-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocessing.py
81 lines (62 loc) · 2.13 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import pandas as pd
import numpy as np
from tqdm import tqdm
from skimage import io, exposure
import tifffile as tif
from pycocotools import mask
import argparse
import imagecodecs
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES=True
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_path", type=str, help="input path"
)
parser.add_argument(
"--output_path", type=str, help="out path"
)
args = parser.parse_args()
return args
def read_image(img_path):
if img_path.endswith('.tif') or img_path.endswith('.tiff'):
img_data = tif.imread(img_path)
else:
img_data = io.imread(img_path)
return img_data
def normalize_channel(img, lower=1, upper=99):
non_zero_vals = img[np.nonzero(img)]
percentiles = np.percentile(non_zero_vals, [lower, upper])
if percentiles[1] - percentiles[0] > 0.001:
img_norm = exposure.rescale_intensity(img, in_range=(percentiles[0], percentiles[1]), out_range='uint8')
else:
img_norm = img
return img_norm.astype(np.uint8)
def process_image(img_data):
# normalize image data
if len(img_data.shape) == 2:
img_data = np.repeat(np.expand_dims(img_data, axis=-1), 3, axis=-1)
elif len(img_data.shape) == 3 and img_data.shape[-1] > 3:
img_data = img_data[:,:, :3]
else:
pass
pre_img_data = np.zeros(img_data.shape, dtype=np.uint8)
for i in range(3):
img_channel_i = img_data[:,:,i]
if len(img_channel_i[np.nonzero(img_channel_i)])>0:
pre_img_data[:,:,i] = normalize_channel(img_channel_i, lower=1, upper=99)
return pre_img_data
def main(args):
os.makedirs(args.output_path, exist_ok=True)
for img_name in tqdm(os.listdir(args.input_path)):
cell_id = img_name.split('.')[0]
img_path = f'{args.input_path}/{img_name}'
print(img_path)
img_data = read_image(img_path)
img = process_image(img_data)
fname = f'{args.output_path}/{cell_id}.png'
io.imsave(fname, img)
if __name__ == "__main__":
args = parse_args()
main(args)