-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNE_algorithm.m
65 lines (41 loc) · 1.67 KB
/
NE_algorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
%%% --------Implementation of Newton-Euler algorithm ----------------------
fprintf(' Newton-Euler algorithm for computation in real-time')
%% Robot data
% Gravity vector definition
g0 = [0;0;9.81];
% Joint vector and joint velocities vector
q = sym('q', [1 num_link]);
q_dot = sym('q_dot', [1 num_link]);
% Rotation vetor z always equal = [0;0;1]
z = [0;0;1];
%%
% Convert the matrices A in cell. I will directly create A with cell
% structure in dh_parameters.m
transform_cell = cell(1, num_link);
transform_cell{1} = A1;
transform_cell{2} = A2;
% Define a cell that contains the rotation matrices
rotation_cell = cell(1, num_link);
% Define a cell for the position of RF i expressed in i-1
position_cell = cell(1, num_link);
% Extract the rotation matrices from Transforms A:
for i = 1: num_link
rotation_cell{i} = transform_cell{i}(1:3, 1:3);
position_cell{i} = transform_cell{i}(1:3, 4);
end
%% Consider just REVOLUTE JOINTS sigma = 0. It must be generalized later
% create a cell of omega vectors 3x1, with the first vector initialized to 0
omega = cell(1, num_link +1);
omega{1} = [0;0;0];
% create a cell of omega_dot vectors 3x1 initialized to 0
omega_dot = cell(1, num_link+1);
omega_dot{1} = [0;0;0];
% create a cell of acc vectors 3x1 initialized to 0.
% We include as well the gravity acc vector g0=[0,0,9.81] acting on z axis
acc = cell(1, num_link+1);
acc{1} = -g0;
%% FORWARD RECURSION LOOP for computing the accelerations and velocities
for i = 2: (num_link +1)
omega{i} = transpose(rotation_cell{i-1})*(omega{i-1} + q_dot(i-1)*z);
omega_dot{i} = transpose(rotation_cell{i-1}
end