|
| 1 | +#include <cmath> |
| 2 | +#include <iostream> |
| 3 | +#include <numeric> |
| 4 | +#include <random> |
| 5 | + |
| 6 | +// Returns a pseudo-random number generator |
| 7 | +std::default_random_engine& rng() { |
| 8 | + // Initialize static pseudo-random engine with non-deterministic random seed |
| 9 | + static std::default_random_engine randEngine(std::random_device{}()); |
| 10 | + return randEngine; |
| 11 | +} |
| 12 | + |
| 13 | +// Returns a random double in [0, 1) |
| 14 | +double drand() { |
| 15 | + return std::uniform_real_distribution<double>(0.0, 1.0)(rng()); |
| 16 | +} |
| 17 | + |
| 18 | +// This function takes |
| 19 | +// - v: value in register |
| 20 | +// - a: a scaling value for the logarithm based on Morris's paper |
| 21 | +// It returns n(v,a), the approximate count |
| 22 | +auto n(double v, double a) { return a * (pow((1 + 1 / a), v) - 1); } |
| 23 | + |
| 24 | +// This function takes |
| 25 | +// - v: value in register |
| 26 | +// - a: a scaling value for the logarithm based on Morris's paper |
| 27 | +// It returns a new value for v |
| 28 | +auto increment(int v, double a) { |
| 29 | + // delta is the probability of incrementing our counter |
| 30 | + const auto delta = 1 / (n(v + 1, a) - n(v, a)); |
| 31 | + return (drand() <= delta) ? v + 1 : v; |
| 32 | +} |
| 33 | + |
| 34 | +// This simulates counting and takes |
| 35 | +// - n_items: number of items to count and loop over |
| 36 | +// - a: a scaling value for the logarithm based on Morris's paper |
| 37 | +// It returns n(v,a), the approximate count |
| 38 | +auto approximate_count(int n_items, double a) { |
| 39 | + auto v = 0; |
| 40 | + for (auto i = 0; i < n_items; ++i) |
| 41 | + v = increment(v, a); |
| 42 | + |
| 43 | + return n(v, a); |
| 44 | +} |
| 45 | + |
| 46 | +// This function takes |
| 47 | +// - n_trials: the number of counting trials |
| 48 | +// - n_items: the number of items to count to |
| 49 | +// - a: a scaling value for the logarithm based on Morris's paper |
| 50 | +// - threshold: the maximum percent error allowed |
| 51 | +// It returns a "pass" / "fail" test value |
| 52 | +auto test_approximate_count( |
| 53 | + int n_trials, int n_items, double a, double threshold) { |
| 54 | + auto sum = 0.0; |
| 55 | + for (auto i = 0; i < n_trials; ++i) |
| 56 | + sum += approximate_count(n_items, a); |
| 57 | + const auto avg = sum / n_trials; |
| 58 | + return std::abs((avg - n_items) / n_items) < threshold ? "pass" : "fail"; |
| 59 | +} |
| 60 | + |
| 61 | +int main() { |
| 62 | + std::cout << "Counting Tests, 100 trials\n"; |
| 63 | + |
| 64 | + std::cout << "testing 1,000, a = 30, 1% error " |
| 65 | + << test_approximate_count(100, 1000, 30, 0.1) << "\n"; |
| 66 | + std::cout << "testing 12,345, a = 10, 1% error " |
| 67 | + << test_approximate_count(100, 12345, 10, 0.1) << "\n"; |
| 68 | + // Note : with a lower a, we need more trials, so a higher % error here. |
| 69 | + std::cout << "testing 222,222, a = 0.5, 10% error " |
| 70 | + << test_approximate_count(100, 222222, 0.5, 0.2) << "\n"; |
| 71 | +} |
0 commit comments