-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_search.py
188 lines (163 loc) · 5.66 KB
/
model_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import pickle
import datetime
import logging as lgg
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from preprocessing_search import generate_train_test
from util import generate_modelling_data, get_train_validation_data
from tensorflow import keras
import kerastuner as kt
from kerastuner.tuners import RandomSearch
from tensorflow.keras.callbacks import EarlyStopping, TensorBoard, Callback
from kerastuner.tuners import Hyperband
BATCH_SIZE = 100000
SEED = 42
log_dir = "./logs/" + datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
early_stop_callback = EarlyStopping(
monitor="val_loss",
min_delta=1e-3,
patience=10,
verbose=0
)
tensorboard_callback = TensorBoard(
log_dir=log_dir,
histogram_freq=1,
embeddings_freq=1,
write_graph=True,
update_freq="batch"
)
def shallow_nn_model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Input(shape=(88,)))
hp_units = hp.Int("units", min_value=256, max_value=1792, step=256)
model.add(keras.layers.Dense(units=hp_units, activation="elu"))
model.add(keras.layers.Dense(50, activation="softmax"))
hp_learning_rate = hp.Choice("learning_rate", values=[0.05, 0.01, 0.0005, 0.0001])
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"]
)
return model
def deep_dense_nn_model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Input(shape=(88,)))
for layers in range(hp.Int("num_layers", 2, 8)):
model.add(
keras.layers.Dense(units=hp.Int(
f"units_{layers}",
min_value=256,
max_value=2048,
step=256
),
activation="elu")
)
model.add(keras.layers.Dense(50, activation="softmax"))
hp_learning_rate = hp.Choice("learning_rate", values=[0.0001, 0.0003, 0.0005])
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"]
)
return model
def long_thin_nn_model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Input(shape=(88,)))
for layers in range(hp.Int("num_layers", 5, 10)):
model.add(
keras.layers.Dense(units=hp.Int(
f"units_{layers}",
min_value=256,
max_value=768,
step=256
),
activation="elu")
)
model.add(keras.layers.Dense(50, activation="softmax"))
hp_learning_rate = hp.Choice("learning_rate", values=[0.0001, 0.0005, 0.0009])
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"]
)
return model
def long_thin_nn_model_round_two(hp):
model = keras.Sequential()
model.add(keras.layers.Input(shape=(88,)))
model.add(keras.layers.Dense(256, activation="relu"))
model.add(keras.layers.Dense(512, activation="relu"))
model.add(keras.layers.Dense(hp.Int(
"units_2",
min_value=448,
max_value=576,
step=64
), activation="relu"))
model.add(keras.layers.Dense(768, activation="relu"))
model.add(keras.layers.Dense(hp.Int(
"units_4",
min_value=448,
max_value=576,
step=64
), activation="relu"))
model.add(keras.layers.Dense(50, activation="softmax"))
hp_learning_rate = hp.Choice("learning_rate", values=[0.0009, 0.001, 0.0015, 0.002])
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"]
)
return model
def long_thin_nn_model_round_three(hp):
model = keras.Sequential()
model.add(keras.layers.Input(shape=(88,)))
model.add(keras.layers.Dense(256, activation="relu"))
model.add(keras.layers.Dense(512, activation="relu"))
model.add(keras.layers.Dense(hp.Int(
"units_2",
min_value=384,
max_value=640,
step=64
), activation="relu")) # still uncertaintly around this layer, widening search
model.add(keras.layers.Dense(768, activation="relu"))
model.add(keras.layers.Dense(512, activation="relu"))
model.add(keras.layers.Dense(50, activation="softmax"))
hp_learning_rate = hp.Choice("learning_rate", values=[0.0015, 0.002, 0.0025, 0.003])
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
loss="sparse_categorical_crossentropy",
metrics=["accuracy"]
)
return model
def run_search(model_builder, directory, project_name):
os.makedirs(directory, exist_ok=True)
tuner = RandomSearch(
model_builder,
objective="val_accuracy",
max_trials=16,
executions_per_trial=1,
seed=SEED,
directory=directory,
project_name=project_name
)
X_train, X_validation, y_train, y_validation = get_train_validation_data()
tuner.search(
X_train,
y_train,
verbose=1,
epochs=50,
batch_size=BATCH_SIZE,
validation_data=(X_validation, y_validation),
callbacks=[early_stop_callback, tensorboard_callback],
use_multiprocessing=True
)
tuner.search_space_summary()
tuner.results_summary()
if __name__ == "__main__":
run_search(
long_thin_nn_model_round_three,
"long_thin_nn_model_round_three",
"protocol"
)