-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathds.medianDP.R
41 lines (33 loc) · 1.76 KB
/
ds.medianDP.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
source("R/utils.R")
#' @title Differentially private median
#'
#' @param input_data the input vector
#' @param epsilon privacy budget
#' @param lower_bound lower bound for input values
#' @param upper_bound upper bound for input values
#' @param datasources a list of \code{\link{DSConnection-class}}
#' objects obtained after login. If the \code{datasources} argument is not specified
#' the default set of connections will be used: see \code{\link{datashield.connections_default}}.
#'
#' @return \code{ds.medianDP} returns a differentially private median
#' @export
ds.medianDP <- function(input_data, epsilon, lower_bound, upper_bound, type="split", datasources=NULL) {
if (is.null(datasources)) {
datasources <- DSI::datashield.connections_find()
}
if (!type %in% c("both", "split", "combine")) {
stop("Type must be one of 'both', 'split' or 'combine'")
}
median.data <- callAggregationMethod(datasources, paste0("medianDP(", input_data, ", ", epsilon, ", ", lower_bound, ", ", upper_bound, ")"))
Nstudies <- length(datasources)
median.mat <- matrix(as.numeric(unlist(median.data)),nrow=Nstudies,byrow=TRUE)
median.split <- median.mat
dimnames(median.split) <- c(list(names(median.data), names(median.data[[1]])))
median.combine <- t(matrix(median.mat[1,]))
median.combine[1,1] <- ((t(matrix(median.mat[,2]))%*%median.mat[,1])/sum(median.mat[,2]))
median.combine[1,2] <- sum(median.mat[,2])
dimnames(median.combine) <- c(list("studiesCombined"),list(names(median.data[[1]])))
if (type=="combine") return(list(Global.Median=median.combine,Nstudies=Nstudies))
if (type=="split") return(list(Median.by.Study=median.split,Nstudies=Nstudies))
if (type=="both") return(list(Median.by.Study=median.split,Global.Median=median.combine,Nstudies=Nstudies))
}