forked from ALMSantana/Projeto---3389
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlangchain_retrieval_pdf.py
49 lines (39 loc) · 1.53 KB
/
langchain_retrieval_pdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.prompts import ChatPromptTemplate
from langchain.chains import SimpleSequentialChain
from langchain.chains import LLMChain
from langchain.chains import ConversationChain
from langchain.globals import set_debug
from langchain_openai import OpenAIEmbeddings
from langchain.memory import ConversationSummaryMemory
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import CharacterTextSplitter
import os
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import RetrievalQA
from dotenv import load_dotenv
load_dotenv()
set_debug(True)
llm = ChatOpenAI(
model="gpt-3.5-turbo",
temperature=0.5,
api_key=os.getenv("OPENAI_API_KEY"))
carregadores = [
PyPDFLoader("GTB_standard_Nov23.pdf"),
PyPDFLoader("GTB_gold_Nov23.pdf"),
PyPDFLoader("GTB_platinum_Nov23.pdf")
]
documentos = []
for carregador in carregadores:
documentos.extend(carregador.load())
quebrador = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
textos = quebrador.split_documents(documentos)
# print(textos)
embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(textos, embeddings)
qa_chain = RetrievalQA.from_chain_type(llm, retriever=db.as_retriever())
pergunta = "Como devo proceder caso tenha um item comprado roubado"
resultado = qa_chain.invoke({ "query" : pergunta})
print(resultado)