-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
241 lines (209 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from callbacks import FreezeLayer, WeightsHistory,LRHistory
from tensorflow.keras import callbacks
from metrics import Metrics
from comet_ml import Experiment, Optimizer
import logging, sys, os
import pickle
from DataGenerator import DataGenerator
from model import build_hierarchical_model
from resource_loading import load_NRC, load_LIWC, load_stopwords
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # When cudnn implementation not found, run this
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Note: when starting kernel, for gpu_available to be true, this needs to be run
# only reserve 1 GPU
os.environ['TF_FORCE_GPU_ALLOW_GROWTH']='true'
def train_model(model, hyperparams,
data_generator_train, data_generator_valid,
epochs, class_weight, start_epoch=0, workers=1,
callback_list = [], logger=None,
model_path='/tmp/model',
validation_set='valid',
verbose=1):
if not logger:
logger = logging.getLogger('training')
ch = logging.StreamHandler(sys.stdout)
# create formatter
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s")
# add formatter to ch
ch.setFormatter(formatter)
# add ch to logger
logger.addHandler(ch)
logger.setLevel(logging.DEBUG)
logger.info("Initializing callbacks...\n")
# Initialize callbacks
freeze_layer = FreezeLayer(patience=hyperparams['freeze_patience'], set_to=not hyperparams['trainable_embeddings'])
weights_history = WeightsHistory()
lr_history = LRHistory()
reduce_lr = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=hyperparams['reduce_lr_factor'],
patience=hyperparams['reduce_lr_patience'], min_lr=0.000001, verbose=1)
lr_schedule = callbacks.LearningRateScheduler(lambda epoch, lr:
lr if (epoch+1)%hyperparams['scheduled_reduce_lr_freq']!=0 else
lr*hyperparams['scheduled_reduce_lr_factor'], verbose=1)
callbacks_dict = {'freeze_layer': freeze_layer, 'weights_history': weights_history,
'lr_history': lr_history,
'reduce_lr_plateau': reduce_lr,
'lr_schedule': lr_schedule}
logging.info('Train...')
history = model.fit_generator(data_generator_train,
# steps_per_epoch=100,
epochs=epochs, initial_epoch=start_epoch,
class_weight=class_weight,
validation_data=data_generator_valid,
verbose=verbose,
# validation_split=0.3,
workers=workers,
use_multiprocessing=False,
# max_queue_size=100,
callbacks = [
# callbacks.ModelCheckpoint(filepath='%s_best.h5' % model_path, verbose=1,
# save_best_only=True, save_weights_only=True),
# callbacks.EarlyStopping(patience=hyperparams['early_stopping_patience'],
# restore_best_weights=True)
] + [
callbacks_dict[c] for c in [
# 'weights_history',
]])
return model, history
def get_network_type(hyperparams):
if 'lstm' in hyperparams['ignore_layer']:
network_type = 'cnn'
else:
network_type = 'lstm'
if 'user_encoded' in hyperparams['ignore_layer']:
if 'bert_layer' not in hyperparams['ignore_layer']:
network_type = 'bert'
else:
network_type = 'extfeatures'
if hyperparams['hierarchical']:
hierarch_type = 'hierarchical'
else:
hierarch_type = 'seq'
return network_type, hierarch_type
def initialize_experiment(hyperparams, nrc_lexicon_path, emotions, pretrained_embeddings_path,
dataset_type, transfer_type, hyperparams_features):
experiment = Experiment(api_key="eoBdVyznAhfg3bK9pZ58ZSXfv",
project_name="mental", workspace="ananana", disabled=False)
experiment.log_parameters(hyperparams_features)
experiment.log_parameter('emotion_lexicon', nrc_lexicon_path)
experiment.log_parameter('emotions', emotions)
experiment.log_parameter('embeddings_path', pretrained_embeddings_path)
experiment.log_parameter('dataset_type', dataset_type)
experiment.log_parameter('transfer_type', transfer_type)
experiment.add_tag(dataset_type)
experiment.log_parameters(hyperparams)
network_type, hierarch_type = get_network_type(hyperparams)
experiment.add_tag(network_type)
experiment.add_tag(hierarch_type)
return experiment
def initialize_datasets(user_level_data, subjects_split, hyperparams, hyperparams_features,
validation_set, session=None):
liwc_words_for_categories = pickle.load(open(hyperparams_features['liwc_words_cached'], 'rb'))
data_generator_train = DataGenerator(user_level_data, subjects_split, set_type='train',
hyperparams_features=hyperparams_features,
seq_len=hyperparams['maxlen'], batch_size=hyperparams['batch_size'],
posts_per_group=hyperparams['posts_per_group'], post_groups_per_user=hyperparams['post_groups_per_user'],
max_posts_per_user=hyperparams['posts_per_user'],
compute_liwc=True,
ablate_emotions='emotions' in hyperparams['ignore_layer'],
ablate_liwc='liwc' in hyperparams['ignore_layer'])
data_generator_valid = DataGenerator(user_level_data, subjects_split, set_type=validation_set,
hyperparams_features=hyperparams_features,
seq_len=hyperparams['maxlen'], batch_size=hyperparams['batch_size'],
posts_per_group=hyperparams['posts_per_group'],
post_groups_per_user=1,
max_posts_per_user=None,
shuffle=False,
compute_liwc=True,
ablate_emotions='emotions' in hyperparams['ignore_layer'],
ablate_liwc='liwc' in hyperparams['ignore_layer'])
return data_generator_train, data_generator_valid
def initialize_model(hyperparams, hyperparams_features,
logger=None, session=None, transfer=False):
if not logger:
logger = logging.getLogger('training')
ch = logging.StreamHandler(sys.stdout)
# create formatter
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s")
# add formatter to ch
ch.setFormatter(formatter)
# add ch to logger
logger.addHandler(ch)
logger.setLevel(logging.DEBUG)
logger.info("Initializing model...\n")
if 'emotions' in hyperparams['ignore_layer']:
emotions_dim = 0
else:
emotions = load_NRC(hyperparams_features['nrc_lexicon_path'])
emotions_dim = len(emotions)
if 'liwc' in hyperparams['ignore_layer']:
liwc_categories_dim = 0
else:
liwc_categories = load_LIWC(hyperparams_features['liwc_path'])
liwc_categories_dim = len(liwc_categories)
if 'stopwords' in hyperparams['ignore_layer']:
stopwords_dim = 0
else:
stopwords_list = load_stopwords(hyperparams_features['stopwords_path'])
stopwords_dim = len(stopwords_list)
# Initialize model
model = build_hierarchical_model(hyperparams, hyperparams_features,
emotions_dim, stopwords_dim, liwc_categories_dim,
ignore_layer=hyperparams['ignore_layer'])
model.summary()
return model
def train(user_level_data, subjects_split,
hyperparams, hyperparams_features,
experiment, dataset_type, transfer_type, logger=None,
validation_set='valid',
version=0, epochs=50, start_epoch=0,
session=None, model=None, transfer_layer=False):
if not logger:
logger = logging.getLogger('training')
ch = logging.StreamHandler(sys.stdout)
# create formatter
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s")
# add formatter to ch
ch.setFormatter(formatter)
# add ch to logger
logger.addHandler(ch)
logger.setLevel(logging.DEBUG)
network_type, hierarch_type = get_network_type(hyperparams)
for feature in ['LIWC', 'emotions', 'numerical_dense_layer', 'sparse_feat_dense_layer', 'user_encoded']:
if feature in hyperparams['ignore_layer']:
network_type += "no%s" % feature
if not transfer_layer:
model_path='models/%s_%s_%s%d' % (network_type, dataset_type, hierarch_type, version)
else:
model_path='models/%s_%s_%s_transfer_%s%d' % (network_type, dataset_type, hierarch_type, transfer_type, version)
logger.info("Initializing datasets...\n")
data_generator_train, data_generator_valid = initialize_datasets(user_level_data, subjects_split,
hyperparams,hyperparams_features,
validation_set=validation_set)
if not model:
if transfer_layer:
logger.info("Initializing pretrained model...\n")
else:
logger.info("Initializing model...\n")
model = initialize_model(hyperparams, hyperparams_features,
session=session, transfer=transfer_layer)
print(model_path)
logger.info("Training model...\n")
model, history = train_model(model, hyperparams,
data_generator_train, data_generator_valid,
epochs=epochs, start_epoch=start_epoch,
class_weight={0:1, 1:hyperparams['positive_class_weight']},
callback_list = [
'weights_history',
'lr_history',
'reduce_lr_plateau',
'lr_schedule'
],
model_path=model_path, workers=1,
validation_set=validation_set)
logger.info("Saving model...\n")
try:
save_model_and_params(model, model_path, hyperparams, hyperparams_features)
experiment.log_parameter("model_path", model_path)
except:
logger.error("Could not save model.\n")
return model, history