forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllama.py
71 lines (59 loc) · 2.21 KB
/
llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import argparse
import os
from pathlib import Path
import tensorrt_llm
from tensorrt_llm import BuildConfig, build
from tensorrt_llm.executor import GenerationExecutor
from tensorrt_llm.hlapi import SamplingParams
from tensorrt_llm.models import LLaMAForCausalLM
def read_input():
while (True):
input_text = input("<")
if input_text in ("q", "quit"):
break
yield input_text
def parse_args():
parser = argparse.ArgumentParser(description="Llama single model example")
parser.add_argument(
"--engine_dir",
type=Path,
required=True,
help=
"Directory to save and load the engine. When -c is specified, always rebuild and save to this dir. When -c is not specified, load engine when the engine_dir exists, rebuild otherwise"
)
parser.add_argument(
"--hf_model_dir",
type=str,
required=True,
help="Read the model data and tokenizer from this directory")
parser.add_argument(
"-c",
"--clean_build",
default=False,
action="store_true",
help=
"Clean build the engine even if the engine_dir exists, be careful, this overwrites the engine_dir!!"
)
return parser.parse_args()
def main():
tensorrt_llm.logger.set_level('verbose')
args = parse_args()
build_config = BuildConfig(max_input_len=256,
max_output_len=20,
max_batch_size=1)
# just for fast build, not best for production
build_config.builder_opt = 0
build_config.plugin_config.gemm_plugin = "float16"
if args.clean_build or not args.engine_dir.exists():
args.engine_dir.mkdir(exist_ok=True, parents=True)
os.makedirs(args.engine_dir, exist_ok=True)
llama = LLaMAForCausalLM.from_hugging_face(args.hf_model_dir)
engine = build(llama, build_config)
engine.save(args.engine_dir)
tokenizer_dir = args.hf_model_dir
executor = GenerationExecutor.create(args.engine_dir, tokenizer_dir)
sampling_params = SamplingParams(max_new_tokens=20)
for inp in read_input():
output = executor.generate(inp, sampling_params=sampling_params)
print(f">{output.text}")
main()