-
Notifications
You must be signed in to change notification settings - Fork 67
/
Shapley.py
416 lines (371 loc) · 18.8 KB
/
Shapley.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import os
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, f1_score
class ShapNN(object):
def __init__(self, mode, hidden_units=[100], learning_rate=0.001,
dropout = 0., activation=None, initializer=None,
weight_decay=0.0001, optimizer='adam', batch_size=128,
warm_start=False, max_epochs=100, validation_fraction=0.1,
early_stopping=0, address=None, test_batch_size=1000,
random_seed=666):
self.mode = mode
self.batch_size = batch_size
self.test_batch_size = test_batch_size
self.hidden_units = hidden_units
self.initializer = initializer
self.activation = activation
self.dropout = dropout
self.weight_decay = weight_decay
self.optimizer = optimizer
self.learning_rate = learning_rate
self.warm_start = warm_start
self.max_epochs = max_epochs
self.early_stopping = early_stopping
self.validation_fraction = validation_fraction
self.address = address
self._extra_train_ops = []
self.random_seed = random_seed
self.is_built = False
def prediction_cost(self, X_test, y_test, batch_size=None):
if batch_size is None:
batch_size = self.test_batch_size
assert len(set(y_test)) == self.num_classes, 'Number of classes does not match!'
with self.graph.as_default():
losses = []
idxs = np.arange(len(X_test))
batches = [idxs[k * batch_size: (k+1) * batch_size]
for k in range(int(np.ceil(len(idxs)/batch_size)))]
for batch in batches:
losses.append(self.sess.run(self.prediction_loss, {self.input_ph:X_test[batch],
self.labels:y_test[batch]}))
return np.mean(losses)
def score(self, X_test, y_test, batch_size=None):
if batch_size is None:
batch_size = self.test_batch_size
assert len(set(y_test)) == self.num_classes, 'Number of classes does not match!'
with self.graph.as_default():
scores = []
idxs = np.arange(len(X_test))
batches = [idxs[k * batch_size: (k+1) * batch_size]
for k in range(int(np.ceil(len(idxs)/batch_size)))]
for batch in batches:
scores.append(self.sess.run(self.prediction_score, {self.input_ph:X_test[batch],
self.labels:y_test[batch]}))
return np.mean(scores)
def predict_proba(self, X_test, batch_size=None):
if batch_size is None:
batch_size = self.test_batch_size
with self.graph.as_default():
probs = []
idxs = np.arange(len(X_test))
batches = [idxs[k * batch_size: (k+1) * batch_size]
for k in range(int(np.ceil(len(idxs)/batch_size)))]
for batch in batches:
probs.append(self.sess.run(self.probs, {self.input_ph:X_test[batch]}))
return np.concatenate(probs, axis=0)
def predict_log_proba(self, X_test, batch_size=None):
if batch_size is None:
batch_size = self.test_batch_size
with self.graph.as_default():
probs = []
idxs = np.arange(len(X_test))
batches = [idxs[k * batch_size: (k+1) * batch_size]
for k in range(int(np.ceil(len(idxs)/batch_size)))]
for batch in batches:
probs.append(self.sess.run(self.probs, {self.input_ph:X_test[batch]}))
return np.log(np.clip(np.concatenate(probs), 1e-12, None))
def cost(self, X_test, y_test, batch_size=None):
if batch_size is None:
batch_size = self.batch_size
with self.graph.as_default():
losss = []
idxs = np.arange(len(X_test))
batches = [idxs[k * batch_size: (k+1) * batch_size]
for k in range(int(np.ceil(len(idxs)/batch_size)))]
for batch in batches:
losss.append(self.sess.run(self.prediction_loss, {self.input_ph:X_test[batch],
self.labels:y_test[batch]}))
return np.mean(losss)
def predict(self, X_test, batch_size=None):
if batch_size is None:
batch_size = self.batch_size
with self.graph.as_default():
predictions = []
idxs = np.arange(len(X_test))
batches = [idxs[k * batch_size: (k+1) * batch_size]
for k in range(int(np.ceil(len(idxs)/batch_size)))]
for batch in batches:
predictions.append(self.sess.run(self.predictions, {self.input_ph:X_test[batch]}))
return np.concatenate(predictions)
def fit(self, X, y, X_val=None, y_val=None, sources=None, max_epochs=None,
batch_size=None, save=False, load=False, sample_weight=None,
metric='accuracy'):
self.num_classes = len(set(y))
self.metric = metric
if max_epochs is None:
max_epochs = self.max_epochs
if batch_size is None:
batch_size = self.batch_size
if not self.is_built:
self.graph = tf.Graph()
with self.graph.as_default():
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
self.sess = tf.Session(config=config)
with self.graph.as_default():
tf.set_random_seed(self.random_seed)
try:
self.global_step = tf.train.create_global_step()
except ValueError:
self.global_step = tf.train.get_global_step()
if not self.is_built:
self._build_model(X, y)
self.saver = tf.train.Saver()
self._initialize()
if len(X):
if X_val is None and self.validation_fraction * len(X) > 2:
X_train, X_val, y_train, y_val, sample_weight, _ = train_test_split(
X, y, sample_weight, test_size=self.validation_fraction)
else:
X_train, y_train = X, y
self._train_model(X_train, y_train, X_val=X_val, y_val=y_val,
max_epochs=max_epochs, batch_size=batch_size,
sources=sources, sample_weight=sample_weight)
if save and self.address is not None:
self.saver.save(self.sess, self.address)
def _train_model(self, X, y, X_val, y_val, max_epochs, batch_size,
sources=None, sample_weight=None):
assert len(X)==len(y), 'Input and labels not the same size'
self.history = {'metrics':[], 'idxs':[]}
stop_counter = 0
best_performance = None
for epoch in range(max_epochs):
vals_metrics, idxs = self._one_epoch(
X, y, X_val, y_val, batch_size, sources=sources, sample_weight=sample_weight)
self.history['idxs'].append(idxs)
self.history['metrics'].append(vals_metrics)
if self.early_stopping and X_val is not None:
current_performance = np.mean(val_acc)
if best_performance is None:
best_performance = current_performance
if current_performance > best_performance:
best_performance = current_performance
stop_counter = 0
else:
stop_counter += 1
if stop_counter > self.early_stopping:
break
def _one_epoch(self, X, y, X_val, y_val, batch_size, sources=None, sample_weight=None):
vals = []
if sources is None:
if sample_weight is None:
idxs = np.random.permutation(len(X))
else:
idxs = np.random.choice(len(X), len(X), p=sample_weight/np.sum(sample_weight))
batches = [idxs[k*batch_size:(k+1) * batch_size]
for k in range(int(np.ceil(len(idxs)/batch_size)))]
idxs = batches
else:
idxs = np.random.permutation(len(sources.keys()))
batches = [sources[i] for i in idxs]
for batch_counter, batch in enumerate(batches):
self.sess.run(self.train_op,
{self.input_ph:X[batch], self.labels:y[batch],
self.dropout_ph:self.dropout})
if X_val is not None:
if self.metric=='accuracy':
vals.append(self.score(X_val, y_val))
elif self.metric=='f1':
vals.append(f1_score(y_val, self.predict(X_val)))
elif self.metric=='auc':
vals.append(roc_auc_score(y_val, self.predict_proba(X_val)[:,1]))
elif self.metric=='xe':
vals.append(-self.prediction_cost(X_val, y_val))
return np.array(vals), np.array(idxs)
def _initialize(self):
uninitialized_vars = []
if self.warm_start:
for var in tf.global_variables():
try:
self.sess.run(var)
except tf.errors.FailedPreconditionError:
uninitialized_vars.append(var)
else:
uninitialized_vars = tf.global_variables()
self.sess.run(tf.initializers.variables(uninitialized_vars))
def _build_model(self, X, y):
self.num_classes = len(set(y))
if self.initializer is None:
initializer = tf.initializers.variance_scaling(distribution='uniform')
if self.activation is None:
activation = lambda x: tf.nn.relu(x)
self.input_ph = tf.placeholder(dtype=tf.float32, shape=(None,) + X.shape[1:], name='input')
self.dropout_ph = tf.placeholder_with_default(
tf.constant(0., dtype=tf.float32), shape=(), name='dropout')
if self.mode=='regression':
self.labels = tf.placeholder(dtype=tf.float32, shape=(None, ), name='label')
else:
self.labels = tf.placeholder(dtype=tf.int32, shape=(None, ), name='label')
x = tf.reshape(self.input_ph, shape=(-1, np.prod(X.shape[1:])))
for layer, hidden_unit in enumerate(self.hidden_units):
with tf.variable_scope('dense_{}'.format(layer)):
x = self._dense(x, hidden_unit, dropout=self.dropout_ph,
initializer=self.initializer, activation=activation)
with tf.variable_scope('final'):
self.prelogits = x
self._final_layer(self.prelogits, self.num_classes, self.mode)
self._build_train_op()
def _build_train_op(self):
"""Build taining specific ops for the graph."""
learning_rate = tf.constant(self.learning_rate, tf.float32) ##fixit
trainable_variables = tf.trainable_variables()
grads = tf.gradients(self.loss, trainable_variables)
self.grad_flat = tf.concat([tf.reshape(grad, (-1, 1)) for grad in grads], axis=0)
if self.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
elif self.optimizer == 'mom':
optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)
elif self.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
apply_op = optimizer.apply_gradients(
zip(grads, trainable_variables),
global_step=self.global_step, name='train_step')
train_ops = [apply_op] + self._extra_train_ops + tf.get_collection(tf.GraphKeys.UPDATE_OPS)
previous_ops = [tf.group(*train_ops)]
with tf.control_dependencies(previous_ops):
self.train_op = tf.no_op(name='train')
self.is_built = True
def _final_layer(self, x, num_classes, mode):
if mode=='regression':
self.logits = self._dense(x, 1, dropout=self.dropout_ph)
self.predictions = tf.reduce_sum(self.logits, axis=-1)
regression_loss = tf.nn.l2_loss(self.predictions - self.labels) ##FIXIT
self.prediction_loss = tf.reduce_mean(regression_loss, name='l2')
residuals = self.predictions - self.labels
var_predicted = tf.reduce_mean(residuals**2) - tf.reduce_mean(residuals)**2
var_labels = tf.reduce_mean(self.labels**2) - tf.reduce_mean(self.labels)**2
self.prediction_score = 1 - var_predicted/(var_labels + 1e-12)
else:
self.logits = self._dense(x, num_classes, dropout=self.dropout_ph)
self.probs = tf.nn.softmax(self.logits)
xent_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=self.logits, labels=tf.cast(self.labels, tf.int32))
self.prediction_loss = tf.reduce_mean(xent_loss, name='xent')
self.predictions = tf.argmax(self.probs, axis=-1, output_type=tf.int32)
correct_predictions = tf.equal(self.predictions, self.labels)
self.prediction_score = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
self.loss = self.prediction_loss + self._reg_loss()
def _dense(self, x, out_dim, dropout=tf.constant(0.), initializer=None, activation=None):
if initializer is None:
initializer = tf.initializers.variance_scaling(distribution='uniform')
w = tf.get_variable('DW', [x.get_shape()[1], out_dim], initializer=initializer)
b = tf.get_variable('Db', [out_dim], initializer=tf.constant_initializer())
x = tf.nn.dropout(x, 1. - dropout)
if activation:
x = activation(x)
return tf.nn.xw_plus_b(x, w, b)
def _reg_loss(self, order=2):
"""Regularization loss for weight decay."""
losss = []
for var in tf.trainable_variables():
if var.op.name.find(r'DW') > 0 or var.op.name.find(r'CW') > 0: ##FIXIT
if order==2:
losss.append(tf.nn.l2_loss(var))
elif order==1:
losss.append(tf.abs(var))
else:
raise ValueError("Invalid regularization order!")
return tf.multiply(self.weight_decay, tf.add_n(losss))
class CShapNN(ShapNN):
def __init__(self, mode, hidden_units=[100], kernel_sizes=[],
strides=None, channels=[], learning_rate=0.001,
dropout = 0., activation=None, initializer=None, global_averaging=False,
weight_decay=0.0001, optimizer='adam', batch_size=128,
warm_start=False, max_epochs=100, validation_fraction=0.1,
early_stopping=0, address=None, test_batch_size=1000, random_seed=666):
self.mode = mode
self.test_batch_size = test_batch_size
self.kernels = []#FIXIT
self.kernel_sizes = kernel_sizes
self.channels = channels
self.global_averaging = global_averaging
assert len(channels)==len(kernel_sizes), 'Invalid channels or kernel_sizes'
if strides is None:
self.strides = [1] * len(kernel_sizes)
else:
self.strides = strides
self.batch_size = batch_size
self.hidden_units = hidden_units
self.initializer = initializer
self.activation = activation
self.dropout = dropout
self.weight_decay = weight_decay
self.optimizer = optimizer
self.learning_rate = learning_rate
self.warm_start = warm_start
self.max_epochs = max_epochs
self.early_stopping = early_stopping
self.validation_fraction = validation_fraction
self.address = address
self._extra_train_ops = []
self.random_seed = random_seed
self.graph = tf.Graph()
self.is_built = False
with self.graph.as_default():
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
self.sess = tf.Session(config=config)
def _conv(self, x, filter_size, out_filters, strides, activation=None):
in_filters = int(x.get_shape()[-1])
n = filter_size * filter_size * out_filters
kernel = tf.get_variable(
'DW', [filter_size, filter_size, in_filters, out_filters],
tf.float32, initializer=tf.random_normal_initializer(
stddev=np.sqrt(2.0/n)))
self.kernels.append(kernel)
x = tf.nn.conv2d(x, kernel, strides, padding='SAME')
if activation:
x = activation(x)
return x
def _stride_arr(self, stride):
if isinstance(stride, int):
return [1, stride, stride, 1]
if len(stride)==2:
return [1, stride[0], stride[1], 1]
if len(stride)==4:
return stride
raise ValueError('Invalid value!')
def _build_model(self, X, y):
if self.initializer is None:
initializer = tf.initializers.variance_scaling(distribution='uniform')
if self.activation is None:
activation = lambda x: tf.nn.relu(x)
self.input_ph = tf.placeholder(dtype=tf.float32, shape=(None,) + X.shape[1:], name='input')
self.dropout_ph = tf.placeholder_with_default(
tf.constant(0., dtype=tf.float32), shape=(), name='dropout')
if self.mode=='regression':
self.labels = tf.placeholder(dtype=tf.float32, shape=(None, ), name='label')
else:
self.labels = tf.placeholder(dtype=tf.int32, shape=(None, ), name='label')
if len(X.shape[1:]) == 2:
x = tf.reshape(self.input_ph, [-1, X.shape[0], X.shape[1], 1])
else:
x = self.input_ph
for layer, (kernel_size, channels, stride) in enumerate(zip(
self.kernel_sizes, self.channels, self.strides)):
with tf.variable_scope('conv_{}'.format(layer)):
x = self._conv(x, kernel_size, channels, self._stride_arr(stride), activation=activation)
if self.global_averaging:
x = tf.reduce_mean(x, axis=(1,2))
else:
x = tf.reshape(x, shape=(-1, np.prod(x.get_shape()[1:])))
for layer, hidden_unit in enumerate(self.hidden_units):
with tf.variable_scope('dense_{}'.format(layer)):
x = self._dense(x, hidden_unit, dropout=self.dropout_ph,
initializer=self.initializer, activation=activation)
with tf.variable_scope('final'):
self.prelogits = x
self._final_layer(self.prelogits, len(set(y)), self.mode)
self._build_train_op()