-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
756 lines (728 loc) · 29.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import sys
import xml.etree.ElementTree as ET
from utilities import DB,TextProcessor,GlobalVariables
class Document:
PMID = '' #PMID
abstract = [] #Abstract a list of words
go_predecessors = [] #GO Predecessors a list of words
tag = [] #Tag
go = [] #Gene Ontology concepts
db = DB() #Database
length = 0
index = ''
term_frequency = dict() #term frequency
def __init__(self,PMID,abstract):
self.PMID = PMID
self.length = len(abstract.split(TextProcessor.text_splitter))
self.abstract = TextProcessor._tokenize(abstract)
if GlobalVariables.remove_stop_words:
self.abstract = TextProcessor._remove_stop_words(self.abstract)
if GlobalVariables.stem:
TextProcessor._stem(self.abstract)
self.term_frequency = dict()
for t in self.abstract:
self.term_frequency[t] = self.abstract.count(t)
def get_frequency(self,term):
term = TextProcessor._normalize_word(term)
if term in self.term_frequency.keys():
return self.term_frequency[term]
else:
return 0
def set_go(self,GO):
Concepts = GO.split(TextProcessor.text_splitter) #Getting the list of Concepts for GO
TextProcessor.CleanList(Concepts, '')
TextProcessor.CleanList(Concepts, ' ')
self.go = Concepts
def set_tag(self,ConceptList):
'''
Input:
ConceptList, a List of concepts to be tagged in the document.
'''
query = 'Insert into collection_tag(PMID,title) values ("{0}","{1}");'.format(self.PMID,' , '.join(ConceptList))
self.db.Query(query)
def set_index(self,ConceptList):
'''
Input:
ConceptList, a List of concepts to be tagged in the document.
'''
query = 'Insert into collection_index(PMID,title) values ("{0}","{1}");'.format(self.PMID,' , '.join(ConceptList))
self.db.Query(query)
@staticmethod
def _term_frequency(doc,term):
doc_tokens = doc.split(TextProcessor._word_splitter)
result = doc_tokens.count(term)
return result
class Collection():
_status = 0 #Status of the collection,
#Load is called --> 1
#Go loaded --> 2
#Tags loaded --> 3
#Indexes loaded --> 4
_documents = []
_count = 0
_inverse_term_frequency = dict()
@staticmethod
def _extract_from_file(self,n):
sys.stdout.write("Storing Documents in Database Started...")
db = DB()
#db.Query('delete from doc;') # Make sure the table is empty
#db.Query('delete from collection;') # Make sure the table is empty
tp = TextProcessor()
f = open(r'd:\Project\TREC\2004\2004_TREC_ASCII_MEDLINE_'+n)
#Extract Document Ids that we want to extract
# id_collection is a space separated format string to keep ids
db_results = db.Execute("select docId from genomics_qrels_small;")
id_collection = ''
for row in db_results:
id_collection += row[0] + ' '
print "Number of documents to extract is: ", len(db_results)
abst = ''
PMID = ''
QueryList = '' # To make queries faster, First we collect a banch of them
QueryCount = 0
QueryDone = 0
QueryLimit = 0
DocCount = 0
line = f.readline()
while (True):
if line.find('PMID-') != -1: # if the line contains PMID, new document begins
PMID = tp.CleanPMID(line)
print DocCount, ' . ', PMID
DocCount += 1
if id_collection.find(PMID)== -1:
line = f.readline()
continue
while (True):
line = f.readline()
if line.find('AB -') != -1: # Here the abstract begins
abst = line
while (True):
line = f.readline()
if line.find(' ')!= -1:
abst += line
else:
break
else:
if line.find('PMID-') != -1:
break
if abst != '':
while abst.find(' ') != -1:
abst = abst.replace(' ',' ')
PMID = tp.CleanPMID(PMID)
abst = tp.RemoveStopWords(abst) #We store not original data.
abst = tp.CleanDoc(abst) # to remove ' and " so that SQL query has no problem
QueryList += r"('" + PMID + "','" + abst + "'),"
PMID = abst = ''
QueryCount += 1
if QueryCount > QueryLimit:
QueryList = QueryList[:-1]
QueryList = 'Insert into collection(PMID,AB) values ' + QueryList
try:
db.Query(QueryList)
except:
print "Unexpected error:"#, sys.exc_info()[0]
QueryList = ''
QueryDone += QueryLimit + 1
QueryCount = 0
#sys.stdout.write(str(QueryDone)+" . ")
else:
line = f.readline()
sys.stdout.write("Done")
@staticmethod
def _load():
"""Loads documents into _document with PMID,
and Abstract.
"""
if Collection._status > 0:
return
sys.stdout.write("Loading Collection...")
Collection._documents = []
if(GlobalVariables.ontology_based_IR_activated):
query = "SELECT collection.PMID, "
query += "collection.AB, collection_go_predecessors.title "
query += "FROM collection, collection_go_predecessors "
query += "WHERE collection.PMID = collection_go_predecessors.PMID "
collection = DB._execute(query)
Collection._documents = []
for doc in collection:
concepts = doc[2]
if GlobalVariables.add_concepts_multiple_times:
for i in range(GlobalVariables.adding_concept_times):
concepts += " , ",doc[2]
d = Document(doc[0],doc[1] + ' ' + concepts)
Collection._documents.append(d)
else:
query = "SELECT collection.PMID, "
query += "collection.AB "
query += "FROM collection "
collection = DB._execute(query)
Collection._documents = []
for doc in collection:
d = Document(doc[0],doc[1])
Collection._documents.append(d)
Collection._count = len(Collection._documents)
sys.stdout.write(" ...Done!\n")
Collection._status = 1
@staticmethod
def _load_go():
"""Loads go into _document list
"""
if Collection._status > 1:
return
if Collection._status < 1:
Collection._load()
sys.stdout.write( "Loading GO...")
for doc in Collection._documents:
query = "SELECT collection_go.title "
query += "FROM collection_go "
query += " WHERE collection_go.PMID = {0}".format(doc.PMID)
result = DB._execute(query)
doc.set_go(result[0][0])
sys.stdout.write(" ...Done!\n")
Collection._status = 2
@staticmethod
def _load_tags():
"""Loads tags into _document list
"""
if Collection._status > 2:
return
if Collection._status < 2:
Collection._load_go()
sys.stdout.write( "Loading Tags...")
for doc in Collection._documents:
query = "SELECT collection_tag.title "
query += "FROM collection_tag "
query += " WHERE collection_tag.PMID = {0}".format(doc.PMID)
result = DB._execute(query)
doc.tag = TextProcessor._tokenize(result[0][0])
sys.stdout.write(" ...Done!\n")
Collection._status = 3
@staticmethod
def _load_indexes():
"""Loads indexes into _document list
"""
if Collection._status > 3:
return
if Collection._status < 3:
Collection._load_tags()
sys.stdout.write( "Loading Indexes...")
for doc in Collection._documents:
query = "SELECT collection_index.title "
query += "FROM collection_index "
query += " WHERE (collection_index.PMID = {0})".format(doc.PMID)
result = DB._execute(query)
doc.index = result[0][0]
sys.stdout.write(" ...Done!\n")
Collection._status = 4
@staticmethod
def _get_frequency(term):
count = 0
for doc in Collection._documents:
doc_tokens = doc.index.split(TextProcessor._word_splitter)
if doc_tokens.count(term) > 0:
count += 1
return count
class Query:
text = []
concepts = ''
term_frequency = dict()
qrels = []
id = 0
def __init__(self,query_id):
self.id = query_id
result = DB._execute("select title from adhoc2005narrative where id = {0}".format(query_id))
result_qrels = DB._execute("select document_id from genomics_qrels_small where query_id = {0}".format(query_id))
self.text = TextProcessor._tokenize(result[0][0])
self.qrels = []
for row in result_qrels:
self.qrels.append(row[0])
if GlobalVariables.remove_stop_words:
self.remove_stop_words()
if GlobalVariables.stem:
self.stem()
for t in self.text:
self.term_frequency[t] = self.text.count(t)
def set_concepts(self,concepts):
self.concepts = concepts
def remove_stop_words(self):
self.text = TextProcessor._remove_stop_words(self.text)
def stem(self):
self.text = TextProcessor._stem(self.text)
def get_frequency(self,term):
term = TextProcessor._normalize_word(term)
if term in self.term_frequency.keys():
return self.term_frequency[term]
else:
return 0
class Ontology:
@staticmethod
def _initialize():
print "Preparing terminologies..."
g = GO() # Gene Ontology Extraction
g.ExtractTerms()
g.MaxMatcher('go')
print "Gene Ontology is hot to go!"
g = MeSH() # Medical Subjects Headings Extraction
g.ExtractTerms()
g.MaxMatcher('mesh')
print "Medical Subject Headings is hot to go!"
g = ICD10() # International Statistical Classification of Diseases Extraction
g.ExtractTerms()
g.MaxMatcher('icd10')
print "International Statistical Classification of Diseases is hot to go!"
g = SNOMED() # Systematized Nomenclature of Medicine Extraction
g.ExtractTerms()
g.MaxMatcher("snomed")
print "Systematized Nomenclature of Medicine is hot to go!"
# Store all concepts into MaxMatcher Table.
g = Ontology()
g.CreateTerminologies()
g.CreateMaxMatcher()
print "Preparing terminologies and MaxMatcher Done."
def MaxMatcher(self,source):
'''
MaxMatcher is to train the significance score of each word to biological concepts containing that word.
source is a table which schema is: (id,title,syn,alt_id)
dist is a table which schema is: ( cid, word, sig)
This method uses source table content and will calculates the significance of each word in each variant
to each concept.
'''
print "Creating MaxMatcher for " + source +" Started..."
con = DB()
con.Query('delete from {0}_mm ;'.format(source))
# GO Databse scheme is ( id, variant)
con.cur.execute("SELECT * from {0};".format(source))
rows = con.cur.fetchall()
#concept_dict contains concept unique identifier and its variants
concept_dict = {}
i = 0
for row in rows:
i += 1
syn_list = row[1].split(',')
# Making a dictionary that contains every Concept
concept_dict[row[0]] = syn_list
# N(w) is the the number of concepts whose variant names contain word w,
# Add every possible word into a Dictionary as a Key
# and add N(w) as the value
# Step one is to calculate the N(w) in a temporary list
temp_word_list = {}
for concept in concept_dict.itervalues():
for variant in concept:
var_word_list = variant.split()
for word in var_word_list:
if word in temp_word_list:
if temp_word_list[word][0] != variant:
temp_word_list[word] = ( variant, temp_word_list[word][1] + 1)
else:
temp_word_list[word] = ( variant , 1)
# Now Create a dictionary that contains N(w)
word_dic = {}
for word in temp_word_list:
word_dic[word] = temp_word_list[word][1]
# Next Step is to calculte the I(w,Sj) where Sn is the
# nth variant of a concept
Sig_word_to_variant = {}
Sig_word_to_concept = {}
for concept in concept_dict.iteritems():
concept_word_list = []
for variant in concept[1]:
# Create a list of words in this variant
word_list = variant.split()
concept_word_list.extend(word_list)
summ = 0
for word in word_list:
summ += 1.00/word_dic[word]
for word in word_list:
Sig_word_to_variant[(word,variant)] = (1.00/word_dic[word])/summ
for word in concept_word_list:
temp_value = 0
# find the Max of significance among all variants of a concept
for variant in concept[1]:
word_list = variant.split()
if word in word_list:
if temp_value < Sig_word_to_variant[(word,variant)]:
temp_value = Sig_word_to_variant[(word,variant)]
Sig_word_to_concept[(word,concept[0])] = temp_value
# Calculateing the significance of each word to each concept
# to do this we can make a dictionary with a tuple of (concept, word)
# as key and the significance as the value
# Store the result in Database go_mm (GO MaxMatcher) table
query_values = ''
values_limit = 10000
values = 0
for row in Sig_word_to_concept.iteritems():
concept = row[0][1]
word = row[0][0]
significance = row[1]
if(query_values != ''):
query_values += ",('"+concept+"','"+word+"',"+str(significance)+")"
else:
query_values = "('"+concept+"','"+word+"',"+str(significance)+")"
values += 1
if values >= values_limit:
query = "insert into {0}_mm (cid,word,sig) values {1};".format(source,query_values)
con.Query(query)
query_values = ''
values = 0
query = "insert into {0}_mm (cid,word,sig) values {1};".format(source,query_values)
con.Query(query)
print "Creating MaxMatcher for " + source +" Done!"
def CreateMaxMatcher(self):
print "Creating MaxMatcher started..."
db = DB()
db.Query("delete from MaxMatcher")
ontologies = {'go','mesh','icd10','snomed'}
query_values = ''
query_values_count = 0
query_values_limit = 1000
query_header = "Insert into MaxMatcher (cid,word,sig) values "
for ontology in ontologies:
print "adding {0} terminology".format(ontology)
result = db.Execute("select * from "+ontology+"_mm")
print ontology, " has ",len(result)," rows!"
for row in result:
if query_values == '':
query_values = "('{0}','{1}',{2})".format(row[0],row[1],row[2])
query_values_count += 1
else:
query_values += ",('{0}','{1}',{2})".format(row[0],row[1],row[2])
query_values_count += 1
if query_values_count > query_values_limit:
db.Query(query_header + query_values)
query_values_count = 0;
query_values = ''
print "Creating MaxMatcher Done!"
def CreateTerminologies(self):
print "Creating T table(collection of all comcepts) started..."
db = DB()
db.Query("delete from T")
ontologies = {'go','mesh','icd10','snomed'}
query_values = ''
query_values_count = 0
query_values_limit = 1000
query_header = "Insert into T (id,variant) values "
for ontology in ontologies:
print "adding {0} terminology".format(ontology)
result = db.Execute("select * from "+ontology)
print ontology, " has ",len(result)," rows!"
for row in result:
if query_values == '':
query_values = "('{0}','{1}')".format(row[0],row[1])
query_values_count += 1
else:
query_values += ",('{0}','{1}')".format(row[0],row[1])
query_values_count += 1
if query_values_count > query_values_limit:
db.Query(query_header + query_values)
query_values_count = 0;
query_values = ''
print "Creating T Done!"
def GetDict(self,Terminology):
'''
returns a Dictionary containing each concept and it's variants
'''
db = DB()
tp = TextProcessor()
result = db.Execute('Select id, variant from {0}'.format(Terminology))
terminology_dict = dict()
for row in result:
variants = row[1].split(tp.Splitter())
variants = [c for c in variants if c != '']
terminology_dict[row[0]] = variants
return terminology_dict
class GO(Ontology):
variantDict = dict()
childrenDict = dict()
'''Gene Ontology Handler'''
def __init__(self):
self.file_name = r'd:\project\ontology\go.xml'
self.go_file = open(self.file_name)
GO.variantDict = self.GetVariantDict()
GO.childrenDict = self.GetChildrenDict()
f = open(r'd:\project\temp\output.txt','w')
f.write(str(GO.variantDict))
def ExtractTerms(self):
print "Extracting Go Terms started..."
tp = TextProcessor()
con = DB()
con.Query('delete from go;')
tree = ET.parse(self.file_name)
root = tree.getroot()
query_values = ''
values_limit = 1000
values = 0
for term in root.iter(tag='term'):
accession = term.find('accession').text
variant = term.find('name').text
children = ''
for child in term.iter(tag='is_a'):
if str(child.attrib['resource']).find('GO:') != -1:
if len(children) > 0:
children += ','
children += str(child.attrib['resource'])[31:41]
for synonym in term.iter(tag='synonym'):
temp_syn = synonym.text;
if temp_syn.find('GO:') == -1:
variant += ' , ' + temp_syn
if(query_values != ''):
query_values += ",('{0}','{1}','{2}')".format(accession,tp.Clean(variant),children)
else:
query_values = "('{0}','{1}','{2}')".format(accession,tp.Clean(variant),children)
values += 1
if values >= values_limit:
query = "insert into go(id,variant,children) values " + query_values +";"
con.Query(query)
query_values = ''
values = 0
query = "insert into go(id,variant,children) values " +query_values+";"
con.Query(query)
con.Close()
print 'Extracting GO terms Done!'
@staticmethod
def GetPredecessors(conceptId):
variantDict = GO.variantDict
childrenDict = GO.childrenDict
result = []
result.append(variantDict[conceptId])
childrenId = childrenDict[conceptId]
try:
for child in childrenId:
result.append(GO.GetChildren(child))
except:
pass
return ' '.join(result)
def GetVariantDict(self):
'''
returns a Dictionary containing each concept and it's variants
'''
db = DB()
tp = TextProcessor()
result = db.Execute('Select id, variant from go')
terminology_dict = dict()
for row in result:
variants = row[1].split(tp.Splitter())
variants = [c for c in variants if c != '']
terminology_dict[row[0]] = ' , '.join(variants)
db.Close()
return terminology_dict
def GetChildrenDict(self):
'''
returns a Dictionary containing each concept and it's children
'''
db = DB()
tp = TextProcessor()
result = db.Execute('Select id, children from go')
terminology_dict = dict()
for row in result:
children = row[1].split(tp.Splitter())
children = [c for c in children if c != '']
terminology_dict[row[0]] = children
db.Close()
return terminology_dict
class MeSH(Ontology):
"""MeSH Ontology Handler."""
#Gene ontology folder location
def __init__(self):
self.file_name = r'd:\project\ontology\mesh_small.xml'
self.file = open(self.file_name)
def ExtractTerms(self):
print "Extracting MsSH Terms started..."
tp = TextProcessor()
con = DB()
con.Query('delete from mesh;')
tree = ET.parse(self.file_name)
root = tree.getroot()
query_values = ''
values_limit = 100
values = 0
for DescriptorRecord in root.findall('DescriptorRecord'):
DescriptorUI = DescriptorRecord.find('DescriptorUI').text
DescriptorName = DescriptorRecord.find('DescriptorName').find('String') .text
DescriptorName = tp.RemoveStopWords(DescriptorName.replace(","," , "))
if(query_values != ''):
query_values += ",('"+DescriptorUI+"','"+tp.Clean(DescriptorName) +"')"
else:
query_values = "('"+DescriptorUI+"','"+tp.Clean(DescriptorName) +"')"
values += 1
if values >= values_limit:
query = "insert into mesh(id,variant) values " + query_values +";"
con.Query(query)
query_values = ''
values = 0
query = "insert into mesh(id,variant) values " + query_values +";"
con.Query(query)
con.Close()
print "Extracting MsSH Terms Done!"
class SNOMED(Ontology):
def __init__(self):
self.file_name = r'd:\project\ontology\snomed.xml'
self.file = open(self.file_name)
def CreateTempSNOMEDCoreTable(self):
print "Creating Temp SNOMED Core Table started..."
db = DB()
db.Execute("delete from snomed_core;")
print 'snomed_temp is Empty!'
tp = TextProcessor()
value = ''
values_list = ''
values_count = 0
query_header = "Insert into snomed_core(CONCEPTID,CONCEPTSTATUS,FULLYSPECIFIEDNAME,SNOMEDID) values "
for line in self.file:
line_fields = line.split('\t')
if str(line_fields[1]) == '0':
value = "( '" + str(line_fields[0]) + "',"
value += str(line_fields[1])+",'"+tp.Clean(str(line_fields[2]))+"','"
value += tp.Clean(str(line_fields[4]))+"'),"
values_list += value
values_count += 1
if values_count >100:
print "1000 + "
db.Insert(query_header + values_list[0:-1])
values_count = 0
values_list = ''
db.Insert(query_header + values_list)
print "Creating Temp SNOMED Core Table Done!"
def CreateTempSNOMEDRelationshipsTable(self):
print "Creating Temp SNOMED Core Table Started..."
rel_file = open(r"D:\Project\Ontologies\SNOMED\SnomedCT_Release_INT_20120731\RF1Release\OtherResources\StatedRelationships\res1_StatedRelationships_Core_INT_20120731.txt")
db = DB()
db.Execute("delete from snomed_rel;")
values_list = ''
values_count = 0
query_header = "Insert into snomed_rel(CONCEPTID1,CONCEPTID2) values "
print rel_file.readline()
for line in rel_file:
line_fields = line.split('\t')
if str(line_fields[2]).find('116680003') != -1:
values_list += "( '" + str(line_fields[1])+"','"+str(line_fields[3])+"'),"
values_count += 1
if values_count >100:
print "1000 + "
db.Insert(query_header + values_list[0:-1])
values_count = 0
values_list = ''
db.Insert(query_header + values_list)
print "Creating Temp SNOMED Core Table Done!"
def GetCoreDict(self):
db = DB()
core = db.Exec('select CONCEPTID,FULLYSPECIFIEDNAME from snomed_core')
print 'snomed_core is ready!'
print len(core)
core_dict = dict()
print "preparing Core Dictionary!"
for row in core:
core_dict[row[0]] = row[1]
print "Core Dictionary is Ready To GO!"
return core_dict
def GetRelDict(self):
''' =========Preoare the synonym Dictionary ========================'''
db = DB()
core_dict = self.GetCoreDict()
query = 'select CONCEPTID1,CONCEPTID2 from snomed_rel;'
syn_id_list = db.Exec(query) #370126003 this id should be removed!
core_syn_dict = dict()
for cid in syn_id_list:
core_syn_dict[cid[0]] = ''
for cid in syn_id_list:
try:
core_syn_dict[cid[0]] += core_dict[cid[1]] + ' , '
except:
print "one got away!"
print "Relationship Dictionary Created!"
return core_syn_dict
def ExtractTerms(self):
db = DB()
'''
Using
snomed_core (CONCEPTID,CONCEPTSTATUS,FULLYSPECIFIEDNAME,CTV3ID,SNOMEDID)
and
snomed_rel (CONCEPTID1,CONCEPTID2)
to create snomed (id,variant)
table.
'''
print "Extracting SNOMED Terms started..."
db.Exec("delete from snomed;")
core = db.Exec('select CONCEPTID,FULLYSPECIFIEDNAME from snomed_core')
rel_dict = self.GetRelDict()
value_list = ''
value = ''
value_count = 0
query_header = "Insert into snomed(id , variant) values"
total_done = 0
for row in core:
cid = row[0]
title = row[1]
syn_list = ''
try:
syn_list = str(rel_dict[cid])
except:
pass
if len(syn_list) >0:
title += " , " + syn_list
value = "({0},'{1}'),".format(cid,title)
value_list += value;
value_count += 1
if value_count > 1000:
query = query_header + value_list;
db.Query(query[0:-1])
total_done += 1000
#print str(total_done) + " Done!"
value_count = 0
value_list = ''
if len(value_list)>10:
query = query_header + value_list;
db.Query(query[0:-1])
print "Extracting SNOMED Terms Done!"
class ICD10(Ontology):
"""ICD10 Handler."""
#SNOMED folder location
def __init__(self):
self.file_name = r'd:\project\ontology\icd102010en.xml'
self.file = open(self.file_name)
def ExtractTerms(self):
'''
snomed_file: It's a file that contains SNOMED
simple_file: It's a text file that can be filled with SNOMED terms
simple_file will have a term per line.
'''
print "Extracting ICD10 Terms started..."
tp = TextProcessor()
con = DB()
con.Query('delete from icd10;')
tree = ET.parse(self.file_name)
root = tree.getroot()
query_values = ''
values_limit = 100
values = 0
for Class in root.iter(tag='Class'):
accession = tp.RemoveStopWords(str( Class.attrib['code']))
variant = ''
for Rubric in Class.iter(tag='Rubric'):
for Label in Rubric.iter(tag='Label'):
if variant != '':
try:
variant += ' , ' + tp.RemoveStopWords(str(Label.text))
except:
print "This is the problem--> ",variant
else:
try:
variant = tp.RemoveStopWords(str(Label.text))
except:
print "This is the problem--> ",variant
if(query_values != ''):
query_values += ",('"+accession+"','"+tp.Clean(variant) +"')"
else:
query_values = "('"+accession+"','"+tp.Clean(variant) +"')"
values += 1
if values >= values_limit:
query = "insert into icd10(id,variant) values " + query_values +";"
try:
con.Query(query)
except:
print query
query_values = ''
values = 0
query = "insert into icd10(id,variant) values " + query_values +";"
con.Query(query)
con.Close()
print "Extracting ICD10 Terms Done!"