forked from LSSTDESC/DEHSC_LSS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflatMask.py
48 lines (41 loc) · 1.9 KB
/
flatMask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
from scipy.ndimage import label
from createMaps import createCountsMap
def createMask(ra,dec,flags,flatsky_base,reso_mask) :
"""
Creates a mask based on the position of random objects and a set of flags.
ra,dec : angular coordinates of the random objects
flags : list of arrays containing the flags used to mask areas of the sky.
pixels containing objects with any flags=True will be masked.
Pass [] if you just want to define a mask based on object positions.
flatsky_base : FlatMapInfo for the base mask, defined by the presence of not
of object in pixels defined by this FlatMapInfo
reso_mask : resolution of the final mask (dx or dy)
returns mask and associated FlatMapInfo
"""
fsg0=flatsky_base
#Create mask based on object positions
mpr=createCountsMap(ra,dec,fsg0,returnMap=True,plotMap=False)
mskr=np.zeros(fsg0.get_size()); mskr[mpr>0]=1
if(np.sum(mpr*mskr)/np.sum(mskr)<5) :
raise Warning('Base resolution may be too high %.1lf'%(np.sum(mpr*mskr)/np.sum(mskr)))
if np.fabs(reso_mask)>np.fabs(fsg0.dx) :
fsg,mpn=fsg0.d_grade(mpr,int(np.fabs(reso_mask/fsg0.dx)+0.5))
else :
fsg,mpn=fsg0.u_grade(mpr,int(np.fabs(fsg0.dx/reso_mask)+0.5))
mskn=np.zeros(fsg.get_size()); mskn[mpn>0]=1
ipix=fsg.pos2pix(ra,dec)
for flag in flags :
ipixmask=ipix[flag]
p=np.unique(ipixmask)
mskn[p]=0
#Classify all connected regions
msk2d=mskn.astype(int).reshape([fsg.ny,fsg.nx])
labeled_array,num_features=label(msk2d)
#Identify largest connected region (0 is background)
i0=np.argmax(np.histogram(labeled_array,bins=num_features+1,range=[-0.5,num_features+0.5])[0][1:])+1
#Remove all other regions
mask_clean=labeled_array.copy().flatten()
mask_clean[mask_clean!=i0]=0
msk_out=mask_clean.astype(float)
return msk_out,fsg