-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrandom.lua
143 lines (127 loc) · 3.96 KB
/
random.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
local register_ = require 'torch.register'
local argcheck = require 'argcheck'
local torch = require 'torch.env'
local class = require 'class'
local ffi = require 'ffi'
local C = require 'torch.TH'
-- DEBUG: should register() be in argcheck?
local function register(args)
return register_(args, torch, class.metatable('torch.Generator'))
end
local Generator = class('torch.Generator', nil, ffi.typeof('THGenerator&'))
torch.Generator = Generator
Generator.new = argcheck{
call =
function()
local self = C.THGenerator_new()[0]
ffi.gc(self, C.THGenerator_free)
return self
end
}
Generator.__factory = Generator.new
torch.__generator = torch.__generator or torch.Generator()
ffi.metatype('THGenerator', class.metatable('torch.Generator'))
register{
name = "random",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="a", type="number", default=1},
{name="b", type="number"},
call =
function(generator, a, b)
generator = generator or torch.__generator
return tonumber(C.THRandom_random(generator)) % (b+1-a)+a
end
}
register{
name = "random",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
call =
function(generator, b)
return tonumber(C.THRandom_random(generator))
end
}
register{
name = "manualSeed",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="seed", type="number"},
call =
function(generator, seed)
generator = generator or torch.__generator
C.THRandom_manualSeed(generator, seed)
return generator
end
}
register{
name = "uniform",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="a", type="number", default=0},
{name="b", type="number", default=1},
call =
function(generator, a, b)
generator = generator or torch.__generator
return tonumber(C.THRandom_uniform(generator, a, b))
end
}
register{
name = "normal",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="a", type="number", default=0},
{name="b", type="number", default=1},
call =
function(generator, a, b)
generator = generator or torch.__generator
return tonumber(C.THRandom_normal(generator, a, b))
end
}
register{
name = "cauchy",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="a", type="number", default=0},
{name="b", type="number", default=1},
call =
function(generator, a, b)
generator = generator or torch.__generator
return tonumber(C.THRandom_cauchy(generator, a, b))
end
}
register{
name = "logNormal",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="a", type="number", default=1},
{name="b", type="number", default=2},
call =
function(generator, a, b)
generator = generator or torch.__generator
return tonumber(C.THRandom_logNormal(generator, a, b))
end
}
register{
name = "exponential",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="a", type="number", default=1},
call =
function(generator, a)
generator = generator or torch.__generator
return tonumber(C.THRandom_exponential(generator, a))
end
}
register{
name = "geometric",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="a", type="number"},
call =
function(generator, a)
generator = generator or torch.__generator
return tonumber(C.THRandom_geometric(generator, a))
end
}
register{
name = "bernoulli",
{name="generator", type="torch.Generator", opt=true, method={opt=false}},
{name="a", type="number", default=0.5},
call =
function(generator, a)
generator = generator or torch.__generator
return tonumber(C.THRandom_bernoulli(generator, a))
end
}