-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval_fpca_real.m
437 lines (341 loc) · 11.2 KB
/
eval_fpca_real.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
function [err, legs] = eval_fpca_real(path, r, desc, params)
%EVAL_FPCA_REAL wrapper function to run all fpca real
%
% Based on work of Grammenos et al.: https://arxiv.org/abs/1907.08059
%
% Author: Andreas Grammenos ([email protected])
%
% Last touched date: 13/06/2020
%
% License: GPLv3
%
% check if we use block error instead (much faster)
if ~isfield(params, 'use_blk_err')
params.use_blk_err = 0;
end
% check if we have printing enabled
if ~isfield(params, 'pflag')
params.pflag = 0;
end
% check if we have a csv
if ~isfield(params, 'is_csv')
params.is_csv = 0;
end
% check if we also compute frequent directions
if ~isfield(params, 'fd_run')
params.fd_run = 0;
end
% check if we want to use a subplot or not
if ~isfield(params, 'use_subplot')
params.use_subplot = 0;
end
% check if we have a production print mode or not
if ~isfield(params, 'prod_print')
params.prod_print = 0;
end
% initialisation
err = [];
legs = {};
% print iteration info
fprintf("\n\tTarget rank %d", r);
fprintf("\n\tPrint flag is: %d\n", params.pflag);
% load the dataset, handle if normal or csv
if params.is_csv == 1
Y = csvread(path, 1)';
else
Y = load(path)';
end
% perform alignment
block_pad = 50; % round up to the nearest block that is multiple of this
[rows, cols] = size(Y);
bpad = mod(cols, block_pad);
Y = Y(:, 1: (cols-bpad));
% update the column number
cols = size(Y, 2);
% center & normalise by using Y = Y - ((Y*(vec_ones*vec_ones'))./cols)
vec_ones = ones(cols, 1);
Y = Y - ((Y*(vec_ones*vec_ones'))./cols);
% Parameters
% target rank (or seed for adaptive)
r_seed = r;
% enable analytical error calculation
no_err_flag = 0;
% SPIRIT parameters
sp_lambda = .9;
sp_energy = [.95, .98];
sp_params.verbose = 0;
sp_params.no_err = no_err_flag;
sp_params.use_blk_err = params.use_blk_err;
sp_params.k0 = r_seed;
sp_params.holdoff_time = 0;
% parameters for fpca
% adaptive
fpca_params.adaptive = 1;
fpca_params.blk_size = 2*r_seed;
fpca_params.no_err = no_err_flag;
fpca_params.use_blk_err = params.use_blk_err;
% fixed (low rank)
fpca_low_params.adaptive = 0;
fpca_low_params.blk_size = 2*r_seed;
fpca_low_params.no_err = no_err_flag;
fpca_low_params.use_blk_err = params.use_blk_err;
% fixed (high rank)
fpca_high_params.adaptive = 0;
fpca_high_params.blk_size = 2*r_seed;
fpca_high_params.no_err = no_err_flag;
fpca_high_params.use_blk_err = params.use_blk_err;
% Frequent Directions Parameters
fd_rank = r_seed;
fd_params.use_blk_err = params.use_blk_err;
fd_params.no_err = no_err_flag;
% Grouse Parameters
gr_rank = r_seed;
gr_params.no_err = no_err_flag;
gr_params.use_blk_err = params.use_blk_err;
% PM Parameters
pm_rank = r_seed;
pm_params.no_err = no_err_flag;
pm_params.blk_size = rows;
% Test F-PCA (adaptive)
fprintf("\n\n -- Running F-PCA (adaptive) test\n\n");
% compute the adaptive fpca
[Ufpca, ~, fpca_opt_out] = fpca_edge(Y, r_seed, fpca_params);
yr_sz = size(fpca_opt_out.Yr, 2);
% fprintf(" !! mse: %d (with seed %d)\n", T*mse(Yr, Y), rr_seed);
fpca_fro = sum(sum((Y(:, 1:yr_sz)-fpca_opt_out.Yr).^2, 1))/ yr_sz;
fprintf(" !! Final fro: %d (with seed %d)\n", fpca_fro, r_seed);
fprintf("\n\n -- Finished running F-PCA (adaptive) test\n");
% Test F-PCA with adaptive behaviour disabled
if params.fpca_fixed_run == 1
fprintf("\n\n -- Running F-PCA (fixed) test\n\n");
% get the low rank, which is the min of the initial seed and the
% recovered rank.
lo_r = min(r_seed, size(Ufpca, 2));
fprintf("\n ** Running low rank (r: %d)\n", lo_r);
% compute the fpca for the min observed rank
[Ufpca_lo, ~, fpca_low_opt_out] = fpca_edge(Y, lo_r, fpca_low_params);
% compute the frobenius error
fpca_lo_yr = size(fpca_low_opt_out.Yr, 2);
yr_low_csum = sum(sum((Y(:, 1:fpca_lo_yr) - fpca_low_opt_out.Yr).^2, 1));
fro_spca_lo_r = yr_low_csum / fpca_lo_yr;
fprintf(" !! Final fro: %d (low_r: %d)\n", fro_spca_lo_r, lo_r);
% grab the highest rank observed
hi_r = fpca_opt_out.rmax;
fprintf("\n ** Running high rank (r: %d) to bound\n", hi_r);
% compute the fpca for the max observed rank
[Ufpca_hi, ~, fpca_high_opt_out] = fpca_edge(Y, hi_r, fpca_high_params);
% compute the frobenious error
hi_yr = size(fpca_high_opt_out.Yr, 2);
yr_high_csum = sum(sum((Y(:, 1:hi_yr)-fpca_high_opt_out.Yr).^2, 1));
fro_spca_hi_r = yr_high_csum / hi_yr;
fprintf(" !! Final fro: %d (rank: %d)\n", fro_spca_hi_r, hi_r);
fprintf("\n -- Finished running F-PCA Fixed edge test\n");
end
% Test Mitliagkas Power Method
if params.pm_run == 1
% pm_rank = min(pm_rank, r_seed);
fprintf("\n -- Running PM with rank %d (out of: %d)\n", ...
pm_rank, rows);
% compute the power method
[Upms, pm_opt_out] = mitliag_pm(Y, r_seed, pm_params);
% compute the frobenious error for power method
pm_yr_sz = size(pm_opt_out.Yr, 2);
fro_pm_lo_r = sum(sum((Y(:, 1:pm_yr_sz)-pm_opt_out.Yr).^2, 1)) / pm_yr_sz;
fprintf(" !! Final fro: %d (rank: %d)\n", fro_pm_lo_r, pm_rank);
fprintf("\n -- Finished Running PM\n");
end
% Test Frequent Directions (only if enabled as it skews plots)
if params.fd_run == 1
fprintf("\n -- Running FD with rank %d (out of: %d)\n", ...
fd_rank, rows);
% run frequent directions
[Ufd, fd_opt_out] = fd(Y', fd_rank, fd_params);
% since this is the transpose, revert it
Yr_fd = fd_opt_out.Yr';
Ufd = Ufd';
% compute the frobenious error
fd_yr = size(Yr_fd, 2);
fro_fd_lo_r = sum(sum((Y(:, 1:fd_yr)-Yr_fd).^2, 1))/fd_yr;
fprintf(" !! Final fro: %d (rank: %d)\n", fro_fd_lo_r, fd_rank);
fprintf("\n -- Finished Running FD\n");
end
% Test Grouse
if params.gr_run == 1
fprintf("\n -- Running GROUSE with rank %d (out of: %d)\n", ...
gr_rank, rows);
% compute grouse
[U_gr, V_gr, gr_opt_out] = my_grouse(Y, gr_rank, gr_params);
% expand U_gr*V_gr' to get the Yr_gr
Yr_gr = U_gr*V_gr';
% compute the frobenious error
grouse_yr = size(Yr_gr, 2);
fro_grouse = sum(sum((Y(:, 1:grouse_yr)-Yr_gr).^2, 1)) / grouse_yr;
fprintf(" !! Final fro: %d (rank: %d)\n", fro_grouse, gr_rank);
fprintf("\n -- Finished Running GROUSE\n");
end
% Test SPIRIT
if params.sp_run == 1
fprintf("\n -- Running SPIRIT test\n\n");
% compute spirit
[Usp, sp_opt_out] = SPIRIT(Y', sp_lambda, sp_energy, sp_params);
% frobenious error calculation
YSpiritSubRecon = (Usp*Usp')*Y;
fro_sp_rseed = sum(sum((Y-YSpiritSubRecon).^2, 1))/cols;
fprintf(" !! Final fro: %d (rank: %d)\n", ...
fro_sp_rseed, sp_opt_out.final_rank);
fprintf("\n -- Finished Running SPIRIT\n");
end
%% Test the subspaces MSE
if params.subspace_err_print == 1
% Compute the offline PCA of Y
[Upca, ~, ~] = svd(Y);
% expand it, for comparison against the other subspaces
%pcaUU = Upca*Upca';
Uabs_off = abs(Upca);
% Usp = W1';
idx = 1;
% get the subspace rank
s_r = r;
% find the correct subspace rank to compare based on execution parameters
if params.sp_run == 1
s_r = min([sp_opt_out.final_rank, s_r]);
end
% check the min for fpca
if params.fpca_fixed_run == 1
s_r = min([size(Ufpca_lo, 2), s_r]);
else
s_r = min([size(Ufpca, 2), s_r]);
end
fprintf("\n == Min rank (r) for all methods is %d\n", r);
% Subspace for SPIRIT
if params.sp_run == 1
subspaceTopRSPFinal = immse(Uabs_off(:, 1:s_r), Usp(:, 1:s_r));
fprintf("\n ** SPIRIT Subspace (for r: %d) MSE: %d", ...
sp_opt_out.final_rank, subspaceTopRSPFinal);
err(idx) = subspaceTopRSPFinal;
legs{idx} = 'SP';
idx = idx + 1;
end
% Subspace for Power Method
if params.pm_run == 1
subspaceTopRPMFinal = immse(Uabs_off(:, 1:s_r), abs(Upms(:, 1:s_r)));
fprintf("\n ** Mitliagkas Subspace (r: %d) MSE: %d", ...
s_r, subspaceTopRPMFinal);
err(idx) = subspaceTopRPMFinal;
legs{idx} = 'PM';
idx = idx + 1;
end
% Subspace for FD
if params.fd_run == 1
subspaceTopRFDFinal = immse(Uabs_off(:, 1:s_r), abs(Ufd(:, 1:s_r)));
fprintf("\n ** FD Subspace (r: %d) MSE: %d", ...
s_r, subspaceTopRFDFinal);
err(idx) = subspaceTopRFDFinal;
legs{idx} = 'FD';
idx = idx + 1;
end
% Subspace for GROUSE
if params.gr_run == 1
subspaceTopRGRFinal = immse(Uabs_off(:, 1:s_r), abs(U_gr(:, 1:s_r)));
fprintf("\n ** GROUSE Subspace (r: %d) MSE: %d", ...
s_r, subspaceTopRGRFinal);
err(idx) = subspaceTopRGRFinal;
legs{idx} = 'GROUSE';
idx = idx + 1;
end
% Subspace for F-PCA (adaptive)
subspaceTopRAMFinal = immse(Uabs_off(:, 1:s_r), abs(Ufpca(:, 1:s_r)));
fprintf("\n ** F-PCA Subspace (r: %d) MSE: %d", ...
s_r, subspaceTopRAMFinal);
err(idx) = subspaceTopRAMFinal;
legs{idx} = 'F-PCA';
idx = idx + 1;
% Subspace for F-PCA (fixed)
if params.fpca_fixed_run == 1
% lower bound
subspaceTopRFMLoFinal = immse(Uabs_off(:, 1:s_r), ...
abs(Ufpca_lo(:, 1:s_r)));
fprintf("\n ** F-PCA (fixed) Subspace (lo_r: %d) MSE: %d", ...
s_r, subspaceTopRFMLoFinal);
err(idx) = subspaceTopRFMLoFinal;
legs{idx} = 'F-PCA_{lo}';
idx = idx + 1;
% higher bound
subspaceTopRFMHiFinal = immse(Uabs_off(:, 1:s_r), ...
abs(Ufpca_hi(:, 1:s_r)));
fprintf("\n ** F-PCA (fixed) Subspace (hi_r: %d) MSE: %d", ...
s_r, subspaceTopRFMHiFinal);
err(idx) = subspaceTopRFMHiFinal;
legs{idx} = 'F-PCA_{hi}';
end
end
% to end with a nice console offset
fprintf("\n");
% check if we indeed print
if params.fro_print == 1
fig = figure;
hold on;
if params.sp_run == 1
semilogy(sp_opt_out.T, log(sp_opt_out.ErrFro),'--');
end
if params.pm_run == 1
semilogy(pm_opt_out.T, log(pm_opt_out.ErrFro));
end
if params.gr_run == 1
semilogy(gr_opt_out.T, log(gr_opt_out.ErrFro));
end
if params.fd_run == 1
semilogy(fd_opt_out.T, log(fd_opt_out.ErrFro));
end
semilogy(fpca_opt_out.T, log(fpca_opt_out.ErrFro), 'LineWidth', 2, ...
'color', [0.4660 0.6740 0.1880]);
if params.fpca_fixed_run == 1
semilogy(fpca_low_opt_out.T, log(fpca_low_opt_out.ErrFro));
semilogy(fpca_high_opt_out.T, log(fpca_high_opt_out.ErrFro));
end
hold off;
% check if we have production print
if params.prod_print == 0
stl = sprintf(['fro errors over time for %s Data' , ...
'(seed rank: %d'], ...
desc, r_seed);
else
stl = sprintf('fro errors for %s Data', desc);
end
title(stl);
ylabel('error (log(fro))');
xlabel('time ticks');
legendCells ={'SP', 'PM', 'GROUSE', 'FD', ...
'F-PCA', 'F-PCA_{lo}', 'F-PCA_{hi}', };
if params.sp_run == 0
idc = ismember(legendCells, {'SP'});
legendCells = legendCells(~idc);
end
if params.fd_run == 0
idc = ismember(legendCells, {'FD'});
legendCells = legendCells(~idc);
end
if params.pm_run == 0
idc = ismember(legendCells, {'PM'});
legendCells = legendCells(~idc);
end
if params.gr_run == 0
idc = ismember(legendCells, {'GROUSE'});
legendCells = legendCells(~idc);
end
if params.fpca_fixed_run == 0
% remove low
idc = ismember(legendCells, {'F-PCA_{lo}'});
legendCells = legendCells(~idc);
% and hi
idc = ismember(legendCells, {'F-PCA_{hi}'});
legendCells = legendCells(~idc);
end
legend(legendCells, 'Location', 'best');
% set the font size
set(gca, 'FontSize', 12);
% the title
st = sprintf("fro_err_rseed_real_%s", desc);
% print the figure, if needed
print_fig(fig, st, params);
end