-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
63 lines (51 loc) · 2.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from keras.utils import multi_gpu_model
from keras.callbacks import Callback
from generator import DataGenerator
from CNN import FullNetwork
import tensorflow as tf
import json
import sys
import os
class SaveCallback(Callback):
def __init__(self, model):
self.model_to_save = model
def on_epoch_end(self, epoch, logs=None):
self.model_to_save.save_weights('weights.h5')
d = {}
if os.path.exists('epochs.json'):
d = json.load(open('epochs.json'))
d[epoch] = logs
json.dump(d, open('epochs.json', 'w'))
def main():
labels = json.load(open(os.path.join('data', 'labels.json')))
partition = {'training': None, 'validation': None}
for x in partition.keys():
partition[x] = [f for f in os.listdir(os.path.join('data', x)) if os.path.isfile(
os.path.join(os.path.join('data', x), f))]
partition[x].sort()
print('Indices read.')
n_classes = len({labels[x] for x in labels})
l = {labels[x] for x in labels}
l = {x: i for i, x in enumerate(sorted(list(l)))}
labels = {x: l[labels[x]] for x in labels.keys()}
json.dump(l, open('mapping.json', 'w'))
print('Mappings written.')
training_generator = DataGenerator(partition['training'], 'training', labels, 28, 1, n_classes, True, True)
validation_generator = DataGenerator(partition['validation'], 'validation', labels, 28, 1, n_classes, True, True)
model = None
with tf.device('/cpu:0'):
model = FullNetwork.model()
if os.path.exists('weights.h5'):
model.load_weights('weights.h5')
initial_epoch = 0
if os.path.exists('epochs.json'):
initial_epoch = len(json.load(open('epochs.json')).keys())
cbk = SaveCallback(model)
parallel_model = multi_gpu_model(model, gpus=2)
parallel_model.compile(optimizer='adadelta', loss={
'color_model': 'mean_squared_error', 'clf_model': 'categorical_crossentropy'}, metrics={'color_model': 'accuracy', 'clf_model': 'accuracy'})
parallel_model.fit_generator(generator=training_generator, epochs=1000, verbose=1, callbacks=[
cbk], validation_data=validation_generator, use_multiprocessing=True, workers=4, initial_epoch=initial_epoch)
print('Training done.')
if __name__ == '__main__':
main()