forked from PermafrostDiscoveryGateway/MAPLE_v3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpl_clean_inference.py
270 lines (250 loc) · 14.7 KB
/
mpl_clean_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/env python3
#env maple
"""
MAPLE Workflow
(5) Code base to clean the inferences from known artifacts.
This code will take as input shape files with known artifacts and do an intersect with infered shape file and remove if
they fall into a known artifact.
The input shp file will be edited from this code. If you want to keep the original file make a copy and point it to this
Code base.
Expects the cleaning artifacts to be in a single folder and will go through all the shp files. These shape files should
have only one feature (dissolved) if multi feature it will take the first feature and continue with a warning.
Since combining the cleaning data (Union) take time, it advisable to run this for a batch of files.
Project: Permafrost Discovery Gateway: Mapping Application for Arctic Permafrost Land Environment(MAPLE)
PI : Chandi Witharana
Author : Amal Shehan Perera
"""
import sys
from osgeo import ogr, osr
import os
import time
import glob
def listdirpaths(folder):
""" List the file paths in a folder/directory so that they can be read
Returns:
list of file paths
Arguments:
folder: folder in which file paths to be listed.
Output
"""
return [
d for d in (os.path.join(folder, d1) for d1 in os.listdir(folder))
if os.path.isdir(d)
]
######################## GLOBAL settings ################################################
# Reporting verbosity to find out deletion of polygons for testing
VERBOSE_granularity=0 # output print frequency for deleting loops 0 will have no outputs 1=all 10=every 10
#########################################################################################
def clean_inference_shapes(clean_data_dir="./data/cln_data",
input_data_dir="./data/final_shp",
input_data_boundary_file_path="./data/input_bound/sample2_out_boundry.shp",
):
"""Clean Known false positives (mis-classified) Polygons, based on known ground truth (rivers,lakes,buildings,etc
Parameters:
clean_data_dir: Location where you have the cleaning data ground truth to be used for cleaning
input_data_dir: Location of shape files to be cleaned
input_data_boundary_file_path: Boundary/Envelope of the input data files if available to reduce compute.
ToDo:Refactor this function to show the higher level abstract functionality
"""
st=time.time()
# LOAD the cleaning data files
#clean_data_path = clean_data_dir + "/*.shp" # look for all shp files in the cln_data dir given
#clean_data_fps = sorted(glob.glob(clean_data_path))
ogr.UseExceptions() # Enable gdal:ogr errors to be captured/shown so that we know when things fail!
# Note: No error handling in gdal
try: #LOAD cleaning data
drv = ogr.GetDriverByName('ESRI Shapefile')
try: #GET the source/input file projected coordinate system to transfer the cleaning data coordinates
input_data_fps = listdirpaths(input_data_dir)
inDataFile = drv.Open(input_data_fps[0])
inDataLyr = inDataFile.GetLayer()
inSpatialRef = inDataLyr.GetSpatialRef()
# loading projection
sr = osr.SpatialReference(str(inSpatialRef))
srid = sr.GetAuthorityCode(None)
print("Input Data SRID:",srid)
print("Geo Ref for input data for transformation of cleaning data obtained")
except:
print("Unable to get Geo Ref for input data for transfomation of cleaning data")
clean_data_fps = [(clean_data_dir+"/"+f_nm) for f_nm in os.listdir(clean_data_dir) if f_nm.endswith('.shp')]
print("*********************************************")
print("List of cleaning data files selected to LOAD:")
print(*clean_data_fps,sep="\n")
try:
all_geoms=ogr.Geometry(ogr.wkbMultiPolygon)
all_geoms_union = ogr.Geometry(ogr.wkbMultiPolygon)
for fp in clean_data_fps:
# Open cleaning data files:layer
print("Loading Cleaning Data FILE:\n",fp)
try:
dc = drv.Open(fp,True) # True allowed to edit if there are errors
except:
print("Unable to open cleaning Data:", fp)
try:
c_lyr = dc.GetLayer()
except:
print("Unable to get Layer in cleaning Data:", fp)
if (c_lyr.GetFeatureCount()>1):
print("Warning: More than 1 feature in cleaning shapefile only first taken, dissolve data and use")
try: #Try to fix geom errors in cleaning data before reaging for processing if required
feature=c_lyr.GetFeature(0)
geom = feature.GetGeometryRef()
if not geom.IsValid():
feature.SetGeometry(geom.Buffer(0)) # <====== SetGeometry
c_lyr.SetFeature(feature) # <====== SetFeature
assert feature.GetGeometryRef().IsValid() # Doesn't fail
c_lyr.ResetReading()
print("Invalid Geometry in cleaning data Fixed")
except:
print("unable to fix geometry")
try:
c_feature=c_lyr.GetFeature(0)
except:
print("Unable to get feature")
print("Cleaning Data Added:",fp,"\nFields in File",[field.name for field in c_lyr.schema])
try:
c_geometry = c_feature.geometry().Clone()
#print("geometry VALID:",c_geometry.IsValid())
#print("Geometry cloned")
except:
print("unable to clone geom")
try: #Transfer cleaning data geo coordinates to the input file coordinate system
clnSpatialRef = c_lyr.GetSpatialRef()
sr = osr.SpatialReference(str(clnSpatialRef))
srid = sr.GetAuthorityCode(None)
print("Cleaning SRID:", srid)
coordTrans = osr.CoordinateTransformation(clnSpatialRef,inSpatialRef)
c_geometry.Transform(coordTrans)
print("Cleaning Data Geometry geo coordinate transformed")
except:
print("Unable to do Cleaning Data geo coordinate transform")
try:
all_geoms_union = all_geoms_union.Union(c_geometry).Clone()
print("Cleaining Geometry Unioined")
#all_geoms_union = c_geometry.Clone()
print("All geom union geometry Area:",all_geoms_union.Area())
except:
print("Unable to union cleaning data geom")
try: # Fix if any geometry errors
c_geometry.CloseRings()
#print("Geometry Closed Rings")
except:
print("Unable Close Ring geom")
# try: In order to use cascading union which is much more efficent.
# Due to geom errors in cleaning data unable to do ToDO fix geom errors in cleaning data
# all_geoms.AddGeometry(c_geometry)
# print("Geometry Added")
# except:
# print("unable to add geom")
# TIME taken for testing/Optimizing code can/should be commented
nd=time.time()
print("****************************************************")
print("Wall Time for LOAD/UNION all cleaning data %5.4f min"%((nd-st)/60))
st=time.time()
#all_union=all_geoms.UnionCascaded() # Better option but cannot work with geom errors
#nd = time.time()
#print("Wall Time for Cascade UNION all cleaning data {}".format(nd - st))
all_union=all_geoms_union.Clone()
print("****************************************************")
# </TIME>#######################################################
except:
print("Unable to process load/process shape files via gdal:ogr")
except:
print("Unable to READ/LOAD Cleaning Data main loop")
# Open COVERAGE area filter to remove areas that are not covered by the study
# NOT used as it is better to remove unwanted areas in the input cleaning files and reduce input dependencies
#The cleaning data will be interected with the coverage data to reduce the processing overhead.
#Coverae file is located in the cvg_data folder
# dcoverage = drv.Open("./data/cvg_data/sample2_out_boundry.shp",False) # False as we are NOT editing the file
# coverage_lyr = dcoverage.GetLayer()
# coverage_feature=coverage_lyr.GetNextFeature()
# coverage_geometry=coverage_feature.geometry().Clone()
# all_union=all_union.Intersection(coverage_geometry).Clone()
# print("Coverage Data Loaded from {}".format("./cvg_data/CAVM_coverage.shp"))
# LOAD : AND INTERSECT the boundary aka feature envelope of the input files to reduce the processing if availble
#drv = ogr.GetDriverByName('ESRI Shapefile')
if (all_union.Area()==0): print("All Clean Geom union geometry Area=0 nothing will be cleaned:")
print("input data boundry file path:",input_data_boundary_file_path)
if (os.path.isfile(input_data_boundary_file_path)):
dboundry = drv.Open(input_data_boundary_file_path,False) #False as we are NOT editing the file
dboundry_lyr = dboundry.GetLayer()
b_feature=dboundry_lyr.GetNextFeature()
b_geometry=b_feature.geometry().Clone()
all_union=all_union.Intersection(b_geometry).Clone()
print("Boundary Data Loaded from {}".format("sample2_out_boundry.shp"))
else:
print("No Boundary/Feature Envelope Data Loaded to reduce computing")
print("all geom union geometry Area:",all_union.Area())
if (all_union.Area()==0):
print("All Clean Geom union geometry Area=0 after boundry intersection nothing will be cleaned:")
#LOAD all Input files given for cleaning
#input_data_paths = input_data_dir + "/*" # look for all directories pointed for input processing
input_data_fps = sorted(listdirpaths(input_data_dir))
print("input data directory",input_data_dir)
print("List of input data directories selected to PROCESS:CLEAN:")
print(*input_data_fps,sep="\n")
# FOR testing if you want to take only few files
# input_data_fps=input_data_fps[0:1]
if (all_union.Area()>0):
for fp in input_data_fps:
# LOAD : READ each input file given
input_data_file = sorted(glob.glob(fp + "/*.shp") )
print("File selected to PROCESS:CLEAN:", input_data_file[0])
ds = drv.Open(input_data_file[0],True) # True as we are editing the file
s_lyr = ds.GetLayer()
print("Total Features before Cleaning Filter {}".format(s_lyr.GetFeatureCount()))
print("input data file : fields",[field.name for field in s_lyr.schema])
st=time.time()
st_cpu = time.process_time()
# Go through all features and remove them if it falls within the filter_geom
#for fid in range(100): # READ first 100 features for testing in the input file to check and remove
#for fid in [0,1,2,3,4,5078,5079,5080,5081,5082,21865,21866,21868,21869,21870,132392,133995,18315]:
# wat/lak del****** not del***************** SACHI del FID 7735 SACHI del FID 0
# in input file SampleData_157_4.shp
for fid in range(s_lyr.GetFeatureCount()): # READ all features in the input file to check and remove
s_feature=s_lyr.GetFeature(fid)
# OPTION:1 Creating a point shape Using the centroid from the input file to check
# Instead of checking the polygon of the shape to reduce computing
shp_centroid = ogr.Geometry(ogr.wkbPoint)
shp_centroid.AddPoint(s_feature.GetField('CentroidX'),s_feature.GetField('CentroidY'))
# OPTION:2 Using the polygon in the input feature to create a geometry
#s_geometry=s_feature.geometry().Clone()
#if (all_union.Intersection(s_geometry).IsEmpty()): #Using the polygon OPTION 2
keep = True
try: # to see if intersection can be done with errors in the cleaning shp file.
keep = (all_union.Intersection(shp_centroid).IsEmpty()) # Using the centroid point of shape OPTION 1
#if (all_union.Intersection(shp_centroid).IsEmpty()): # Using the centroid point of shape OPTION 1
except: # ignore that shape
pass
print("Unable to intersect",fid)
if keep:
pass
# if VERBOSE_granularity and (fid%VERBOSE_granularity == 0):
# print("NOT Deleted:",fid)
else:
s_lyr.DeleteFeature(fid)
# if VERBOSE_granularity and (fid%VERBOSE_granularity == 0):
# print("Deleted:",fid)
ds.ExecuteSQL('REPACK ' + s_lyr.GetName())
ds.ExecuteSQL('RECOMPUTE EXTENT ON ' + s_lyr.GetName())
#del ds #not working need to check if required. Since when this goes out of scope it will be deleted
print("Sample Features after deleting {}".format(s_lyr.GetFeatureCount()))
# TIME taken for testing/Optimizing code can/should be commented
nd = time.time()
nd_cpu = time.process_time()
print("*****************************************************")
print("Wall Time for check/remove %6.4f min"%((nd-st)/60))
print("CPU Time for check/remove %6.4f min"%((nd_cpu-st_cpu)/60))
# </TIME>#######################################################
print("*******************END - CLEANING *******************")
else:
print("No cleaining done : Cleaning artifacts are outside the input data area")
############################## To be customized to eval environment if required or testing ##########################
# Not required since the clean function is called from the workflow
def main():
from mpl_config import MPL_Config
clean_inference_shapes(MPL_Config.CLEAN_DATA_DIR,MPL_Config.FINAL_SHP_DIR,"./data/input_bound/sample3n4_out_bound.shp")
#clean_inference_shapes("./data_2/cln_data/","./data_2/final_shp/","./data_2/input_bound/sample3n4_out_bound.shp")
#clean_inference_shapes("/scratch1/09208/asperera/maple_run/MAPLE_11/data_2/cln_data/", "/scratch1/09208/asperera/maple_run/MAPLE_11/data_2/final_shp/", "/scratch1/09208/asperera/maple_run/MAPLE_11/data_2/input_bound/sample3n4_out_bound.shp")
if __name__ == "__main__":
main()