forked from LSSTDESC/DEHSC_LSS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpower_specter.py
495 lines (452 loc) · 18.8 KB
/
power_specter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import astropy.io.fits as fits
from createMaps import createCountsMap
from optparse import OptionParser
import flatmaps as fm
import pymaster as nmt
import sacc
import sys
import time
import os
from scipy.interpolate import interp1d
def opt_callback(option, opt, value, parser):
setattr(parser.values, option.dest, value.split(','))
parser = OptionParser()
#Options
parser.add_option('--input-prefix', dest='prefix_in', default='NONE', type=str,
help='Input prefix. '+
'Systematics maps will be input-prefix + _<syst_name>.fits. '+
'Mask will be input-prefix + _MaskedFraction.fits')
parser.add_option('--input-maps', dest='fname_maps', default='NONE', type=str,
help='Path to input maps file')
parser.add_option('--ell-bins', dest='fname_ellbins', default='NONE', type=str,
help='Path to ell-binning file. '+
'Format should be: double column (l_min,l_max). One row per bandpower.')
parser.add_option('--output-file', dest='prefix_out',default=None,type=str,
help='Output file name. Output will be in SACC format.')
parser.add_option('--analysis-band', dest='band', default='i', type=str,
help='Band considered for your analysis (g,r,i,z,y)')
parser.add_option('--mcm-output', dest='fname_mcm', default='NONE', type=str,
help='File containing the mode-coupling matrix. '+
'If NONE or non-existing, it will be computed. '+
'If not NONE and non-existing, new file will be created')
parser.add_option('--depth-cut', dest='depth_cut', default=24.5, type=float,
help='Minimum depth to consider in your footprint')
parser.add_option('--masking-threshold',dest='mask_thr',default=0.5, type=float,
help='Will discard all pixel with a masked fraction larger than this.')
parser.add_option('--hsc-field',dest='hsc_field',default='HSC_WIDE',type=str,
help="HSC field used here (just for labelling purposes)")
parser.add_option('--cont-depth',dest='cont_depth',default=False,action='store_true',
help='Marginalize over depth map template')
parser.add_option('--cont-dust',dest='cont_dust',default=False,action='store_true',
help='Marginalize over dust template')
parser.add_option('--cont-dust-bands',dest='cont_dust_bands',default=False,
action='store_true',help='Marginalize over dust template in all bands')
parser.add_option('--cont-stars',dest='cont_stars',default=False,action='store_true',
help='Marginalize over stars template')
parser.add_option('--cont-oc',dest='cont_oc',type='string',
action='callback',callback=opt_callback,
help='If you want to marginalize over observing condition maps, '+
'list here all observing conditions you want to include')
parser.add_option('--cont-oc-bands',dest='cont_oc_bands',default=False,action='store_true',
help='Marginalize over observing contition templates in all bands.')
parser.add_option('--cont-deproj-bias',dest='cont_deproj_bias',default=False,action='store_true',
help='Remove deprojection bias.')
parser.add_option('--covariance-option',dest='covar_opt',default='NONE',type=str,
help='Option to compute the covariance matrix. Options are \'NONE\''+
'(no covariance), \'analytic\' (Gaussian covariance),'+
' or \'gaus_sim\' (MC over Gaussian simulations)')
parser.add_option('--guess-cell',dest='guess_cell',default='NONE',type=str,
help='Choice of best-guess power spectra to use. Options are: \'theory\''+
'(input theoretical power spectra, given by --theory-prediction, '+
'or \'data\' (Cls from data)')
parser.add_option('--covariance-ssc',dest='compute_ssc',default=False,action='store_true',
help='Compute super-sample covariance part.')
parser.add_option('--theory-prediction',dest='cl_theory',default='NONE',type=str,
help='If computing the covariance or deprojection bias from theory, you must supply a file with a'+
'theory prediction for the power spectra. First column should be a'+
'list of ell values, subsequent columns should contain all unique cross '+
'correlations (11,12,...,1N,22,23,...,NN)')
parser.add_option('--covariance-coupling-file',dest='covar_coup',default='NONE',type=str,
help='If computing the theory covariance, pass a file name where the '+
'coupling coefficients will be stored. If NONE, they won\'t be saved')
parser.add_option('--syst-masking-file',dest='syst_mask_file',default='NONE',type=str,
help='Path to a file containing a list of systematics that one should mask. The format should be '+
'four columns: 1- systematic name, 2- filter (u,g,r,i,z), 3- > or <, 4- Threshold value')
####
# Read options
(o, args) = parser.parse_args()
def read_map_bands(fname,read_bands,bandname) :
if read_bands :
i_map=-1
else :
i_map=['g','r','i','z','y'].index(bandname)
fskb,temp=fm.read_flat_map(fname,i_map=i_map)
fm.compare_infos(fsk,fskb)
if i_map!=-1 :
temp=[temp]
return temp
print("Reading mask")
#Create depth-based mask
fsk,mp_depth=fm.read_flat_map(o.prefix_in+"_10s_depth_mean_fluxerr.fits",2)
mp_depth[np.isnan(mp_depth)]=0; mp_depth[mp_depth>40]=0
msk_depth=np.zeros_like(mp_depth); msk_depth[mp_depth>=o.depth_cut]=1
#Read masked fraction
fskb,mskfrac=fm.read_flat_map(o.prefix_in+'_MaskedFraction.fits',i_map=0)
fm.compare_infos(fsk,fskb)
#Create BO-based mask
msk_bo=np.zeros_like(mskfrac); msk_bo[mskfrac>o.mask_thr]=1
msk_t=msk_bo*msk_depth
#Mask systematics
do_mask_syst=not (o.syst_mask_file=='NONE')
msk_syst=msk_t.copy()
if do_mask_syst :
#Read systematics cut data
data_syst=np.genfromtxt(o.syst_mask_file,dtype=[('name','|U32'),('band','|U4'),('gl','|U4'),('thr','<f8')])
for d in data_syst :
#Read systematic
if d['name'].startswith('oc_') :
sysmap=read_map_bands(o.prefix_in+'_'+d['name']+'.fits',False,d['band'])[0]
elif d['name']=='dust' :
sysmap=read_map_bands(o.prefix_in+'_syst_dust.fits',False,d['band'])[0]
else :
raise KeyError("Unknown systematic name "+d['name'])
#Divide by mean
sysmean=np.sum(msk_t*mskfrac*sysmap)/np.sum(msk_t*mskfrac)
sysmap/=sysmean
#Apply threshold
msk_sys_this=msk_t.copy(); fsky_pre=np.sum(msk_syst)
if d['gl']=='<' :
msk_sys_this[sysmap<d['thr']]=0
else :
msk_sys_this[sysmap>d['thr']]=0
msk_syst*=msk_sys_this
fsky_post=np.sum(msk_syst)
print(' '+d['name']+d['gl']+'%.3lf'%(d['thr'])+
' removes ~%.2lf per-cent of the available sky'%((1-fsky_post/fsky_pre)*100))
print(' All systematics remove %.2lf per-cent of the sky'%((1-np.sum(msk_syst)/np.sum(msk_t))*100))
# fsk.view_map(msk_syst+msk_t); plt.show()
msk_t*=msk_syst
#Area
area_patch=np.sum(msk_t*mskfrac)*np.radians(fsk.dx)*np.radians(fsk.dy)
#Read contaminants
print("Reading contaminant templates")
temps=[]
# 1- Depth
if o.cont_depth :
temps.append(mp_depth)
# 2- Dust
if o.cont_dust :
temp=read_map_bands(o.prefix_in+'_syst_dust.fits',o.cont_dust_bands,o.band)
for t in temp :
temps.append(t)
# 3- Stars
if o.cont_stars :
fskb,temp=fm.read_flat_map(o.prefix_in+'_syst_nstar_'+o.band+'%.2lf.fits'%o.depth_cut,
i_map=0)
fm.compare_infos(fsk,fskb)
temps.append(temp)
# 4- Observing conditions
if o.cont_oc is not None :
oc_all=['airmass','ccdtemp','ellipt','exptime','nvisit','seeing','sigma_sky','skylevel']
#Include only OCs we know about
oc_list=[]
for c in o.cont_oc :
if c in oc_all :
oc_list.append(c)
for c in oc_list :
temp=read_map_bands(o.prefix_in+'_oc_'+c+'.fits',o.cont_oc_bands,o.band)
for t in temp :
temps.append(t)
if temps==[] :
temps=None
else :
print(" - Will marginalize over a total of %d contaminant templates"%(len(temps)))
#Remove mean
for i_t,t in enumerate(temps) :
temps[i_t]-=np.sum(msk_t*mskfrac*t)/np.sum(msk_t*mskfrac)
#Set binning scheme
lini,lend=np.loadtxt(o.fname_ellbins,unpack=True)
bpws=nmt.NmtBinFlat(lini,lend)
ell_eff=bpws.get_effective_ells()
#Generate tracers
print("Generating tracers")
class Tracer(object) :
def __init__(self,hdu_list,i_bin,fsk,mask_binary,masked_fraction,contaminants=None) :
#Read numbers map
self.fsk,nmap=fm.read_flat_map(None,hdu=hdu_list[2*i_bin])
#Read N(z)
self.nz_data=hdu_list[2*i_bin+1].data.copy()
#Make sure other maps are compatible
fm.compare_infos(self.fsk,fsk)
if not self.fsk.is_map_compatible(mask_binary) :
raise ValueError("Mask size is incompatible")
if not self.fsk.is_map_compatible(masked_fraction) :
raise ValueError("Mask size is incompatible")
if contaminants is not None :
for ic,c in enumerate(contaminants) :
if not self.fsk.is_map_compatible(c) :
raise ValueError("%d-th contaminant template is incompatible"%ic)
#Translate into delta map
self.weight=masked_fraction*mask_binary
goodpix=np.where(mask_binary>0.1)[0]
ndens=np.sum(nmap*mask_binary)/np.sum(self.weight)
self.ndens_perad=ndens/(np.radians(self.fsk.dx)*np.radians(self.fsk.dy))
self.delta=np.zeros_like(self.weight)
self.delta[goodpix]=nmap[goodpix]/(ndens*masked_fraction[goodpix])-1
#Reshape contaminants
conts=None
if contaminants is not None :
conts=[[c.reshape([self.fsk.ny,self.fsk.nx])] for c in contaminants]
#Form NaMaster field
self.field=nmt.NmtFieldFlat(np.radians(self.fsk.lx),np.radians(self.fsk.ly),
self.weight.reshape([self.fsk.ny,self.fsk.nx]),
[self.delta.reshape([self.fsk.ny,self.fsk.nx])],
templates=conts)
hdul=fits.open(o.fname_maps)
if len(hdul)%2!=0 :
raise ValueError("Input file should have two HDUs per map")
nbins=len(hdul)//2
tracers=[Tracer(hdul,i,fsk,msk_t,mskfrac,contaminants=temps) for i in range(nbins)]
hdul.close()
#Compute MCM
wsp=nmt.NmtWorkspaceFlat()
if not os.path.isfile(o.fname_mcm) :
print("Computing mode-coupling matrix")
wsp.compute_coupling_matrix(tracers[0].field,tracers[0].field,bpws)
if o.fname_mcm!='NONE' :
wsp.write_to(o.fname_mcm)
else :
print("Reading mode-coupling matrix from file")
wsp.read_from(o.fname_mcm)
#Compute all cross-correlations
print("Computing all cross-power specra")
cls_all=[]
ordering=np.zeros([nbins,nbins],dtype=int)
i_x=0
for i in range(nbins) :
for j in range(i,nbins) :
cl_coupled=nmt.compute_coupled_cell_flat(tracers[i].field,tracers[j].field,bpws)
cls_all.append(wsp.decouple_cell(cl_coupled)[0])
ordering[i,j]=i_x
if j!=i :
ordering[j,i]=i_x
i_x+=1
cls_all=np.array(cls_all)
n_cross=len(cls_all)
n_ell=len(ell_eff)
#Get guess power spectra
if o.guess_cell=='data' :
lmax=int(np.sqrt((fsk.nx*np.pi/np.radians(fsk.lx))**2+(fsk.ny*np.pi/np.radians(fsk.ly))**2))+1
#Interpolate measured power spectra
lth=np.arange(2,lmax+1)+0.
clth=np.zeros([n_cross,len(lth)])
for i in range(n_cross) :
clf=interp1d(ell_eff,cls_all[i],bounds_error=False,fill_value=0,kind='linear')
clth[i,:]=clf(lth)
clth[i,lth<=ell_eff[0]]=cls_all[i,0]
clth[i,lth>=ell_eff[-1]]=cls_all[i,-1]
elif o.guess_cell=='theory' :
#Read theory power spectra
data=np.loadtxt(o.cl_theory,unpack=True)
lth=data[0]
clth=data[1:]
else :
raise ValueError("Must provide a valid guess C_ell\n")
if len(clth)!=n_cross :
raise ValueError("Theory power spectra have a wrong shape")
#Compute deprojection bias
cl_deproj_all=[]
if o.cont_deproj_bias :
print("Computing deprojection bias")
cls_all=[]
i_x=0
for i in range(nbins) :
for j in range(i,nbins) :
if o.cont_deproj_bias :
cl_coupled=nmt.compute_coupled_cell_flat(tracers[i].field,tracers[j].field,bpws)
cl_deproj_bias=nmt.deprojection_bias_flat(tracers[i].field,tracers[j].field,bpws,lth,[clth[i_x]])
cls_all.append(wsp.decouple_cell(cl_coupled,cl_bias=cl_deproj_bias)[0])
else :
cl_deproj_bias=None
cl_deproj_all.append(cl_deproj_bias)
i_x+=1
if o.cont_deproj_bias :
cls_all=np.array(cls_all)
#Compute covariance matrix
if o.covar_opt=='NONE' :
covar=None
elif o.covar_opt=='analytic' :
print("Computing analytic Gaussian covariance")
#Initialize covariance
covar=np.zeros([n_cross*n_ell,n_cross*n_ell])
#Compute coupling coefficients
cwsp=nmt.NmtCovarianceWorkspaceFlat();
if not os.path.isfile(o.covar_coup) :
cwsp.compute_coupling_coefficients(wsp,wsp)
if o.covar_coup!='NONE' :
cwsp.write_to(o.covar_coup)
else :
cwsp.read_from(o.covar_coup)
ix_1=0
for i1 in range(nbins) :
for j1 in range(i1,nbins) :
ix_2=0
for i2 in range(nbins) :
for j2 in range(i2,nbins) :
ca1b1=clth[ordering[i1,i2]]
ca1b2=clth[ordering[i1,j2]]
ca2b1=clth[ordering[j1,i2]]
ca2b2=clth[ordering[j1,j2]]
cov_here=nmt.gaussian_covariance_flat(cwsp,lth,ca1b1,ca1b2,ca2b1,ca2b2)
covar[ix_1*n_ell:(ix_1+1)*n_ell,:][:,ix_2*n_ell:(ix_2+1)*n_ell]=cov_here
ix_2+=1
ix_1+=1
elif o.covar_opt=='gaus_sim' :
#Read theory power spectra
nsims=10*n_cross*n_ell #Use 10 times as many simulations as there are data points
print("Computing covariance from %d Gaussian simulations"%nsims)
msk_binary=msk_t.reshape([fsk.ny,fsk.nx])
weights=(msk_t*mskfrac).reshape([fsk.ny,fsk.nx])
if temps is not None :
conts=[[t.reshape([fsk.ny,fsk.nx])] for t in temps]
else :
conts=None
cells_sims=[]
for isim in range(nsims) :
if isim%100==0 :
print(" %d-th isim"%isim)
#Generate random maps
mps=nmt.synfast_flat(fsk.nx,fsk.ny,np.radians(fsk.lx),np.radians(fsk.ly),clth,np.zeros(nbins),seed=1000+isim)
#Nmt fields
flds=[nmt.NmtFieldFlat(np.radians(fsk.lx),np.radians(fsk.ly),weights,[m],templates=conts) for m in mps]
#Compute power spectra (possibly with deprojection)
i_x=0
cells_this=[]
for i in range(nbins) :
for j in range(i,nbins) :
cells_this.append(wsp.decouple_cell(nmt.compute_coupled_cell_flat(flds[i],flds[j],bpws),
cl_bias=cl_deproj_all[i_x])[0])
i_x+=1
cells_sims.append(np.array(cells_this).flatten())
cells_sims=np.array(cells_sims)
#Save simulations for further analysis
np.savez(o.prefix_out+".cls",cl_sims=cells_sims)
#Compute covariance
covar=np.cov(cells_sims.T)
else :
print("Unknown covariance option "+o.covar_opt+" no covariance computed")
covar=None
if (covar is not None) and o.compute_ssc :
#Compute number density and uncertainty on it from cosmic variance
import pyccl as ccl
from scipy.special import jv
#Cosmology
cosmo=ccl.Cosmology(Omega_c=0.27,Omega_b=0.049,h=0.67,sigma8=0.83,w0=-1.,wa=0.,n_s=0.96)
#Sky fraction
f_sky=np.sum(msk_t*mskfrac)*fsk.dx*fsk.dy/(4*np.pi*(180./np.pi)**2)
#Tracers
cclt=[]
z_b=np.array([0.0,0.5,1.0,2.0,4.0]);
b_b=np.array([0.81877956,1.09962214,1.44457603,1.65513987,2.61238931])
b_bf=interp1d(z_b,b_b)
ng_data=np.zeros([len(tracers),4]);
for i_t,t in enumerate(tracers) :
zarr=(t.nz_data['z_i']+t.nz_data['z_f'])*0.5
narr=t.nz_data['n_z']
barr=b_bf(zarr)
cclt.append(ccl.NumberCountsTracer(cosmo,has_rsd=False,dndz=(zarr,narr),
bias=(zarr,barr)))
lmax=int(np.sqrt((fsk.nx*np.pi/np.radians(fsk.lx))**2+(fsk.ny*np.pi/np.radians(fsk.ly))**2))+1
lmax=3000
larr=np.arange(lmax+1)
cell=ccl.angular_cl(cosmo,cclt[i_t],cclt[i_t],larr) # A = pi*th^2
theta_s=np.sqrt(area_patch/np.pi)
well=np.ones(len(larr)); well[1:]=2*jv(1,larr[1:]*theta_s)/(larr[1:]*theta_s); well=well**2
ngals=t.ndens_perad*(np.radians(t.fsk.dx)*np.radians(t.fsk.dy))*np.sum(t.weight)
sigma_c=ngals*np.sqrt(np.sum(larr*cell*well/(2*np.pi)))
sigma_p=np.sqrt(ngals)
ng_data[i_t,0]=ngals/area_patch
ng_data[i_t,1]=sigma_p/area_patch
ng_data[i_t,2]=sigma_c/area_patch
ng_data[i_t,3]=np.sqrt(sigma_p**2+sigma_c**2)/area_patch
print(ng_data)
np.savetxt(o.prefix_out+".ngals",ng_data,header='[1]-Ngals [2]-Sigma_poisson [3]-Sigma_CV [4]-Sigma_T')
#SSC init
def get_response_func() :
zarr=np.array([4,3,2,1,0])
resp2d=[]
for iz,z in enumerate(zarr) :
kresph,_,_,_,resp1d=np.loadtxt("ssc_responses/Response_z%d.txt"%(int(z)),unpack=True)
resp2d.append(resp1d)
kresp=kresph*0.67
aresp=1./(1.+zarr)
resp2d=np.array(resp2d)
return ccl.Pk2D(a_arr=aresp,lk_arr=np.log(kresp),pk_arr=resp2d,is_logp=False)
respf=get_response_func()
ssc_wsp=ccl.SSCWorkspace(cosmo,f_sky,cclt[0],cclt[0],cclt[0],cclt[0],ell_eff,respf)
#SSC compute
covar_ssc=np.zeros([n_cross*n_ell,n_cross*n_ell])
iv=0
for i1 in range(nbins) :
for i2 in range(i1,nbins) :
jv=0
for j1 in range(nbins) :
for j2 in range(j1,nbins) :
mat=ccl.angular_cl_ssc_from_workspace(ssc_wsp,cosmo,
cclt[i1],cclt[i2],
cclt[j1],cclt[j2])
covar_ssc[iv*n_ell:(iv+1)*n_ell,jv*n_ell:(jv+1)*n_ell]=mat
jv+=1
iv+=1
covar+=covar_ssc
#Compute noise bias
nls_all=np.zeros_like(cls_all)
i_x=0
for i in range(nbins) :
for j in range(i,nbins) :
if i==j : #Add shot noise in auto-correlation
t=tracers[i]
corrfac=np.sum(t.weight**2)/(t.fsk.nx*t.fsk.ny)
nl=np.ones_like(ell_eff)*corrfac/t.ndens_perad
nls_all[i_x]=wsp.decouple_cell([nl])[0]
i_x+=1
#Save to SACC format
print("Saving to SACC")
#Tracers
sacc_tracers=[]
for i_t,t in enumerate(tracers) :
z=(t.nz_data['z_i']+t.nz_data['z_f'])*0.5
nz=t.nz_data['n_z']
T=sacc.Tracer('bin_%d'%i_t,'point',z,nz,exp_sample=o.hsc_field)
T.addColumns({'ndens':t.ndens_perad*np.ones_like(nz)})
sacc_tracers.append(T)
#Binning and mean
type,ell,dell,t1,q1,t2,q2=[],[],[],[],[],[],[]
for t1i in range(nbins) :
for t2i in range(t1i,nbins) :
for i_l,l in enumerate(ell_eff) :
type.append('F') #Fourier-space
ell.append(l)
dell.append(lend[i_l]-lini[i_l])
t1.append(t1i)
q1.append('P')
t2.append(t2i)
q2.append('P')
sacc_binning=sacc.Binning(type,ell,t1,q1,t2,q2,deltaLS=dell)
sacc_mean=sacc.MeanVec(cls_all.flatten())
if covar is None :
sacc_precision=None
else :
sacc_precision=sacc.Precision(covar,"dense",is_covariance=True, binning=sacc_binning)
sacc_meta={'Field':o.hsc_field,'Area_rad':area_patch}
s=sacc.SACC(sacc_tracers,sacc_binning,sacc_mean,precision=sacc_precision,meta=sacc_meta)
s.printInfo()
s.saveToHDF(o.prefix_out+'.sacc')
#Save noise
sacc_mean_noise=sacc.MeanVec(nls_all.flatten())
s=sacc.SACC(sacc_tracers,sacc_binning,sacc_mean_noise,precision=None,meta=sacc_meta)
s.printInfo()
s.saveToHDF(o.prefix_out+'_noise.sacc')