-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKomp_confounding.R
61 lines (52 loc) · 1.95 KB
/
Komp_confounding.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# KOMP confounding
library(tidyverse)
library(lubridate)
library(broom)
library(xts)
load("/Users/alfloeffler/Documents/Luftqualitaet/Analysen/NO2/BW_17_stationen.RData")
summary(BW_station_data)
load("~/Documents/Luftqualitaet/Analysen/NO2/BW_stations_komp_WG.RData")
BW_stations_komp_WG %>% summary()
BW_data <- BW_stations_komp_WG
DATEN <- BW_data%>%
mutate(yearID = BW_data$datetime %>%
format_ISO8601(precision = "y") %>%as.numeric() )
DATEN <- DATEN %>% filter(yearID %in% 2014:2019)
DATEN$NO2 <- DATEN$NO2 %>% replace_na(mean(.,na.rm= TRUE))
DATEN$NO_ <- DATEN$NO_ %>% replace_na(mean(.,na.rm= TRUE))
DATEN$O3 <- DATEN$O3 %>% replace_na(mean(.,na.rm= TRUE))
summary(DATEN)
# Auswahl der Daten von 2015 bis 2020
Daten_15_20 <- BW_station_data %>%
dplyr::select(name,yearID,NO_,NO2) %>%
filter(yearID %in% 2015:2020)
head(Daten_15_20,2)
single_slope <- Daten_15_20 %>% filter(name == "Alb") %>%
lm(NO2 ~ NO_,data = .) %>%
.$coef %>%
.[2]
# Datensätze mit NA eliminieren
Daten_15_20 <- Daten_15_20 %>% na.omit()
Regr_no2.no <-Daten_15_20 %>% group_by(name)%>%
summarise(slp = lm(NO2 ~ NO_)$coeff[2],
intcpt = lm (NO2 ~ NO_)$coeff[1])
NROW(Daten_15_20)
Korr <- Daten_15_20 %>% group_by(name) %>%
summarise (Korrelation =cor(NO2,NO_))
Korr %>% arrange(Korrelation) # zwischen 0.1 und 0.62
#weitere Korrelationen
#NO2 & O3
Daten_NO2_O3 <- BW_station_data %>%
dplyr::select(yearID,name,datetime,NO2,O3) %>% na.omit()
Korr_NO2_O3 <- Daten_NO2_O3 %>% group_by(name)%>%
summarise (Korrelation =cor(NO2,O3)) %>% arrange(Korrelation)
# NO2 & Temp
NROW(DATEN)#393454
# Datensätze mit defektem Temperaturfühler eliminieren
DATEN_temp <- DATEN %>% filter (Temp < 45)
DATEN_temp <- DATEN_temp %>% na.omit()
Korrelationen <- DATEN_temp %>% group_by(name)%>%
summarise(Kor_no2.temp= cor(NO2,Temp),Kor_no.temp = cor(NO_,Temp),
Kor_o3.temp = cor(O3,Temp))
DATEN_temp %>% filter(name == "Rt_") %>%
summarise (cor(O3,Temp))