|
1 |
| -# benchmark |
| 1 | +# Image Augmentation Library Benchmarks |
| 2 | + |
| 3 | +A comprehensive benchmarking suite for comparing the performance of popular image augmentation libraries including [Albumentations](https://albumentations.ai/), [imgaug](https://imgaug.readthedocs.io/en/latest/), [torchvision](https://pytorch.org/vision/stable/index.html), [Kornia](https://kornia.readthedocs.io/en/latest/), and [Augly](https://github.com/facebookresearch/AugLy). |
| 4 | + |
| 5 | +<details> |
| 6 | +<summary>Table of Contents</summary> |
| 7 | + |
| 8 | +- [Image Augmentation Library Benchmarks](#image-augmentation-library-benchmarks) |
| 9 | + - [Overview](#overview) |
| 10 | + - [Benchmark Results](#benchmark-results) |
| 11 | + - [System Information](#system-information) |
| 12 | + - [Benchmark Parameters](#benchmark-parameters) |
| 13 | + - [Library Versions](#library-versions) |
| 14 | + - [Performance Comparison](#performance-comparison) |
| 15 | + - [Requirements](#requirements) |
| 16 | + - [Supported Libraries](#supported-libraries) |
| 17 | + - [Notes](#notes) |
| 18 | + - [Setup](#setup) |
| 19 | + - [Getting Started](#getting-started) |
| 20 | + - [Using Your Own Images](#using-your-own-images) |
| 21 | + - [Methodology](#methodology) |
| 22 | + - [Benchmark Process](#benchmark-process) |
| 23 | + - [Running Benchmarks](#running-benchmarks) |
| 24 | + - [Single Library](#single-library) |
| 25 | + - [Command Line Arguments](#command-line-arguments) |
| 26 | + - [All Libraries](#all-libraries) |
| 27 | + - [All Libraries Options](#all-libraries-options) |
| 28 | + - [Output Structure](#output-structure) |
| 29 | + - [Output Format](#output-format) |
| 30 | + |
| 31 | +</details> |
| 32 | + |
| 33 | +## Overview |
| 34 | + |
| 35 | +This benchmark suite measures the throughput and performance characteristics of common image augmentation operations across different libraries. It features: |
| 36 | + |
| 37 | +- Adaptive warmup to ensure stable measurements |
| 38 | +- Multiple runs for statistical significance |
| 39 | +- Detailed performance metrics and system information |
| 40 | +- Thread control settings for consistent single-threaded performance |
| 41 | +- Support for multiple image formats and loading methods |
| 42 | + |
| 43 | +## Benchmark Results |
| 44 | + |
| 45 | +### System Information |
| 46 | + |
| 47 | +- Platform: macOS-15.0.1-arm64-arm-64bit |
| 48 | +- Processor: arm |
| 49 | +- CPU Count: 10 |
| 50 | +- Python Version: 3.12.7 |
| 51 | + |
| 52 | +### Benchmark Parameters |
| 53 | + |
| 54 | +- Number of images: 1000 |
| 55 | +- Runs per transform: 10 |
| 56 | +- Max warmup iterations: 1000 |
| 57 | + |
| 58 | +### Library Versions |
| 59 | + |
| 60 | +- albumentations: 1.4.20 |
| 61 | +- augly: 1.0.0 |
| 62 | +- imgaug: 0.4.0 |
| 63 | +- kornia: 0.7.3 |
| 64 | +- torchvision: 0.20.0 |
| 65 | + |
| 66 | +### Performance Comparison |
| 67 | + |
| 68 | +| Transform | albumentations<br>1.4.20 | augly<br>1.0.0 | imgaug<br>0.4.0 | kornia<br>0.7.3 | torchvision<br>0.20.0 | |
| 69 | +|:------------------|:---------------------------|:-----------------|:------------------|:------------------|:------------------------| |
| 70 | +| HorizontalFlip | **8325 ± 955** | 4807 ± 818 | 5585 ± 1146 | 390 ± 106 | 875 ± 69 | |
| 71 | +| VerticalFlip | **20493 ± 1134** | 9153 ± 1291 | 10390 ± 290 | 1212 ± 402 | 3131 ± 61 | |
| 72 | +| Rotate | **1272 ± 12** | 1119 ± 41 | 1054 ± 96 | 143 ± 11 | 147 ± 6 | |
| 73 | +| Affine | **967 ± 3** | - | 802 ± 55 | 147 ± 9 | 128 ± 6 | |
| 74 | +| Equalize | **961 ± 4** | - | 540 ± 39 | 152 ± 19 | 414 ± 64 | |
| 75 | +| RandomCrop80 | **118946 ± 741** | 25272 ± 1822 | 11009 ± 404 | 1510 ± 230 | 22499 ± 5532 | |
| 76 | +| ShiftRGB | **1873 ± 252** | - | 1563 ± 195 | - | - | |
| 77 | +| Resize | **2365 ± 153** | 611 ± 78 | 1699 ± 105 | 232 ± 24 | 166 ± 9 | |
| 78 | +| RandomGamma | **8608 ± 220** | - | 2315 ± 151 | 108 ± 13 | - | |
| 79 | +| Grayscale | **3050 ± 597** | 2720 ± 932 | 1670 ± 56 | 289 ± 75 | 1626 ± 156 | |
| 80 | +| RandomPerspective | 410 ± 20 | - | **537 ± 41** | 86 ± 11 | 96 ± 4 | |
| 81 | +| GaussianBlur | **1734 ± 204** | 242 ± 4 | 1047 ± 122 | 176 ± 18 | 73 ± 6 | |
| 82 | +| MedianBlur | **862 ± 30** | - | 814 ± 71 | 5 ± 0 | - | |
| 83 | +| MotionBlur | **2975 ± 52** | - | 583 ± 52 | 73 ± 2 | - | |
| 84 | +| Posterize | **5214 ± 101** | - | 2112 ± 281 | 430 ± 49 | 3063 ± 116 | |
| 85 | +| JpegCompression | **845 ± 61** | 778 ± 5 | 413 ± 29 | 71 ± 3 | 617 ± 24 | |
| 86 | +| GaussianNoise | 147 ± 10 | 67 ± 2 | **203 ± 10** | 75 ± 1 | - | |
| 87 | +| Elastic | 171 ± 15 | - | **227 ± 17** | 1 ± 0 | 2 ± 0 | |
| 88 | +| ColorJitter | **536 ± 41** | 255 ± 13 | - | 55 ± 18 | 45 ± 2 | |
| 89 | +| Brightness | **4443 ± 84** | 1163 ± 86 | - | 472 ± 101 | - | |
| 90 | +| Contrast | **4398 ± 143** | 736 ± 79 | - | 425 ± 52 | - | |
| 91 | +| Blur | **4816 ± 59** | 246 ± 3 | - | - | - | |
| 92 | +| RandomResizedCrop | **2952 ± 24** | - | - | 287 ± 58 | 466 ± 30 | |
| 93 | +| Normalize | **1016 ± 84** | - | - | 626 ± 40 | 422 ± 64 | |
| 94 | +| PlankianJitter | **1844 ± 208** | - | - | 813 ± 211 | - | |
| 95 | +| Clahe | **423 ± 10** | - | - | 94 ± 9 | - | |
| 96 | +| CoarseDropout | **11288 ± 609** | - | - | 536 ± 87 | - | |
| 97 | + |
| 98 | + |
| 99 | +## Requirements |
| 100 | + |
| 101 | +The benchmark automatically creates isolated virtual environments for each library and installs the necessary dependencies. Base requirements: |
| 102 | + |
| 103 | +- Python 3.10+ |
| 104 | +- uv (for fast package installation) |
| 105 | +- Disk space for virtual environments |
| 106 | +- Image dataset in a supported format (JPEG, PNG) |
| 107 | + |
| 108 | +## Supported Libraries |
| 109 | + |
| 110 | +- [Albumentations](https://albumentations.ai/) |
| 111 | +- [imgaug](https://imgaug.readthedocs.io/en/latest/) |
| 112 | +- [torchvision](https://pytorch.org/vision/stable/index.html) |
| 113 | +- [Kornia](https://kornia.readthedocs.io/en/latest/) |
| 114 | +- [Augly](https://github.com/facebookresearch/AugLy) |
| 115 | + |
| 116 | +Each library's specific dependencies are managed through separate requirements files in the `requirements/` directory. |
| 117 | + |
| 118 | +## Notes |
| 119 | + |
| 120 | +- The benchmark prioritizes consistent measurement over raw speed by enforcing single-threaded execution |
| 121 | +- Early stopping mechanisms prevent excessive time spent on slow transforms |
| 122 | +- Variance stability checks ensure meaningful measurements |
| 123 | +- System information and thread settings are captured to aid in reproducibility |
| 124 | + |
| 125 | +## Setup |
| 126 | + |
| 127 | +### Getting Started |
| 128 | + |
| 129 | +For testing and comparison purposes, you can use the ImageNet validation set: |
| 130 | + |
| 131 | +```bash |
| 132 | +wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar |
| 133 | +tar -xf ILSVRC2012_img_val.tar -C /path/to/your/target/directory |
| 134 | +``` |
| 135 | + |
| 136 | +### Using Your Own Images |
| 137 | + |
| 138 | +While the ImageNet validation set provides a standardized benchmark, we strongly recommend running the benchmarks on your own dataset that matches your use case: |
| 139 | + |
| 140 | +- Use images that are representative of your actual workload |
| 141 | +- Consider image sizes and formats you typically work with |
| 142 | +- Include edge cases specific to your application |
| 143 | + |
| 144 | +This will give you more relevant performance metrics for your specific use case, as: |
| 145 | + |
| 146 | +- Different image sizes can significantly impact performance |
| 147 | +- Some transforms may perform differently on different types of images |
| 148 | +- Your specific image characteristics might favor certain libraries over others |
| 149 | + |
| 150 | +## Methodology |
| 151 | + |
| 152 | +### Benchmark Process |
| 153 | + |
| 154 | +1. **Image Loading**: Images are loaded using library-specific loaders to ensure optimal format compatibility: |
| 155 | + - OpenCV (BGR → RGB) for Albumentations and imgaug |
| 156 | + - torchvision for PyTorch-based operations |
| 157 | + - PIL for augly |
| 158 | + - Normalized tensors for Kornia |
| 159 | + |
| 160 | +2. **Warmup Phase**: |
| 161 | + - Performs adaptive warmup until performance variance stabilizes |
| 162 | + - Uses configurable parameters for stability detection |
| 163 | + - Implements early stopping for slow transforms |
| 164 | + - Maximum time limits prevent hanging on problematic transforms |
| 165 | + |
| 166 | +3. **Measurement Phase**: |
| 167 | + - Multiple runs of each transform |
| 168 | + - Measures throughput (images/second) |
| 169 | + - Calculates statistical metrics (median, standard deviation) |
| 170 | + |
| 171 | +4. **Environment Control**: |
| 172 | + - Forces single-threaded execution across libraries |
| 173 | + - Captures detailed system information and library versions |
| 174 | + - Monitors thread settings for various numerical libraries |
| 175 | + |
| 176 | +## Running Benchmarks |
| 177 | + |
| 178 | +### Single Library |
| 179 | + |
| 180 | +To benchmark a single library: |
| 181 | + |
| 182 | +```bash |
| 183 | +./benchmark/run_single.sh -l albumentations -d /path/to/images -o /path/to/output |
| 184 | +``` |
| 185 | + |
| 186 | +#### Command Line Arguments |
| 187 | + |
| 188 | +```bash |
| 189 | +Usage: run_single.sh -l LIBRARY -d DATA_DIR -o OUTPUT_DIR [-n NUM_IMAGES] [-r NUM_RUNS] |
| 190 | +[--max-warmup MAX_WARMUP] [--warmup-window WINDOW] |
| 191 | +[--warmup-threshold THRESHOLD] [--min-warmup-windows MIN_WINDOWS] |
| 192 | +Required arguments: |
| 193 | +-l LIBRARY Library to benchmark (albumentations, imgaug, torchvision, kornia, augly) |
| 194 | +-d DATA_DIR Directory containing images |
| 195 | +-o OUTPUT_DIR Directory for output files |
| 196 | +Optional arguments: |
| 197 | +-n NUM_IMAGES Number of images to process (default: 1000) |
| 198 | +-r NUM_RUNS Number of benchmark runs (default: 5) |
| 199 | +--max-warmup Maximum warmup iterations (default: 5000) |
| 200 | +--warmup-window Window size for variance check (default: 5) |
| 201 | +--warmup-threshold Variance stability threshold (default: 0.05) |
| 202 | +--min-warmup-windows Minimum windows to check (default: 3) |
| 203 | +``` |
| 204 | + |
| 205 | +### All Libraries |
| 206 | + |
| 207 | +To run benchmarks for all supported libraries and generate a comparison: |
| 208 | + |
| 209 | +```bash |
| 210 | +./run_all.sh -d /path/to/images -o /path/to/output |
| 211 | +``` |
| 212 | + |
| 213 | +#### All Libraries Options |
| 214 | + |
| 215 | +```bash |
| 216 | +Usage: run_all.sh -d DATA_DIR -o OUTPUT_DIR [-n NUM_IMAGES] [-r NUM_RUNS] |
| 217 | +[--max-warmup MAX_WARMUP] [--warmup-window WINDOW] |
| 218 | +[--warmup-threshold THRESHOLD] [--min-warmup-windows MIN_WINDOWS] |
| 219 | +Required arguments: |
| 220 | +-d DATA_DIR Directory containing images |
| 221 | +-o OUTPUT_DIR Directory for output files |
| 222 | +Optional arguments: |
| 223 | +-n NUM_IMAGES Number of images to process (default: 2000) |
| 224 | +-r NUM_RUNS Number of benchmark runs (default: 5) |
| 225 | +--max-warmup Maximum warmup iterations (default: 1000) |
| 226 | +--warmup-window Window size for variance check (default: 5) |
| 227 | +--warmup-threshold Variance stability threshold (default: 0.05) |
| 228 | +--min-warmup-windows Minimum windows to check (default: 3) |
| 229 | +``` |
| 230 | + |
| 231 | +The `run_all.sh` script will: |
| 232 | + |
| 233 | +1. Run benchmarks for each library ([albumentations](https://albumentations.ai/), [imgaug](https://imgaug.readthedocs.io/en/latest/), [torchvision](https://pytorch.org/vision/stable/index.html), [kornia](https://kornia.readthedocs.io/en/latest/), [augly](https://github.com/facebookresearch/AugLy)) |
| 234 | +2. Save individual results as JSON files in the output directory |
| 235 | +3. Generate a comparison CSV file combining results from all libraries |
| 236 | + |
| 237 | +### Output Structure |
| 238 | + |
| 239 | +```tree |
| 240 | +output_directory/ |
| 241 | +├── albumentations_results.json |
| 242 | +├── imgaug_results.json |
| 243 | +├── torchvision_results.json |
| 244 | +├── kornia_results.json |
| 245 | +└── augly_results.json |
| 246 | +``` |
| 247 | + |
| 248 | +When running all benchmarks, the output directory will contain: |
| 249 | + |
| 250 | +### Output Format |
| 251 | + |
| 252 | +The benchmark produces a JSON file containing: |
| 253 | + |
| 254 | +```json |
| 255 | +{ |
| 256 | + "metadata": { |
| 257 | + "system_info": { |
| 258 | + "python_version": "...", |
| 259 | + "platform": "...", |
| 260 | + "processor": "...", |
| 261 | + "cpu_count": "...", |
| 262 | + "timestamp": "..." |
| 263 | + }, |
| 264 | + "library_versions": {...}, |
| 265 | + "thread_settings": {...}, |
| 266 | + "benchmark_params": {...} |
| 267 | + }, |
| 268 | + "results": { |
| 269 | + "transform_name": { |
| 270 | + "supported": true, |
| 271 | + "warmup_iterations": 100, |
| 272 | + "throughputs": [...], |
| 273 | + "median_throughput": 123.45, |
| 274 | + "std_throughput": 1.23, |
| 275 | + "times": [...], |
| 276 | + "mean_time": 0.123, |
| 277 | + "std_time": 0.001, |
| 278 | + "variance_stable": true, |
| 279 | + "early_stopped": false, |
| 280 | + "early_stop_reason": null |
| 281 | + } |
| 282 | + // ... results for other transforms |
| 283 | + } |
| 284 | +} |
| 285 | +``` |
0 commit comments