-
Notifications
You must be signed in to change notification settings - Fork 983
/
Copy pathpipeline.py
831 lines (687 loc) · 32.2 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
#
# For licensing see accompanying LICENSE.md file.
# Copyright (C) 2022 Apple Inc. All Rights Reserved.
#
import argparse
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.schedulers.scheduling_utils import SchedulerMixin
import gc
import inspect
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
import numpy as np
import os
from python_coreml_stable_diffusion.coreml_model import (
CoreMLModel,
_load_mlpackage,
_load_mlpackage_controlnet,
get_available_compute_units,
)
import time
import torch # Only used for `torch.from_tensor` in `pipe.scheduler.step()`
from transformers import CLIPFeatureExtractor, CLIPTokenizer
from typing import List, Optional, Union, Tuple
from PIL import Image
class CoreMLStableDiffusionPipeline(DiffusionPipeline):
""" Core ML version of
`diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline`
"""
def __init__(
self,
text_encoder: CoreMLModel,
unet: CoreMLModel,
vae_decoder: CoreMLModel,
scheduler: Union[
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler
],
tokenizer: CLIPTokenizer,
controlnet: Optional[List[CoreMLModel]],
xl: Optional[bool] = False,
force_zeros_for_empty_prompt: Optional[bool] = True,
feature_extractor: Optional[CLIPFeatureExtractor] = None,
safety_checker: Optional[CoreMLModel] = None,
text_encoder_2: Optional[CoreMLModel] = None,
tokenizer_2: Optional[CLIPTokenizer] = None
):
super().__init__()
# Register non-Core ML components of the pipeline similar to the original pipeline
self.register_modules(
tokenizer=tokenizer,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
if safety_checker is None:
# Reproduce original warning:
# https://github.com/huggingface/diffusers/blob/v0.9.0/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L119
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
self.xl = xl
self.force_zeros_for_empty_prompt = force_zeros_for_empty_prompt
# Register Core ML components of the pipeline
self.safety_checker = safety_checker
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
self.tokenizer_2 = tokenizer_2
self.unet = unet
self.unet.in_channels = self.unet.expected_inputs["sample"]["shape"][1]
self.controlnet = controlnet
self.vae_decoder = vae_decoder
VAE_DECODER_UPSAMPLE_FACTOR = 8
# In PyTorch, users can determine the tensor shapes dynamically by default
# In CoreML, tensors have static shapes unless flexible shapes were used during export
# See https://coremltools.readme.io/docs/flexible-inputs
latent_h, latent_w = self.unet.expected_inputs["sample"]["shape"][2:]
self.height = latent_h * VAE_DECODER_UPSAMPLE_FACTOR
self.width = latent_w * VAE_DECODER_UPSAMPLE_FACTOR
logger.info(
f"Stable Diffusion configured to generate {self.height}x{self.width} images"
)
def _encode_prompt(self,
prompt,
prompt_2: Optional[str] = None,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
if self.xl is True:
prompts = [prompt, prompt_2] if prompt_2 is not None else [prompt, prompt]
# refiner uses only one tokenizer and text encoder (tokenizer_2 and text_encoder_2)
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [
self.text_encoder_2]
hidden_state_key = 'hidden_embeds'
else:
prompts = [prompt]
tokenizers = [self.tokenizer]
text_encoders = [self.text_encoder]
hidden_state_key = 'last_hidden_state'
prompt_embeds_list = []
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
# tokenize without max_length to catch any truncation
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="np").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1: -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
embeddings = text_encoder(input_ids=text_input_ids.astype(np.float32))
prompt_embeds_list.append(embeddings[hidden_state_key])
# We are only ALWAYS interested in the pooled output of the final text encoder
if self.xl:
pooled_prompt_embeds = embeddings['pooled_outputs']
prompt_embeds = np.concatenate(prompt_embeds_list, axis=-1)
if do_classifier_free_guidance and negative_prompt is None and self.force_zeros_for_empty_prompt:
negative_prompt_embeds = np.zeros_like(prompt_embeds)
if self.xl:
negative_pooled_prompt_embeds = np.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
# normalize str to list
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
negative_prompt_2 = (
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
)
uncond_tokens: List[str]
if prompts is not None and type(prompts) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`.")
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="np",
)
uncond_input_ids = uncond_input.input_ids
negative_embeddings = text_encoder(
input_ids=uncond_input_ids.astype(np.float32)
)
negative_text_embeddings = negative_embeddings[hidden_state_key]
negative_prompt_embeds_list.append(negative_text_embeddings)
# We are only ALWAYS interested in the pooled output of the final text encoder
if self.xl:
negative_pooled_prompt_embeds = negative_embeddings['pooled_outputs']
negative_prompt_embeds = np.concatenate(negative_prompt_embeds_list, axis=-1)
if do_classifier_free_guidance:
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = np.concatenate(
[negative_prompt_embeds, prompt_embeds])
if self.xl:
pooled_prompt_embeds = np.concatenate(
[negative_pooled_prompt_embeds, pooled_prompt_embeds])
prompt_embeddings = prompt_embeds.transpose(0, 2, 1)[:, :, None, :]
if self.xl:
return prompt_embeddings, pooled_prompt_embeds
else:
return prompt_embeddings, None
def run_controlnet(self,
sample,
timestep,
encoder_hidden_states,
controlnet_cond,
output_dtype=np.float16):
if not self.controlnet:
raise ValueError(
"Conditions for controlnet are given but the pipeline has no controlnet modules")
for i, (module, cond) in enumerate(zip(self.controlnet, controlnet_cond)):
module_outputs = module(
sample=sample.astype(np.float16),
timestep=timestep.astype(np.float16),
encoder_hidden_states=encoder_hidden_states.astype(np.float16),
controlnet_cond=cond.astype(np.float16),
)
if i == 0:
outputs = module_outputs
else:
for key in outputs.keys():
outputs[key] += module_outputs[key]
outputs = {k: v.astype(output_dtype) for k, v in outputs.items()}
return outputs
def run_safety_checker(self, image):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(
self.numpy_to_pil(image),
return_tensors="np",
)
safety_checker_outputs = self.safety_checker(
clip_input=safety_checker_input.pixel_values.astype(
np.float16),
images=image.astype(np.float16),
adjustment=np.array([0.]).astype(
np.float16), # defaults to 0 in original pipeline
)
# Unpack dict
has_nsfw_concept = safety_checker_outputs["has_nsfw_concepts"]
image = safety_checker_outputs["filtered_images"]
concept_scores = safety_checker_outputs["concept_scores"]
logger.info(
f"Generated image has nsfw concept={has_nsfw_concept.any()}")
else:
has_nsfw_concept = None
return image, has_nsfw_concept
def decode_latents(self, latents):
if self.xl:
scaling_factor =0.13025
else:
scaling_factor = 0.18215
latents = 1 / scaling_factor * latents
dtype = self.vae_decoder.expected_inputs['z']['dtype']
image = self.vae_decoder(z=latents.astype(dtype))["image"]
image = np.clip(image / 2 + 0.5, 0, 1)
image = image.transpose((0, 2, 3, 1))
return image
def prepare_latents(self,
batch_size,
num_channels_latents,
height,
width,
latents=None):
latents_shape = (batch_size, num_channels_latents, self.height // 8,
self.width // 8)
if latents is None:
latents = np.random.randn(*latents_shape).astype(np.float16)
elif latents.shape != latents_shape:
raise ValueError(
f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}"
)
init_noise = self.scheduler.init_noise_sigma
if isinstance(init_noise, torch.Tensor):
init_noise = init_noise.numpy()
latents = latents * init_noise
return latents
def prepare_control_cond(self,
controlnet_cond,
do_classifier_free_guidance,
batch_size,
num_images_per_prompt):
processed_cond_list = []
for cond in controlnet_cond:
cond = np.stack([cond] * batch_size * num_images_per_prompt)
if do_classifier_free_guidance:
cond = np.concatenate([cond] * 2)
processed_cond_list.append(cond)
return processed_cond_list
def check_inputs(self, prompt, height, width, callback_steps):
if height != self.height or width != self.width:
logger.warning(
"`height` and `width` dimensions (of the output image tensor) are fixed when exporting the Core ML models " \
"unless flexible shapes are used during export (https://coremltools.readme.io/docs/flexible-inputs). " \
"This pipeline was provided with Core ML models that generate {self.height}x{self.width} images (user requested {height}x{width})"
)
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if (callback_steps is None) or (callback_steps is not None and
(not isinstance(callback_steps, int)
or callback_steps <= 0)):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}.")
def prepare_extra_step_kwargs(self, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
return extra_step_kwargs
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = np.array(add_time_ids).astype(dtype)
return add_time_ids
def __call__(
self,
prompt,
height=512,
width=512,
num_inference_steps=50,
guidance_scale=7.5,
negative_prompt=None,
num_images_per_prompt=1,
eta=0.0,
latents=None,
output_type="pil",
return_dict=True,
callback=None,
callback_steps=1,
controlnet_cond=None,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
**kwargs,
):
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
height = height or self.height
width = width or self.width
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
if batch_size > 1 or num_images_per_prompt > 1:
raise NotImplementedError(
"For batched generation of multiple images and/or multiple prompts, please refer to the Swift package."
)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_embeddings, pooled_prompt_embeds = self._encode_prompt(
prompt=prompt,
prompt_2=None,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=None
)
# 4. Prepare XL kwargs if needed
unet_additional_kwargs = {}
# we add pooled prompt embeds + time_ids to unet kwargs
if self.xl:
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(original_size, crops_coords_top_left, target_size,
text_embeddings.dtype)
if do_classifier_free_guidance:
# TODO: This checks if the time_ids input is looking for time_ids.shape == (12,) or (2, 6)
# Remove once model input shapes are ubiquitous
if len(self.unet.expected_inputs['time_ids']['shape']) > 1:
add_time_ids = [add_time_ids]
add_time_ids = np.concatenate([add_time_ids, add_time_ids])
unet_additional_kwargs.update({'text_embeds': add_text_embeds.astype(np.float16),
'time_ids': add_time_ids.astype(np.float16)})
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables and controlnet cond
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
latents,
)
if controlnet_cond:
controlnet_cond = self.prepare_control_cond(
controlnet_cond,
do_classifier_free_guidance,
batch_size,
num_images_per_prompt,
)
# 7. Prepare extra step kwargs
extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
# 8. Denoising loop
for i, t in enumerate(self.progress_bar(timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = np.concatenate(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t)
if isinstance(latent_model_input, torch.Tensor):
latent_model_input = latent_model_input.numpy()
# controlnet
if controlnet_cond:
control_net_additional_residuals = self.run_controlnet(
sample=latent_model_input,
timestep=np.array([t, t]),
encoder_hidden_states=text_embeddings,
controlnet_cond=controlnet_cond,
)
else:
control_net_additional_residuals = {}
# predict the noise residual
unet_additional_kwargs.update(control_net_additional_residuals)
noise_pred = self.unet(
sample=latent_model_input.astype(np.float16),
timestep=np.array([t, t], np.float16),
encoder_hidden_states=text_embeddings.astype(np.float16),
**unet_additional_kwargs,
)["noise_pred"]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(torch.from_numpy(noise_pred),
t,
torch.from_numpy(latents),
**extra_step_kwargs,
).prev_sample.numpy()
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept)
def get_available_schedulers():
schedulers = {}
for scheduler in [DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler]:
schedulers[scheduler().__class__.__name__.replace("Scheduler", "")] = scheduler
return schedulers
SCHEDULER_MAP = get_available_schedulers()
def get_coreml_pipe(pytorch_pipe,
mlpackages_dir,
model_version,
compute_unit,
delete_original_pipe=True,
scheduler_override=None,
controlnet_models=None,
force_zeros_for_empty_prompt=True,
sources=None):
"""
Initializes and returns a `CoreMLStableDiffusionPipeline` from an original
diffusers PyTorch pipeline
sources: 'packages' or 'compiled' forces creation of model from specified sources. sources must be in mlpackages_dir
"""
# Ensure `scheduler_override` object is of correct type if specified
if scheduler_override is not None:
assert isinstance(scheduler_override, SchedulerMixin)
logger.warning(
"Overriding scheduler in pipeline: "
f"Default={pytorch_pipe.scheduler}, Override={scheduler_override}")
# Gather configured tokenizer and scheduler attributes from the original pipe
if 'xl' in model_version:
coreml_pipe_kwargs = {
"tokenizer": pytorch_pipe.tokenizer,
'tokenizer_2': pytorch_pipe.tokenizer_2,
"scheduler": pytorch_pipe.scheduler if scheduler_override is None else scheduler_override,
"force_zeros_for_empty_prompt": force_zeros_for_empty_prompt,
'xl': True
}
model_packages_to_load = ["text_encoder", "text_encoder_2", "unet", "vae_decoder"]
else:
coreml_pipe_kwargs = {
"tokenizer": pytorch_pipe.tokenizer,
"scheduler": pytorch_pipe.scheduler if scheduler_override is None else scheduler_override,
"feature_extractor": pytorch_pipe.feature_extractor,
}
model_packages_to_load = ["text_encoder", "unet", "vae_decoder"]
if getattr(pytorch_pipe, "safety_checker", None) is not None:
model_packages_to_load.append("safety_checker")
else:
logger.warning(
f"Original diffusers pipeline for {model_version} does not have a safety_checker, "
"Core ML pipeline will mirror this behavior.")
coreml_pipe_kwargs["safety_checker"] = None
if delete_original_pipe:
del pytorch_pipe
gc.collect()
logger.info("Removed PyTorch pipe to reduce peak memory consumption")
if controlnet_models:
model_packages_to_load.remove("unet")
coreml_pipe_kwargs["unet"] = _load_mlpackage(
submodule_name="control-unet",
mlpackages_dir=mlpackages_dir,
model_version=model_version,
compute_unit=compute_unit,
)
coreml_pipe_kwargs["controlnet"] = [_load_mlpackage_controlnet(
mlpackages_dir,
model_version,
compute_unit,
) for model_version in controlnet_models]
else:
coreml_pipe_kwargs["controlnet"] = None
# Load Core ML models
logger.info(f"Loading Core ML models in memory from {mlpackages_dir}")
coreml_pipe_kwargs.update({
model_name: _load_mlpackage(
submodule_name=model_name,
mlpackages_dir=mlpackages_dir,
model_version=model_version,
compute_unit=compute_unit,
sources=sources,
)
for model_name in model_packages_to_load
})
logger.info("Done.")
logger.info("Initializing Core ML pipe for image generation")
coreml_pipe = CoreMLStableDiffusionPipeline(**coreml_pipe_kwargs)
logger.info("Done.")
return coreml_pipe
def get_image_path(args, **override_kwargs):
""" mkdir output folder and encode metadata in the filename
"""
out_folder = os.path.join(args.o, "_".join(args.prompt.replace("/", "_").rsplit(" ")))
os.makedirs(out_folder, exist_ok=True)
out_fname = f"randomSeed_{override_kwargs.get('seed', None) or args.seed}"
out_fname += f"_computeUnit_{override_kwargs.get('compute_unit', None) or args.compute_unit}"
out_fname += f"_modelVersion_{override_kwargs.get('model_version', None) or args.model_version.replace('/', '_')}"
if args.scheduler is not None:
out_fname += f"_customScheduler_{override_kwargs.get('scheduler', None) or args.scheduler}"
out_fname += f"_numInferenceSteps{override_kwargs.get('num_inference_steps', None) or args.num_inference_steps}"
return os.path.join(out_folder, out_fname + ".png")
def prepare_controlnet_cond(image_path, height, width):
image = Image.open(image_path).convert("RGB")
image = image.resize((height, width), resample=Image.LANCZOS)
image = np.array(image).transpose(2, 0, 1) / 255.0
return image
def main(args):
logger.info(f"Setting random seed to {args.seed}")
np.random.seed(args.seed)
logger.info("Initializing PyTorch pipe for reference configuration")
SDP = StableDiffusionXLPipeline if 'xl' in args.model_version else StableDiffusionPipeline
pytorch_pipe = SDP.from_pretrained(
args.model_version,
use_auth_token=True,
)
# Get Scheduler
user_specified_scheduler = None
if args.scheduler is not None:
user_specified_scheduler = SCHEDULER_MAP[
args.scheduler].from_config(pytorch_pipe.scheduler.config)
# Get Force Zeros Config if it exists
force_zeros_for_empty_prompt: bool = False
if 'force_zeros_for_empty_prompt' in pytorch_pipe.config:
force_zeros_for_empty_prompt = pytorch_pipe.config['force_zeros_for_empty_prompt']
coreml_pipe = get_coreml_pipe(
pytorch_pipe=pytorch_pipe,
mlpackages_dir=args.i,
model_version=args.model_version,
compute_unit=args.compute_unit,
scheduler_override=user_specified_scheduler,
controlnet_models=args.controlnet,
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt,
sources=args.model_sources,
)
if args.controlnet:
controlnet_cond = []
for i, _ in enumerate(args.controlnet):
image_path = args.controlnet_inputs[i]
image = prepare_controlnet_cond(image_path, coreml_pipe.height, coreml_pipe.width)
controlnet_cond.append(image)
else:
controlnet_cond = None
logger.info("Beginning image generation.")
image = coreml_pipe(
prompt=args.prompt,
height=coreml_pipe.height,
width=coreml_pipe.width,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
controlnet_cond=controlnet_cond,
negative_prompt=args.negative_prompt,
)
out_path = get_image_path(args)
logger.info(f"Saving generated image to {out_path}")
image["images"][0].save(out_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
required=True,
help="The text prompt to be used for text-to-image generation.")
parser.add_argument(
"-i",
required=True,
help=("Path to input directory with the .mlpackage files generated by "
"python_coreml_stable_diffusion.torch2coreml"))
parser.add_argument("-o", required=True)
parser.add_argument("--seed",
"-s",
default=93,
type=int,
help="Random seed to be able to reproduce results")
parser.add_argument(
"--model-version",
default="CompVis/stable-diffusion-v1-4",
help=
("The pre-trained model checkpoint and configuration to restore. "
"For available versions: https://huggingface.co/models?search=stable-diffusion"
))
parser.add_argument(
"--compute-unit",
choices=get_available_compute_units(),
default="ALL",
help=("The compute units to be used when executing Core ML models. "
f"Options: {get_available_compute_units()}"))
parser.add_argument(
"--scheduler",
choices=tuple(SCHEDULER_MAP.keys()),
default=None,
help=("The scheduler to use for running the reverse diffusion process. "
"If not specified, the default scheduler from the diffusers pipeline is utilized"))
parser.add_argument(
"--num-inference-steps",
default=50,
type=int,
help="The number of iterations the unet model will be executed throughout the reverse diffusion process")
parser.add_argument(
"--guidance-scale",
default=7.5,
type=float,
help="Controls the influence of the text prompt on sampling process (0=random images)")
parser.add_argument(
"--controlnet",
nargs="*",
type=str,
help=("Enables ControlNet and use control-unet instead of unet for additional inputs. "
"For Multi-Controlnet, provide the model names separated by spaces."))
parser.add_argument(
"--controlnet-inputs",
nargs="*",
type=str,
help=("Image paths for ControlNet inputs. "
"Please enter images corresponding to each controlnet provided at --controlnet option in same order."))
parser.add_argument(
"--negative-prompt",
default=None,
help="The negative text prompt to be used for text-to-image generation.")
parser.add_argument('--model-sources',
default=None,
choices=['packages', 'compiled'],
help='Force build from `packages` or `compiled`')
args = parser.parse_args()
main(args)