-
Notifications
You must be signed in to change notification settings - Fork 12
/
shap_utils.py
524 lines (450 loc) · 20.4 KB
/
shap_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import os
import sys
import numpy as np
import inspect
from scipy.stats import logistic
from scipy.stats import spearmanr
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.metrics import r2_score
from sklearn.neural_network import MLPRegressor, MLPClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import MultinomialNB, GaussianNB
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.svm import SVC, LinearSVC
from sklearn.base import clone
import inspect
from Shapley import ShapNN, CShapNN
from multiprocessing import dummy as multiprocessing
from sklearn.metrics import roc_auc_score, f1_score
import warnings
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Lasso, Ridge
from sklearn.linear_model import Ridge
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import cross_validate
def one_hotisze(X, impute=True, missing_key=-10000):
X_oh = []
for col in range(X.shape[-1]):
column = X[:, col]
vals = np.sort(list(set(column)))
if impute and missing_key in vals:
counts = np.zeros(len(vals))
for i in range(len(vals)):
counts[i] = np.sum(column == vals[i])
column[column==missing_key] = vals[np.argmax(counts)]
column_oh = np.zeros((len(column), len(vals)))
for i, val in enumerate(np.sort(vals)):
column_oh[column==val, i] = 1
X_oh.append(column_oh)
return np.concatenate(X_oh, -1)
def convergence_plots(marginals):
plt.rcParams['figure.figsize'] = 15, 15
for i, idx in enumerate(np.arange(min(25, marginals.shape[-1]))):
plt.subplot(5,5,i+1)
plt.plot(np.cumsum(marginals[:, idx])/np.arange(1, len(marginals)+1))
def is_integer(array):
return (np.equal(np.mod(array, 1), 0).mean()==1)
def is_fitted(model):
"""Checks if model object has any attributes ending with an underscore"""
return 0 < len( [k for k,v in inspect.getmembers(model) if k.endswith('_') and not k.startswith('__')] )
def return_model(mode, **kwargs):
if inspect.isclass(mode):
assert getattr(mode, 'fit', None) is not None, 'Custom model family should have a fit() method'
model = mode(**kwargs)
elif mode=='logistic':
solver = kwargs.get('solver', 'liblinear')
n_jobs = kwargs.get('n_jobs', None)
C = kwargs.get('C', 1.)
max_iter = kwargs.get('max_iter', 5000)
model = LogisticRegression(solver=solver, n_jobs=n_jobs, C=C,
max_iter=max_iter, random_state=666)
elif mode=='Tree':
model = DecisionTreeClassifier(random_state=666)
elif mode=='RandomForest':
n_estimators = kwargs.get('n_estimators', 50)
model = RandomForestClassifier(n_estimators=n_estimators, random_state=666)
elif mode=='GB':
n_estimators = kwargs.get('n_estimators', 50)
model = GradientBoostingClassifier(n_estimators=n_estimators, random_state=666)
elif mode=='AdaBoost':
n_estimators = kwargs.get('n_estimators', 50)
model = AdaBoostClassifier(n_estimators=n_estimators, random_state=666)
elif mode=='SVC':
kernel = kwargs.get('kernel', 'rbf')
model = SVC(kernel=kernel, random_state=666)
elif mode=='LinearSVC':
model = LinearSVC(loss='hinge', random_state=666)
elif mode=='GP':
model = GaussianProcessClassifier(random_state=666)
elif mode=='KNN':
n_neighbors = kwargs.get('n_neighbors', 5)
model = KNeighborsClassifier(n_neighbors=n_neighbors)
elif mode=='NB':
model = MultinomialNB()
elif mode=='linear':
model = LinearRegression(random_state=666)
elif mode=='ridge':
alpha = kwargs.get('alpha', 1.0)
model = Ridge(alpha=alpha, random_state=666)
elif 'conv' in mode:
tf.reset_default_graph()
address = kwargs.get('address', 'weights/conv')
hidden_units = kwargs.get('hidden_layer_sizes', [20])
activation = kwargs.get('activation', 'relu')
weight_decay = kwargs.get('weight_decay', 1e-4)
learning_rate = kwargs.get('learning_rate', 0.001)
max_iter = kwargs.get('max_iter', 1000)
dropout = kwargs.get('dropout', 0.)
early_stopping= kwargs.get('early_stopping', 10)
warm_start = kwargs.get('warm_start', False)
batch_size = kwargs.get('batch_size', 256)
kernel_sizes = kwargs.get('kernel_sizes', [5])
strides = kwargs.get('strides', [5])
channels = kwargs.get('channels', [1])
validation_fraction = kwargs.get('validation_fraction', 0.)
global_averaging = kwargs.get('global_averaging', 0.)
optimizer = kwargs.get('optimizer', 'sgd')
if mode=='conv':
model = CShapNN(mode='classification', batch_size=batch_size, max_epochs=max_iter,
learning_rate=learning_rate, dropout=dropout,
weight_decay=weight_decay, validation_fraction=validation_fraction,
early_stopping=early_stopping,
optimizer=optimizer, warm_start=warm_start, address=address,
hidden_units=hidden_units,
strides=strides, global_averaging=global_averaging,
kernel_sizes=kernel_sizes, channels=channels, random_seed=666)
elif mode=='conv_reg':
model = CShapNN(mode='regression', batch_size=batch_size, max_epochs=max_iter,
learning_rate=learning_rate, dropout=dropout,
weight_decay=weight_decay, validation_fraction=validation_fraction,
early_stopping=early_stopping,
optimizer=optimizer, warm_start=warm_start, address=address,
hidden_units=hidden_units,
strides=strides, global_averaging=global_averaging,
kernel_sizes=kernel_sizes, channels=channels, random_seed=666)
elif 'NN' in mode:
solver = kwargs.get('solver', 'adam')
hidden_layer_sizes = kwargs.get('hidden_layer_sizes', (20,))
if isinstance(hidden_layer_sizes, list):
hidden_layer_sizes = list(hidden_layer_sizes)
activation = kwargs.get('activation', 'relu')
learning_rate_init = kwargs.get('learning_rate', 0.001)
max_iter = kwargs.get('max_iter', 5000)
early_stopping= kwargs.get('early_stopping', False)
warm_start = kwargs.get('warm_start', False)
batch_size = kwargs.get('batch_size', 'auto')
if mode=='NN':
model = MLPClassifier(solver=solver, hidden_layer_sizes=hidden_layer_sizes,
activation=activation, learning_rate_init=learning_rate_init,
warm_start = warm_start, max_iter=max_iter,
early_stopping=early_stopping, batch_size=batch_size)
if mode=='NN_reg':
model = MLPRegressor(solver=solver, hidden_layer_sizes=hidden_layer_sizes,
activation=activation, learning_rate_init=learning_rate_init,
warm_start=warm_start, max_iter=max_iter, early_stopping=early_stopping,
batch_size=batch_size)
else:
raise ValueError("Invalid mode!")
return model
def generate_features(latent, dependency):
features = []
n = latent.shape[0]
exp = latent
holder = latent
for order in range(1, dependency+1):
features.append(np.reshape(holder,[n,-1]))
exp = np.expand_dims(exp,-1)
holder = exp * np.expand_dims(holder,1)
return np.concatenate(features,axis=-1)
def label_generator(problem, X, param, difficulty=1, beta=None, important=None):
if important is None or important > X.shape[-1]:
important = X.shape[-1]
dim_latent = sum([important**i for i in range(1, difficulty+1)])
if beta is None:
beta = np.random.normal(size=[1, dim_latent])
important_dims = np.random.choice(X.shape[-1], important, replace=False)
funct_init = lambda inp: np.sum(beta * generate_features(inp[:,important_dims], difficulty), -1)
batch_size = max(100, min(len(X), 10000000//dim_latent))
y_true = np.zeros(len(X))
while True:
try:
for itr in range(int(np.ceil(len(X)/batch_size))):
y_true[itr * batch_size: (itr+1) * batch_size] = funct_init(
X[itr * batch_size: (itr+1) * batch_size])
break
except MemoryError:
batch_size = batch_size//2
mean, std = np.mean(y_true), np.std(y_true)
funct = lambda x: (np.sum(beta * generate_features(
x[:, important_dims], difficulty), -1) - mean) / std
y_true = (y_true - mean) / std
if problem is 'classification':
y_true = logistic.cdf(param * y_true)
y = (np.random.random(X.shape[0]) < y_true).astype(int)
elif problem is 'regression':
y = y_true + param * np.random.normal(size=len(y_true))
else:
raise ValueError('Invalid problem specified!')
return beta, y, y_true, funct
def one_iteration(clf, X, y, X_test, y_test, mean_score, tol=0.0, c=None, metric='accuracy'):
"""Runs one iteration of TMC-Shapley."""
if metric == 'auc':
def score_func(clf, a, b):
return roc_auc_score(b, clf.predict_proba(a)[:,1])
elif metric == 'accuracy':
def score_func(clf, a, b):
return clf.score(a, b)
else:
raise ValueError("Wrong metric!")
if c is None:
c = {i:np.array([i]) for i in range(len(X))}
idxs, marginal_contribs = np.random.permutation(len(c.keys())), np.zeros(len(X))
new_score = np.max(np.bincount(y)) * 1./len(y) if np.mean(y//1 == y/1)==1 else 0.
start = 0
if start:
X_batch, y_batch =\
np.concatenate([X[c[idx]] for idx in idxs[:start]]), np.concatenate([y[c[idx]] for idx in idxs[:start]])
else:
X_batch, y_batch = np.zeros((0,) + tuple(X.shape[1:])), np.zeros(0).astype(int)
for n, idx in enumerate(idxs[start:]):
try:
clf = clone(clf)
except:
clf.fit(np.zeros((0,) + X.shape[1:]), y)
old_score = new_score
X_batch, y_batch = np.concatenate([X_batch, X[c[idx]]]), np.concatenate([y_batch, y[c[idx]]])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
clf.fit(X_batch, y_batch)
temp_score = score_func(clf, X_test, y_test)
if temp_score>-1 and temp_score<1.: #Removing measningless r2 scores
new_score = temp_score
except:
continue
marginal_contribs[c[idx]] = (new_score - old_score)/len(c[idx])
if np.abs(new_score - mean_score)/mean_score < tol:
break
return marginal_contribs, idxs
def marginals(clf, X, y, X_test, y_test, c=None, tol=0., trials=3000, mean_score=None, metric='accuracy'):
if metric == 'auc':
def score_func(clf, a, b):
return roc_auc_score(b, clf.predict_proba(a)[:,1])
elif metric == 'accuracy':
def score_func(clf, a, b):
return clf.score(a, b)
else:
raise ValueError("Wrong metric!")
if mean_score is None:
accs = []
for _ in range(100):
bag_idxs = np.random.choice(len(y_test), len(y_test))
accs.append(score_func(clf, X_test[bag_idxs], y_test[bag_idxs]))
mean_score = np.mean(accs)
marginals, idxs = [], []
for trial in range(trials):
if 10*(trial+1)/trials % 1 == 0:
print('{} out of {}'.format(trial + 1, trials))
marginal, idx = one_iteration(clf, X, y, X_test, y_test, mean_score, tol=tol, c=c, metric=metric)
marginals.append(marginal)
idxs.append(idx)
return np.array(marginals), np.array(idxs)
def shapley(mode, X, y, X_test, y_test, stop=None, tol=0., trials=3000, **kwargs):
try:
vals = np.zeros(len(X))
example_idxs = np.random.choice(len(X), min(25, len(X)), replace=False)
example_marginals = np.zeros((trials, len(example_idxs)))
for i in range(trials):
print(i)
output = one_pass(mode, X, y, X_test, y_test, tol=tol, stop=stop, **kwargs)
example_marginals[i] = output[0][example_idxs]
vals = vals/(i+1) + output[0]/(i+1)
return vals, example_marginals
except KeyboardInterrupt:
print('Interrupted!')
return vals, example_marginals
def early_stopping(marginals, idxs, stopping):
stopped_marginals = np.zeros_like(marginals)
for i in range(len(marginals)):
stopped_marginals[i][idxs[i][:stopping]] = marginals[i][idxs[i][:stopping]]
return np.mean(stopped_marginals, 0)
def error(mem):
if len(mem) < 100:
return 1.0
all_vals = (np.cumsum(mem, 0)/np.reshape(np.arange(1, len(mem)+1), (-1,1)))[-100:]
errors = np.mean(np.abs(all_vals[-100:] - all_vals[-1:])/(np.abs(all_vals[-1:]) + 1e-12), -1)
return np.max(errors)
def my_accuracy_score(clf, X, y):
probs = clf.predict_proba(X)
predictions = np.argmax(probs, -1)
return np.mean(np.equal(predictions, y))
def my_f1_score(clf, X, y):
predictions = clf.predict(x)
if len(set(y)) == 2:
return f1_score(y, predictions)
return f1_score(y, predictions, average='macro')
def my_auc_score(clf, X, y):
probs = clf.predict_proba(X)
true_probs = probs[np.arange(len(y)), y]
return roc_auc_score(y, true_probs)
def my_xe_score(clf, X, y):
probs = clf.predict_proba(X)
true_probs = probs[np.arange(len(y)), y]
true_log_probs = np.log(np.clip(true_probs, 1e-12, None))
return np.mean(true_log_probs)
def portion_performance(dshap, order, points, X_new, y_new, X_init, y_init, X_test, y_test):
dshap.model.fit(X_init, y_init)
val_init = dshap.value(dshap.model, dshap.metric, X=X_test, y=y_test)
vals = [val_init]
for point in points:
if not point:
continue
dshap.model.fit(np.concatenate([X_init, X_new[order[:point]]]),
np.concatenate([y_init, y_new[order[:point]]]))
vals.append(dshap.value(dshap.model, dshap.metric, X=X_test, y=y_test))
return np.array(vals)
def find_best_regressor(X, y, vals, cv=10, verbose=False):
def return_model(model_family):
if model_family == 'Ridge':
params = 10 ** np.arange(0, -6, 1).astype(float)
model = lambda param: Ridge(alpha=param)
if model_family == 'Lasso':
params = 10 ** np.arange(0, -6, 1).astype(float)
model = lambda param: Lasso(alpha=param)
if model_family == 'RF':
params = [5, 10, 25, 50, 100]
model = lambda param: RandomForestRegressor(n_estimators=param)
if model_family == 'KNN':
params = np.arange(1, 9, 2)
model = lambda param: KNeighborsRegressor(n_neighbors=param)
return model, params
regs = {}
for label in np.sort(list(set(y))):
best_score = -100
label_idxs = np.where(y == label)[0]
if len(label_idxs) == 1:
model, params = return_model('RF')
best_reg = model(10)
best_reg.fit(X[label_idxs], vals[label_idxs])
regs[label] = best_reg
continue
for model_family in ['RF', 'Lasso', 'Ridge', 'KNN']:
model, params = return_model(model_family)
for param in params:
if verbose:
print(model_family, param)
reg = model(param)
cv_scores = cross_validate(
reg,
X[label_idxs],
vals[label_idxs],
cv=min(len(label_idxs), cv))
if np.mean(cv_scores['test_score']) > best_score:
best_score = np.mean(cv_scores['test_score'])
best_reg = reg
print(label, best_reg, best_score)
best_reg.fit(X[label_idxs], vals[label_idxs])
regs[label] = best_reg
return regs
def predict_vals(X, y, regs):
predicted_vals = np.zeros(len(X))
for label in set(y):
label_idxs = np.where(y == label)[0]
predicted_vals[label_idxs] = regs[label].predict(X[label_idxs])
return predicted_vals
def s_regress(model, vals, alpha, init):
predicted_vals = np.zeros(truncation)
t = int(truncation ** (1./(1 + alpha)))
t_idxs = (np.arange(t) ** (1+alpha)).astype(int)
t_idxs = np.sort(np.array(list(set(t_idxs))))
t_idxs = t_idxs[t_idxs>=init]
x = t_idxs
y = vals[t_idxs]
model.fit(x, y)
predicted_vals = model.predict(np.arange(truncation))
predicted_vals[:init] = vals[:init]
predicted_vals[t_idxs] = vals[t_idxs]
return predicted_vals
def interpolator(model):
if 'spline_' in model:
return Spline(model[7:])
if model == 'lin':
return LinInt()
if 'poly_' in model:
return Poly(int(model[5:]))
if model == 'NN':
return NN(activation='logistic')
raise ValueError('Invalid Model')
def compute_eff(alpha, truncation):
t = int(truncation ** (1./(1 + alpha)))
t_idxs = (np.arange(t) ** (1+alpha)).astype(int)
t_idxs = np.sort(np.array(list(set(t_idxs))))
t_idxs = t_idxs[t_idxs>=init]
return (np.sum(np.arange(init)) + np.sum(t_idxs)) / np.sum(np.arange(truncation))
def reverse_compute_eff(x, truncation):
a1 = 0.
a2 = 10.
while True:
if compute_eff((a1+a2)/2, truncation) < x:
a1, a2 = a1, (a1+a2)/2
else:
a1, a2 = (a1+a2)/2, a2
if a2 - a1 < 1e-4:
break
return (a1+a2)/2
def performance_plots(npoints, points, perf):
plt.rcParams['font.size'] = 15
fig = plt.figure(figsize = (16, 8))
markers = ['-', ':', '-.', '--']
colors = ['b', 'r', 'g', 'orange']
default_legends = ['Dist-Shapley', 'Random', 'LOO', 'TMC-Shapley']
plt.subplot(1, 2, 1)
pos_keys = ['pos_dist', 'rnd', 'pos_loo', 'pos_tmc']
legends = []
for i, (key, legend) in enumerate(zip(pos_keys, default_legends)):
if key not in perf:
continue
plt.plot(points / npoints * 100, 100 * np.array(perf[key]), markers[i], color=colors[i], lw=8)
legends.append(legend)
plt.legend(legends, fontsize=25)
res = (points[-1] - points[0]) / (len(points) - 1)
plt.xticks(100 * np.linspace(points[0], points[-1] + res, 6) / npoints)
plt.xlabel('Fraction of points removed (%)', fontsize=25)
min_p = np.min([np.min(perf[k]) for k in perf if k in pos_keys])
max_p = np.max([np.max(perf[k]) for k in perf if k in pos_keys])
p_res = 0.01
for p in [0.2, 0.1, 0.05, 0.03, 0.02, 0.01]:
num_p = np.ceil(max_p / p) - np.floor(min_p / p)
if num_p >= 4 and num_p <= 8:
p_res = p
break
plt.yticks(100 * np.arange(np.floor(min_p/p_res) * p_res, np.ceil(max_p/p_res) * p_res + 0.01, p_res))
plt.ylabel('Performance (%)', fontsize=25)
plt.subplot(1, 2, 2)
legends = []
neg_keys = ['neg_dist', 'rnd', 'neg_loo', 'neg_tmc']
for i, (key, legend) in enumerate(zip(neg_keys, default_legends)):
if key not in perf:
continue
plt.plot(points / npoints * 100, 100 * np.array(perf[key]), markers[i], color=colors[i], lw=8)
legends.append(legend)
plt.legend(legends, fontsize=25)
res = (points[-1] - points[0]) / (len(points) - 1)
plt.xticks(100 * np.linspace(points[0], points[-1] + res, 6) / npoints)
plt.xlabel('Fraction of points removed (%)', fontsize=25)
min_p = np.min([np.min(perf[k]) for k in perf if k in neg_keys])
max_p = np.max([np.max(perf[k]) for k in perf if k in neg_keys])
p_res = 0.01
for p in [0.2, 0.1, 0.05, 0.03, 0.02, 0.01]:
num_p = np.ceil(max_p / p) - np.floor(min_p / p)
if num_p >= 4 and num_p <= 8:
p_res = p
break
plt.yticks(100 * np.arange(np.floor(min_p/p_res) * p_res, np.ceil(max_p/p_res) * p_res + 0.01, p_res))
plt.ylabel('Performance (%)', fontsize=25)