Skip to content

Commit aa5c804

Browse files
authored
Upgrade to PyTorch 1.13 (#42)
1 parent 734c8ff commit aa5c804

20 files changed

+777
-86
lines changed

.github/workflows/publish_1.11.0-cuda11.5-ubuntu20.04.yml

+1-1
Original file line numberDiff line numberDiff line change
@@ -19,5 +19,5 @@ jobs:
1919
username: ${{ secrets.DOCKER_USERNAME }}
2020
password: ${{ secrets.DOCKER_PASSWORD }}
2121
repository: anibali/pytorch
22-
tags: 1.11.0-cuda11.5-ubuntu20.04,1.11.0-cuda11.5,latest
22+
tags: 1.11.0-cuda11.5-ubuntu20.04,1.11.0-cuda11.5
2323
path: dockerfiles/1.11.0-cuda11.5-ubuntu20.04
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,12 @@
1-
name: Publish anibali/pytorch:1.10.0-cuda11.3-ubuntu20.04
1+
name: Publish anibali/pytorch:1.13.0-cuda11.8-ubuntu22.04
22

33
on:
44
push:
55
branches:
66
- master
77
paths:
8-
- dockerfiles/1.10.0-cuda11.3-ubuntu20.04/*
9-
- .github/workflows/publish_1.10.0-cuda11.3-ubuntu20.04.yml
8+
- dockerfiles/1.13.0-cuda11.8-ubuntu22.04/*
9+
- .github/workflows/publish_1.13.0-cuda11.8-ubuntu22.04.yml
1010
workflow_dispatch:
1111

1212
jobs:
@@ -19,5 +19,5 @@ jobs:
1919
username: ${{ secrets.DOCKER_USERNAME }}
2020
password: ${{ secrets.DOCKER_PASSWORD }}
2121
repository: anibali/pytorch
22-
tags: 1.10.0-cuda11.3-ubuntu20.04,1.10.0-cuda11.3
23-
path: dockerfiles/1.10.0-cuda11.3-ubuntu20.04
22+
tags: 1.13.0-cuda11.8-ubuntu22.04,1.13.0-cuda11.8,latest
23+
path: dockerfiles/1.13.0-cuda11.8-ubuntu22.04
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,12 @@
1-
name: Publish anibali/pytorch:1.10.0-nocuda-ubuntu20.04
1+
name: Publish anibali/pytorch:1.13.0-nocuda-ubuntu22.04
22

33
on:
44
push:
55
branches:
66
- master
77
paths:
8-
- dockerfiles/1.10.0-nocuda-ubuntu20.04/*
9-
- .github/workflows/publish_1.10.0-nocuda-ubuntu20.04.yml
8+
- dockerfiles/1.13.0-nocuda-ubuntu22.04/*
9+
- .github/workflows/publish_1.13.0-nocuda-ubuntu22.04.yml
1010
workflow_dispatch:
1111

1212
jobs:
@@ -19,5 +19,5 @@ jobs:
1919
username: ${{ secrets.DOCKER_USERNAME }}
2020
password: ${{ secrets.DOCKER_PASSWORD }}
2121
repository: anibali/pytorch
22-
tags: 1.10.0-nocuda-ubuntu20.04,1.10.0-nocuda
23-
path: dockerfiles/1.10.0-nocuda-ubuntu20.04
22+
tags: 1.13.0-nocuda-ubuntu22.04,1.13.0-nocuda
23+
path: dockerfiles/1.13.0-nocuda-ubuntu22.04

.github/workflows/publish_1.7.0-cuda11.0-ubuntu20.04.yml

-23
This file was deleted.

.github/workflows/publish_1.8.1-cuda11.1-ubuntu20.04.yml

-23
This file was deleted.

CHANGELOG.md

+26
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
# Changelog
2+
3+
All notable changes to this project will be documented in this file.
4+
5+
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
6+
7+
## 2022-12-12
8+
9+
### Added
10+
11+
- The following new Docker images have been added:
12+
- `1.13.0-cuda11.8-ubuntu22.04`
13+
- `1.13.0-nocuda-ubuntu22.04`
14+
- New Docker images include [Micromamba](https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html).
15+
16+
### Changed
17+
18+
- New Dockerfiles use an explicit [Conda lock file](https://github.com/conda-incubator/conda-lock) for better reproducability of image builds instead of installing from `environment.yml` directly. This generally won't affect users of images, but it does make it easier to see exactly which Conda packages are included in each image (see [dockerfiles/1.13.0-nocuda-ubuntu22.04/conda-linux-64.lock](dockerfiles/1.13.0-nocuda-ubuntu22.04/conda-linux-64.lock), for example). It is still possible to install new packages in derived images/containers using an `environment.yml` file.
19+
20+
### Deprecated
21+
22+
- The following Docker images will remain available on Docker Hub but are no longer supported:
23+
- `1.7.0-cuda11.0-ubuntu20.04`
24+
- `1.8.1-cuda11.1-ubuntu20.04`
25+
- `1.10.0-nocuda-ubuntu20.04`
26+
- `1.10.0-cuda11.3-ubuntu20.04`

README.md

+17-18
Original file line numberDiff line numberDiff line change
@@ -1,20 +1,19 @@
1-
## PyTorch Docker image
1+
# PyTorch Docker image
22

3-
[![Docker Automated build](https://img.shields.io/docker/automated/anibali/pytorch)](https://hub.docker.com/r/anibali/pytorch/)
4-
[![Docker Automated build](https://img.shields.io/docker/image-size/anibali/pytorch/latest)](https://hub.docker.com/r/anibali/pytorch/)
5-
[![Docker Automated build](https://img.shields.io/docker/pulls/anibali/pytorch)](https://hub.docker.com/r/anibali/pytorch/)
6-
[![Docker Automated build](https://img.shields.io/docker/v/anibali/pytorch/latest)](https://hub.docker.com/r/anibali/pytorch/)
3+
[![Docker image version](https://img.shields.io/docker/image-size/anibali/pytorch/latest)](https://hub.docker.com/r/anibali/pytorch/)
4+
[![Docker image pulls](https://img.shields.io/docker/pulls/anibali/pytorch)](https://hub.docker.com/r/anibali/pytorch/)
5+
[![Docker image size](https://img.shields.io/docker/v/anibali/pytorch/latest)](https://hub.docker.com/r/anibali/pytorch/)
76

87
Ubuntu + PyTorch + CUDA (optional)
98

109

11-
### Requirements
10+
## Requirements
1211

1312
In order to use this image you must have Docker Engine installed. Instructions
1413
for setting up Docker Engine are
1514
[available on the Docker website](https://docs.docker.com/engine/installation/).
1615

17-
#### CUDA requirements
16+
### CUDA requirements
1817

1918
If you have a CUDA-compatible NVIDIA graphics card, you can use a CUDA-enabled
2019
version of the PyTorch image to enable hardware acceleration. I have only
@@ -33,21 +32,21 @@ access within Docker containers. This can be found at
3332
[NVIDIA/nvidia-docker](https://github.com/NVIDIA/nvidia-docker).
3433

3534

36-
### Prebuilt images
35+
## Prebuilt images
3736

3837
Prebuilt images are available on Docker Hub under the name
3938
[anibali/pytorch](https://hub.docker.com/r/anibali/pytorch/).
4039

41-
For example, you can pull an image with PyTorch 1.8.1 and CUDA 11.1 using:
40+
For example, you can pull an image with PyTorch 1.13.0 and CUDA 11.8 using:
4241

4342
```bash
44-
$ docker pull anibali/pytorch:1.8.1-cuda11.1
43+
$ docker pull anibali/pytorch:1.13.0-cuda11.8
4544
```
4645

4746

48-
### Usage
47+
## Usage
4948

50-
#### Running PyTorch scripts
49+
### Running PyTorch scripts
5150

5251
It is possible to run PyTorch programs inside a container using the
5352
`python3` command. For example, if you are within a directory containing
@@ -77,7 +76,7 @@ Here's a description of the Docker command-line options shown above:
7776
* `--volume="$PWD:/app"`: Mounts the current working directory into the container.
7877
The default working directory inside the container is `/app`. Optional.
7978

80-
#### Running graphical applications
79+
### Running graphical applications
8180

8281
If you are running on a Linux host, you can get code running inside the Docker
8382
container to display graphics using the host X server (this allows you to use
@@ -104,18 +103,18 @@ docker run --rm -it --init \
104103
anibali/pytorch python3 -c "import tkinter; tkinter.Tk().mainloop()"
105104
```
106105

107-
#### Deriving your own images
106+
### Deriving your own images
108107

109108
The recommended way of adding additional dependencies to an image is to create
110109
your own Dockerfile using one of the PyTorch images from this project as a base.
111110

112111
For example, let's say that you require OpenCV and wish to work with PyTorch
113-
1.8.1. You can create your own Dockerfile using
114-
`anibali/pytorch:1.8.1-cuda11.1-ubuntu20.04` as the base image and install
112+
1.13.0. You can create your own Dockerfile using
113+
`anibali/pytorch:1.13.0-cuda11.8-ubuntu22.04` as the base image and install
115114
OpenCV using additional build steps:
116115

117116
```dockerfile
118-
FROM anibali/pytorch:1.8.1-cuda11.1-ubuntu20.04
117+
FROM anibali/pytorch:1.13.0-cuda11.8-ubuntu22.04
119118

120119
# Set up time zone.
121120
ENV TZ=UTC
@@ -131,7 +130,7 @@ RUN pip install opencv-python==4.5.1.48
131130
```
132131

133132

134-
### Development and contributing
133+
## Development and contributing
135134

136135
The Dockerfiles in the `dockerfiles/` directory are automatically generated by
137136
the `manager.py` script using details in `images.yml` and the templates in
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,47 @@
1+
FROM nvidia/cuda:11.7.1-base-ubuntu22.04
2+
3+
# Remove any third-party apt sources to avoid issues with expiring keys.
4+
RUN rm -f /etc/apt/sources.list.d/*.list
5+
6+
# Install some basic utilities.
7+
RUN apt-get update && apt-get install -y \
8+
curl \
9+
ca-certificates \
10+
sudo \
11+
git \
12+
bzip2 \
13+
libx11-6 \
14+
&& rm -rf /var/lib/apt/lists/*
15+
16+
# Create a working directory.
17+
RUN mkdir /app
18+
WORKDIR /app
19+
20+
# Create a non-root user and switch to it.
21+
RUN adduser --disabled-password --gecos '' --shell /bin/bash user \
22+
&& chown -R user:user /app
23+
RUN echo "user ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/90-user
24+
USER user
25+
26+
# All users can use /home/user as their home directory.
27+
ENV HOME=/home/user
28+
RUN mkdir $HOME/.cache $HOME/.config \
29+
&& chmod -R 777 $HOME
30+
31+
# Download and install Micromamba.
32+
RUN curl -sL https://micro.mamba.pm/api/micromamba/linux-64/1.1.0 \
33+
| sudo tar -xvj -C /usr/local bin/micromamba
34+
ENV MAMBA_EXE=/usr/local/bin/micromamba \
35+
MAMBA_ROOT_PREFIX=/home/user/micromamba \
36+
CONDA_PREFIX=/home/user/micromamba \
37+
PATH=/home/user/micromamba/bin:$PATH
38+
39+
# Set up the base Conda environment by installing PyTorch and friends.
40+
COPY conda-linux-64.lock /app/conda-linux-64.lock
41+
RUN micromamba create -qy -n base -f /app/conda-linux-64.lock \
42+
&& rm /app/conda-linux-64.lock \
43+
&& micromamba shell init --shell=bash --prefix="$MAMBA_ROOT_PREFIX" \
44+
&& micromamba clean -qya
45+
46+
# Set the default command to python3.
47+
CMD ["python3"]

0 commit comments

Comments
 (0)