-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
283 lines (208 loc) · 12.3 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from collections import defaultdict
import argparse
import re
def parse_input_file(filename):
data = defaultdict(list)
current_graph = None
with open(filename, 'r') as file:
for line in file:
line = line.strip()
if line.startswith('#Graph'):
current_graph = int(line.split()[1])
elif current_graph is not None:
if re.match(r'\d+,\s*\d+,\s*\d+', line):
n, m, w = map(int, line.split(','))
data[current_graph] = {
'n': n, 'm': m, 'w': w,
'solved default': None, 'total time default': None,
'solved sequences heur': None, 'total time sequences heur': None,
'preprocess sequences heur': None, 'ilp time seqs heur': None,
'fixed vars seqs': None,
}
elif 'solved' in line or 'time' in line or 'preprocess' in line or 'fixed' in line:
key, value = line.split(':')
key = key.strip()
value = value.strip()
if value in ['True', 'False']:
value = value == 'True'
else:
value = float(value)
if key in data[current_graph]:
data[current_graph][key] = value
return data
def group_by_width(parsed_data):
# Flexible width ranges
width_ranges = {
"1-3": (1, 3),
"4-6": (4, 6),
"7-9": (7, 9),
"10+": (10, 10000)
}
grouped_data = {key: {
'graphs': 0, 'edges': [], 'widths': [], 'preprocess sequences heur': [],
'total time default': [], 'total time sequences heur': [],
'ilp time seqs heur' : [],
'solved default': 0, 'solved sequences heur': 0,
'speedup_seqs': [], 'fixed vars seqs': [],
'total time default solo': [], 'total time sequences heur solo': [],
'graphs_common': 0,
} for key in width_ranges}
for graph, info in parsed_data.items():
n,m,w = info['n'],info['m'],info['w']
for range_label, (low, high) in width_ranges.items():
if low <= w <= high:
group = grouped_data[range_label]
group['graphs'] += 1
group['edges'].append(m)
group['widths'].append(w)
# Store ILP times in instances solved in all configurations
if info['solved default'] and info['solved sequences heur']:
group['total time default'].append(info['total time default'])
group['total time sequences heur'].append(info['total time sequences heur'])
group['ilp time seqs heur'].append(info['ilp time seqs heur'])
group['graphs_common'] += 1 # Find intersection of solved instances in each safety setting
# Preprocessing time, number of instances solved, total time for every safety setting, fixed variables
if info['solved default']:
group['solved default'] += 1
group['total time default solo'].append(info['total time default'])
if info['solved sequences heur']:
group['preprocess sequences heur'].append(info['preprocess sequences heur'])
group['solved sequences heur'] += 1
group['total time sequences heur solo'].append(info['total time sequences heur'])
group['fixed vars seqs'].append(info['fixed vars seqs']/(w*m))
if info['solved default'] and info['solved sequences heur']:
assert(info['total time sequences heur'] > 0 and info['ilp time seqs heur'] > 0)
#if info['total time sequences heur'] > 0 and info['ilp time seqs heur'] > 0: # Ensure we avoid division by zero
speedup_seqs = info['total time default'] / info['ilp time seqs heur']
speedup_seqs_with_preproc = info['total time default'] / info['total time sequences heur']
assert( abs(info['total time sequences heur'] - (info['ilp time seqs heur'] + info['preprocess sequences heur'])) < 0.1)
group['speedup_seqs'].append((speedup_seqs, speedup_seqs_with_preproc))
if not info['solved default'] and info['solved sequences heur']:
speedup_seqs = 300 / info['ilp time seqs heur']
speedup_seqs_with_preproc = 300 / info['total time sequences heur']
group['speedup_seqs'].append((speedup_seqs, speedup_seqs_with_preproc))
if info['solved default'] and not info['solved sequences heur']:
speedup_seqs = info['total time default'] / (300 + info['total time default'])
speedup_seqs_with_preproc = info['total time default'] / (300 + info['total time default'])
group['speedup_seqs'].append((speedup_seqs, speedup_seqs_with_preproc))
return grouped_data
def calculate_metrics(grouped_data):
results = {}
for width_range, group in grouped_data.items():
results[width_range] = {
'graphs_common': group['graphs_common'],
'ilp_no_safety': -1,
'ilp_safe_seqs': -1,
'speedup_seqs': -1
}
# Calculate ILP times
assert(len(group['total time default']) == len(group['total time sequences heur']))
if len(group['total time default'])>0:
results[width_range]['ilp_no_safety'] = sum(group['total time default']) / len(group['total time default'])
results[width_range]['ilp_safe_seqs'] = sum(group['ilp time seqs heur']) / len(group['total time default'])
if len(group['speedup_seqs']) > 0:
speedup_seqs = sum(pair[0] for pair in group['speedup_seqs']) / len(group['speedup_seqs'])
#speedup_seqs_with_preproc = sum(pair[1] for pair in group['speedup_seqs']) / len(group['speedup_seqs'])
results[width_range]['speedup_seqs'] = speedup_seqs
return results
def calculate_solved(grouped_data):
results = {}
for width_range, group in grouped_data.items():
results[width_range] = {
'graphs': group['graphs'],
'max_width': -1,
'edges': -1,
'max_edges': -1,
'preprocess_seqs': -1,
'solved_default': -1,
'solved_seqs': -1,
'avg_time_default' : -1,
'avg_time_sequences' : -1,
'fixed_seqs': -1,
'speedup_seqs': -1
}
results[width_range]['solved_default'] = group['solved default']
results[width_range]['solved_seqs'] = group['solved sequences heur']
# Calculate averages for preprocessing times
if group['graphs'] > 0:
results[width_range]['edges'] = sum(group['edges'])/group['graphs'],
if len(group['preprocess sequences heur']) > 0:
results[width_range]['preprocess_seqs'] = (sum(group['preprocess sequences heur']) / len(group['preprocess sequences heur']))
results[width_range]['max_edges'] = max(group['edges'])
results[width_range]['max_width'] = max(group['edges'])
# Compute average total times in every safety setting
if group['solved default'] > 0:
results[width_range]['avg_time_default'] = sum(group['total time default solo']) / group['solved default']
if group['solved sequences heur'] > 0:
results[width_range]['avg_time_sequences'] = sum(group['total time sequences heur solo']) / group['solved sequences heur']
# Calculate average of fixed vars on solved instances
if group['solved sequences heur'] > 0:
results[width_range]['fixed_seqs'] = 100 * sum(group['fixed vars seqs']) / group['solved sequences heur']
if len(group['speedup_seqs']) > 0:
speedup_seqs = sum(pair[0] for pair in group['speedup_seqs']) / len(group['speedup_seqs'])
results[width_range]['speedup_seqs'] = speedup_seqs
return results
def generate_table1(results):
latex_code = r'''\begin{table}[]
\caption{Speed up metrics}
\begin{center}
\begin{tabular}{|r|r|r||r|r|r|}
\hline
& \multirow{2}{*}{width} & \multirow{2}{*}{\#graphs-all} & \multicolumn{2}{c||}{Avg.~ILP time (s)} & \multirow{2}{*}{Avg.~speedup ($\times$)} \\ \cline{4-5}
& & & No safety & Safe seqs. & \\ \hline
\multirow{3}{*}{\rotatebox{90}{\shortstack{\textbf{Dataset}\\\textbf{name}}}}'''
for width_range, metrics in results.items():
ilp_no_safety = f"{metrics['ilp_no_safety']:.3f}" if metrics['ilp_no_safety'] != -1 else "-"
ilp_safe_seqs = f"{metrics['ilp_safe_seqs']:.3f}" if metrics['ilp_safe_seqs'] != -1 else "-"
speedup_seqs = f"{metrics['speedup_seqs']:.1f}" if metrics['speedup_seqs'] != -1 else "-"
latex_code += f"& {width_range} & {metrics['graphs_common']} & {ilp_no_safety} & {ilp_safe_seqs} & {speedup_seqs} \\\\\n"
latex_code += r'''
\hline
\end{tabular}
\end{center}
\end{table}
'''
return latex_code
def generate_table2(results):
latex_code = r'''\begin{table}[]
\caption{Solved and fixed variables (simplified view).}
\begin{center}
\begin{tabular}{|r|r|r|r|r|r||r|r||r|}
\hline
& \multirow{2}{*}{$w$} & \multirow{2}{*}{\#g} & \multirow{2}{*}{avg $m$} & \multirow{2}{*}{preproc (s)} & \multirow{2}{*}{\shortstack{vars \\ (\%)}} & \multicolumn{2}{c|}{\#solved (avg time (s))} & \multirow{2}{*}{$\times$} \\ \cline{7-8}
& & & & & & no safety & safety & \\ \hline
\multirow{3}{*}{\rotatebox{90}{\shortstack{\textbf{Dataset}\\\textbf{name}}}}'''
for width_range, metrics in results.items():
preprocess_seqs = f"{metrics['preprocess_seqs']:.3f}" if metrics['preprocess_seqs'] != -1 else "-"
solved_default_time = (f"{metrics['solved_default']}" if metrics['solved_default'] != -1 else "-") + " (" + (f"{metrics['avg_time_default']:.3f}" if metrics['avg_time_default'] != -1 else "-") + ")"
solved_sequences_time = (f"{metrics['solved_seqs']}" if metrics['solved_seqs'] != -1 else "-") + " (" + (f"{metrics['avg_time_sequences']:.3f}" if metrics['avg_time_sequences'] != -1 else "-") + ")"
fixed_sequences = f"{metrics['fixed_seqs']:.1f}" if metrics['fixed_seqs'] != -1 else "-"
speedup_seqs = f"{metrics['speedup_seqs']:.1f}" if metrics['speedup_seqs'] != -1 else "-"
edges_info = (f"{metrics['edges']}") + " (" + f"{metrics['max_edges']}" + ")" if metrics['edges'] != -1 else "-"
latex_code += f"& {width_range} & {metrics['graphs']} & {edges_info} & {preprocess_seqs} & {fixed_sequences} & {solved_default_time} & {solved_sequences_time} & {speedup_seqs} \\\\\n"
latex_code += r'''
\end{tabular}
\end{center}
\end{table}
'''
return latex_code
def main():
parser = argparse.ArgumentParser(description='Process inputs.')
parser.add_argument('-i', '--input' , required=True, help='Input file path')
args = parser.parse_args()
filename = args.input
parsed_data = parse_input_file(filename)
grouped_data = group_by_width(parsed_data)
'''
The variables `results1'' and ``latex_code1'' shoudl be ignored.
'''
results1 = calculate_metrics(grouped_data)
latex_code1 = generate_table1(results1)
results2 = calculate_solved(grouped_data)
latex_code2 = generate_table2(results2)
with open(filename+"1.tex", "w") as f:
f.write(latex_code1)
with open(filename+"2.tex", "w") as f:
f.write(latex_code2)
if __name__ == "__main__":
main()