1, ax2) = axs\n", - "\n", - "fig.patch.set_alpha(0.0)\n", - "\n", - "\n", - "ma1 = pd.read_csv('/Users/ahaile/Dropbox/work/postdoc/Antibody/hbond-data-backup/model.contactn4.txtt',sep=' ',names=users) \n", - "ma1.plot(kind='bar',x='model',y=['dfcw712','dfcy819','dfcy820'] ,color=['red','black','blue'] ,legend=None ,label=['W712','Y819','Y820'],ax=ax1,alpha=1, edgecolor='white',width=0.75)\n", - "# axbox = ax1.get_position()\n", - "# legend=plt.legend( loc=(axbox.x0+0.330, axbox.y0+1.50), fancybox=True, framealpha=1.0 ,ncol=4, **{'fontsize':22})\n", - "\n", - "ma1.plot(kind='bar',x='model',y=['dcarw712','dcary819','dcary820'],color=['red','black','blue'],label=['W712','Y819','Y820'],legend=True,ax=ax2,alpha=1, edgecolor='white',width=0.75)\n", - "ax2.set_xticklabels(['1','2','3','4','1','2','3','4','1','2','3','4','1','2','3','4','0'])\n", - "ax1.axvline(x=3.5, color='black', linestyle='-.',lw=2)\n", - "ax2.axvline(x=3.5, color='black', linestyle='-.',lw=2)\n", - "\n", - "\n", - " \n", - "ax1.axvline(x=7.5, color='black', linestyle='-.',lw=2)\n", - "ax2.axvline(x=7.5, color='black', linestyle='-.',lw=2)\n", - "\n", - "ax1.axvline(x=11.5, color='black', linestyle='-.',lw=2)\n", - "ax2.axvline(x=11.5, color='black', linestyle='-.',lw=2)\n", - "\n", - "ax2.set_xlabel('Simulation Trajectories', labelpad=12,fontsize=28)\n", - "# ax1.set_ylabel('Number of contact ', labelpad=12,fontsize=28)\n", - "# ax2.set_ylabel('Number of contact with Glycan', labelpad=12,fontsize=28)\n", - "ax1.text( -2.40, -400.0, \"Number of Contact\",rotation='vertical', size=28, color='black')\n", - "\n", - "ax1.text( 1.650, 1000.0, \"Model_A\", size=18, color='black')\n", - "ax1.text( 5.650, 1000.0, \"Model_B\", size=18, color='black')\n", - "ax1.text( 9.650, 1000.0, \"Model_C\", size=18, color='black')\n", - "ax1.text( 13.650, 1000.0, \"Model_D\", size=18, color='black')\n", - "\n", - "ax1.text( -0.40, 1150.0, \"A\", size=28, color='black')\n", - "ax2.text( -0.40, 1150.0, \"B\", size=28, color='black')\n", - "\n", - "axbox = ax1.get_position()\n", - "legend=plt.legend( loc=(axbox.x0+0.10, axbox.y0+1.50), fancybox=True, framealpha=1.0 ,ncol=4, **{'fontsize':18})\n", - "\n", - "ax1.set_ylim(0.01,1300)\n", - "ax2.set_ylim(0.01,1300)\n", - "ax1.set_xlim(-0.60,15.6)\n", - "ax2.set_xlim(-0.60,15.6)\n", - "\n", - "plt.xticks(rotation=0,fontsize=22);\n", - "ax1.set_yticks(ax1.get_yticks()[::2])\n", - "ax2.set_yticks(ax2.get_yticks()[::2])\n", - "\n", - "ax1.set_xlabel('')\n", - "ax1.xaxis.set_tick_params(labelsize=0)\n", - "ax1.yaxis.set_tick_params(labelsize=22)\n", - "ax2.xaxis.set_tick_params(labelsize=22)\n", - "ax2.yaxis.set_tick_params(labelsize=22)\n", - "plt.savefig('contact_model_ppi_aan4-trial.png', dpi=400, transparent=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ] -} \ No newline at end of file