-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGA.py
252 lines (230 loc) · 11.6 KB
/
GA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import random
#Generate random individuals for population
def individual(number_of_genes, number_of_color):
individual = []
for i in range(number_of_genes):
individual.append(random.randint(0, number_of_color-1))
return individual
#Generate random population method number 1
def population_1(number_of_individuals,number_of_genes, number_of_color):
return [individual(number_of_genes, number_of_color)
for x in range(number_of_individuals)]
#Generate random population method number 2
def population_2(number_of_individuals,number_of_genes, number_of_color):
n = number_of_color-1
num = 1
pop = []
while (num <= number_of_individuals):
individual = []
if num <= number_of_individuals//2:
for i in range(number_of_genes):
individual.append(random.randint(0, n//2))
pop.append(individual)
else:
for i in range(number_of_genes):
individual.append(random.randint(n//2, n))
pop.append(individual)
num += 1
return pop
#Generate random population method number 3
def population_3(number_of_individuals,number_of_genes, number_of_color):
n = number_of_color-1
num = 1
pop = []
while (num <= number_of_individuals):
individual = []
if num <= number_of_individuals//4:
for i in range(number_of_genes):
individual.append(random.randint(0, n//2))
pop.append(individual)
elif number_of_individuals//4 < num and num < number_of_individuals//2:
for i in range(number_of_genes):
individual.append(random.randint((n//2)-1, n))
pop.append(individual)
else:
for i in range(number_of_genes):
individual.append(random.randint(0, n))
pop.append(individual)
num += 1
return pop
#Fitness Function method number 1 'fault'
def fitness_calculation_1(individual, adjacency_matrix):
fitness_fault = 0
for i in range(len(individual)-1):
for j in range(len(individual)):
if individual[i] == individual[j] and adjacency_matrix[j][i] == 1:
fitness_fault += 1
fitness_value = fitness_fault
return fitness_value
#Fitness Function method number 2 'fault and number of color'
def fitness_calculation_2(individual, adjacency_matrix):
my_dict = {i:individual.count(i) for i in individual}
fitness_color = len(my_dict)
fitness_fault = 0
for i in range(len(individual)-1):
for j in range(len(individual)):
if individual[i] == individual[j] and adjacency_matrix[j][i] == 1:
fitness_fault += 1
fitness_value = 10 * fitness_fault + fitness_color
return fitness_value
def fittest(solution_list):
fittest_value_list = []
for fittest_solution in solution_list:
my_dict = {i:fittest_solution.count(i) for i in fittest_solution}
fittest_value = len(my_dict)
fittest_value_list.append(fittest_value)
fittest_list = list(zip(fittest_value_list,solution_list))
sorted_fittest_list = sorted(fittest_list, key=lambda k:k[0])
solution=list(filter(lambda x: x[0] == sorted_fittest_list[0][0], sorted_fittest_list))
number_colors_solution = solution[0][0]
solution=[x[1] for x in solution]
return number_colors_solution, solution
def selection(sorted_population):
num = len(sorted_population)
n = round(num / 4)
k = num - n
# Elitism Selection
elite_genertion = sorted_population[0: n]
# Random Selection
random_genertion = random.choices(sorted_population, k=k)
selected_genertion = elite_genertion + random_genertion
return selected_genertion
def crossover_point(number_of_genes):
p1 = random.randint(0,round(number_of_genes/4))
p2 = random.randint(round(number_of_genes/4),round(number_of_genes/2))
p3 = random.randint(round(number_of_genes/2),round(number_of_genes*3/4))
p4 = random.randint(round(number_of_genes*3/4),number_of_genes-1)
point_list= [p1,p2,p3,p4]
return point_list
def crossover_1(parent_list):
for x in range(0,len(parent_list),2):
#Generate random four point for every parent to make offspring between them
point_list = crossover_point(len(parent_list[0]))
parent_list[x][point_list[0]:point_list[1]],parent_list[x+1][point_list[0]:point_list[1]] = parent_list[x+1][point_list[0]:point_list[1]], parent_list[x][point_list[0]:point_list[1]]
parent_list[x][point_list[2]:point_list[3]],parent_list[x+1][point_list[2]:point_list[3]] = parent_list[x+1][point_list[2]:point_list[3]], parent_list[x][point_list[2]:point_list[3]]
return parent_list
def crossover_2(parent_list, number_of_genes):
for x in range(0, len(parent_list), 2):
p = random.randint(2, number_of_genes)
parent_list[x][0:p],parent_list[x+1][0:p]=parent_list[x+1][0:p],parent_list[x][0:p]
return parent_list
def mutation_individual_1(individual):
idx = range(len(individual))
i1, i2 = random.sample(idx, 2)
individual[i1], individual[i2] = individual[i2], individual[i1]
return individual
def mutation_individual_2(individual,adjacency_matrix,number_of_color):
for i in range(len(individual)-1):
for j in range(len(individual)):
if individual[i] == individual[j] and adjacency_matrix[j][i] == 1:
while True:
new_color = random.randint(0, number_of_color-1)
if individual[i] != new_color:
individual[i] = new_color
break
return individual
#mutation_rate < 1
def mutation(mutation_method, adjacency_matrix, number_of_color, child_list, mutation_rate):
num = round(len(child_list)*mutation_rate)
idx_list = range(len(child_list))
idx_individuals = random.sample(idx_list, num)
for x in idx_individuals:
if mutation_method == '1':
mutation_individual_1(child_list[x])
else:
mutation_individual_2(child_list[x],adjacency_matrix,number_of_color)
return child_list
def GAlgorthim(population_method, fitness_method, crossover_method, mutation_method, number_of_individuals, max_generation,
number_of_genes, number_of_color, mutation_rate, adjacency_matrix):
#Generate population
if population_method == '1':
generation=population_1(number_of_individuals, number_of_genes, number_of_color)
elif population_method == '2':
generation=population_2(number_of_individuals, number_of_genes, number_of_color)
else:
generation=population_3(number_of_individuals, number_of_genes, number_of_color)
num_generation = 1
optimal_fitness = 999999999
optimal_sol_list = []
while( num_generation <= max_generation):
# 1- calculate the fitness for every individual in the population
fitness = []
for individual in generation:
if fitness_method == '1':
fitness.append(fitness_calculation_1(individual, adjacency_matrix))
else:
fitness.append(fitness_calculation_2(individual, adjacency_matrix))
individual_fitness_list = list(zip(fitness, generation))
sorted_individual = sorted(individual_fitness_list, key=lambda k: k[0])
optimal_sorted_individual = list(filter(lambda x: x[0] == sorted_individual[0][0], sorted_individual))
#Add the best individual to the optimal solution list
if (optimal_sorted_individual[0][0] == 0):
#print('found the solution in genertion number ', num_generation)
optimal_fitness = optimal_sorted_individual[0][0]
for x in optimal_sorted_individual:
optimal_sol_list.append([optimal_fitness,list(x[1])])
elif (optimal_sorted_individual[0][0] < optimal_fitness):
optimal_fitness = optimal_sorted_individual[0][0]
optimal_sol = list(optimal_sorted_individual[0][1])
optimal_sol_list.append([optimal_fitness,optimal_sol])
sorted_individual = [x[1] for x in sorted_individual]
# 2- Selecte the parents
parents = selection(sorted_individual)
# 3- Crossover operation
if crossover_method == 'FPC' :
children = crossover_1(parents)
else:
children = crossover_2(parents, number_of_genes)
if fitness_method == '1':
if optimal_sorted_individual[0][0] == 0:
optimal_sorted_individual = [x[1] for x in optimal_sorted_individual]
new_number_of_color,e = fittest(optimal_sorted_individual)
if new_number_of_color < number_of_color:
number_of_color = new_number_of_color
#print('Start again with number of color = ', number_of_color)
if population_method == '1':
generation=population_1(number_of_individuals, number_of_genes, number_of_color)
elif population_method == '2':
generation=population_2(number_of_individuals, number_of_genes, number_of_color)
else:
generation=population_3(number_of_individuals, number_of_genes, number_of_color)
num_generation = 1
else:
generation= mutation(mutation_method, adjacency_matrix, number_of_color, children, mutation_rate)
num_generation += 1
else:
generation= mutation(mutation_method, adjacency_matrix, number_of_color, children, mutation_rate)
num_generation += 1
else:
if optimal_sorted_individual[0][0] == number_of_color:
optimal_sorted_individual = [x[1] for x in optimal_sorted_individual]
new_number_of_color,e = fittest(optimal_sorted_individual)
if new_number_of_color < number_of_color:
number_of_color = new_number_of_color
print('Start again with number of color = ', number_of_color)
if population_method == '1':
generation=population_1(number_of_individuals, number_of_genes, number_of_color)
elif population_method == '2':
generation=population_2(number_of_individuals, number_of_genes, number_of_color)
else:
generation=population_3(number_of_individuals, number_of_genes, number_of_color)
num_generation = 1
else:
generation= mutation(mutation_method, adjacency_matrix, number_of_color, children, mutation_rate)
num_generation += 1
else:
generation= mutation(mutation_method, adjacency_matrix, number_of_color, children, mutation_rate)
num_generation += 1
optimal_sol_list=sorted(optimal_sol_list, key=lambda k: k[0])
optimal_sol_list=list(filter(lambda x: x[0] == optimal_sol_list[0][0], optimal_sol_list))
optimal_sol_list=[x[1] for x in optimal_sol_list]
number_sol_color,ss=fittest(optimal_sol_list)
s = []
for x in ss:
if x not in s:
s.append(x)
if fitness_method == '1':
fitness_s = fitness_calculation_1(s[0], adjacency_matrix)
else:
fitness_s = fitness_calculation_2(s[0], adjacency_matrix)
return s,fitness_s,number_sol_color