-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathCrankNicolsonOptionSolver.py
129 lines (111 loc) · 3.72 KB
/
CrankNicolsonOptionSolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import matplotlib.pyplot as plt
class CNOptionSolver:
def __init__(self, riskfree, dividend, volatility, strike, maturity):
self.r = riskfree
self.q = dividend
self.sigma = volatility
self.K = strike
self.T = maturity
self.Smax = 3 * strike
self.S = []
self.X = []
self.A = []
self.b = []
self.N = 200
self.max_dt = 1/12.0
self.USE_PSOR = False
self.tol = 1e-5
self.max_iter = 200
self.omega = 1.2
self.cached_dt = 0
self.err = 0
self.iter = 0
def solve(self, S0):
self.setInitialCondition()
self.solvePDE()
x = self.S.flatten()
y = self.X.flatten()
return np.interp(S0, x, y)
def solvePDE(self):
t = self.T
while t > 0:
dt = min(t, self.max_dt)
self.setCoeff(dt)
if self.USE_PSOR:
self.solvePSOR()
else:
self.solveLinearSystem()
t -= dt
print("t = ", t, " err = ", self.err, "iters = ", self.iter)
def setInitialCondition(self):
self.S = np.linspace(0, self.Smax, self.N)
self.A = np.zeros((self.N, self.N))
self.b = np.zeros((self.N, 1))
self.X = np.maximum(self.K - self.S, 0)
def setCoeff(self, dt):
N = self.N
r = self.r
q = self.q
S = self.S
X = self.X
sigma = self.sigma
dS = S[1] - S[0]
for i in range(0, N-1):
alpha = 0.25 * dt * (np.square(sigma*S[i]/dS) - (r - q) * S[i]/dS)
beta = 0.5 * dt * (r + np.square(sigma * S[i]/dS))
gamma = 0.25 * dt * (np.square(sigma*S[i]/dS) + (r - q) * S[i]/dS)
if i == 0:
self.b[i] = X[i] * (1 - beta)
self.A[i][i] = 1 + beta
else:
self.b[i] = alpha * X[i-1] + (1 - beta) * X[i] + gamma * X[i+1]
self.A[i][i-1] = -alpha
self.A[i][i] = 1 + beta
self.A[i][i+1] = -gamma
self.A[-1][N-4] = -1
self.A[-1][N-3] = 4
self.A[-1][N-2] = -5
self.A[-1][N-1] = 2
self.b[-1] = 0
def solveLinearSystem(self):
self.X = np.linalg.solve(self.A, self.b)
def solvePSOR(self):
N = self.N
iter = 0
omega = self.omega
self.err = 1000
while self.err > self.tol and iter < self.max_iter:
iter += 1
x_old = self.X.copy()
for i in range(N-1):
self.X[i] = (1 - omega) * self.X[i] + omega * self.b[i] / self.A[i][i]
self.X[i] -= self.A[i][i+1] * self.X[i+1] * omega / self.A[i][i]
self.X[i] -= self.A[i][i-1] * self.X[i-1] * omega / self.A[i][i]
#for last row, use boundary condition
self.X[N-1] = (1 - omega) * self.X[i] + omega * self.b[i] / self.A[i][i]
for j in range(N-4, N):
self.X[N-1] -= self.A[N-1][j] * self.X[j] * omega / self.A[N-1][N-1]
self.applyConstraint()
self.err = np.linalg.norm(x_old - self.X)
self.iter = iter
def applyConstraint(self):
self.X = np.maximum(self.X, self.K - self.S)
if __name__ == '__main__':
# unit test one for valuing American option
r = 0.04 # risk free
q = 0.04 # dividend yield
K = 100 # strike
S = 80 # underlying spot
sigma = 0.2 # volatility
T = 3.0 # maturity
solver = CNOptionSolver(r, q, sigma, K, T)
solver.N = 800
solver.max_dt = 0.01
solver.USE_PSOR = True
price = solver.solve(S)
print(price)
x = solver.S.flatten()
y = solver.X.flatten()
plt.plot(x,y)
plt.show()