-
Notifications
You must be signed in to change notification settings - Fork 982
/
Copy pathStableDiffusionPipeline.swift
360 lines (312 loc) · 13.5 KB
/
StableDiffusionPipeline.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// For licensing see accompanying LICENSE.md file.
// Copyright (C) 2022 Apple Inc. All Rights Reserved.
import Foundation
import CoreML
import Accelerate
import CoreGraphics
/// Schedulers compatible with StableDiffusionPipeline
public enum StableDiffusionScheduler {
/// Scheduler that uses a pseudo-linear multi-step (PLMS) method
case pndmScheduler
/// Scheduler that uses a second order DPM-Solver++ algorithm
case dpmSolverMultistepScheduler
/// Scheduler that uses an Euler Ancestral discrete algorithm
case eulerAncestralDiscreteScheduler
}
/// RNG compatible with StableDiffusionPipeline
public enum StableDiffusionRNG {
/// RNG that matches numpy implementation
case numpyRNG
/// RNG that matches PyTorch CPU implementation.
case torchRNG
}
/// A pipeline used to generate image samples from text input using stable diffusion
///
/// This implementation matches:
/// [Hugging Face Diffusers Pipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py)
@available(iOS 16.2, macOS 13.1, *)
public struct StableDiffusionPipeline: ResourceManaging {
public enum Error: String, Swift.Error {
case startingImageProvidedWithoutEncoder
}
/// Model to generate embeddings for tokenized input text
var textEncoder: TextEncoder
/// Model used to predict noise residuals given an input, diffusion time step, and conditional embedding
var unet: Unet
/// Model used to generate final image from latent diffusion process
var decoder: Decoder
/// Model used to latent space for image2image, and soon, in-painting
var encoder: Encoder?
/// Optional model for checking safety of generated image
var safetyChecker: SafetyChecker? = nil
/// Optional model used before Unet to control generated images by additonal inputs
var controlNet: ControlNet? = nil
/// Reports whether this pipeline can perform safety checks
public var canSafetyCheck: Bool {
safetyChecker != nil
}
/// Option to reduce memory during image generation
///
/// If true, the pipeline will lazily load TextEncoder, Unet, Decoder, and SafetyChecker
/// when needed and aggressively unload their resources after
///
/// This will increase latency in favor of reducing memory
var reduceMemory: Bool = false
/// Creates a pipeline using the specified models and tokenizer
///
/// - Parameters:
/// - textEncoder: Model for encoding tokenized text
/// - unet: Model for noise prediction on latent samples
/// - decoder: Model for decoding latent sample to image
/// - controlNet: Optional model to control generated images by additonal inputs
/// - safetyChecker: Optional model for checking safety of generated images
/// - reduceMemory: Option to enable reduced memory mode
/// - Returns: Pipeline ready for image generation
public init(textEncoder: TextEncoder,
unet: Unet,
decoder: Decoder,
encoder: Encoder?,
controlNet: ControlNet? = nil,
safetyChecker: SafetyChecker? = nil,
reduceMemory: Bool = false) {
self.textEncoder = textEncoder
self.unet = unet
self.decoder = decoder
self.encoder = encoder
self.controlNet = controlNet
self.safetyChecker = safetyChecker
self.reduceMemory = reduceMemory
}
/// Load required resources for this pipeline
///
/// If reducedMemory is true this will instead call prewarmResources instead
/// and let the pipeline lazily load resources as needed
public func loadResources() throws {
if reduceMemory {
try prewarmResources()
} else {
try textEncoder.loadResources()
try unet.loadResources()
try decoder.loadResources()
try encoder?.loadResources()
try controlNet?.loadResources()
try safetyChecker?.loadResources()
}
}
/// Unload the underlying resources to free up memory
public func unloadResources() {
textEncoder.unloadResources()
unet.unloadResources()
decoder.unloadResources()
encoder?.unloadResources()
controlNet?.unloadResources()
safetyChecker?.unloadResources()
}
// Prewarm resources one at a time
public func prewarmResources() throws {
try textEncoder.prewarmResources()
try unet.prewarmResources()
try decoder.prewarmResources()
try encoder?.prewarmResources()
try controlNet?.prewarmResources()
try safetyChecker?.prewarmResources()
}
/// Image generation using stable diffusion
/// - Parameters:
/// - configuration: Image generation configuration
/// - progressHandler: Callback to perform after each step, stops on receiving false response
/// - Returns: An array of `imageCount` optional images.
/// The images will be nil if safety checks were performed and found the result to be un-safe
public func generateImages(
configuration config: Configuration,
progressHandler: (Progress) -> Bool = { _ in true }
) throws -> [CGImage?] {
// Encode the input prompt and negative prompt
let promptEmbedding = try textEncoder.encode(config.prompt)
let negativePromptEmbedding = try textEncoder.encode(config.negativePrompt)
if reduceMemory {
textEncoder.unloadResources()
}
// Convert to Unet hidden state representation
// Concatenate the prompt and negative prompt embeddings
let concatEmbedding = MLShapedArray<Float32>(
concatenating: [negativePromptEmbedding, promptEmbedding],
alongAxis: 0
)
let hiddenStates = toHiddenStates(concatEmbedding)
/// Setup schedulers
let scheduler: [Scheduler] = (0..<config.imageCount).map { _ in
switch config.schedulerType {
case .pndmScheduler: return PNDMScheduler(stepCount: config.stepCount)
case .dpmSolverMultistepScheduler: return DPMSolverMultistepScheduler(stepCount: config.stepCount)
case .eulerAncestralDiscreteScheduler: return EulerAncestralDiscreteScheduler(randomSource: randomSource(from: config.rngType, seed: config.seed), stepCount: config.stepCount)
}
}
// Generate random latent samples from specified seed
var latents: [MLShapedArray<Float32>] = try generateLatentSamples(configuration: config, scheduler: scheduler[0])
if reduceMemory {
encoder?.unloadResources()
}
let timestepStrength: Float? = config.mode == .imageToImage ? config.strength : nil
// Convert cgImage for ControlNet into MLShapedArray
let controlNetConds = try config.controlNetInputs.map { cgImage in
let shapedArray = try cgImage.plannerRGBShapedArray(minValue: 0.0, maxValue: 1.0)
return MLShapedArray(
concatenating: [shapedArray, shapedArray],
alongAxis: 0
)
}
// De-noising loop
let timeSteps: [Int] = scheduler[0].calculateTimesteps(strength: timestepStrength)
for (step,t) in timeSteps.enumerated() {
// Expand the latents for classifier-free guidance
// and input to the Unet noise prediction model
let latentUnetInput = latents.map {
MLShapedArray<Float32>(concatenating: [$0, $0], alongAxis: 0)
}
// Before Unet, execute controlNet and add the output into Unet inputs
let additionalResiduals = try controlNet?.execute(
latents: latentUnetInput,
timeStep: t,
hiddenStates: hiddenStates,
images: controlNetConds
)
// Predict noise residuals from latent samples
// and current time step conditioned on hidden states
var noise = try unet.predictNoise(
latents: latentUnetInput,
timeStep: t,
hiddenStates: hiddenStates,
additionalResiduals: additionalResiduals
)
noise = performGuidance(noise, config.guidanceScale)
// Have the scheduler compute the previous (t-1) latent
// sample given the predicted noise and current sample
for i in 0..<config.imageCount {
latents[i] = scheduler[i].step(
output: noise[i],
timeStep: t,
sample: latents[i]
)
}
// Report progress
let progress = Progress(
pipeline: self,
prompt: config.prompt,
step: step,
stepCount: timeSteps.count,
currentLatentSamples: latents,
configuration: config
)
if !progressHandler(progress) {
// Stop if requested by handler
return []
}
}
if reduceMemory {
controlNet?.unloadResources()
unet.unloadResources()
}
// Decode the latent samples to images
return try decodeToImages(latents, configuration: config)
}
private func randomSource(from rng: StableDiffusionRNG, seed: UInt32) -> RandomSource {
switch rng {
case .numpyRNG:
return NumPyRandomSource(seed: seed)
case .torchRNG:
return TorchRandomSource(seed: seed)
}
}
func generateLatentSamples(configuration config: Configuration, scheduler: Scheduler) throws -> [MLShapedArray<Float32>] {
var sampleShape = unet.latentSampleShape
sampleShape[0] = 1
let stdev = scheduler.initNoiseSigma
var random = randomSource(from: config.rngType, seed: config.seed)
let samples = (0..<config.imageCount).map { _ in
MLShapedArray<Float32>(
converting: random.normalShapedArray(sampleShape, mean: 0.0, stdev: Double(stdev)))
}
if let image = config.startingImage, config.mode == .imageToImage {
guard let encoder else {
throw Error.startingImageProvidedWithoutEncoder
}
let latent = try encoder.encode(image, scaleFactor: config.encoderScaleFactor, random: &random)
return scheduler.addNoise(originalSample: latent, noise: samples, strength: config.strength)
}
return samples
}
func toHiddenStates(_ embedding: MLShapedArray<Float32>) -> MLShapedArray<Float32> {
// Unoptimized manual transpose [0, 2, None, 1]
// e.g. From [2, 77, 768] to [2, 768, 1, 77]
let fromShape = embedding.shape
let stateShape = [fromShape[0],fromShape[2], 1, fromShape[1]]
var states = MLShapedArray<Float32>(repeating: 0.0, shape: stateShape)
for i0 in 0..<fromShape[0] {
for i1 in 0..<fromShape[1] {
for i2 in 0..<fromShape[2] {
states[scalarAt:i0,i2,0,i1] = embedding[scalarAt:i0, i1, i2]
}
}
}
return states
}
func performGuidance(_ noise: [MLShapedArray<Float32>], _ guidanceScale: Float) -> [MLShapedArray<Float32>] {
noise.map { performGuidance($0, guidanceScale) }
}
func performGuidance(_ noise: MLShapedArray<Float32>, _ guidanceScale: Float) -> MLShapedArray<Float32> {
var shape = noise.shape
shape[0] = 1
return MLShapedArray<Float>(unsafeUninitializedShape: shape) { result, _ in
noise.withUnsafeShapedBufferPointer { scalars, _, strides in
for i in 0 ..< result.count {
// unconditioned + guidance*(text - unconditioned)
result.initializeElement(
at: i,
to: scalars[i] + guidanceScale * (scalars[strides[0] + i] - scalars[i])
)
}
}
}
}
func decodeToImages(_ latents: [MLShapedArray<Float32>], configuration config: Configuration) throws -> [CGImage?] {
let images = try decoder.decode(latents, scaleFactor: config.decoderScaleFactor)
if reduceMemory {
decoder.unloadResources()
}
// If safety is disabled return what was decoded
if config.disableSafety {
return images
}
// If there is no safety checker return what was decoded
guard let safetyChecker = safetyChecker else {
return images
}
// Otherwise change images which are not safe to nil
let safeImages = try images.map { image in
try safetyChecker.isSafe(image) ? image : nil
}
if reduceMemory {
safetyChecker.unloadResources()
}
return safeImages
}
}
@available(iOS 16.2, macOS 13.1, *)
extension StableDiffusionPipeline {
/// Sampling progress details
public struct Progress {
public let pipeline: StableDiffusionPipeline
public let prompt: String
public let step: Int
public let stepCount: Int
public let currentLatentSamples: [MLShapedArray<Float32>]
public let configuration: Configuration
public var isSafetyEnabled: Bool {
pipeline.canSafetyCheck && !configuration.disableSafety
}
public var currentImages: [CGImage?] {
try! pipeline.decodeToImages(currentLatentSamples, configuration: configuration)
}
}
}