-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathtflite_webcam.py
78 lines (60 loc) · 2.11 KB
/
tflite_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import cv2, sys, time
import numpy as np
import tensorflow as tf
from PIL import Image
# Width and height
width = 320
height = 240
# Frame rate
fps = ""
elapsedTime = 0
# Video capturer
cap = cv2.VideoCapture(0)
cv2.namedWindow('FPS', cv2.WINDOW_AUTOSIZE)
# Initialize tflite-interpreter
interpreter = tf.lite.Interpreter(model_path="models/transpose_seg/deconv_fin_munet.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
input_shape = input_details[0]['shape'][1:3]
# Image overlay
overlay = np.zeros((input_shape[0],input_shape[1], 3), np.uint8)
overlay[:] = (127, 0, 0)
while True:
# Read frames
t1 = time.time()
ret, frame = cap.read()
# BGR->RGB, CV2->PIL
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image=Image.fromarray(rgb)
# Resize image
image= image.resize(input_shape, Image.ANTIALIAS)
# Normalization
image = np.asarray(image)
prepimg = image / 255.0
prepimg = prepimg[np.newaxis, :, :, :]
# Segmentation
interpreter.set_tensor(input_details[0]['index'], np.array(prepimg, dtype=np.float32))
interpreter.invoke()
outputs = interpreter.get_tensor(output_details[0]['index'])
# Process the output
output = np.uint8(outputs[0]>0.5)
res=np.reshape(output,input_shape)
mask = Image.fromarray(np.uint8(res), mode="P")
mask = np.array(mask.convert("RGB"))*overlay
mask = cv2.resize(np.asarray(mask), (width,height),interpolation=cv2.INTER_CUBIC)
frame = cv2.resize(frame, (width,height),interpolation=cv2.INTER_CUBIC)
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2BGR)
# Overlay the mask
output = cv2.addWeighted(frame, 1, mask, 0.9, 0)
# Display the output
cv2.putText(output, fps, (width-180,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.imshow('FPS', output)
if cv2.waitKey(1)&0xFF == ord('q'):
break
elapsedTime = time.time() - t1
# Print frame rate
fps = "(Playback) {:.1f} FPS".format(1/elapsedTime)
print("fps = ", str(fps))
cap.release()
cv2.destroyAllWindows()