forked from Arturus/kaggle-web-traffic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
788 lines (677 loc) · 32.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
import os.path
import shutil
import sys
import numpy as np
import tensorflow as tf
from tqdm import trange
from typing import List, Tuple
import heapq
import logging
import pandas as pd
from enum import Enum
from hparams import build_from_set, build_hparams
from feeder import VarFeeder
from input_pipe import InputPipe, ModelMode, Splitter,FakeSplitter, page_features
from model import Model
import argparse
log = logging.getLogger('trainer')
class Ema:
def __init__(self, k=0.99):
self.k = k
self.state = None
self.steps = 0
def __call__(self, *args, **kwargs):
v = args[0]
self.steps += 1
if self.state is None:
self.state = v
else:
eff_k = min(1 - 1 / self.steps, self.k)
self.state = eff_k * self.state + (1 - eff_k) * v
return self.state
class Metric:
def __init__(self, name: str, op, smoothness: float = None):
self.name = name
self.op = op
self.smoother = Ema(smoothness) if smoothness else None
self.epoch_values = []
self.best_value = np.Inf
self.best_step = 0
self.last_epoch = -1
self.improved = False
self._top = []
@property
def avg_epoch(self):
return np.mean(self.epoch_values)
@property
def best_epoch(self):
return np.min(self.epoch_values)
@property
def last(self):
return self.epoch_values[-1] if self.epoch_values else np.nan
@property
def top(self):
return -np.mean(self._top)
def update(self, value, epoch, step):
if self.smoother:
value = self.smoother(value)
if epoch > self.last_epoch:
self.epoch_values = []
self.last_epoch = epoch
self.epoch_values.append(value)
if value < self.best_value:
self.best_value = value
self.best_step = step
self.improved = True
else:
self.improved = False
if len(self._top) >= 5:
heapq.heappushpop(self._top, -value)
else:
heapq.heappush(self._top, -value)
class AggMetric:
def __init__(self, metrics: List[Metric]):
self.metrics = metrics
def _mean(self, fun) -> float:
# noinspection PyTypeChecker
return np.mean([fun(metric) for metric in self.metrics])
@property
def avg_epoch(self):
return self._mean(lambda m: m.avg_epoch)
@property
def best_epoch(self):
return self._mean(lambda m: m.best_epoch)
@property
def last(self):
return self._mean(lambda m: m.last)
@property
def top(self):
return self._mean(lambda m: m.top)
@property
def improved(self):
return np.any([metric.improved for metric in self.metrics])
class DummyMetric:
@property
def avg_epoch(self):
return np.nan
@property
def best_epoch(self):
return np.nan
@property
def last(self):
return np.nan
@property
def top(self):
return np.nan
@property
def improved(self):
return False
@property
def metrics(self):
return []
class Stage(Enum):
TRAIN = 0
EVAL_SIDE = 1
EVAL_FRWD = 2
EVAL_SIDE_EMA = 3
EVAL_FRWD_EMA = 4
class ModelTrainerV2:
def __init__(self, train_model: Model, eval: List[Tuple[Stage, Model]], model_no=0,
patience=None, stop_metric=None, summary_writer=None):
self.train_model = train_model
if eval:
self.eval_stages, self.eval_models = zip(*eval)
else:
self.eval_stages, self.eval_models = [], []
self.stopped = False
self.model_no = model_no
self.patience = patience
self.best_metric = np.inf
self.bad_epochs = 0
self.stop_metric = stop_metric
self.summary_writer = summary_writer
def std_metrics(model: Model, smoothness):
return [Metric('SMAPE', model.smape, smoothness), Metric('MAE', model.mae, smoothness)]
self._metrics = {Stage.TRAIN: std_metrics(train_model, 0.9) + [Metric('GrNorm', train_model.glob_norm)]}
for stage, model in eval:
self._metrics[stage] = std_metrics(model, None)
self.dict_metrics = {key: {metric.name: metric for metric in metrics} for key, metrics in self._metrics.items()}
def init(self, sess):
for model in list(self.eval_models) + [self.train_model]:
model.inp.init_iterator(sess)
@property
def metrics(self):
return self._metrics
@property
def train_ops(self):
model = self.train_model
return [model.train_op] # , model.summaries
def metric_ops(self, key):
return [metric.op for metric in self._metrics[key]]
def process_metrics(self, key, run_results, epoch, step):
metrics = self._metrics[key]
summaries = []
for result, metric in zip(run_results, metrics):
metric.update(result, epoch, step)
summaries.append(tf.Summary.Value(tag=f"{key.name}/{metric.name}_0", simple_value=result))
return summaries
def end_epoch(self):
if self.stop_metric:
best_metric = self.stop_metric(self.dict_metrics)# self.dict_metrics[Stage.EVAL_FRWD]['SMAPE'].avg_epoch
if self.best_metric > best_metric:
self.best_metric = best_metric
self.bad_epochs = 0
else:
self.bad_epochs += 1
if self.bad_epochs > self.patience:
self.stopped = True
class MultiModelTrainer:
def __init__(self, trainers: List[ModelTrainerV2], inc_step_op,
misc_global_ops=None):
self.trainers = trainers
self.inc_step = inc_step_op
self.global_ops = misc_global_ops or []
self.eval_stages = trainers[0].eval_stages
def active(self):
return [trainer for trainer in self.trainers if not trainer.stopped]
def _metric_step(self, stage, initial_ops, sess: tf.Session, epoch: int, step=None, repeats=1, summary_every=1):
ops = initial_ops
offsets, lengths = [], []
trainers = self.active()
for trainer in trainers:
offsets.append(len(ops))
metric_ops = trainer.metric_ops(stage)
lengths.append(len(metric_ops))
ops.extend(metric_ops)
if repeats > 1:
all_results = np.stack([np.array(sess.run(ops)) for _ in range(repeats)])
results = np.mean(all_results, axis=0)
else:
results = sess.run(ops)
if step is None:
step = results[0]
for trainer, offset, length in zip(trainers, offsets, lengths):
chunk = results[offset: offset + length]
summaries = trainer.process_metrics(stage, chunk, epoch, step)
if trainer.summary_writer and step > 200 and (step % summary_every == 0):
summary = tf.Summary(value=summaries)
trainer.summary_writer.add_summary(summary, global_step=step)
return results
def train_step(self, sess: tf.Session, epoch: int):
ops = [self.inc_step] + self.global_ops
for trainer in self.active():
ops.extend(trainer.train_ops)
results = self._metric_step(Stage.TRAIN, ops, sess, epoch, summary_every=20)
#return results[:len(self.global_ops) + 1] # step, grad_norm
return results[0]
def eval_step(self, sess: tf.Session, epoch: int, step, n_batches, stages:List[Stage]=None):
target_stages = stages if stages is not None else self.eval_stages
for stage in target_stages:
self._metric_step(stage, [], sess, epoch, step, repeats=n_batches)
def metric(self, stage, name):
return AggMetric([trainer.dict_metrics[stage][name] for trainer in self.trainers])
def end_epoch(self):
for trainer in self.active():
trainer.end_epoch()
def has_active(self):
return len(self.active())
class ModelTrainer:
def __init__(self, train_model, eval_model, model_no=0, summary_writer=None, keep_best=5, patience=None):
self.train_model = train_model
self.eval_model = eval_model
self.stopped = False
self.smooth_train_mae = Ema()
self.smooth_train_smape = Ema()
self.smooth_eval_mae = Ema(0.5)
self.smooth_eval_smape = Ema(0.5)
self.smooth_grad = Ema(0.9)
self.summary_writer = summary_writer
self.model_no = model_no
self.best_top_n_loss = []
self.keep_best = keep_best
self.best_step = 0
self.patience = patience
self.train_pipe = train_model.inp
self.eval_pipe = eval_model.inp
self.epoch_mae = []
self.epoch_smape = []
self.last_epoch = -1
@property
def train_ops(self):
model = self.train_model
return [model.train_op, model.update_ema, model.summaries, model.mae, model.smape, model.glob_norm]
def process_train_results(self, run_results, offset, global_step, write_summary):
offset += 2
summaries, mae, smape, glob_norm = run_results[offset:offset + 4]
results = self.smooth_train_mae(mae), self.smooth_train_smape(smape), self.smooth_grad(glob_norm)
if self.summary_writer and write_summary:
self.summary_writer.add_summary(summaries, global_step=global_step)
return np.array(results)
@property
def eval_ops(self):
model = self.eval_model
return [model.mae, model.smape]
@property
def eval_len(self):
return len(self.eval_ops)
@property
def train_len(self):
return len(self.train_ops)
@property
def best_top_loss(self):
return -np.array(self.best_top_n_loss).mean()
@property
def best_epoch_mae(self):
return min(self.epoch_mae) if self.epoch_mae else np.NaN
@property
def mean_epoch_mae(self):
return np.mean(self.epoch_mae) if self.epoch_mae else np.NaN
@property
def mean_epoch_smape(self):
return np.mean(self.epoch_smape) if self.epoch_smape else np.NaN
@property
def best_epoch_smape(self):
return min(self.epoch_smape) if self.epoch_smape else np.NaN
def remember_for_epoch(self, epoch, mae, smape):
if epoch > self.last_epoch:
self.last_epoch = epoch
self.epoch_mae = []
self.epoch_smape = []
self.epoch_mae.append(mae)
self.epoch_smape.append(smape)
@property
def best_epoch_metrics(self):
return np.array([self.best_epoch_mae, self.best_epoch_smape])
@property
def mean_epoch_metrics(self):
return np.array([self.mean_epoch_mae, self.mean_epoch_smape])
def process_eval_results(self, run_results, offset, global_step, epoch):
totals = np.zeros(self.eval_len, np.float)
for result in run_results:
items = np.array(result[offset:offset + self.eval_len])
totals += items
results = totals / len(run_results)
mae, smape = results
if self.summary_writer and global_step > 200:
summary = tf.Summary(value=[
tf.Summary.Value(tag=f"test/MAE_{self.model_no}", simple_value=mae),
tf.Summary.Value(tag=f"test/SMAPE_{self.model_no}", simple_value=smape),
])
self.summary_writer.add_summary(summary, global_step=global_step)
smooth_mae = self.smooth_eval_mae(mae)
smooth_smape = self.smooth_eval_smape(smape)
self.remember_for_epoch(epoch, mae, smape)
current_loss = -smooth_smape
prev_best_n = np.mean(self.best_top_n_loss) if self.best_top_n_loss else -np.inf
if self.best_top_n_loss:
log.debug("Current loss=%.3f, old best=%.3f, wait steps=%d", -current_loss,
-max(self.best_top_n_loss), global_step - self.best_step)
if len(self.best_top_n_loss) >= self.keep_best:
heapq.heappushpop(self.best_top_n_loss, current_loss)
else:
heapq.heappush(self.best_top_n_loss, current_loss)
log.debug("Best loss=%.3f, top_5 avg loss=%.3f, top_5=%s",
-max(self.best_top_n_loss), -np.mean(self.best_top_n_loss),
",".join(["%.3f" % -mae for mae in self.best_top_n_loss]))
new_best_n = np.mean(self.best_top_n_loss)
new_best = new_best_n > prev_best_n
if new_best:
self.best_step = global_step
log.debug("New best step %d, current loss=%.3f", global_step, -current_loss)
else:
step_count = global_step - self.best_step
if step_count > self.patience:
self.stopped = True
return mae, smape, new_best, smooth_mae, smooth_smape
def train(name, hparams, multi_gpu=False, n_models=1, train_completeness_threshold=0.01,
seed=None, logdir='data/logs', max_epoch=100, patience=2, train_sampling=1.0,
eval_sampling=1.0, eval_memsize=5, gpu=0, gpu_allow_growth=False, save_best_model=False,
forward_split=False, write_summaries=False, verbose=False, asgd_decay=None, tqdm=True,
side_split=True, max_steps=None, save_from_step=None, do_eval=True, predict_window=63):
eval_k = int(round(26214 * eval_memsize / n_models))
eval_batch_size = int(
eval_k / (hparams.rnn_depth * hparams.encoder_rnn_layers)) # 128 -> 1024, 256->512, 512->256
eval_pct = 0.1
batch_size = hparams.batch_size
train_window = hparams.train_window
tf.reset_default_graph()
if seed:
tf.set_random_seed(seed)
with tf.device("/cpu:0"):
inp = VarFeeder.read_vars("data/vars")
if side_split:
splitter = Splitter(page_features(inp), inp.page_map, 3, train_sampling=train_sampling,
test_sampling=eval_sampling, seed=seed)
else:
splitter = FakeSplitter(page_features(inp), 3, seed=seed, test_sampling=eval_sampling)
real_train_pages = splitter.splits[0].train_size
real_eval_pages = splitter.splits[0].test_size
items_per_eval = real_eval_pages * eval_pct
eval_batches = int(np.ceil(items_per_eval / eval_batch_size))
steps_per_epoch = real_train_pages // batch_size
eval_every_step = int(round(steps_per_epoch * eval_pct))
# eval_every_step = int(round(items_per_eval * train_sampling / batch_size))
global_step = tf.train.get_or_create_global_step()
inc_step = tf.assign_add(global_step, 1)
all_models: List[ModelTrainerV2] = []
def create_model(scope, index, prefix, seed):
with tf.variable_scope('input') as inp_scope:
with tf.device("/cpu:0"):
split = splitter.splits[index]
pipe = InputPipe(inp, features=split.train_set, n_pages=split.train_size,
mode=ModelMode.TRAIN, batch_size=batch_size, n_epoch=None, verbose=verbose,
train_completeness_threshold=train_completeness_threshold,
predict_completeness_threshold=train_completeness_threshold, train_window=train_window,
predict_window=predict_window,
rand_seed=seed, train_skip_first=hparams.train_skip_first,
back_offset=predict_window if forward_split else 0)
inp_scope.reuse_variables()
if side_split:
side_eval_pipe = InputPipe(inp, features=split.test_set, n_pages=split.test_size,
mode=ModelMode.EVAL, batch_size=eval_batch_size, n_epoch=None,
verbose=verbose, predict_window=predict_window,
train_completeness_threshold=0.01, predict_completeness_threshold=0,
train_window=train_window, rand_seed=seed, runs_in_burst=eval_batches,
back_offset=predict_window * (2 if forward_split else 1))
else:
side_eval_pipe = None
if forward_split:
forward_eval_pipe = InputPipe(inp, features=split.test_set, n_pages=split.test_size,
mode=ModelMode.EVAL, batch_size=eval_batch_size, n_epoch=None,
verbose=verbose, predict_window=predict_window,
train_completeness_threshold=0.01, predict_completeness_threshold=0,
train_window=train_window, rand_seed=seed, runs_in_burst=eval_batches,
back_offset=predict_window)
else:
forward_eval_pipe = None
avg_sgd = asgd_decay is not None
#asgd_decay = 0.99 if avg_sgd else None
with tf.variable_scope('model') as scope:
train_model = Model(pipe, hparams, is_train=True, graph_prefix=prefix, asgd_decay=asgd_decay, seed=seed)
# scope.reuse_variables()
with tf.variable_scope('model', reuse=True) as scope:
eval_stages = []
if side_split:
side_eval_model = Model(side_eval_pipe, hparams, is_train=False,
#loss_mask=np.concatenate([np.zeros(50, dtype=np.float32), np.ones(10, dtype=np.float32)]),
seed=seed)
eval_stages.append((Stage.EVAL_SIDE, side_eval_model))
if avg_sgd:
eval_stages.append((Stage.EVAL_SIDE_EMA, side_eval_model))
if forward_split:
forward_eval_model = Model(forward_eval_pipe, hparams, is_train=False, seed=seed)
eval_stages.append((Stage.EVAL_FRWD, forward_eval_model))
if avg_sgd:
eval_stages.append((Stage.EVAL_FRWD_EMA, forward_eval_model))
if write_summaries:
summ_path = f"{logdir}/{name}_{index}"
if os.path.exists(summ_path):
shutil.rmtree(summ_path)
summ_writer = tf.summary.FileWriter(summ_path) # , graph=tf.get_default_graph()
else:
summ_writer = None
if do_eval and forward_split:
stop_metric = lambda metrics: metrics[Stage.EVAL_FRWD]['SMAPE'].avg_epoch
else:
stop_metric = None
return ModelTrainerV2(train_model, eval_stages, index, patience=patience,
stop_metric=stop_metric,
summary_writer=summ_writer)
if n_models == 1:
with tf.device(f"/gpu:{gpu}"):
scope = tf.get_variable_scope()
all_models = [create_model(scope, 0, None, seed=seed)]
else:
for i in range(n_models):
device = f"/gpu:{i}" if multi_gpu else f"/gpu:{gpu}"
with tf.device(device):
prefix = f"m_{i}"
with tf.variable_scope(prefix) as scope:
all_models.append(create_model(scope, i, prefix=prefix, seed=seed + i))
trainer = MultiModelTrainer(all_models, inc_step)
if save_best_model or save_from_step:
saver_path = f'data/cpt/{name}'
if os.path.exists(saver_path):
shutil.rmtree(saver_path)
os.makedirs(saver_path)
saver = tf.train.Saver(max_to_keep=10, name='train_saver')
else:
saver = None
avg_sgd = asgd_decay is not None
if avg_sgd:
from itertools import chain
def ema_vars(model):
ema = model.train_model.ema
return {ema.average_name(v):v for v in model.train_model.ema._averages}
ema_names = dict(chain(*[ema_vars(model).items() for model in all_models]))
#ema_names = all_models[0].train_model.ema.variables_to_restore()
ema_loader = tf.train.Saver(var_list=ema_names, max_to_keep=1, name='ema_loader')
ema_saver = tf.train.Saver(max_to_keep=1, name='ema_saver')
else:
ema_loader = None
init = tf.global_variables_initializer()
if forward_split and do_eval:
eval_smape = trainer.metric(Stage.EVAL_FRWD, 'SMAPE')
eval_mae = trainer.metric(Stage.EVAL_FRWD, 'MAE')
else:
eval_smape = DummyMetric()
eval_mae = DummyMetric()
if side_split and do_eval:
eval_mae_side = trainer.metric(Stage.EVAL_SIDE, 'MAE')
eval_smape_side = trainer.metric(Stage.EVAL_SIDE, 'SMAPE')
else:
eval_mae_side = DummyMetric()
eval_smape_side = DummyMetric()
train_smape = trainer.metric(Stage.TRAIN, 'SMAPE')
train_mae = trainer.metric(Stage.TRAIN, 'MAE')
grad_norm = trainer.metric(Stage.TRAIN, 'GrNorm')
eval_stages = []
ema_eval_stages = []
if forward_split and do_eval:
eval_stages.append(Stage.EVAL_FRWD)
ema_eval_stages.append(Stage.EVAL_FRWD_EMA)
if side_split and do_eval:
eval_stages.append(Stage.EVAL_SIDE)
ema_eval_stages.append(Stage.EVAL_SIDE_EMA)
# gpu_options=tf.GPUOptions(allow_growth=False),
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
gpu_options=tf.GPUOptions(allow_growth=gpu_allow_growth))) as sess:
sess.run(init)
# pipe.load_vars(sess)
inp.restore(sess)
for model in all_models:
model.init(sess)
# if beholder:
# visualizer = Beholder(session=sess, logdir=summ_path)
step = 0
prev_top = np.inf
best_smape = np.inf
# Contains best value (first item) and subsequent values
best_epoch_smape = []
for epoch in range(max_epoch):
# n_steps = pusher.n_pages // batch_size
if tqdm:
tqr = trange(steps_per_epoch, desc="%2d" % (epoch + 1), leave=False)
else:
tqr = range(steps_per_epoch)
for _ in tqr:
try:
step = trainer.train_step(sess, epoch)
except tf.errors.OutOfRangeError:
break
# if beholder:
# if step % 5 == 0:
# noinspection PyUnboundLocalVariable
# visualizer.update()
if step % eval_every_step == 0:
if eval_stages:
trainer.eval_step(sess, epoch, step, eval_batches, stages=eval_stages)
if save_best_model and epoch > 0 and eval_smape.last < best_smape:
best_smape = eval_smape.last
saver.save(sess, f'data/cpt/{name}/cpt', global_step=step)
if save_from_step and step >= save_from_step:
saver.save(sess, f'data/cpt/{name}/cpt', global_step=step)
if avg_sgd and ema_eval_stages:
ema_saver.save(sess, 'data/cpt_tmp/ema', write_meta_graph=False)
# restore ema-backed vars
ema_loader.restore(sess, 'data/cpt_tmp/ema')
trainer.eval_step(sess, epoch, step, eval_batches, stages=ema_eval_stages)
# restore normal vars
ema_saver.restore(sess, 'data/cpt_tmp/ema')
MAE = "%.3f/%.3f/%.3f" % (eval_mae.last, eval_mae_side.last, train_mae.last)
improvement = '↑' if eval_smape.improved else ' '
SMAPE = "%s%.3f/%.3f/%.3f" % (improvement, eval_smape.last, eval_smape_side.last, train_smape.last)
if tqdm:
tqr.set_postfix(gr=grad_norm.last, MAE=MAE, SMAPE=SMAPE)
if not trainer.has_active() or (max_steps and step > max_steps):
break
if tqdm:
tqr.close()
trainer.end_epoch()
if not best_epoch_smape or eval_smape.avg_epoch < best_epoch_smape[0]:
best_epoch_smape = [eval_smape.avg_epoch]
else:
best_epoch_smape.append(eval_smape.avg_epoch)
current_top = eval_smape.top
if prev_top > current_top:
prev_top = current_top
has_best_indicator = '↑'
else:
has_best_indicator = ' '
status = "%2d: Best top SMAPE=%.3f%s (%s)" % (
epoch + 1, current_top, has_best_indicator,
",".join(["%.3f" % m.top for m in eval_smape.metrics]))
if trainer.has_active():
status += ", frwd/side best MAE=%.3f/%.3f, SMAPE=%.3f/%.3f; avg MAE=%.3f/%.3f, SMAPE=%.3f/%.3f, %d am" % \
(eval_mae.best_epoch, eval_mae_side.best_epoch, eval_smape.best_epoch, eval_smape_side.best_epoch,
eval_mae.avg_epoch, eval_mae_side.avg_epoch, eval_smape.avg_epoch, eval_smape_side.avg_epoch,
trainer.has_active())
print(status, file=sys.stderr)
else:
print(status, file=sys.stderr)
print("Early stopping!", file=sys.stderr)
break
if max_steps and step > max_steps:
print("Max steps calculated", file=sys.stderr)
break
sys.stderr.flush()
# noinspection PyUnboundLocalVariable
return np.mean(best_epoch_smape, dtype=np.float64)
def predict(checkpoints, hparams, return_x=False, verbose=False, predict_window=6, back_offset=0, n_models=1,
target_model=0, asgd=False, seed=1, batch_size=1024):
with tf.variable_scope('input') as inp_scope:
with tf.device("/cpu:0"):
inp = VarFeeder.read_vars("data/vars")
pipe = InputPipe(inp, page_features(inp), inp.n_pages, mode=ModelMode.PREDICT, batch_size=batch_size,
n_epoch=1, verbose=verbose,
train_completeness_threshold=0.01,
predict_window=predict_window,
predict_completeness_threshold=0.0, train_window=hparams.train_window,
back_offset=back_offset)
asgd_decay = 0.99 if asgd else None
if n_models == 1:
model = Model(pipe, hparams, is_train=False, seed=seed, asgd_decay=asgd_decay)
else:
models = []
for i in range(n_models):
prefix = f"m_{i}"
with tf.variable_scope(prefix) as scope:
models.append(Model(pipe, hparams, is_train=False, seed=seed, asgd_decay=asgd_decay, graph_prefix=prefix))
model = models[target_model]
if asgd:
var_list = model.ema.variables_to_restore()
prefix = f"m_{target_model}"
for var in list(var_list.keys()):
if var.endswith('ExponentialMovingAverage') and not var.startswith(prefix):
del var_list[var]
else:
var_list = None
saver = tf.train.Saver(name='eval_saver', var_list=var_list)
x_buffer = []
predictions = None
with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) as sess:
pipe.load_vars(sess)
for checkpoint in checkpoints:
pred_buffer = []
pipe.init_iterator(sess)
saver.restore(sess, checkpoint)
cnt = 0
while True:
try:
if return_x:
pred, x, pname = sess.run([model.predictions, model.inp.true_x, model.inp.page_ix])
else:
pred, pname = sess.run([model.predictions, model.inp.page_ix])
utf_names = [str(name, 'utf-8') for name in pname]
pred_df = pd.DataFrame(index=utf_names, data=np.expm1(pred))
pred_buffer.append(pred_df)
if return_x:
# noinspection PyUnboundLocalVariable
x_values = pd.DataFrame(index=utf_names, data=np.round(np.expm1(x)).astype(np.int64))
x_buffer.append(x_values)
newline = cnt % 80 == 0
if cnt > 0:
print('.', end='\n' if newline else '', flush=True)
if newline:
print(cnt, end='')
cnt += 1
except tf.errors.OutOfRangeError:
print('🎉')
break
cp_predictions = pd.concat(pred_buffer)
if predictions is None:
predictions = cp_predictions
else:
predictions += cp_predictions
predictions /= len(checkpoints)
offset = pd.Timedelta(back_offset, 'D')
start_prediction = inp.data_end + pd.Timedelta('1D') - offset
end_prediction = start_prediction + pd.Timedelta(predict_window - 1, 'D')
predictions.columns = pd.date_range(start_prediction, end_prediction)
if return_x:
x = pd.concat(x_buffer)
start_data = inp.data_end - pd.Timedelta(hparams.train_window - 1, 'D') - back_offset
end_data = inp.data_end - back_offset
x.columns = pd.date_range(start_data, end_data)
return predictions, x
else:
return predictions
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train the model')
parser.add_argument('--name', default='s32', help='Model name to identify different logs/checkpoints')
parser.add_argument('--hparam_set', default='s32', help="Hyperparameters set to use (see hparams.py for available sets)")
parser.add_argument('--n_models', default=1, type=int, help="Jointly train n models with different seeds")
parser.add_argument('--multi_gpu', default=False, action='store_true', help="Use multiple GPUs for multi-model training, one GPU per model")
parser.add_argument('--seed', default=5, type=int, help="Random seed")
parser.add_argument('--logdir', default='data/logs', help="Directory for summary logs")
parser.add_argument('--max_epoch', type=int, default=100, help="Max number of epochs")
parser.add_argument('--patience', type=int, default=2, help="Early stopping: stop after N epochs without improvement. Requires do_eval=True")
parser.add_argument('--train_sampling', type=float, default=1.0, help="Sample this percent of data for training")
parser.add_argument('--eval_sampling', type=float, default=1.0, help="Sample this percent of data for evaluation")
parser.add_argument('--eval_memsize', type=int, default=5, help="Approximate amount of avalable memory on GPU, used for calculation of optimal evaluation batch size")
parser.add_argument('--gpu', default=0, type=int, help='GPU instance to use')
parser.add_argument('--gpu_allow_growth', default=False, action='store_true', help='Allow to gradually increase GPU memory usage instead of grabbing all available memory at start')
parser.add_argument('--save_best_model', default=False, action='store_true', help='Save best model during training. Requires do_eval=True')
parser.add_argument('--no_forward_split', default=True, dest='forward_split', action='store_false', help='Use walk-forward split for model evaluation. Requires do_eval=True')
parser.add_argument('--side_split', default=False, action='store_true', help='Use side split for model evaluation. Requires do_eval=True')
parser.add_argument('--no_eval', default=True, dest='do_eval', action='store_false', help="Don't evaluate model quality during training")
parser.add_argument('--no_summaries', default=True, dest='write_summaries', action='store_false', help="Don't Write Tensorflow summaries")
parser.add_argument('--verbose', default=False, action='store_true', help='Print additional information during graph construction')
parser.add_argument('--asgd_decay', type=float, help="EMA decay for averaged SGD. Not use ASGD if not set")
parser.add_argument('--no_tqdm', default=True, dest='tqdm', action='store_false', help="Don't use tqdm for status display during training")
parser.add_argument('--max_steps', type=int, help="Stop training after max steps")
parser.add_argument('--save_from_step', type=int, help="Save model on each evaluation (10 evals per epoch), starting from this step")
parser.add_argument('--predict_window', default=63, type=int, help="Number of days to predict")
args = parser.parse_args()
param_dict = dict(vars(args))
param_dict['hparams'] = build_from_set(args.hparam_set)
del param_dict['hparam_set']
train(**param_dict)
# hparams = build_hparams()
# result = train("definc_attn", hparams, n_models=1, train_sampling=1.0, eval_sampling=1.0, patience=5, multi_gpu=True,
# save_best_model=False, gpu=0, eval_memsize=15, seed=5, verbose=True, forward_split=False,
# write_summaries=True, side_split=True, do_eval=False, predict_window=63, asgd_decay=None, max_steps=11500,
# save_from_step=10500)
# print("Training result:", result)
# preds = predict('data/cpt/fair_365-15428', 380, hparams, verbose=True, back_offset=60, n_models=3)
# print(preds)